
 

 

SCIENTIFIC REPORTS 

Mathematical Methods for the General Relativistic Two-
body Problem 

11 Aug 2025–15 Aug 2025 
 

Organizing Committee 

Alvin Chua 
National University of Singapore 

Soichiro Isoyama 
National University of Singapore 

Josh Mathews 
National University of Singapore 

 

  



CONTENTS PAGE 
 Page 

Laura Bernard 
Observatoire de Paris-PSL, France 

Analytical Modeling of Gravitational Waves: A Recent 
View on the post-Newtonian Framework 3 

Beatrice Bonga 
Radboud University, Netherlands 

Dynamical Tidal Resonances in EMRIs 5 

Geoffrey Compere 
Université Libre de Bruxelles, Belgium 

Hybrid Post-Newtonian/Self-force Inspiral and 
Transition-to-plunge Waveforms 9 

Jonathan Gair 
Albert Einstein Institute, Germany 

The Prospects and Challenges of Science with LISA 
EMRI Observations 20 

Oliver Long 
Albert Einstein Institute, Germany 

Putting the Hype in Hyperbolic Black Hole Scattering 24 

Phillip Lynch 
Albert Einstein Institute, USA 

The DDPC and EMRI Waveform Modelling: Structure, 
Roles, and Roadmap 26 

Rodrigo Panosso Macedo 
Niels Bohr Institute, Denmark 

The Hyperboloidal Framework in Black Hole Perturbation 
Theory 29 

Zachary Nasipak 
University of Southampton, UK 

Computational Advances in Self-force: Building a Bridge 
between Theory and Waveform Modeling 33 

Andrew Spiers 
University of Nottingham, UK 

Fix the Frame, Resolve the Memory: The Bondi–Sachs 
Gauge in Black Hole Perturbation Theory 35 

Vojtech Witzany 
Charles University in Prague, Czech 
Republic 

Integrability of the Relativistic Two-body Problem 38 

Huan Yang 
Tsinghua University, China 

Probing Formation Channels of Extreme Mass-ratio 
Inspirals 41 

 



ANALYTICAL MODELING OF GRAVITATIONAL WAVES: A RECENT VIEW ON THE
POST-NEWTONIAN FRAMEWORK

LAURA BERNARD

Classification AMS 2020:

Keywords: general relativity, post-Newtonian formalism, perturbation theory, two-
body problem

Next generation of gravitational wave detectors will have a tremendous sensibility,
allowing many more gravitational wave detections over a very large frequency band. In
particular, LISA, the future space-based detector, will be able to detect gravitational
waves from supermassive black hole binaries and extreme/intermetdiate mass ratio
inspirals. In order to learn the most from GW detections, one of the most prominent
challenge lies in our ability to produce a bank of extremely accurate gravitational
waveforms for all the expected sources.

To provide a consistent and unified description of the different phases of the
coalescence of a binary system: inspiral, merger and ringdown (IMR), different
methods are used. To describe the merger phase, where the strongest gravitational
phenomena take place, solutions to the full nonlinear gravitational field equations are
needed, which have been obtained with numerical relativity tools. On the other hand,
the ringdown and inspiral stages of the coalescence can be described using perturbative
techniques. For the former, BH perturbation theory is used to describe the relaxation
phase, with the black hole quasi-normal modes playing a fundamental role. Finally, the
inspiral phase is very accurately modeled with the multipolar post-Minkowskian –
post-Newtonian (mPM-PN) formalism. It consists in a multipolar and weak field
expansion combined with a series expansion in small velocities.

In this talk, I gave an overview of the mPM-PN framework in GR. In particular, I
highlighted the similarities with more recent diagrammatic approaches, that all rely on a
hierarchy on scales allowing to solve the two-body problem in successive region of space,
and I insisted on the synergies and complementary between the different approaches.

Then, I presented the current state of the art, insisting on some recent results:

- the radiation-reaction at 4.5PN in the Burke-Thorne gauge;
- the gravitational flux and waveform at 4.5PN;
- some tail and memory contributions from EFT techniques;
- the finite-size effects amplitude modes at 4.5PN and the spinning amplitude

modes at 3PN.

Finally, I concluded with some prospects in view of the next generation of gravitational
wave detectors, insisting on:

- the interplay between PN and scattering amplitudes results;
- the interplay between PN and self-force and numerical relativity results to build

full IMR waveforms;
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- the importance of hereditary effects (tails, memory);
- the importance of improving current waveforms by including spin precession,

high eccentricity and dynamical effects.

LUX, OBSERVATOIRE DE PARIS-PSL, MEUDON, FRANCE

Email address: laura.bernard@obspm.fr
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DYNAMICAL TIDAL RESONANCES IN EMRIS

BÉATRICE BONGA

Classification AMS 2020:

Keywords:

Extreme-mass-ratio inspirals (EMRIs) are a key target for LISA, given that they are
unique probes of the spacetime structure around the massive central black hole (BH)
[1]. They will allow for extraordinarily precise tests of general relativity, since we will
observe their intricate relativistic orbits over some ∼ 105 orbits instead of O(10) orbits in
comparable-mass binaries observed by LIGO-Virgo-KAGRA. EMRIs are typically modeled
as clean, isolated 2-body systems. Yet, in realistic galactic-center environments, other
nearby stellar-mass objects can induce tidal resonances that leave an observable imprint
on the gravitational waveform [2]. Without accounting for these resonant effects in our
model, the utility of EMRIs as precision probes may be impeded. We may misattribute the
effects to deviations from General Relativity or, worse, may not even be able to detect the
EMRI. Conversely, if we can correctly model such tidal resonances, we unlock valuable
information about the population of dark objects in the galactic core, otherwise difficult
to access [3, 4].

Observational evidence has accumulated over the past years indicating the reality of
such tidal perturbers with the observations of QPEs possibly describing the interaction
of a stellar object with an accretion disk of a central massive BH [9, 10, 11, 12] and the
discovery of new faint stars near SgrA* (such as S301 with a periapsis at only ∼ 260M∗
with M∗ the mass of SgrA*[8]). While EMRI rates with or without perturbers remain
highly uncertain [15, 16], this highlights the importance of correctly incorporating tidal
resonances in EMRI models.

To calculate the influence of a resonance on the waveform one needs to know when
the resonance occurs and what the size of the effect is, which we will refer to as the
‘jump’. A resonance occurs when the orbital frequencies of the EMRI with respect to
Boyer-Lindquist time ωr, ωθ, ωϕ and of the tidal perturber become commensurate, i.e.,

(0.1) nωr + k ωθ +mωϕ + s ωtd = 0

for integers n, k,m, s. The tidal perturber in principle also has three orbital frequencies,
but since we take it to be at distances O(100M), its Keplerian frequency ωtd is sufficient
to describe its motion. In our earlier work [2, 3, 4], we assumed that the perturber is
sufficiently far to be considered stationary during the resonance time (effectively setting
ωtd to zero in the resonance condition above). For such a stationary perturber there are
a priori 9 × 9 × 5 = 405 possible resonances with |k|, |n| ≤ 4 and |m| ≤ 2 (restricting to
the leading-order, quadrupolar tidal deformation).1 But considering symmetry properties
and the condition that the resonance should occur in the LISA band — say, pragmatically,

1The perturbation is modeled by the leading order quadrupolar deformation of the central massive BH,
which naturally restricts |m| ≤ 2.
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FIGURE 1. Resonance contours for a prograde orbit with inclination 50◦

in the eccentricity e - semilatus rectum p plane of the EMRI. The contour
labels correspond to the resonance numbers {n, k,m}. The spin parameter
of the central BH is set to a = 0.1 (left) and a = 0.9 (right). The blue
dashed lines indicate the separatrix.

for a semi-latus rectum < 100M — only 12 are allowable for a prograde orbit (and
the same number for a retrograde orbit). The corresponding resonance contours are
shown in Fig. 1. Resonances with the same n group together for small spin values of the
central massive BH, while they diverge as the spin value increases (an effect somewhat
reminiscent of Zeeman splitting). Both scenarios require extra care when implementing
in Fast EMRI Waveforms (FEW) [17, 18, 19, 20]: for close resonances one has to make
reasonably small steps to make sure one does not jump over a resonance contour, and
when the resonances cross and overlap one has to account for both.

While for a typical EMRI evolution in the presence of a stationary tidal perturber, 12
resonances are possible, not all 12 resonances will be excited and produce observable
imprints on the waveform. Whether a resonance is excited depends critically on the
phase parameters with which the EMRI enters the resonance. Moreover, the impact
on the waveform is also determined by the moment during the EMRI evolution it is
excited. For instance, even if the instantaneous impact of the resonance is sizable, if the
resonance occurs close to the separatrix, the impact on the waveform will be minimal
as the resonance will only impact the final few orbits. Numerically evolving various
EMRIs using the method of forced osculating orbital elements [21] seems to suggest that
typically only 2-3 stationary resonances result in observable dephasing.2

Stationarity of the perturber is, however, not a good approximation: during a
resonance for a perturber at realistic distances, the perturber typically completes 1-2

2Such a numerical evolution is computationally expensive (even when the radiation effects are modeled
using 5PN fluxes as we did) and thus unsuitable for real-time waveform generation in data analysis
pipelines.
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orbital periods. Allowing for a dynamical perturber in principle also requires accounting
for its possible eccentricity (known formation channels of tidal perturbers, such as
two-body relaxation processes [13] and the Hills mechanism [14], suggest high
eccentricities). Here, I will nevertheless assume that the perturber is in a circular orbit.
This has the added benefit that we do not need to introduce any additional parameters
compared to the stationary case.3 The term sωtd in the resonance condition greatly
enriches the allowed resonance structure: now there are more than 300 possible
resonances in the LISA band (the exact number depends critically on the value of ωtd).
Moreover, when the resonance occurs is no longer just determined by the EMRI
evolution itself (i.e. ωr, ωθ, ωϕ), but also depends on the additional parameter ωtd. A few
exploratory numerical evolutions with the osculating elements code show some EMRI
trajectories with 3 significant dynamic tidal resonances, but also some with as many as
17. This case is only just being explored and deserves further research. Key questions to
address are: Which resonances dominate? Do we need to model all resonances for
accurate phase modeling, or only the largest? How do self-force and tidal effects
interact? Answering these questions and developing efficient implementations in FEW
will be crucial for extracting maximal science from EMRI observations.
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HYBRID POST-NEWTONIAN/SELF-FORCE INSPIRAL AND
TRANSITION-TO-PLUNGE WAVEFORMS

GEOFFREY COMPÈRE

Keywords: Gravitational waves, gravitation, black holes, binary mergers, inspiral, post-
Newtonian, self-force

Credits: This talk is based on [1, 2, 3] with contributions from L. Honet, A. Pound, J.
Matthews, B. Wardell, G. Piovano, M. van de Meent and N. Warburton.

Since the first detection of a gravitational-wave (GW) signal 10 years ago
(GW150914) [4], the LIGO-Virgo-KAGRA (LVK) collaboration has now seen more than
a hundred binary coalescence events among their first three observing runs [5]. With
the upcoming release of the fourth version of the Gravitational-Wave Transient Catalog
(GWTC-4) and the fifth observing run planned for 2027 [6], many more GW events will
soon be reported or discovered by ground-based detectors. Together with the
improvement of detectors’ sensitivity, this spurs GW modelers to provide fast and
faithful waveform models for parameter estimation studies and tests of general
relativity [7, 8, 9, 10, 11, 12].

In particular, one specific event from the third observing run, GW191219 163120, has
been estimated to come from a binary with mass ratio ∼1:27. Such a high mass ratio
lies beyond what current models are able to cover [5, 13] and points to one of the LVK
observational science short-term R&D objectives: providing fast and accurate waveform
models for asymmetric-mass-ratio binaries [14].

On the other side, future space-based detectors such as LISA will detect GW signals in
the millihertz spectrum [15], allowing us to observe signals emitted by
extreme-mass-ratio inspirals (EMRIs). The joint use of space-based detectors with
future third-generation (3G) ground-based detectors such as the Einstein Telescope [16]
will enable the observation of sources such as intermediate mass ratio coalescences
(IMRACs) across multiple bandwidths [15]. Those intermediate systems with mass
ratios typically ranging from ∼1:102 to ∼1:104 currently lack accurate waveform models
and constitute a real GW modeling challenge for 3G detectors.

The waveform modeling technique that naturally leverages the existence of two
disparate masses is the gravitational self-force (GSF or SF) program, where the Einstein
field equations (EFEs) and the orbital motion of the secondary black hole are expanded
in the binary’s small mass ratio. Recent milestones in the self-force community have
been, for example, the construction of a first-post-adiabatic (1PA)/second-order
self-force (2GSF) waveform model for spinning binaries with a slowly spinning primary
black hole and rapidly spinning, precessing secondary [17] and the development of a
fast, data-analysis-ready adiabatic (0PA) model for eccentric equatorial binaries with a
rapidly spinning primary in the FEW python package [18], leveraging the SF multiscale
expansion framework [19, 20, 21, 22] and hardware acceleration [23] for rapidly
generating waveforms.
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1. TRANSITION-TO-PLUNGE

These pieces of work focus primarily on the inspiral phase of the binary, which is
expected to be sufficient for modeling EMRI signals. In contrast, IMRACs usually have a
merger that occurs in the frequency band of ground-based detectors [15]. Moreover,
recent results in second-order self-force [24, 13] show that self-force models can be
remarkably precise even at more comparable mass ratios ∼1:10 [17, 25], and for such
systems the merger can always represent a significant fraction of the signal-to-noise
ratio (SNR). Those considerations make it important to extend the multiscale self-force
framework beyond the innermost stable circular orbit (ISCO), where the inspiral motion
of the binary breaks down.

A recent work by three of us [26] extensively derived the self-force framework for
the transition-to-plunge (or simply “transition”) motion of nonspinning, quasicircular
binaries. This work extended the results of Refs. [27, 28, 29] by including a treatment
of the Einstein field equations and waveform generation on top of the orbital dynamics,
while also reformulating the transition in the phase-space approach [21, 22, 30] that
underlies the multiscale expansion’s accuracy [13] and efficiency.

In GSF theory, the merger-ringdown part of the waveform is generated by the
secondary’ final, approximately geodesic plunge into the primary after it transitions
across the ISCO [31, 32]. Again, three of us recently showed how to formulate this
regime in the phase-space approach of the multiscale expansion [33] (building on
Refs. [34, 35]). This created a unified framework for inspiral, transition, and plunge
that can be carried (in principle) to any order in the small mass ratio. In Ref. [36], two
of us employed that framework to generate subleading-order merger-ringdown
waveforms in a test case of modified gravity.

These developments have paved the way for building the first
inspiral-merger-ringdown (IMR) model for quasicircular, nonspinning binaries beyond
leading order in GSF theory [37, 38, 39, 40]. (See Refs. [41, 42, 43] for earlier such
waveforms at leading order, following an iterative method initiated in Ref. [44] rather
than a multiscale approach.)

With a first complete beyond-leading-order GSF IMR waveform model for
nonspinning binaries at hand, we now aim to to include additional physical parameters.
The work presented in this talk represents one of the intermediate steps towards
including the effects of the primary black hole spin in the IMR waveform model
presented in Ref. [37, 38, 39, 40]: we derive and implement second-post-leading
transition-to-plunge (2PLT) waveforms using the phase-space formalism for
non-eccentric equatorial motion of a Schwarzschild secondary black hole around a
primary Kerr black hole. Moreover, we build a composite waveform model that
smoothly interpolates between an adiabatic (0PA) model in the early inspiral and a
2PLT transition model when reaching the ISCO using a matched asymptotic expansions
procedure. We address and solve issues already raised in Ref. [26] about the accuracy of
such composite models due to early-time transition residuals in the dynamics.
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2. HYBRID MODELS

There has been substantial recent progress toward more faithful waveform models in
much of the binary parameter space, but all these models have limitations in the high-
q̊ regime [45]. In PN theory, waveforms have been pushed to 4.5PN beyond leading
order [46, 47, 48]; however, PN rapidly loses accuracy at high q̊ because the number of
orbital cycles in the strong-field regime scales linearly with q̊. Links between scattering
binaries and gravitationally bound systems [49, 50, 51, 52, 53, 54, 55, 56] have also
allowed PM scattering calculations to inform models of inspirals [57, 58, 59, 60, 61],
but application of these ideas to asymmetric systems is still in a germinal stage [62, 63,
64, 65, 66, 67]. The SXS collaboration’s catalog of NR waveforms now contains 4170
simulations, including 164 with mass ratios q̊ > 8 [68, 69, 70], and work on the high-̊q
regime is ongoing [71, 72, 73]; however, NR is still currently limited to mass ratios ≲ 20,
and it is not feasible for NR to explore the whole high-̊q parameter space (and effectively
impossible to model EMRIs with NR) due to the quadratic scaling of NR runtime with
q̊ [74].

In principle, the challenges of high-̊q modeling are met by SF theory, in which the small,
secondary object is treated as a source of perturbations on the spacetime of the larger,
primary black hole, and the spacetime metric is consequently expanded in powers of the
small mass ratio ε̊. This approach has reached recent milestones in both accuracy and
efficiency. By combining a multiscale formulation of the Einstein field equations [19, 20,
75, 21, 22, 76] with GPU acceleration, the FastEMRIWaveforms (FEW) package [77, 23,
78, 18] can generate long, LISA-length waveforms in tens of milliseconds. At the same
time, the most advanced SF models have proved highly accurate for all mass ratios q̊ ≳
10 [13, 25, 79]. However, current SF models remain severely limited in their coverage
of the binary parameter space, particularly for spinning and precessing systems.

It is generally accepted that, in order to meet LISA requirements, it is necessary and
sufficient to go to second order in the SF expansion of the EFEs [45, 80, 81]. This
is motivated by the fact that the phase of the GW signal admits an expansion of the
form [19, 21]

(2.1) φ(t, ε̊) =
1

ε̊
φ(0)(ε̊t) + φ(1)(ε̊t) +O(ε̊),

where the first term of the expansion is the adiabatic (0PA) phase and the second term is
the first post-adiabatic (1PA) correction. The former depends on the dissipative piece of
the first-order self-force (1SF), while the latter depends on the full first-order self-force
as well as the dissipative piece of the second-order self-force (2SF) [19, 20, 21].

Currently, the only available 1PA model is restricted to the case of nonspinning,
quasicircular inspirals [13]. 0PA models are available for generic binaries involving a
spinning primary, but they are limited to weak fields and small eccentricities [82] or else
to equatorial systems whose orbital angular momentum is aligned with the primary’s
spin axis [18]. 0PA models also fall short of the necessary accuracy requirements for
EMRIs. For IMRIs and other less extreme binaries, which will be observable when the
two bodies are at much larger separations, even a 1PA model loses accuracy [25].

A recent Bayesian analysis [83] confirmed that neglecting 1PA corrections introduces
significant biases on the parameter estimation for EMRIs and IMRIs. However, it also
showed that these biases can be mitigated or entirely eliminated by approximating the
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1PA terms with PN data. This is the starting point of our work: to combine SF and PN
results to construct a model that accurately covers the whole range of mass ratios 10 ≲
q̊ ≲ 106 and particularly covers the spinning binaries for which there are no complete 1PA
models.

More concretely, we seek to build a hybridized SF+PN model that achieves the
following:

(1) To model EMRIs with sufficient accuracy for LISA, the model should be “exact”
(accurate to 6 or more digits [84]) in its 0PA information and should be as
complete as possible in its 1PA information. Since 0PA effects [75, 85, 86, 87],
first-order conservative self-force effects [88, 89], and all
linear-in-secondary-spin effects [90, 91, 92, 93, 94, 22] can now be calculated
in SF theory for generic orbital configurations around a spinning primary,
completing a hybrid EMRI model for spinning binaries requires using a PN
approximation to the missing second-order dissipative self-force effects.

(2) To be efficient enough for LISA data analysis and to dovetail with the prevailing
EMRI modeling program, the model should take the multiscale form [21, 22] that
is compatible with the FEW rapid waveform-generation software package [77,
23, 78, 18].

(3) To be sufficiently accurate for long signals that extend into the weak field, in
the mass-asymmetric but non-EMRI regime 10−4 ≲ ε̊ ≲ 0.1 [18], the model
must contain terms beyond 1PA order [25]. More generally, for the purpose of
achieving high accuracy over the broadest possible range of signals, all available
PN information should be included.

(4) Following the principle of parsimony, we also aspire to keep the model as
conceptually simple as possible and built entirely from first principles, with no
calibration to NR data.
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FIGURE 1. Self-force/post-Newtonian hybrid waveform (in red) and NR
waveform SXS:BBH:2105 (in black) [95] for a quasicircular binary with
primary spin χ̊ = 0.9 and mass ratio q̊ = 1. The inset zooms in on the
shaded gray region close to the merger. The hybrid model is described
in the core of this article. We also display 0PA and 4PN waveforms
for comparison (in orange and blue, respectively), aligned with the NR
waveform at the same (early) reference time as the hybrid waveform.
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In this talk, we develop a model achieving each of these objectives in the case of a
nonspinning secondary object on a quasicircular orbit around a spinning primary black
hole. Our model is restricted to the inspiral regime, but it could be extended to the
merger-ringdown regime using the framework in Refs. [26, 33]. When applied for mass
ratios q̊ ≤ 15, we find that our hybrid model matches NR inspiral waveforms far more
accurately than either the 0PA or PN models taken individually. We find excellent
numerical agreement with SXS simulations even at comparable mass ratios, as
illustrated in Fig. 1 for an equal-mass, rapidly spinning binary.

Like the multiscale approach as a whole, our formulation (i) is modular, immediately
improvable as PN and SF data advances, and (ii) will ultimately enable rapid generation
of long waveforms for generic, eccentric, precessing binaries through seamless
integration with the FEW package. We hence expect that our approach will provide
accurate, efficient models of IMRIs and serve as accurate stand-ins for EMRI models
until complete 1PA results are available.

In the Letter [1], we further extend our model to include additional SF information,
and we provide a more thorough accuracy benchmarking against both NR and other
models.
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[40] L. Küchler, “Inspiral-merger-ringdown waveforms from gravitational self-force theory.” Talk given
at the 24th International Conference on General Relativity and Gravitation and the 16th Edoardo
Amaldi Conference on Gravitational Waves (Glasgow, UK),
https://iop.eventsair.com/gr24-amaldi16/conference-agenda, 2025.

[41] N. E. M. Rifat, S. E. Field, G. Khanna, and V. Varma, “Surrogate model for gravitational wave
signals from comparable and large-mass-ratio black hole binaries,” Phys. Rev. D 101 (2020), no. 8,
081502, 1910.10473.

[42] T. Islam, S. E. Field, S. A. Hughes, G. Khanna, V. Varma, M. Giesler, M. A. Scheel, L. E. Kidder, and
H. P. Pfeiffer, “Surrogate model for gravitational wave signals from nonspinning, comparable-to
large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated
to numerical relativity,” Phys. Rev. D 106 (2022), no. 10, 104025, 2204.01972.

[43] K. Rink, R. Bachhar, T. Islam, N. E. M. Rifat, K. Gonzalez-Quesada, S. E. Field, G. Khanna, S. A.
Hughes, and V. Varma, “Gravitational wave surrogate model for spinning, intermediate mass ratio
binaries based on perturbation theory and numerical relativity,” Phys. Rev. D 110 (2024), no. 12,
124069, 2407.18319.

[44] P. A. Sundararajan, G. Khanna, and S. A. Hughes, “Towards adiabatic waveforms for inspiral into
Kerr black holes. I. A New model of the source for the time domain perturbation equation,” Phys.
Rev. D 76 (2007) 104005, gr-qc/0703028.

[45] LISA Consortium Waveform Working Group Collaboration, N. Afshordi et al., “Waveform
Modelling for the Laser Interferometer Space Antenna.” 11, 2023.
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modeling for generic compact binaries with arbitrary orbits,” (3, 2025) 2503.14580.
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Extreme-mass-ratio inspirals (EMRIs), the inspirals and mergers of compact objects
(usually black holes but white dwarfs or neutron stars are also possible) with a massive
black hole (MBH) in the centre of a galaxy, are a key source for the future space-based
gravitational wave (GW) detector LISA [1], recently officially adopted by ESA and due
to be launched in 2035. A typical EMRI generates many hundreds of thousands of
cycles of gravitational radiation detectable by LISA, all of which are generated while the
small object is very close to the central black hole. This signal thus encodes detailed
information about the properties of the black hole and its immediate environment [2].

EMRIs may form in a number of different ways. The classic channel is driven by two-
body relaxation. MBHs in galactic centres are usually surrounded by a cluster of stars.
These stars interact with each other gravitationally, and close encounters can perturb
the orbits of compact objects so that they pass very close to the central MBH. If this
happens, energy and angular momentum are radiated from the orbit into GWs, leaving
the compact object on an orbit that is bound to the MBH. The compact object then
gradually inspirals into the central MBH via GW emission, eventually forming an EMRI.
This details of this process depend on the physics of nuclear stellar clusters (see [3] for
more details). Other EMRI formation channels include the Hills mechanism [4], in which
a binary star system is tidally disrupted when it passes close enough to the MBH, ejecting
one component as a hypervelocity star and leaving the other bound to the central black
hole where it becomes an EMRI, or the tidal stripping of a giant star. In the latter case,
the envelope of the giant star is removed by the tidal interaction, and the core of the
star is then left on an orbit around the black hole such that it eventually inspirals as
an EMRI [5]. Stars might also form directly in-situ in the vicinity of a black hole via
fragmentation of a massive accretion disc [6], with their remnants becoming EMRIs.

This variety in formation channels offers uncertainty for LISA, but also highlights the
discovery potential of the mission, as LISA will provide the first measurements of the
relative rates of EMRIs from these different channels. Over recent years, we have also
made electromagnetic observations of systems that are believed to be related to EMRIs.
Around 20 hypervelocity stars have been observed in our galaxy whose trajectories are
consistent with formation via the Hills mechanism in the Galactic centre or in the centre
of the Large Magellanic Cloud [7]. In addition, transient electromagnetic emission from
MBHs has been observed that is believed to be associated with the same dynamical
processes that create EMRIs. This includes tidal disruption events, which are the
detonations of stars perturbed onto orbits that pass close to MBHs, and quasi-periodic
eruptions/oscillations (QPEs/QPOs). The leading model to explain QPEs is that the
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emission is triggered by a compact object orbiting close to the MBH passing through the
accretion disc of the MBH as it orbits [8]. Objects on such orbits will later become
EMRIs, offering the prospect of multimessenger observations of the same system [9].
These electromagnetic observations have provided EMRI rate estimates that are
consistent with theoretical models, providing greater confidence that LISA will observe
a significant number of EMRI events over the mission lifetime.

Estimating how many EMRI events that LISA will observe requires three ingredients
— the rate of EMRIs in galactic nucleii, as a function of the MBH properties; the number
density of black holes in the range 104M⊙ ≲ M ≲ 107M⊙ to which LISA is sensitive; and
the detectability of EMRIs in LISA data, as a function of the system parameters. There
are large uncertainties in the first two ingredients in particular. For the rate per galaxy,
uncertainties arise not only because of the variety of different EMRI formation channels,
but also because the physics of stellar clusters is complex and difficult to simulate.
Matching of scales between the Newtonian many body dynamics that dominates far
from the black hole, and the relativistic dynamics in the close vicinity of the MBH,
create computational difficulties that lead to large uncertainties in predicting the
proportion of compact objects passing close to the MBH that plunge directly into the
black hole rather than inspiraling. The rate at which compact objects are brought from
larger radii in the galaxy to the vicinity of the MBH, to replenish the compact objects
falling into the MBH, is also hard to model. The space density of MBHs in the mass
range relevant to LISA is not much better constrained, as these MBHs are very difficult
to observe electromagnetically, once again providing LISA with a rich discovery space at
the cost of uncertain rate predictions. One thing comparatively well constrained is the
sensitivity of LISA to EMRIs. Even there the signal-to-noise ratio required for a
confident detection is not known, due to data analysis uncertainties, and computations
rely on having models for the EMRI signals that are both physically accurate and
sufficiently cheap to evaluate that the whole parameter space can be explored. EMRI
waveform modelling is a subject of intense study, as reported elsewhere at this meeting,
and fast, physically accurate models are now available [10], but only for a restricted
portion of the parameter space. Approximate models [11] must therefore be used to
assess the EMRI detection horizon, introducing a factor of two uncertainty in the rates.
Given all these uncertainties the estimated EMRI detection rate ranges from a few to a
few thousand events per year [12], with a best guess of ∼ 100 EMRIs yr−1. Recent work
has attempted to address some of the astrophysical uncertainties [13]. This has not
significantly changed the rate estimates, but has found that the ratio of inspirals to
direct plunges might be higher than previously thought, and EMRIs may have higher
residual eccentricity at plunge [14], creating further modelling challenges.

Hundreds of EMRI observations would offer a rich range of possibilities for science.
The ∼ 105 waveform cycles observable from a typical EMRI allow the parameters of the
system to be measured with unprecedented accuracy. EMRI observations will constrain
the intrinsic parameters of the system (mass and rotation rate of the MBH, mass of the
smaller object, and properties of the orbit, such as inclination and eccentricity) to
precisions of 10−6–10−4, sky locations to a few square degrees and luminosity distances
to a few percent [12, 15]. These precisions arise from the large number of observed
waveform cycles and are achieved even for events at the threshold of detection.
Through these precise measurements, EMRI observations will provide unique
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information about the properties of quiescent MBHs in the relatively low redshift
Universe, the relative importance of different EMRI formation channels and the physical
processes that govern the dynamics in dense stellar systems [16]. In addition, EMRIs
can probe the immediate astrophysical environments of their host MBH. As we know
from observations of QPEs, EMRIs can occur around MBHs with accretion discs. When
the smaller object passes through the MBH disc as it orbits, it experiences a drag which
changes the orbital trajectory. In general, any effect that leads to a significant orbital
dephasing over the observation can be detected, meaning effects at the level of 10−5. It
has been shown that EMRIs occurring in systems with discs can provide measurements
of the disc density profile [17] and, for EMRIs on eccentric orbits that transition from
supersonic to subsonic motion over the inspiral, also measurements of the disc viscosity
and accretion rate [18]. For the same reason, EMRIs also provide very sensitive probes
of the spacetime structure outside the MBH and can thus be used for fundamental
physics, to test for consistency of the MBH geometry with that of a Kerr black hole, as
predicted by GR. EMRIs are sensitive to the smallest absolute deviation of any GW
probe. The natural ways to build alternative theories to GR are to include quadratic and
higher order curvature terms in the action, or to introduce couplings to additional
fields. EMRIs are not a particularly good probe of higher curvature deviations, as these
are suppressed for MBHs relative to stellar-origin black holes. However, EMRIs are
excellent probes of scalar-tensor theories of gravity, for which the signature is
dominated by scalar charge accumulating on the small object, and therefore it is the
curvature of the smaller black hole that is most important [19]. Finally, EMRIs can also
be used as standard sirens, to probe the expansion history of the Universe, by
combining the luminosity distance measurement from the GWs with an electromagnetic
redshift. EMRIs are unlikely to have direct counterparts, so the most promising
approach to cosmography is via cross-correlation of EMRI localisation volumes with
galaxy catalogues. This could provide few percent measurements of the Hubble
constant and ten percent measurements of Ωm when all the EMRIs observed over the
mission are combined. These constraints are further improved when combined with
measurements from MBH binary mergers observed by LISA at higher redshift [20].

To realise this exciting scientific potential it is necessary to identify and characterise
the EMRIs in the LISA data and this poses significant challenges. LISA will have a
source-dominated data stream with thousands of sources of many different types
simultaneously present and overlapping in time and frequency, the instrumental noise
will not be known a priori and the data will be contaminated by glitches and gaps.
These complexities mean that LISA data analysis requires a simultaneous global fit to all
the sources of all the different types plus the instrumental noise. Global fits are under
development by several groups and have successfully analysed simplified data
containing only MBH binaries, galactic binaries and stationary Gaussian noise [21].
Inclusion of EMRIs in these fits poses additional challenges, since the same complexity
of the EMRI signals that allows the remarkable precision of parameter measurement
introduces a complex structure in the likelihood space, with many secondary modes and
a primary mode occupying a tiny fraction of the prior volume [22]. The successful
recovery of isolated EMRI signals in simplified data has already been
demonstrated [23], and new searches are being developed designed to tackle more
realistic data sets [24]. Over the coming decade we expect to bring these various pieces
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of work together into a final LISA global fit pipeline, able to find and fit all of the
sources in the data. Then we will finally be ready to deliver the precision measurements
required to realise LISA’s revolutionary scientific potential.
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This talk summarises recent advances in the modelling of hyperbolic black hole
scattering, a scenario of increasing interest for the gravitational wave community. While
these scattering encounters have not been observed with current detectors [1, 2],
multiple works have suggested that they may be observed with future detectors [3, 4].
Furthermore, scattering encounters provide a useful theoretical laboratory for testing
and comparing different approaches to the two-body problem in General Relativity. The
talk will highlight the key findings from recent studies in post-Minkowskian, self-force,
Numerical Relativity, and Effective One Body theory, and their implications for our
understanding of black hole dynamics.

Post-Minkowskian (PM) theory is a weak-field approximation where the spacetime is
expanded order-by-order in Newton’s constant G. PM calculations have seen significant
progress in recent years due to the adaptation of advanced techniques from particle
physics to the two-body problem. The state-of-the-art calculations have now reached the
5th order in G up to linear order in the mass ratio [5].

Self-force (SF) theory is an alternative expansion in the mass ratio of the two bodies,
which is valid at all separations if the mass ratio is sufficiently small. While SF on bound
orbits have been extensively studied, the case of unbound orbits has been restricted to a
scalar field toy model in order to develop the necessary computational infrastructure [6].
These calculations have been compared to PM results showing good agreement in the
weak-field regime [7]. SF information has also been used to improve the accuracy of PM
results in the strong-field regime by incorporating information about the scatter-capture
separatrix. This resummation has been shown to significantly improve the accuracy of
PM results across all separations [8].

In order to study strong-field interactions in the comparable mass regime we must use
Numerical Relativity (NR) where the full Einstein equations are solved on a computer.
While progress in NR was fueled by the need to model late-inspiral and merger of quasi-
circular binaries, recent works have simulated hyperbolic black hole encounters. These
simulations have been used to extract the scattering angle with recent results being the
first to extend the simulations up to mass ratios of 1:10 and measure disparate scattering
angles of each black hole due to assymetric gravitational wave emission [9].

Finally, the Effective One Body (EOB) formalism provides a framework to model the
two-body problem across all mass ratios and separations by mapping it to an effective
one-body problem. Recent work compared different models of hyperbolic scattering
within the EOB framework to NR results, finding that the most recent EOB models show
very good agreement with NR across a range of mass ratios and impact parameters [9].
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This comparison has also highlighted areas where further improvements can be made,
particularly in the case of spinning black holes where so-called “evolution” models show
large discrepancies with NR results [9].
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1. INTRODUCTION

The European Space Agency’s (ESA) Laser Interferometer Space Antenna (LISA) is a
space-based gravitational-wave observatory scheduled for launch in 2035. The
Distributed Data Processing Centre (DDPC) is one of two primary ground segments in
the LISA mission, responsible for transforming raw telemetry data (level 0) into a
scientifically validated catalogue of gravitational-wave sources (level 3). The DDPC
provides the full analysis chain from instrument calibration to the production of a final
catalogue, functioning alongside ESA’s Science Operations Centre (SOC). An
independent pipeline run by the NASA Science Ground Segment (NSGS). The DDPC is
comprised of a set of Coordination Units (CUs), each addressing a distinct stage of the
data-processing pipeline or providing support to the pipeline’s development and testing.
This paper outlines the DDPC structure, the function of each CU, and the roadmap for
the Waveform Coordination Unit (CU Wav), with emphasis on the Extreme Mass Ratio
Inspiral (EMRI) subunit.

2. DDPC STRUCTURE AND COORDINATION UNITS

The DDPC comprises multiple CUs aligned with successive data-processing levels and
key operational domains:

• CU L01 (Level 0 - Level 1): Converts raw spacecraft telemetry into time-delay
interferometry (TDI) channels.Tasks include data cleaning, instrument
calibration, and laser-noise suppression via TDI combinations, and the
development of the L0-L1 pipeline, ‘Lolipops’.

• CU L2A (Alerts): Implements low-latency source detection and preliminary
parameter estimation, and provides alerts for multi-messenger astronomy.

• CU L2D (Deep): Develops and hosts the Global Fit Pipeline which uses
Bayesian inference for joint analysis of all detectable sources. The current focus
is on massive black hole binaries (MBHBs) and galactic binaries (GBs), with
planned inclusion of EMRIs, stellar-origin black-hole binaries, stochastic
backgrounds, and non-astrophysical artifacts such as glitches and data gaps.

• CU L3C (Catalogue): Builds the final catalogue of sources, selecting the most
relevant parameters and metadata for community dissemination.
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• CU SIM (Simulations): Generates synthetic datasets for validation. This
includes both instrument noise and mock populations of gravitational-wave
sources. They produce the LISA Data Challenges, providing controlled
environments to test pipelines and models.

• CU Wav (Waveforms): Manages waveform model quality assurance via
waveform reviews, defines waveform conventions, and develops a Waveform
Generator.

Each CU operates semi-autonomously but is interlinked through shared interfaces and
review procedures, ensuring that the pipeline components integrate smoothly with one
another.

3. CU WAV

CU Wav is responsible for the verification and standardization of waveform models
used across DDPC pipelines. Importantly, it is not responsible for the development of the
waveform models themselves. Its central activities are:

(1) Waveform Review Process: An internal peer-review system assessing code
quality, robustness, and compatiability with DDPC piplinees and hardware
(rather than physical accuracy). Reviews include code inspection, compilation
tests across platforms, pertubation tests, injection and recovery parameter
estimation tests, and convention consistency checks.

(2) Waveform Generator Development: Creation of a standardized interface that
allows all CUs to call waveform models in a uniform way. The generator currently
supports Phenom and SEOB models for MBHBs, models for GBs, and models for
the LISA instrument response, but will be extended to include more source types.

(3) Conventions: Establishing consistent parameter definitions and conventions
across waveform models and providing conversions between conventions.

4. THE EMRI SUBUNIT

The EMRI subunit within CU Wav currently includes 14 members with expertise
ranging from post-adiabatic (1PA) waveform modelling to EMRI search and parameter
estimation. The group meets bi-weekly and coordinates through dedicated
communication channels. Its primary goal is to establish the validation framework and
deliver a roadmap for EMRI waveform readiness for the LISA data-analysis pipelines.
The subunit’s current focus is on vacuum General Relativity models within the
FastEMRIWaveforms (FEW) framework [1]. Models from different frameworks can also
be reviewed if they are to be utlised within the DDPC.

5. EMRI WAVEFORM REVIEW PROGRAMME

The subunit has defined a staged review plan:

(1) Eccentric Kerr Adiabatic Model (0PA) [2]: first waveform review for an EMRI
waveform model, starting September 2025.

(2) 1PA Quasi-Circular Model with Spin [3]: review scheduled for mid-2026.
(3) Spherical (Circular and Inclined) 0PA Model: requires the inclusion of polar

modes and improved interpolation; review planned for late 2026.
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(4) Generic (Eccentric + Inclined) 0PA Model: development of efficient 4D
interpolation methods; review targeted for 2027.

Parallel efforts include implementing secondary-spin effects, orbital resonances, and
hybrid approaches combining gravitational self-force (GSF) and post-Newtonian (PN)
inputs. These developments aim to support a fully realistic EMRI waveform model in
time for the LISA Critical Design Review (CDR) in 2032, including spinning secondaries
and resonant dynamics.

6. TIMELINE AND MILESTONES

The EMRI subunit roadmap aligns with the overall DDPC schedule:
• 2025–2026: Establish waveform-review protocols, finalize Waveform Generator

specifications, and validate early EMRI models (Eccentric Kerr 0PA, 1PA Circular).
• 2026–2028: Expand reviews to spherical and generic waveform models,

consolidate waveform conventions.
• 2029–2030: Deliver a validated, efficient EMRI waveform models compatible

with the Global Fit pipeline, in time for catalogue generation before the LISA
Critical Design Review (CDR 2032).

Intermediate milestones include integration into the Mojito (2026) and Long Island Iced
Tea (2030) data challenges (2025–2027).

7. OUTLOOK AND COMMUNITY INVOLVEMENT

LISA’s success in detecting and characterizing EMRIs depends on community-driven
model development. The DDPC provides the framework, but the broader research
community must contribute by:

• Developing FEW or developing alternative frameworks.
• Producing robust, well-documented, and efficient codes that can tile parameter

space with GSF information.
• Advancing 2nd order GSF and PN-based hybrid models.
• Implementing secondary-spin and resonance effects.
• Exploring beyond-GR or environmental effects that can be modeled within the

two-timescale adiabatic framework.
Collaborators are encouraged to engage early so models can be reviewed and

integrated within the DDPC schedule.
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OVERVIEW

The hyperboloidal framework has emerged as a powerful geometric and numerical
approach for treating wave propagation on black-hole backgrounds [1–5]. Its central
idea—rooted in Penrose’s conformal treatment of infinity [6]—is to combine a confor-
mal mapping of the spacetime [7–9] and foliate the conformal manifold with spacelike
hypersurfaces that asymptote to future null infinity while remaining regular across black-
hole horizons. This construction enables the simultaneous resolution of near-horizon and
asymptotic regions within a single coordinate patch and eliminates the need for artificial
outer boundaries, thereby avoiding spurious reflections and boundary-condition system-
atic errors.

Hyperboloidal methods play an increasingly important role in the modelling of gravi-
tational radiation from black-hole systems, especially in regimes requiring extreme accu-
racy or controlled asymptotics. For perturbative approaches, including first- and second-
order metric perturbations and gravitational self-force computations, the hyperboloidal
formulation offers an attractive alternative to standard choices of coordinates based on
Boyer–Lindquist or Schwarzschild slicing. It provides a unified description of both the
black-hole exterior region (up to the event horizon) and the radiation zone (extending
to I +), with all relevant geometric structures incorporated directly at the level of the
differential equations.

Perturbation theory and the role of hyperboloidal slicing. Schematically, Einstein’s
equations take the form

(1) □gΦ = S +N (Φ, ∂Φ),

for a given field Φ representing some combination of metric or curvature components.
This form emphasises the wave-equation character dictating the dynamics. Nonlinear
couplings between Φ and its lower-order derivatives are captured by N , whereas S rep-
resents possible sources. For the two-body problem in the extreme-mass-ratio regime, S
assumes the form of distributional sources (e.g. a point particle) within the gravitational
self-force programme [10].

Given the small parameter ϵ = m/M ≪ 1 naturally arising in extreme-mass-ratio
inspirals, one can solve eq. (1) perturbatively by expanding the metric as

(2) g = go + ϵg(1) + ϵ2g(2) + · · ·

In the linear regime, the primary task is to solve

□goΦ
(1) = S(1),

1
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with go a stationary black-hole metric. At higher order, the source terms depend on the
lower-order solutions; any systematic error in the first-order calculation therefore prop-
agates and may jeopardise the second-order problem. This makes control of asymptotic
behaviour and boundary regularity essential.

Hyperboloidal coordinates provide this control: the principal part of the transformed
wave operator becomes singular at both the event horizon and I +, and the physically
relevant ingoing/outgoing boundary conditions become directly encoded as regularity
conditions. In particular, the radiative degree of freedom can be extracted unambigu-
ously at null infinity without the need for extrapolation. Ref. [2] gives a detailed and
updated review of the fundamentals of this research programme.

Self-force calculations. At first order, the gravitational self-force programme requires
solving the linearised field equations with a distributional worldline source. These equa-
tions are solved either in the time or frequency domain. Exploring symmetries of the
background spacetime, one typically projects the equations into a harmonic basis [11],
decomposing the problem into a set of equations for individual (ℓ,m)-modes characteris-
ing the angular structure of the field. This strategy leads to (1+1)D wave equations in the
time domain, or 1D ordinary differential equations in the frequency domain. Recently,
there has been interest in treating the equations within an m-mode strategy [12, 13],
thereby avoiding the decoupling between the radial and polar angular directions. In all
the above-mentioned strategies, regularisation schemes are required to obtain physical
observables at the particle’s position [10].

Over the past years, the hyperboloidal framework has been consistently adapted to the
needs of first-order calculations within the gravitational self-force programme. Initial
efforts concentrated on toy models given by a scalar field on the Schwarzschild back-
ground, with a particle in a circular orbit. In this context, successful results have been
demonstrated in the time domain [14–16] and in the frequency domain [13,17].

Currently, the research programme aims to include scenarios of increasing relevance
to gravitational-wave physics. The challenges include: (i) extension of the framework
beyond scalar-field toy models into the gravitational case; (ii) considering the Kerr so-
lution for the background metric; and (iii) modelling the particle’s trajectory in more
intricate orbits. Ref. [18] made significant progress in tackling step (i) for circular orbits
in the Schwarzschild background, by solving the first-order metric perturbation in the
Lorenz gauge within the hyperboloidal framework. For step (ii), the infrastructure put
forward in ref. [13] was developed with a direct extension to Kerr in mind, and work in
this direction is in progress. Finally, step (iii) constitutes one of the major challenges. In
this context, the next section introduces initial ideas for treating the problem of particles
on eccentric equatorial orbits.

ELLIPTIC-COORDINATE MAPPING FOR FUTURE m-MODE PDE SOLVERS

For eccentric-orbit self-force calculations, the particle librates between radial turning
points σ− and σ+. A promising strategy for improving spectral resolution in the near-
particle region is to introduce an elliptic coordinate mapping adapted to this libration
domain. The idea is to reinterpret the physical hyperboloidal coordinates (σ, y) in an
excision region around the particle’s trajectory in terms of shifted elliptical coordinates
(µ, ν) centred at the midpoint of the libration interval.
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Construction of the map. Standard planar elliptic coordinates are defined by

x = a coshµ cos ν, y = a sinhµ sin ν,

with µ ∈ [0, µ0] and ν ∈ [0, π]. The parameter µ0 fixes the size of the excision region and
world tube around the particle.

To adapt this map to the physical hyperboloidal coordinates, we shift the x coordinate
to be centred at the midpoint of the libration region σ0, and we place the focal points at
the turning points σ±, by imposing σ± − σ0 = ±a.

This strategy leads to the physical coordinate map

σ =
σ+ + σ−

2
+

σ+ − σ−

2
coshµ cos ν, y =

σ+ − σ−

2
sinhµ sin ν,(3)

which naturally parametrises grid points near the particle worldline in a similar way to
the polar coordinate map used for circular orbits (see fig. 1). Its introduction into future
hyperboloidal m-mode solvers provides a potential geometrical strategy and may help
bridge time-domain and frequency-domain approaches within a unified framework. A
possible enhancement may require adjusting the elliptic coordinates to a system adapted
to the particle’s co-moving frame [12,13].

FIGURE 1. Elliptic coordinates mapped into hyperboloidal (σ, y) coordi-
nates as a potential geometrical strategy for an m-mode solver for an ec-
centric equatorial orbit.

CONCLUDING REMARKS

The hyperboloidal framework, together with modern spectral solvers and geometric
domain decompositions, offers a promising path toward next-generation self-force cal-
culations. The incorporation of elliptic-coordinate mappings represents a natural and
flexible extension of the method, potentially enabling accurate and efficient solutions of
the m-mode elliptic PDEs associated with eccentric inspirals. This line of development
is particularly timely given the demands of future space-based detectors such as LISA,
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where controlled asymptotics, high-accuracy mode extraction, and robust treatment of
distributional sources will be indispensable.
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Hyperboloidal method for frequency-domain self-force calculations. Phys. Rev. D, 105(10):104033,
2022.

[18] Benjamin Leather. Gravitational self-force with hyperboloidal slicing and spectral methods. Gen. Rel.
Grav., 57(7):112, 2025.

Page 32



COMPUTATIONAL ADVANCES IN SELF-FORCE: BUILDING A BRIDGE BETWEEN
THEORY AND WAVEFORM MODELING

ZACHARY NASIPAK

Classification AMS 2020: 83C35, 83C25

Keywords: perturbation theory, gravitational waves, multiscale expansions

1. BACKGROUND

The multiscale self-force (MSF) framework provides an efficient and systematic
method for modeling compact binaries with disparate masses and their associated
gravitational-wave signals [5]. In this framework, the binary’s mass ratio ϵ = m2/m1 is
treated as a perturbative parameter, and the full spacetime metric gµν is decomposed as

gµν = gµν + hµν , hµν = ϵh(1)
µν + ϵ2h(2)

µν + · · · ,(1.1)

where gµν is the background metric of the larger mass m1 and hµν encodes the
perturbations sourced by the smaller body m2. Due to the gradual inspiral of disparate
mass systems and their quasi-periodic nature, these perturbations are further
decomposed into “fast” oscillating phases ϕa

.
= (ϕr, ϕθ, ϕϕ) and ”slowly”-evolving orbital

phase-space variables Jb (e.g., energy, angular momentum, frequencies),

h(n)
µν =

∑
ka

h(n)ka

µν (J)e−ikaϕa ,(1.2)

where ka .
= (kr, kθ, kϕ). The amplitudes h(n)ka

µν (J) are parametrized purely by Jb, and once
computed across this space, they determine the inspiral dynamics, fast phase evolution,
and resulting gravitational-wave signals order by order in ϵ.

At leading-order in this multiscale expansion, the system undergoes adiabatic
radiation-reaction in which time-averaged gravitational wave fluxes [which can be
computed from the asymptotic amplitudes of h

(1)ka

µν (J)] drive the secular decay of the
binary orbit over the inspiral timescale Tinsp ∼ M/ϵ. These leading-order
dynamics—often referred to as adiabatic or 0-post-adiabatic (0PA) order—contribute
O(ϵ−1) cycles to the gravitational wave signal. At subleading or 1PA order, conservative
corrections from h

(1)
µν and dissipation driven by h

(2)
µν contribute O(1) cycles to the

gravitational wave phase. MSF waveform models must therefore include both 0PA and
1PA contributions in order to achieve the subradian phase accuracy required to meet the
science goals of both ground- and space-based observatories.

2. RESULTS

Current MSF waveform models incorporating 0PA and 1PA effects have successfully
described the inspiral of black hole binaries with mass ratios as comparable as ϵ ∼ 0.1
[6]. However, these models, and the associated precomputed 0PA and 1PA data, remain
restricted to non-spinning black holes on quasi-circular orbits. Recent work has
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extended the framework to eccentric binaries with spin, but only at the 0PA level,
leaving the 1PA data required for subradian accuracy still unavailable [1]. A central
challenge lies in the computationally intensive offline stage in which the amplitudes of
h
(1)
µν and h

(2)
µν must be computed across a large region of parameter space. This

precomputed database then serves as the essential input for the subsequent rapid online
generation of waveforms. Extending these 0PA and 1PA datasets to more realistic
eccentric, spinning, and precessing systems is an interesting theoretical challenge and
crucial for the next generation of gravitational-wave astronomy.

In this talk, I outline how recent computational advances are bridging the gap between
the theoretical foundations of the MSF framework and the practical generation of 0PA
and 1PA data products for accurate MSF waveform models. I review which specific
information from h

(1)
µν and h

(2)
µν needs to be computed and stored across the parameter

space, with a particular focus on

• 0PA fluxes, computed from the asymptotic amplitudes of h(1)
µν , with a focus on the

results of Refs. [1, 2];
• 1PA redshift corrections ⟨z1⟩, computed from the local behavior of h(1)

µν along the
worldline of m2, with a focus on the results of Refs. [3]; and

• 1PA dissipative corrections, which are derived from the asymptotic amplitudes of
h
(2)
µν , with a focus on the results of Refs. [6].

I highlight recent progress in computing these quantities, enabled in part by the
development of open-source tools such as the MATHEMATICA packages in the Black Hole
Perturbation Toolkit [7] and the PYTHON library pybhpt [3, 4]. These resources are
making it increasingly feasible to extend 0PA and 1PA data into new regions of
parameter space, as evidenced by the recent work of Refs. [1, 3]. I also discuss ongoing
advances in constructing second-order perturbations in Kerr spacetime—an essential
milestone for producing subradian (1PA-accurate) waveforms for binaries with spinning
and precessing black holes.
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Understanding gauge and frame dependence is crucial for extracting physical
observables from black hole perturbation theory (BHPT) [1], especially as calculations
extend to second-perturbative order. At second order, constructing gauge-invariant
quantities is challenging. Quantities that are gauge-invariant at linear order become
gauge-dependent when extended to second order. The gauge dependence of
second-order calculations introduces scope for working in poorly behaved gauges,
which produce singular source terms. Near future null infinity generic gauges produce
singular sources (so-called infrared divergences) such that integrals do not converge
[4].

Further subtleties arise in the gauge choice of second-order calculation near future
null infinity. Gravitational-wave memory is frame-dependent and will be detectable with
next-generation detectors such as LISA [?]. When measuring gravitational waveforms
or comparing waveforms between models, not including the memory effect consistently
can cause errors. Gravitational memory effects are associated with choices of gauge
near future null infinity; working in consistent gauges between models, and the frame
of gravitational detectors, allows one to consistently incorporate gravitational memory
effects [6].

To address these challenges, we construct a perturbative treatment of the
Bondi–Sachs (BS) gauge on Kerr spacetime, accompanied by a BMS frame-fixing
scheme. The BS gauge enforces the canonical Bondi–Sachs falloff and determinant
conditions on the metric near future null infinity, ensuring that the retarded-time
foliation and luminosity distance are uniquely defined. Our formalism allows one to
transform to the BS gauge with a prescribed BMS frame from any initial gauge at first
order. The BMS frame corresponds to a choice of supertranslation and Lorentz frame
that fixes the residual asymptotic freedom of the BS gauge, thereby providing an
unambiguous notion of angular coordinates and Bondi time. Our method provides a
consistent way to extract memory effects associated with the BMS frame. Additionally,
the BS gauge avoids infrared divergences, and using our first-order gauge fixing
scheme, we define second-order gauge invariants near future null infinity.

Our derivation begins with the Kerr metric expressed in BS coordinates, following the
prescription in Bai et al. [2]. The Kerr BS coordinates are defined using an asymptotic
expansion in terms of Boyer–Lindquist coordinates. Hence, these Kerr BS coordinates
are only exactly in BS form at future null infinity; within the interior, they are only
approximately in BS form in the large radius limit. Nonetheless, this approximate BS
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structure suffices for our analysis, and the asymptotic expansion can be extended as
required.

We define the perturbative BS gauge by specifying gauge conditions on the first-order
metric perturbation. The transformation to this gauge is described by a vector field
satisfying a hierarchical set of first-order ODEs along outgoing null rays, with boundary
conditions applied at future null infinity satisfying the BS gauge. Introducing an
asymptotic expansion of the metric perturbation reduces these equations to an algebraic
form. For practical implementation, we recast the gauge vector in Boyer–Lindquist
coordinates and decompose it into Newman–Penrose components.

Residual freedom in the perturbative BS gauge corresponds to the BMS frame. We
analyse this freedom in our perturbative BS gauge and give a BMS frame fixing scheme
based on choices for the Bondi mass aspect and the Wald–Zoupas angular momentum
aspect on a given retarded time-slice at future null infinity. Our procedure constrains
the supertranslation, boosts, and rotation degrees of freedom, leaving only the
background Killing symmetries (time translations and axial rotations), which can be
fixed by waveform alignment. The resulting prescription fully determines the
integration constants in our perturbative BS gauge transformation vector calculation.

Although our explicit construction is developed at first order, we leverage it to define
second-order gauge-invariant quantities near null infinity. We use the second-order Weyl
scalars

{ψ(2)
4L , ψ

(2)
4 , ψ

(2)
0L , ψ

(2)
0 }

are invariant under purely second-order gauge vector transformations [7, 8]. By fixing
the first-order gauge with our perturbative BS formalism, these scalars become genuine
gauge invariants (invariant under first- and second-order gauge transformations)
between asymptotically flat gauges. Hence, applying our BS gauge vector calculation
allows one to construct second-order gauge invariants associated to the BS gauge using
gauge fixing.

Implementing our BS gauge fixing scheme has further advantages for second-order
calculations. Re-expressing the second-order Teukolsky equation [7, 8] in a gauge-fixed
form, associated with an asymptotically flat gauge (such as the perturbative BS gauge),
naturally avoids infrared divergences and provides a consistent framework to extract
gravitational-wave memory. Our methods will be used to help compute second-order
self-force calculations in Schwarzschild and Kerr spacetime and enable systematic
comparisons between second-order results and other approaches, including
post-Newtonian and post-Minkowskian theory, ringdown calculations, and numerical
relativity.
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The relativistic two-body problem is central to gravitational wave astrophysics,
particularly for modeling compact binary inspirals and the resulting gravitational-wave
signals. It represents one of the simplest dynamical problems in general relativity, yet it
is significantly more complex than its Newtonian counterpart due to the inherent length
scale set by the gravitational radius and the presence of spin and radiation-reaction
effects. This abstract summarizes a presentation on the integrability of such systems
under various approximations, emphasizing the role of symmetries, perturbations, and
dissipative effects.

We begin with a review of Hamiltonian integrable dynamics, where a system with N
degrees of freedom is Liouville integrable if there exist N functionally independent,
commuting constants of motion. According to the Liouville-Arnold theorem [1], the
motion is confined to invariant tori and can be solved by quadratures. In action-angle
coordinates (J,θ), the Hamiltonian becomes H(J), and the equations of motion simplify
to:

(0.1) θ̇ =
∂H

∂J
≡ Ω, J̇ = 0.

The Kolmogorov-Arnold-Moser (KAM) theorem ensures that most invariant tori survive
under small perturbations of size ϵ. However, tori satisfying a local resonance condition
Ω · k = 0, where k is an integer vector, may be destroyed and replaced by nonlinear
oscillations of amplitude ∼

√
ϵ. Between the surviving tori and the resonant oscillations,

a thin chaotic layer generically emerges. Although the resonance condition is fulfilled
on a dense set in phase space, only resonant tori with small k vectors are practically
relevant. This is because the amplitude of the resonant oscillations scales with the size
of the k-harmonic of the perturbation with respect to θ, which decays exponentially as
∼ e−C|k| for large |k|. This allows for a practical cutoff in resonance analysis.

In conservative approximations of the relativistic two-body problem, integrability is
preserved up to certain post-Newtonian (PN) orders. Systems of two point particles
with only orbital degrees of freedom are integrable due to Poincaré symmetries,
yielding six commuting integrals: energy, total linear momentum, one component of the
total angular momentum, and its magnitude. However, the inclusion of spin introduces
additional degrees of freedom and potential non-integrability. Known integrable cases
include Kerr geodesics [2], spinning test particles [3, 4, 5], and spinning compact
binaries at general mass ratios in certain PN regimes [6, 7].
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Actions serve as coordinate-independent invariants that bridge PN and test-particle
limits. These quantities depend only on the homotopy class of phase-space loops and are
known to match across regimes [8]. However, integrability is fragile: tidal interactions,
internal modes (e.g., f -modes in neutron stars), and environmental effects generically
break it [9, 10].

For inspiraling binaries, we define integrability as the existence of a convergent two-
timescale expansion up to the transition to plunge. The equations of motion can then
be cast in action-angle variables, and near-identity transformations can be applied to
eliminate angle dependence from the right-hand sides [1]:

J̇ = ϵg1(J) + ϵ2g2(J) + . . . ,(0.2)

θ̇ = Ω(J) + ϵf1(J) + . . .(0.3)

Transient resonances from gravitational self-force (GSF) corrections can violate this
structure [11]. In particular, resonant terms in the perturbation break the convergence
of the near-identity expansion. A specific feature of the dissipative case is the
dependence of the dissipation on the so-called resonant phase [12]. Resonances caused
by other perturbative sources also disrupt the transformation, requiring alternative
treatments.

The analysis reveals that switching between formulations of the equations of motion
near resonances is necessary when Ω ·k ∼ ϵβ, with β ∈ (0, 1/2) depending on the scheme
[13, 14].

In conclusion, integrability persists in many regimes of the relativistic two-body
problem but is not guaranteed. Understanding its limits is essential for accurate
modeling of gravitational wave sources. Existing schemes can handle weak integrability
breaking, but future work should focus on self-consistent evolution through resonances,
gauge-invariant formulations, and a systematic mapping of resonant effects.
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[4] Rüdiger, R. (1983). Conserved quantities of spinning test particles in general relativity. II. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences, 385(1788), 229–239.

[5] Witzany, V. (2019). Hamilton-Jacobi equation for spinning particles near black holes. Physical Review
D, 100(10), 104030.

[6] Wu, X., & Xie, Y. (2010). Symplectic structure of post-Newtonian Hamiltonian for spinning compact
binaries. Physical Review D, 81(8), 084045.

[7] Tanay, S., Stein, L. C., & Gálvez Ghersi, J. T. (2021). Integrability of eccentric, spinning black hole
binaries up to second post-Newtonian order. Physical Review D, 103(6), 064066.
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PROBING FORMATION CHANNELS OF EXTREME MASS-RATIO INSPIRALS
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In this talk, I discuss how to probe formation channels and environmental effects of
extreme mass-ratio inspirals (EMRIs), which are one of the main extragalactic sources
of space-borne gravitational wave detectors. I have focused on two major channels - dry
EMRIs that are produced through gravitational scatterings in nuclear star clusters and
wet EMRIs that have Active Galactic Nucleus (AGN) playing a critical role to transport
compact objects to the vicinity of massive black holes. The main content of this talk is
based on our recent publications [1, 2, 3].

1. DIRECT MEASUREMENT

The main astrophysical environmental effects of EMRIs may come from accretion
disks, nearby stellar-mass objects, and/or dense dark matter distribution. On the one
hand, these environmental objects may affect the gravitational waveform through the
tidal resonance, as first discussed in [4, 5]. On the other hand, they may introduce
additional dissipation channels, and also directly modify the total flux of the
gravitational wave radiation during the secular evolution (as the background spacetime
deviates from Kerr). We have been developing a general formalism to analyze the
long-term secular motion of EMRIs in a perturbed black hole spacetime. Taking the
scenario for a rotating black hole surrounded by a Axion cloud (as dark matter
candidate), we manage to compute the extra scalar radiation due to the presence of the
cloud [2]. In [3] we present the formalism to compute the modification of gravitational
wave flux is the background deviates from Schwarzschild. The next step is to combine
both effects due to scalar and (extra) gravitational wave radiation to obtain the EMRI
waveform with these clouds, in order to allow future detections.

2. INDIRECT MEASUREMENT

If the environmental effects, such as the disk effects are not directly observed in a set
of EMRIs, we may still probe their population properties by studying the distribution
of the key system parameters. With the population model developed in [1], we show
the eccentricity of dry EMRIs are mostly (more than 99% percentile) larger than 0.01.
The wet EMRIs, on the other hand, tend to have much smaller eccentricities because
of disk dissipation, but they are not zero due to disk turbulence effects and multi-body
mean-motion resonance in the disk. The turbulent eddies within a disk are generally
associated with density fluctuations, so that they introduce fluctuating gravitational force
on the EMRI object. The population model predicts that the resulting eccentricity should
be mostly smaller than 0.01. In addition, the population model also predicts that a
significant fraction of disks may host more than one stellar-mass object for r ∼ O(102)
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gravitational radii. These object likely form mean-motion resonance pairs during their
migration within the disk, and excite eccentricity to the level of O(10−4). As a result,
eccentricity is a key observable to distinguish wet and dry formation channels. More
importantly, it may be used to probe the level of turbulence within an AGN disk.

There are other observables that show distinct distribution in different EMRI
formation channels, including the inclination angle, the mass, etc. In particular, the wet
EMRI mass distribution is affected by EMRI capture probability onto the disk, the
accretion process, and the chance of forming pairs and merge within the disk. The
resulting mass distribution may show rich and different signatures compared with the
mass distribution of black holes within LIGO-Virgo catalogs. So a precise measurement
on the mass distribution may being valuable information on the evolution of
stellar-mass black holes within AGN disks.

3. SUMMARY

We have shown the properties of formation channels of EMRIs can be measured
through both direct and indirect methods. In particular, the study in [1] represents the
first step of probing formation mechanisms through population modelling. In the future,
there are many unanswered questions and open discovery space for both directions.
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