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INDEX FORMULA FOR QUARTER-PLANE TOEPLITZ OPERATORS VIA EXTENDED
SYMBOLS

SHIN HAYASHI

Classification AMS 2020: 19K56, 15A23, 47B35, 81V99.

Keywords: Quarter-plane Toeplitz operator, Wiener-Hopf factorization, K-theory and
index theory

In this talk, we presented an index formula for some Toeplitz operators on a discrete
quarter-plane of two-variable rational matrix function symbols.

Let N be a positive integer and S1 be the unit circle in the complex plane. Let f : S1 ×
S1 → M(N,C) be a continuous map. We focus on cases where each entry of the matrices
consists of two-variable rational matrix functions with respect to (z, w) ∈ S1 × S1. We
consider a bounded linear operator T x,y

f on l2(N2,CN) obtained as the compression of
the multiplication operator Mf on L2(S1 × S1,CN) ∼= l2(Z2,CN) onto its closed subspace
l2(N2,CN), which we call the quarter-plane Toeplitz operator of symbol f . In the same
way, two half-plane Toeplitz operators T x

f on l2(Z× N,CN) and T y
f on l2(N× Z,CN) are

defined as the compressions of the multiplication operator Mf .
Index theory for quarter-plane Toeplitz operators has been investigated by Simonenko,

Douglas–Howe, Park [18, 5, 15]. A necessary and sufficient condition for these operators
to be Fredholm is stated as follows.

Theorem 0.1 (Douglas–Howe [5]). The quarter-plane Toeplitz operator T x,y
f is Fredholm

if and only if two half-plane Toeplitz operators T x
f and T y

f are invertible.

Index formulas for Fredholm quarter-plane Toeplitz operators are obtained by
Coburn–Douglas–Singer, Dudučava, Park [4, 6, 15]. Coburn–Douglas–Singer derived
their formula by showing that there is a deformation to some quarter-plane Toeplitz
operators of a standard form preserving Fredholm indices [4]. Dudučava employed
Wiener–Hopf factorizations for matrix-valued functions on a circle developed by
Gohberg–Krĕın [8, 3, 9] and obtained a formula by using a construction of a parametrix
[6]. Park obtained an index formula by constructing a cyclic cocycle and using a pairing
between K-theory and cyclic cohomology [15].

A motivation of our work comes from an application to higher-order topological
insulators [2], a topic in condensed matter physics. In [10], we introduced a
characteristic for them (especially for (extrinsic) second-order topological insulators).
by using index theory for quarter-plane Toeplitz operators. In this application, we want
a method to compute Fredholm indices for qurater-plane Toeplitz operators for given
matrix-valued functions, therefore investigate their index formulas. For that purpose,
we revisit Dudučava’s idea from geometric viewpoint.

The following is the main theorem of this talk.
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Theorem 0.2 ([11]). Let f : S1 × S1 → GL(N,C) be a two-variable rational matrix
function. Assume that the quarter-plane Toeplitz operator T x,y

f is Fredholm. Under this
setup, the following holds.

(1) The symbol f canonically extends as a continuous invertible matrix-valued function
onto a three sphere through Wiener–Hopf factorizations.

fE : S̃3 → GL(N,C) satisfying fE|S1×S1 = f.

(2) The Fredholm index of T x,y
f coincides with the three-dimensional winding number of

the extension fE, that is,

indexT x,y
f = W3(f

E).

Note that, when the quarter-plane Toeplitz operator T x,y
f is Fredholm, its symbol f

takes values in invertible matrices, and two half-plane Toeplitz operators T x
f and T y

f

are both invertible by Douglas–Howe’s result. For (1) of our theorem, we investigate
geometric implications of the invertibility of two half-plane Toeplitz operators by using
Wiener–Hopf factorizations, which are introduced next.

Let D+ = {z ∈ C | |z| < 1} and D− = {z ∈ C | |z| > 1} ∪ {∞}, which are open disks.
We write D± = S1∪D± (the double sign corresponds) for closed disks whose union is the
Riemann sphere S2 = C ∪ {∞}. For a (single variable) rational invertible matrix-valued
function g : S1 → GL(N,C) (with poles off S1), the following decomposition, called the
Wiener–Hopf factorization, exists:

(0.1) g = g−Λg+,

where g± and Λ are continuous maps S1 → GL(N,C) satisfying the following conditions.

• Λ is the diagonal matrix-valued function of the form Λ(z) = diag(zκ1 , . . . , zκn),
where κ1 ≥ · · · ≥ κn is a nonincreasing sequence of integers called partial indices.

• f+ admits a continuous extension onto D+ that is holomorphic on D+ as an
invertible matrix-valued function.

• f− admits a continuous extension onto D− that is holomorphic on D− as an
invertible matrix-valued function.

Among many results known for Wiener–Hopf factorizations [8, 3, 9], we notice the
followings.

Lemma 0.3. (1) The partial indices are uniquely determined by g.
(2) The Toeplitz operator Tg is invertible if and only if all of the partial indices are zero

(in this case, called the canonical factorization).
(3) If g = g−g+ = h−h+ are two canonical factorizations, there exists an invertible

matrix B ∈ GL(N,C) (considered a constant matrix-valued function) such that
g+ = Bh+ and g− = h−B

−1.

Under our setup, through the isomorphism l2(N × Z,CN) ∼= l2(N,CN) ⊗ L2(S1), the
invertible half-plane Toeplitz operator T y

f corresponds to a family of invertible Toeplitz
operators {Tf(·,w)}w∈S1. Therefore, for each w0 ∈ S1, there exists a canonical factorization,

f(z, w0) = f−(z, w0)f+(z, w0).
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f− and f+ admits a holomorphic extension onto D− and D+ for which we write f e
− and

f e
+, respectibely. For each z ∈ D+, we define an invertible matrix as follows:

fE(z, w0) = f e(z̄−1, w0)f
e
+(z, w0).

By the above lemma, fE is independent of the choice of Wiener–Hopf factorizations.
Since f e

− and f e
+ are extensions of f− and f+, and that z̄−1 = z for z ∈ S1, fE is an

extension of f . By considering this construction for families (with respect to w ∈ S1), we
obtain an extension fE of f onto D+ × S1, which is an invertible matrix-valued function.
By using the invertibility of another half-plane plane Toeplitz operator T x

f , we obtain a
similar extension onto S1 × D+. Their continuity follows from Šubin’s study of Wiener–
Hopf factorizations for families of matrix-valued functions [19]. Summarizing, when
the quarter-plane Toeplitz operator T x,y

f is Fredholm, there exists a canonical extension
fE of the symbol f , initially defined on the two-dimensional torus, onto the following
three-sphere,

S̃3 = D+ × S1 ∪S1×S1 S1 × D+ = ∂(D+ × D+) ⊂ C2,

as an invertible matrix-valued function. This provides (1) of our main theorem.
In the rest of my talk, I briefly explained the ideas for the proof of (2) of our main

theorem, which utilizes (mainly) topological K-theory relying both on Coburn–Douglas–
Singer’s topological study [4] and Park’s C∗-algebraic study [15].

Note that our index formula can be generalized to families of quarter-plane Toeplitz
operators and those preserving some real structures, which are contained in [11].

In this report, we add a comment on the applications to (higher-order) topological
insulators. Mathematical studies of topological insulators were initiated by Bellissard
[1] and Kellendonk–Richter–Schulz-Baldes provided a proof of the bulk-boundary
correspondence, a characteristic for topological insulators, by using index theory for
Toeplitz operators [13]. K-theory is employed to classify topological insulators [14],
and K-theoretic study has been widely expanded (for some equivariant setup, in its
relation to topological crystalline insulators, for example), see also [7, 17]. As for
higher-order topological insulators, an index theoretic approach is presented in [10]
which do not include any point group symmetry. For intrinsic higher-order topological
insulators, which have attracted much interest for condensed matter physicists, point
group symmetry should be incorporated into the framework. Such a framework was
established by Ojito–Prodan–Stoiber [16]. An alternative approach for a specific setup
based on extensions of symbols for quarter-plane Toeplitz operators, as presented in this
talk, can be found in our recent preprint [12].
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NONCOMMUTATIVE GEOMETRY OF THE SATAKE COMPACTIFICATION

NIGEL HIGSON

Classification AMS 2020: 22E45, 22E46, 46L80

Keywords: Satake compactification, Discrete series representations, Parabolic induction,
C*-algebras

This is a report on a joint project with Jacob Bradd and Robert Yuncken, about which
further details may be found in [1] and [2] (this document borrows from those papers).
The goal of our work has been to examine from the perspective of C∗-algebras and
noncommutative geometry the following celebrated discovery of Harish-Chandra (see
[7] or [14]):

Theorem 0.1. Let G be a real reductive group. A tempered irreducible unitary
representation of G is either square-integrable, modulo center, or embeddable into a
principal series representation, meaning one that is unitarily parabolically induced from a
square-integrable, modulo center, irreducible unitary representation of a Levi subgroup.

Harish-Chandra’s result played an important role in his pursuit of the Plancherel
formula. In his review of Harish-Chandra’s Collected Works, Robert Langlands [8] writes
that

Harish-Chandra discovered quite early on the principles which allowed
him to do this [obtain an explicit Plancherel formula] . . . The critical
notions are those of a Cartan subgroup, of a parabolic subgroup, of an
induced, and of a square-integrable representation.

. . . The first principle is that the representations [parabolically] induced
from . . . square-integrable [representations] suffice for the Plancherel
formula . . .

. . . The second is that [a real reductive group] has square-integrable
representations if and only if there are [compact] Cartan subgroups . . .

The second principle has long been studied from a geometric perspective, culminating in
the work of Lafforgue [6], who recovered Harish-Chandra’s classification of the discrete
series using noncommutative geometry and K-theory. The theorem that we stated above
is a precise version of the first principle. Combined, the two principles paint in broad
outline a picture of the tempered dual of any real reductive group.

Our approach to the theorem proceeds via the (maximal) Satake compactification X
of the Riemmanian symmetric space associated to a real reductive group G [13]. We
incorporate the Satake compactification into an argument involving C∗-algebras by
associating to X first a groupoid, and then the C∗-algebra of that groupoid.

The purpose of [1] is to describe the groupoid from three different points of view:
those of topology, Lie theory and geometry. The fastest way to present the Satake
groupoid (as we call it) is to use the following simple observation of Omar Mohsen [9]
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(which he has used to great effect in his own work): if G is any group, and if {S} is any
collection of subgroups of G that is closed under conjugation by elements of G, then the
collection {C} of all cosets of all the subgroups in {S} carries the following structure of
a groupoid over the object space {S}:

source(C) = C−1C, target(C) = CC−1 and C1 ◦ C2 = C1C2.

Now, the Satake compactification X of a real reductive group G may be defined to be
the closure of the space of maximal compact subgroups of G within the compact space
of all closed subgroups of G [5]. So Mohsen’s observation immediately applies, and we
obtain a locally compact Hausdorff topological groupoid. This is our Satake groupoid.

Although the above quickly characterizes the Satake compactification and the Satake
groupoid, for computations it is much more convenient to construct both the
compactification and the groupoid using Lie theory. This may be done following the
approach of Toshio Ōshima [12] to the Satake compactification.

Ōshima’s construction makes it clear that the Satake compactification has finitely many
G-orbits, which may be described using an Iwasawa decomposition G=KAN , as follows.
It is well-known in Lie theory that a standard parabolic subgroup PI=MIAINI of G may
be associated to each subset I of the set Σ of simple restricted roots that is associated
to the given Iwasawa decomposition, and that these are the only standard parabolic
subgroups. The G-orbits in X are also in bijection with the subsets I ⊆ Σ, with the orbit
XI ⊆ X being of the type

XI
∼= G

/
KIAIN I ,

where KI=K ∩ MI , and where NI = θ[NI ], and where θ is the Cartan involution. It
follows that the Satake compactification, viewed as a collection of closed subgroups of
G, consists of all the conjugates in G of all the groups HI=KIN I .

The orbit XI is contained in the closure of the orbit XJ if and only if I ⊆ J . It follows,
for instance, that the orbit XΣ is open and dense in X . In addition, KΣ = K, while the
group AΣ is the intersection of the center of G with A, and NΣ is the trivial one-element
group. The orbit

XΣ
∼= G/KAΣ,

therefore identifies, via the map gKAΣ 7→ gKg−1, with the space of maximal compact
subgroups of G.

As for the Satake groupoid, GX , each of the orbits XI above is a locally closed,
saturated subset of X , and also a smooth embedded submanifold, and the reduction of
the Satake groupoid GX to XI has the form

GI
∼= G

/
KIN I ×

AI

G
/
KIN I

(quotient by the diagonal right action of AI). For instance, the open and dense
subgroupoid GΣ is

GΣ
∼= G/K ×

AΣ

G/K.

When G has compact center, the group AΣ is trivial, and the above is simply the pair
groupoid on XΣ

∼= G/K.
Ōshima actually constructed a smooth, closed G-manifold M into which the variety

of maximal compact subgroups of G embeds as an open subset, while the Satake
compactification embeds smoothly as a compact submanifold with corners. We in fact
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construct a Lie groupoid GM over M that we call the Ōshima groupoid. It is a quotient
of the transformation groupoid for the action of G on M . The Satake compactification,
viewed as a subset of M , is a saturated subset for the Ōshima groupoid, and we prove
that the reduction of GM to this subset is our Satake groupoid.

Now, the bounding submanifolds (of top dimension) of the Satake compactification
within the Ōshima space M extend to smooth, closed hypersurfaces in M that cross
one another normally. And to any manifold, such as M , that is equipped with a finite
family of normally crossing, closed hypersufaces there is associated a Lie groupoid [11];
the construction is an elaboration of ideas from the b-calculus of Richard Melrose; for
instance the Lie algebroid is Melrose’s b-tangent bundle. Our third view of the Satake
groupoid identifies the Ōshima groupoid with this geometrically-defined b-groupoid.

Turning to Harish-Chandra’s principle and the paper [2], C∗-algebras play two roles
in our argument. First, Harish-Chandra’s tempered irreducible unitary representations
correspond precisely those irreducible unitary representations of G that integrate to
irreducible representations of the reduced group C∗-algebra C∗

r (G), and every
irreducible representation of C∗

r (G) is so-obtained [4]. Second, C∗-algebra theory
provides a simple tool to separate the space of all these irreducible representations into
two parts: indeed if A is any C∗-algebra, and if J is any ideal in A, then there is a
partition the spectrum Â (the set of irreducible representations, up to equivalence) into
those representations that vanish on all elements of J , and those that don’t, and this
partition takes the simple form

Â = Â/J ⊔ Ĵ .

In broad terms our proof of the theorem above goes as follows. We introduce an ideal
I in A=C∗

r (G) for which

Î = {discrete series representations of G }.

This is a very general construction that may be applied to any unimodular locally compact
group. Then we define a second ideal J ◁ A such that

Â/J =

{
tempered irreducible representations of G that

embed in a principal series representation

}
.

The definition is specific to real reductive groups, of course, but it is otherwise very
elementary, using only the definition of parabolic induction, as viewed from the
perspective of C∗-algebra theory [3]. Harish-Chandra’s principle amounts to the
assertion that I = J .

We prove that the ideals I and J coincide using the Satake groupoid GX . The reduced
C∗-algebra of the groupoid, C∗

r (GX ) fits into an exact sequence

0 −→ C∗
r (GintX ) −→ C∗

r (GX ) −→ C∗(G∂X ) −→ 0

according to the decomposition of X into its interior and boundary. We prove that I=J
by relating I to the image of the inclusion morphism in the exact sequence, and J to the
kernel of the quotient morphism; obviously the two ideals in the groupoid C∗-algebra
are the same. Crucial to the argument is a C∗-algebra morphism

C∗
r (G) −→ C∗

r (GX )

that was introduced by Mohsen in [10].
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ALGEBRAIC TOPOLOGY OF 24 DIMENSIONAL STRING MANIFOLDS

RUIZHI HUANG

Classification AMS 2020: 57R15, 57R20, 53C21, 57R90, 58J26

Keywords: string manifolds, string cobordism, Witten genus, elliptic genus, Ricci
curvature

String manifolds of dimension 24 are of special interest in geometry and topology. In
this dimension, by [5, Page 85-87] the famous Witten genus W (M) [9] satisfies

W (M) = Â(M)∆̄ + Â(M,T )∆,

where Â(M) is the A-hat genus, Â(M,T ) is the twisted A-hat by the tangent bundle, and
∆̄ = E3

4−744 ·∆ with E4 being the Eisenstein series of weight 4 and ∆ being the modular
discriminant of weight 12.

Hirzebruch raised his prize question in [5] that whether there exists a 24 dimensional
compact string manifold M such that W (M) = ∆̄ (or equivalently Â(M) = 1, Â(M,T ) =
0) and the Monster group acts on M as self-diffeomorphisms. The existence of such
manifold was confirmed by Mahowald-Hopkins [7]. Indeed, they determined the image
of Witten genus at this dimension via tmf . However, the part of the question concerning
the Monster group is still open.

In two joint works [3, 4] with Fei Han, we find representatives of an integral basis
of the string cobordism group at dimension 24. Historically, Gorbounov-Mahowald [2]
showed that

ΩString
24

∼= Z⊕ Z⊕ Z⊕ Z.
Our main theorem is stated as follows:

Theorem 0.1. The correspondence κ : ΩString
24 → Z⊕ Z⊕ Z⊕ Z defined by

κ(M) = (Â(M),
1

24
Â(M,T ), Â(M,Λ2),

1

8
Sig(M))

is an isomorphism of abelian groups, where Â(M,Λ2) is the twisted A-hat by the second
exterior power of the tangent bundle and Sig(M) is the signature. Moreover, there exist two
geometrically constructed manifolds M3,M4 ∈ kerW such that

K :=


κ(M1)
κ(M2)
κ(M3)
κ(M4)


τ

=


0 1 0 0
−1 0 0 0

23 · 33 · 5 22 · 3 · 17 · 1069 −1 0
28 · 3 · 61 28 · 5 · 37 22 · 7 1

 ,

where M1,M2 ∈ image W are the two manifolds constructed by Mohowald-Hopkins [7].

A notable consequence is that the four manifolds Mi in Theorem 0.1 form a basis of
the group ΩString

24 .
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This theorem implies various Rokhlin type divisibility results of the characteristic
numbers of 24 dimensional string manifolds. For instance, we have

32 | Sig(M)−
〈
(νHS16 )2(M), [M ]

〉
,

where νHS∗ (M) is the spin integral Wu class of Hopkins-Singer [6].
Furthermore, we use Theorem 0.1 to show that the elliptic genus [8], a higher index

theoretic invariant, determines 24 dimensional string cobordism, and thereby obtain an
geometric application:

Theorem 0.2. Given positive number λ, there exists some ε = ε(λ) > 0 such that if a
compact 24 dimensional string Rimannian manifold (M, g) satisfies
diam(M, g) ≤ 1,Ric(g) ≤ ε, sectional curvature ≥ −λ and has infinite isometry group,
then M bounds a string manifold.

This result corresponds to a higher version of a conjecture of Farrell-Zdravkovska [1]
and Yau [10] which claims that every almost flat manifold is the boundary of a closed
manifold.

Theorem 0.1 also provides potential clue for understanding a question of Weiping
Zhang:

Question 0.3. Is 1
24
Â(M,T ) the index of a twisted Dirac operator?
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(1987), 143-151.

[9] E. Witten, The index of the Dirac operator in loop space, in P.S. Landweber, ed., Elliptic Curves and
Modular Forms in Algebraic Topology (Proceedings, Princeton 1986), Lecture Notes in Math., 1326,
pp. 161-181, Springer, 1988.

[10] S. T. Yau, Open problems in geometry, Proc. Sympos. Pure Math., Part 1 54 (1993), 1-28.

STATE KEY LABORATORY OF MATHEMATICAL SCIENCES & INSTITUTE OF MATHEMATICS, ACADEMY OF

MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING 100190, CHINA

E-mail address: huangrz@amss.ac.cn

Page 12



TENSOR NETWORKS IN CONDENSED MATTER PHYSICS AND SUBFACTORS

YASUYUKI KAWAHIGASHI

Classification AMS 2020: 15A69, 81R15, 18M15, 46L37, 81T40, 81V27
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As studied in [2], [17], many researchers in two-dimensional topological order in
condensed matter physics are interested in studies of (braided) fusion categories [3]
using tensor networks recently. It has been well-known that subfactor theory of Jones
[7], [8] in operator algebras gives useful and powerful tools to study structures of fusion
categories. This approach is closely related to operator algebraic studies of quantum field
theory [15], [16], [5].

In a usual operator algebraic study of fusion categories, we realize an object as a
bimodule over (type II1) factors or an endomorphism of a (type III) factor [4]. Another
approach [1] based on bi-unitary connections [18], [20], [9] is less common, but
contains the same information as these two methods and has an advantage that
everything is finite dimensional. Recall that a bi-unitary connection gives a
characterization [20], [4] of a non-degenerate commuting square [19]. It has been
pointed out in [10], [12] that the 4-tensors in [2] are mathematically the same as
bi-unitary connections, and identification of some objects in condensed matter physics
and subfactor theory has been given in [11]. This shows that anyons [?] are studied
with such 4-tensor networks [6]. We have Tables 1 and 2 for correspondences between
these methods to represent fusion categories.

Our aim is now to complete this table by identifying tensors satisfying the zipper
condition in [2], flat fields of strings in [1], [4], and elements in the higher relative

TABLE 1. Correspondence among endomorphisms, bimodules and
connections

endomorphism bimodules connections
identity identiry bimodule trivial connection

direct sum direct sum direct sum
composition relative tensor product composition

cojugate endomorphism dual bimodule dual connection
dimension (Jones index)1/2 Perron-Frobenius eigenvalue
intertwiner intertwiner flat field of strings
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TABLE 2. Correspondence between connections, commuting squares and
4-tensors

connections commuting square 4-tensor
trivial connection commuting square trivial 4-tensor

direct sum direct sum direct sum
composition composition concatenation

dual connection basic construction complex conjugate tensor
Perron-Frobenius eigenvalue (Pimsner-Popa index)1/2 Perron-Frobenius eigenvalue

flat fields of strings relative commutant tensors with the zipper condition

commutants of a subfactor [1], [4] arising from the commuting square. We then prove
the following, which is the main theorem in [13].

Theorem 0.1. The following are equivalent for a 2-tensor F and the corresponding field f
of strings in the setting of tensor networks of 4-tensors describing fusion categories..

(1) [The zipper condition] The 2-tensors F satisfies the invariance property, which gives
an equivalent formulation of the zipper condition.

(2) [Flatness] The field f of strings satisfies the flatness in the usual meaning of subfactor
theory.
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STABLE HOMOTOPY THEORY OF INVERTIBLE GAPPED QUANTUM SPIN
SYSTEMS

YOSUKE KUBOTA
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Keywords: SPT phase, stable homotopy theory, coarse geometry

In his talk [5], A. Kitaev proposed that the set of d-dimensional invertible gapped
quantum spin systems {IPd}d∈Z≥0

should form an Ω-spectrum. This talk outlines the
framework developed in [7], which provides a rigorous formulation of quantum spin
systems based on functional analysis in which Kitaev’s conjecture holds.

For a Hamiltonian in quantum spin systems, we impose the three conditions: short-
range, gapped, and invertible. At each point x in a discrete metric space Λ, namely
a d-dimensional lattice, we place a matrix algebra Ax = Mn(C). The full observable
algebra is defined by their tensor product AΛ :=

⊗
x∈Λ Ax. A Hamiltonian is specified

by a family of operators Hx, each supported on a the open ball Br(x) with radius r > 0,
which define a ∗-derivation [H, a] =

∑
x[Hx, a]. In [7], we relax the locality assumption,

following earlier work such as [8], and treat almost local Hamiltonians. Namely, we
do not require each Hx to be strictly supported on a ball, but instead assume that it is
well approximated by operators that are supported on such balls. Ground state, the non-
degeneracy, and the spectral gap for such H are formulated in terms of the GNS theory.
A gapped Hamiltonian H is called invertible if there exists another Hamiltonian Ȟ such
that the composite system H⊠ Ȟ is homotopic to the trivial one.

An important motivation of this conjecture is that it provides a homotopy theoretic
interpretation of the group-cohomology valued topological invariant of Hamiltonians
that are invariant under an on-site action of a compact Lie group G, as studied in the
literature for low dimensions (e.g., [3, 9, 10, 12]). Indeed, the invariant is obtained as
the composition

[pt, IPd]
G → [EG, IPd]

G → [BG, IPd] → [BG,K(Z, d+ 2)].

The existence of the second and the third morphisms are guaranteed by Kitaev’s
conjecture.

Kitaev’s conjecture was inspired by the work of Kitaev himself [4], and also of
Schnyder–Ryu–Furusaki–Ludwig [11], on the topological classification of gapped free
fermions by real or complex K-theory. In the functional-analytic formulation by [6], a
free-fermion Hamiltonian is defined analogously to a quantm spin system, but with
direct sums in place of tensor products. The space of gapped Hamiltonians is identified
with the space of projection operators of the C*-algebra so-called the (uniform) Roe
algebra. Kitaev’s conjecture for these spaces is proved by Higson–Roe–Yu [2] in their
early work. We emphasize that the short-range condition for IPd is highly compatible
with the concept of coarse geometry and our proof of Kitaev’s conjecture run in parallel
to [2].
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The map κd : IPd → ΩIPd+1 is given in the following way. First, by the assumption
of invertibility, we have a path connecting the trivial Hamiltonian, say h, and H ⊠ Ȟ. By
regarding an infinite stack of this homotopy as a (d+1)-dimensional layered Hamiltonian,
we obtain a path connecting h and the infinite stack

· · ·H⊠ Ȟ⊠ H⊠ Ȟ⊠ H⊠ Ȟ⊠ H⊠ Ȟ⊠ · · · .

We then return to the trivial Hamiltonian by the same homotopy, but with a rearranged
pairing of H and Ȟ. Such a 1-parameter family is called Kitaev’s pump. A central part of
[7] is to constructed a homotopy inverse of κd following the line of Kitaev and [2], with
a careful treatment of the subtle analysis of spectral gap in quantum spin systems.

Replacing the tensor products with Z/2-graded tensor products yields the fermionic
version fIPd. As the name suggests, a free fermion is a special case of a fermionic system,
and this inclusion is ultimately realized as a morphism of Ω-spectra

Q: Σ−2KO → fIP .

A rigorous construction of this morphism Q is provided by Araki’s quasi-free second
quantization [1]. Truncating these spectra in degrees −1, . . . , 2 gives a weak equivalence

Σ−2(KO⟨1, 4⟩) ≃ fIP⟨−2,∞⟩,

which answers to a question by D. Freed: we obtain an explicit homotopy equivalence
between KO⟨1, 4⟩ and the truncated Picard spectrum pic30KU , which had previously been
known to be abstractly homotopy equivalent by comparing their Postnikov k-invariants.

Finally, this talk also briefly discusses the main theme of latter part of [7], which
studies quantum spin systems placed on spaces X more general than Euclidean space.
The space ‘IP(X)’ of invertible gapped Hamiltonians placed on X should form a coarse
homology theory, rather than a homology theory, and therefore violates the local
topology of X. For example, the cases X = Sd and X = pt are not distinguished. In [7],
inspired by early work by Yu [13], we introduce the notion of localization flow of
gapped Hamiltonians.

Roughly speaking, a localization flow of gapped Hamiltonians on X is a family
{H(s)}s∈[1,∞) of uniformly gapped Hamiltonians whose interaction range decays as
s → ∞. This notion is named after Yu’s localization algebra, as well as matrix product
renormalization group flow. We prove that the π0-group of the space IP loc(X) of
localization flows on X forms a generalized homology theory that agrees with the one
associated to the Ω-spectrum IP via the Spanier–Whitehead duality.

Moreover, one can also incorporate spatial symmetries given by a crystallographic
group Γ acting on X into this framework. In this setting, the map

µΓ : π0(IP
Γ
loc(X)) → π0(IP

Γ(X))

which forgets the parameter s > 1 can be regarded as a quantum-spin analogue of
the Baum–Connes assembly map in noncommutative geometry. Following a well-known
idea in coarse geometry, the split injectivity of our µΓ can be proved. That is, the group
π0(IP

Γ(X)) of our interest contains a subgroup π0(IP
Γ
loc(X)) as a direct summand, which

is computable from the homotopy groups πn(IPd) by algebraic topology.
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This is joint work with Boris Botvinnik (University of Oregon) and Paolo Piazza (La
Sapienza University, Rome), which has appeared in [1, 2, 3].

1. GENERALIZED POSITIVE SCALAR CURVATURE AND THE SPINc DIRAC OPERATOR

If M is a closed spin manifold with a Riemannian metric g, then g determines a
natural connection on the spinor bundle S and we have a (spin) Dirac operator
D =

∑
i c(ei)∇ei, where {ei} is a local orthonormal frame and c denotes Clifford

multiplication on spinors. (One can check that D is independent of the choice of
frame.) The Schrödinger-Lichnerowicz Formula says that

D2 = ∇∗∇+
1

4
Rg,

where Rg is the scalar curvature function.

Corollary 1.1. If Rg ≥ 0 everywhere, and Rg is not identically 0, then all index invariants
of D vanish.

This is the starting point for all work on positive scalar curvature (psc).
In dimension 2, R is just (twice) the Gaussian curvature and everything we need to

know is given by Gauss-Bonnet. But in dimensions ≥ 3, we have

Theorem 1.2 (Kazdan-Warner, 1975). Every closed connected manifold M of dimension
≥ 3 falls into exactly one of the following three classes:

(1) Those admitting a psc metric, in which case every smooth function on M is the scalar
curvature of some metric;

(2) Those admitting a metric g with Rg ≡ 0 but not a metric with Rg ≥ 0 and Rg

positive somewhere — in this case a metric with Rg ≡ 0 is necessarily Ricci-flat,
and the possible scalar curvature functions on M are 0 and the functions negative
somewhere;

(3) All other manifolds, those not admitting any metric with nonnegative scalar
curvature — in this case, the possible scalar curvature functions of metrics on M
are exactly those functions which are negative somewhere.

We sought an analogue of the above results for closed spinc manifolds, relating an
analogue of the scalar curvature to index theory of the spinc Dirac operator. A spinc

manifold M comes with a choice of a spinc line bundle L that satisfies c1(L) mod 2 =

Date: 25 November, 2025.
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w2(M). In addition to the metric g, we need to choose a hermitian metric and unitary
connection A on L. Then we obtain a spinor bundle and Dirac operator D on M , and the
Schrödinger-Lichnerowicz Formula now takes the form

D2 = ∇∗∇+
1

4
Rtw,

where Rtw = Rg + 2ic(ΩL), ΩL the curvature 2-form of A.
The quantity Rtw, the twisted scalar curvature, is matrix-valued. It is easier to work

with the generalized scalar curvature Rgen = Rg − 2|ΩL|op, which is scalar-valued. It is not
hard to show that Rtw > 0 ⇐⇒ Rgen > 0, and thus positivity of Rgen implies vanishing of
all index invariants of the spinc Dirac operator D.

We have an analogue of the Kazdan-Warner trichotomy theorem in this context:

Theorem 1.3 ([2]). Every closed connected spinc manifold M of dimension ≥ 3 falls into
exactly one of the following three classes:

(1) Those admitting a metric and connection (g, A) with Rgen
(g,A) > 0, in which case

every smooth function on M is the generalized scalar curvature of some metric and
connection;

(2) Those admitting a pair (g, A) with Rgen
(g,A) ≥ 0 but not one with Rgen

(g,A) > 0 — in
this case, the possible generalized scalar curvature functions on M are 0 and the
functions negative somewhere;

(3) All other manifolds, those not admitting any metric and connection with
nonnegative generalized scalar curvature — in this case, a smooth function on M
is Rgen

(g,A) for some (g, A) if and only if it’s negative somewhere.

As in the classical case of scalar curvature, there is a rigidity phenomenon in case (2).

Theorem 1.4 ([2]). Suppose M is a closed simply connected non-spin spinc manifold with
spinc line bundle L. Assume M admits a pair (g, A) with Rgen

(g,A) ≡ 0 but not one with
Rgen

(g,A) > 0. Then M admits a parallel spinor, and if M does not split as a product, then M is
conformally Kähler, and L is either the canonical or the anti-canonical line bundle on M .

2. CLASSIFICATION OF SPINc MANIFOLDS WITH GENERALIZED POSITIVE SCALAR

CURVATURE

Parallel to many results about psc on spin manifolds, we have a classification theory
of gpsc (generalized positive scalar curvature — maybe it would be better to say positive
generalized scalar curvature) in the totally non-spin case. We say a connected manifold M

is totally non-spin if its universal cover M̃ does not admit a spin structure, i.e., w2(M̃) ̸= 0.
Let ku denote connective complex K-theory, and let per : ku∗ → K∗ denote the

periodization map (inversion of the Bott element). For any group π, let
As : K∗(Bπ) → K∗(C

∗(π)) denote the assembly map (which appears in study of the
Novikov Conjecture). The following theorem is parallel to a result of Stolz, Jung, and
Führing [4], though the proof requires some additional homotopy theoretic techniques.

Theorem 2.1 ([3]). Let π be a finitely presented group. Then for each n ≥ 5, there is a
subgroup ku+

n (Bπ) of kun(Bπ), contained in the kernel of the composite
As ◦ per : kun(Bπ) → Kn(C

∗(π)), with the property that if Mn is a closed totally non-spin
connected spinc manifold with n ≥ 5, with fundamental group π, with classifying map
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f : M → Bπ, and with ku-fundamental class [M ], then M admits gpsc if and only if
c∗([M ]) ∈ ku+

n (Bπ).

Parallel to the so-called Gromov-Lawson-Rosenberg (GLR) Conjecture in the spin case,
one can then formulate:

Conjecture 2.2 (GLRc Conjecture). For Mn a connected closed totally non-spin spinc

manifold with n ≥ 5 and fundamental group π and classifying map f : M → Bπ, M
admits gpsc iff As ◦ per(f∗([M ])) = 0 in Kn(C

∗(π)).

As for the GLR Conjecture in the spin case, this holds if As◦per : kun(Bπ) → Kn(C
∗(π))

is injective, for example if π is free abelian or a surface group. Here is another one of our
major results:

Theorem 2.3. The GLRc Conjecture holds if π is finite with periodic cohomology.

However, by the same method used by Schick [5], we have constructed
counterexamples to the GLRc Conjecture with π = Z4 × Z/p.

By mimicking Stolz’s theory of the “R-group” for concordance classes of psc metrics,
we are able to construct an analogous theory for classification of gpsc pairs:

Theorem 2.4 ([3]). Fix a finitely presented group π. There is a long exact sequence

· · · → Rspinc

n+1 (Bπ)
∂−→ Posspin

c

n (Bπ) → Ωspinc

n (Bπ) → Rspinc

n (Bπ) → · · · .

Here the groups Posspin
c

and Ωspinc are spinc bordism groups, the former also keeping track of
a gpsc pair. Rspinc is a relative group of equivalence classes of spinc manifolds with boundary,
with gpsc on the boundary, and ∂ comes from restriction to the boundary.

Theorem 2.5 ([3]). If Mn is a closed connected totally non-spin spinc manifold with
fundamental group π, admitting gpsc, and n ≥ 5, then Rspinc

n+1 (Bπ) acts simply transitively
on the concordance classes of gpsc pairs on M . In particular, if Rspinc

n+1 (Bπ) ̸= 0, then the
space of gpsc pairs on M is disconnected.

In some cases one can map the R-group sequence to the Higson-Roe analytic surgery
sequence to conclude that the space of concordance classes is quite complicated.
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AUTOMORPHIC FORMS AND THE SUP NORM PROBLEM: A SURVEY

JYOTIRMOY SENGUPTA

In this talk we will review automorphic forms starting from the classical holomorphic
forms on the Poincare upper half plane and discuss the sup norm problem associated
with them.

Notations.G = SL(2, R), Γ = SL(2, Z). k ∈ ℵ is even. Recall that the quotient G/Γ
has a finite G invariant measure. This induces a measure on H/Γ,

This measure is finite and with appropriate normalisation is 3
π
. Recall that H has the

G invariant Riemannian measure which in Cartesian coordinates is dµ(z) = dxdy
y2

.

Definition 1.
Modular form of weight k for Γ

Let f : H −→ C be holomorphic and satisfy the following properties.

1. f(γz) = f(az+b
cz+d

) = (cz + d)kf(z) ∀γ =

(
a b
c d

)
∈ Γ and z ∈ H

2. f is holomorphic at ∞.

Definition 2:
Cusps of Γ These are the subset Q ∪ i∞ of P 1(R) = R ∪ i∞ where a point z ∈ H
approaches i∞ if x stays bounded and y tends to ∞. We are interested in inequivalent
cusps i.e. ( representatives ) of the various Γ orbits in Q∪ i∞. For our Γ as above, there
is only one Γ orbit , the orbit of i∞. A modular form f as defined above is a cusp form if
it vanishes at the cusp i∞. Equivalently its zeroth Fourier coefficient at the cusp i∞ is 0.

Examples of modular forms.
1. Holomorphic Eisenstein series of weight k, k ≥ 4 is even.

Ek(z) =
1

2

∑
(c,d)=1

1

(cz + d)k

This series converges absolutely and uniformly on compact subsets of H and is a
modular form of weight k. It is not a cusp form. We have Ek(i∞) = 1.

2. Poincare Series.
Let m ∈ N be fixed but arbitary. The m th holomorphic Poincare series of weight Pm is

defined by

Pm(z) =
1

2

∑
(c,d)=1

ei2πm(az+b
cz+d

) (cz + d)k

Date: 5th August 2025.
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Here
(
a b
c d

)
∈ Γ is any completion of the last row (c, d). It is well defined since any

two completions of (c, d), differ by an element of the form
(
1 l
0 1

)
for some l ∈ Z and

the function ei2πmz. is translation invariant.

Propostion
Pm is a cusp form. In fact, since the space of modular forms of weight k (and hence a

fortiori the subspace of cusp forms) Sk is finite dimensional, the first dk Poincare series
i.e. P1 . . . PdK (where dk = dimSk) is a basis of Sk.

Petersson inner product on cusp forms. We have < f, g >≜
∫
F ykf(z)g(z)dxdy

y2
where F

is any fundamental domain for Γ in H. We now turn to the sup norm problem itself.

Proposition: f ∈ Sk ⇔ the Γ invariant function yk/2 | f(z) | on H is bounded.

Definition 3. The sup norm of f, ∥ f ∥∞= supz∈H yk/2 | f(z) |= supz∈F yk/2 | f(z) | by
Γ invariance.

The sup norm problem is to obtain (as sharp as possible) upper and lower bounds for
∥ f ∥∞ in terms of the weight k which is the spectral parameter. It suffices to do this for
f which is a normalised eigenfunction for all the Hecke operators T (n), n ∈ N.

The Hecke operators T (n) acting on Mk.

(T (n)f)(z) = n
k
2
−1

∑
d|n

d−1∑
b=0

f(
n
d
z + b

d
); z ∈ H

Facts 1. T (n) maps Mk into Mk and leaves SK invariant.

2. T (n) : Sk → Sk is Hermitian w.r.t. the Petersson inner product on Sk.

3. T (n) | n ∈ N} is a commuting family of Hermitian operators on Sk.

By 3, Sk has an orthonormal basis {fj; 1 ≤ j ≤ dk} consisting of simultaneous
eigenfunctions of the various T (n). Let f ∈ Sk be a simultaneous eigenfunction of the
T (n) and let f(z) =

∑∞
n=1 a(n)e

i2πnz be the Fourier expansion of f . Then we have
a(1) ̸= 0 and f(z) = a(1)

∑∞
n=1 λ(n)e

i2πnz where T (n)f = λ(n)f .

We are now in a position to state Xia’s result.

Theorem (Xia, 20) ϵ > 0, we have

k
1
4
−ϵ ≪∥ fj ∥∞≪ k

1
4
+ϵ

Recall that fj is a L2 normalised Hecke eigenform. Thus we have a sharp result in this
case.
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Method of proof: A direct approach using the Fourier expansion of fj i.e.

fj(z) =
∑∞

n=1 aj(n)e
i2πnz

Automorphic forms (not so classical) There are forms of weight k = 0 i.e. they are Γ
invariant functions having the following additional properties.

(1) f is C∞.

(2) f is an eigenfunction of the hyperbolic Laplacian ∆H = −y2( ∂2

∂x2 +
∂2

∂y2
)

(3) f has polynomial growth at i∞ i.e. | f(z) |≪ yl for some l ∈ N ∪ {0} as y → ∞.

Examples of nonholomorphic modular forms.

Nonholomorphic Eisenstein series, E(z, s) which is defined by

E(z, s) = 1
2

∑
(c,d)=1)

ys

|(cz+d)|2s Re s > 1

Note that since ∆H is an SL(2,R) invariant differential operator on H and the power
function p(z) = (Imz)s = ys is an eigenfunction of ∆H with eigenvalue
λ = s(1 − s), s ∈ C it follows that E(z, s) is an eigenfunction of ∆H with eigenvalue λ
since all necessary convergence conditions on the series above are satisfied for Re s > 1.
However, E(z, s) is not a cusp form since it does not vanish at the cusps.

Definition ( special for the modular group Γ )

A Maass cusp form is a non-constant eigenfunction of ∆H in L2(Γ\H

Example of a Maass cusp form for Γ. Not known!
Let f be a Maass cusp form with Laplacian eigenvalue λ. Since f decays exponentially

at ∞, it is a bounded function.

Definition. Let f be as above. The L∞ norm of f is
∥ f ∥∞= supz∈H |f(z)| = supz∈F |f(z)| by Γ invariance.

Results. Here the baseline bound is ∥ f ∥≪ λ1/4 We have here that f is L2 normalised.

The improved result by Iwaniec-Sarnak ( 1995 ) is ∥ f ∥≪ λ
5
24

+ϵ.

The above result of Iwaniec and Sarnak remains unbeatable to this day.

Conjecture: Iwaniec and Sarnak conjectured that ϵ > 0 we have ∥ f ∥∞≪ λϵ for f an L2

normalised. Hecke-Maass eigencusp as in their theorem. This conjecture was shown to
be false by Brumley and Templier who showed that for z = 1

4
+

irj
2π

+ o(1) we have
λ

1
6
−ϵ ≪ fj(z) λ = 1

4
+ r2j
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In view of this Iwaniec-Sarnak modified their conjecture.

Modified Conjecture: ∀ϵ > 0, fj(z) ≪ϵ,z λ
ϵ
j

This conjecture is open.

Modular forms of higher level.

These are modular forms which are automorphic with respect to congruence subgroups
of Γ. A typical example of such a subgroup is the Hecke congruence subgroup Γ0(N)
where N ∈ N

Definition: Γ0(N) = {
(
a b
c d

)
∈ Γ, N | c i.e. c ≡ 0 mod N}.

Note that Γ0(1) = Γ.
Definition: Let f : H → C be holomorphic and have the following properties
(k ∈ 2N).

1. f(γz) = (cz + d)kf(z), ∀γ ∈ Γ0(N)
2. f is holmorphic at the cusps of Γ.

Definition of sup norm of f, ∥ f ∥∞ is the same except that now F has to be replaced
by Fn = any fundamental domain of Γ0(N).

Newforms and oldforms: Roughly speaking oldforms are those which are
automorphic forms for overgroups of Γ0(N) inside Γ. In fact the space Sk(Γ0(N)), N > 1
splits into the orthogonal direct sum of two subspaces, oldforms and its
orthocomplement in SK(Γ0(N)) which are newforms. Their definition is given
inductively.

Now the supnorm problem (for newforms) on Γ0(N) acquires 2 different aspects,

(1) the level N varies with the weight k remaining fixed.
(2) hybrid i.e. the weight k and the level N both vary.

Results for cases 1 and 2.
Case 1. (Blomer and Halowinsky). ∥ f ∥∞≪k N

− 1
37 for N squarefree; f is L2 normalised

newform .
Case 2. ∥ f ∥∞≪∈ (kN)

1
4
+∈,∀ ∈> 0. This is the result of Y. Hu and A. Saha.

We now turn to the theory of oldforms and newforms in the case of Maass cusp
forms. This is exactly the same as that of holomorphic form. Furthermore the Hecke
operators T (n) for (n,N) = all commute with them Laplacian ∆H and with each other.
Thus we can find a o.n basis of newforms for any fixed value of the eigengvalue λ of ∆H

which are all eigenfunctions of the T (n) also.
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We can now state the supnorm result for Maass cusp forms (newforms, L2 normalised).
Case(1) ∥ f ∥∞ ≪λ N

1
2
− 1

37 . This is due to Blomer-Holowinsky for squarefree level N .

Remark: In all of the results above the authors first prove the result for Maass cusp
forms for Γ0(N) and then observe that the same holds for holomorphic cusp forms
(newforms, L2 normalised ) without too much work.

More general automorphic forms. Here there is more, than one avenue of
generalisation. In the more modern theory of automorphic forms the group SL(2,R) is
replaced by GL(2,R).

We have H = G
KZ

where now G = (GL2,R)= all 2x2 real invertible matrices by
representing H as the homogenous space G/KZ where

G = GL(2,R) K = 0(2,R), Z = Z(G) = centre of G =

(
λ 0
0 λ

)
, λ ∈ R∗.

Note that Z(G) ⊂ GL+(2,R) = the group of 2x2 real matrices having positive
determinant. In this way, one can regard Maass forms as functions on the group
GL(2,R) which are invariant under the subgroup KZ of G.

There are Iwasawa coordinates on Hn; each z ∈ H is uniquely of the form z = x.y
where (see the board)/

Let ν = (ν1, ν2, , νn−1) ∈ Cn−1.

The analogue of the power function p(y)(n = 2) is the function Iν(z) = Πn−1
i=1 Π

n−1
j=1 ybiji νj

with

bij

{
ij if i+ j ≤ n

(n− 1)(n− j) if i+ j ≥ n

is an eigenfunction of every G invariant differential operator D on Hn Let us write

DIν(Z) = λD · Iν(z)

The map D 7→ λD is a character of Dn = commutative algebra of G invariant differential
operators on Hn.

Definition An SL(n,Z) Maass cusp form on Hn is a C∞ function ϕ ∈ L2(SL(n, 2)/Hn)
having the following properties

(1) ϕ is an eigenfunction of every D ∈ D with eigenhomorphism D 7→ λD for a
suitable λ.
(2) ϕ is cuspidal .

Condition (2) implies that ϕ is a bounded, SL(n,Z) invariant C∞ function on Hn.
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Upper Bounds ( Blomer-Harcos-Maga ) Let ϕ be as above. Then we have ,

∥ ϕ ∥∞≪ λ
(n2−1)(n+1)

16
+ϵ

Lower bounds ( Brumley-Templier ). Here the spectral parameter of ϕ is very regular.

∥ ϕ ∥∞≫ λ
c(n)
2

−ϵ where c(n)
2

= n(n−1)(n−2)
24

.

Note that for n ≥ 6, c(n)
2

> d−1
4

where d = dim Hn. Thus Hormander’s local bound
(which is very general) doesn’t hold globally for ϕ when n ≥ 6.

Another avenue of generalisation.
Siegel modular forms

Recall that H = upper half-plane in C = SL(2, (R)/SO(2,R) but SL(2,R) = Sp(1,R) =
the symplectic group in dimension two. Therefore we define Hn by Sp(n,R)/U(n)
where U(n) = nxn unitary group = maximal compact subgroup of Sp(n,R) via itsreal

embedding. We have Sp(n,R) = {g ∈ M2n(R) | tgJ g = J} | J =

(
0 In

−In 0

)
, In = nxn

identity matrix.

Just like Sp(1,R), Sp(n,R) acts on the Siegel upper half-space
Hn = {Z ∈ Sn(C) | Z = X + iY, Y > 0 (positive definite). Here Sn(C) = n× n complex
symmetric matrices. The action is (g, z) 7→ g · z = (AZ + B)(CZ + D)−1 where

g =

(
A B
C D

)
∈ Sp(n,R).

Let Γn = Sp(n,Z) be the modular group of degree n.

Definition: Let k ∈ N. A Siegel modular form F of degree n and weight k is a
holomorphic function on Hn having the property

F((AZ+B)(CZ+D)−1) = det (CZ +D)kF (z) . . . (∗)

∀
(
A B
C D

)
∈ Γn

Fourier expansion of Siegel Modular forms.
F (z) =

∑
T≥0 T 1

2
integral AF (T ) e

2πiTr(TZ) Tr = trace

T 1
2

integral means that 2Tij ∈ Z for i ̸= j and ti,i ∈ Z for 1 ≤ i ≤ n.

Definition: A Siegel modular form F is a cusp form if AF (T ) ̸= 0 ⇒ T > 0.

Definition: Let F and G be a Siegel cusp forms of degree n. Their Petersson inner
product is < F,G >≜

∫
Fn(det Y )kF (z)G(Z)dµ(z) where dµ(z) = Sp(n,R) invariant

measure on Hn and F n = any fundamental domain for Γn in Hn

Hecke operators : T (n) on Siegel modular forms are defined in a similar fashion with the
set of integral matrices of determinant n being replaced by integral matrices which are
symplectic similitudes with factor n.
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Definition: The sup norm of F, ∥ F ∥∞ is

supz∈Hn (det Y )k/2 | F (z) |

Some sample results for n = 2, k even ≥ 10,
Here there is a distinguished subspace, S∗

k of the space of Sk = Siegel cusp forms of
weigh k which is Hecke stable. It is called the Maass subpsace and for F a Hecke
eigenform in S∗

k with ∥ F ∥∞= 1 we have ∀ϵ > 0, .
Theorem (Blomer) ∥ F ∥∞≪ϵ k

3
4
+ϵ

This is conditional on the Generalized Lindeloff hypothesis for L(1
2
, f × χD) for all

negative fundamental discriminants with F being the lift of f ∈ S2k−2(SL, (2,Z), a
normalised Hecke eigenform.

Unconditionally we have ∥ F ∥∞≪ϵ k
5
4
+ϵ

Theorem (Das-Sengupta). A simplified proof of the above result with a slightly larger
value of the exponent namely ∥ F ∥∞≪∈ k

17
12

+ϵ. Our proof uses the theory of Jacobi
forms.

Das and his collaborators mainly P. Anamby and H. Krishna have studied the sup norm
problem for Siegel cusp forms extensively. They use a ‘new’ tool namely the Bergman
Kernel. We quote some of their results.

Let Bn
k denote an orthonormal basis of Sn

k . The Bergman Kernel Bk(z,W )) for z,W ∈
Hn.. is

∑
G∈Bn

k
G(z)G(W ).

The quantity of interest here is

Bk(Z,Z) =
∑

F∈Bℸ
n

| F (Z) |2 (det Y )k = ((det Y )kBk(Z,Z))

and by abuse of notation call this the Bergman Kernel as well. We measure the size of Sn
k

by the quantity supz∈Hn Bk(Z,Z)
Conjecture: With the above notation and setting the following is true

k
3n(n+1)

4 ≪ supz∈Hn Bk(Z,Z) ≪ k
3n(n+1)

4

Theorem (Das-Krishna). Let n ∈ N be given. Put l(n) = 3n(n+1)
4

. Then with the above
notation and setting we have

kl(1)

kl(2)

kl(n)

}
≪
n sup

z∈Hn

Bk(z, z)
≪
n, ϵ


kl(1)

kl(2)+ϵ

k
5l(n)

3
− 3(n+1)

4
+ϵ.

Epilogue.

Where does the future lie ?

All indications are that it lies in ” The orbit method in the analysis of automorphic
forms ” created and developed by Paul Nelson and Akhshay Venkatesh.
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In a nutshell this is microlocal analysis on coadjoint orbits of real reductive groups
coupled with representation theory, which takes care of the needs of number theory.
Microlocalisation of test vectors lying in various representation (spaces ) has to be done,
both for representation of real groups as well as for representations of p-adic groups.

Using this method, Assing and Toma have obtained the following result for Hecke-
Maass newforms of powerful level.

Theorem ( Assing-Toma ) Let ϕ be an L2 normalised Hecke-Maass newform of level
N = p4n, p a prime with Laplacian eigenvalue λ. If λ is sufficiently large, then we have

∥ ϕ ∥∞≪p,ϵ (λN)
5
24

+ϵ

This is a new, hybrid result for powerful levels !

INDIA ASSOCIATION FOR THE CULTIVATION OF SCIENCE, INDIA

Email address: jyotirmoy.sengupta@iacs.res.in
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LLARULL’S THEOREM ON ODD DIMENSIONAL MANIFOLDS AND SPECTRAL
FLOW

GUANGXIANG SU

Classification AMS 2020: 53C21, 58J30

Keywords: Dirac operator, scalar curvature, spectral flow

Llarull’s rigidity theorem [6] states that for a closed spin Riemannian manifold
(M, gTM) of dimension n such that the associated scalar curvature kTM verifies that
kTM ≥ n(n − 1), then any (non-strictly) area decreasing smooth map f : M → Sn(1) of
nonzero degree is an isometry, where Sn(1) is the standard unit n-sphere. In [3], we
gave a direct proof of Llarull’s theorem in odd dimensions by the spectral flow. In [3],
we also proved the following spin-area convex extremality theorem in odd dimensions,
which compares with [1] and [5] for even dimensional case.

Theorem 0.1 ([3]). Let M be a closed spin manifold of odd dimension 2k − 1(k ≥ 2)
equipped with a Riemannian metric gTM , and X ⊂ R2k be a smooth strictly convex closed
hypersurface equipped with the metric g0 induced by the Euclidean metric in R2k. Suppose
that there exists a (1,Λ2)-contracting map f : (M, gTM) → (X, g0) of nonzero degree. Then,
either there exists a point x ∈ M where the scalar curvature kTM(x) < kTX(f(x)), or f is
an isometry.

In [7], Zhang proved that for an even dimensional noncompact complete spin
Riemannian manifold (M, gTM) and a smooth (non-strictly) area decreasing map
f : M → SdimM(1) which is locally constant near infinity and of nonzero degree, if the
associated scalar curvature kTM verifies

(0.1) kTM ≥ (dimM)(dimM − 1) on Supp(df),

then inf(kTM) < 0. When dimM is odd, Zhang [7] proved that inf(kTM) < 0 still holds
if the inequality in (0.1) is strict, by using the standard trick of passing M to M × S1. In
[4], we improved Zhang’s result in the odd dimensional case so that one gets a complete
answer to Gromov’s question ([2]).

Theorem 0.2 ([4]). Let (M, gTM) be an odd dimensional (dimM ≥ 3) connected oriented
noncompact complete spin Riemannian manifold. Let kTM be the associated scalar
curvature. Let f : M → SdimM(1) be a smooth area decreasing map which is locally
constant near infinity and of nonzero degree. Suppose

kTM ≥ (dimM)(dimM − 1) on Supp(df),(0.2)

then inf(kTM) < 0.
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SUPERCONNECTION AND ORBIFOLD CHERN CHARACTER

XIANG TANG
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superconnection

Let M be a closed complex manifold. Consider the d-bar operator

Ω(0,0)(M)
∂̄−→ Ω(0,1)(M)

∂̄−→ Ω(0,2)(M) · · · .
Let E be a holomorphic vector bundle on M . Consider the generalized d-bar operator

Ω(0,0)(M,E)
∂̄−→ Ω(0,1)(M,E)

∂̄−→ Ω(0,2)(M,E) · · · .
Let Hk(M,E) be the k-th cohomology group of E.

The Riemann-Roch-Hirzebruch theorem computes the holomorphic Euler
characteristic of M .

Theorem 0.1 (Riemann-Roch-Hirzebruch). Let E be a holomorphic vector bundle on a
closed complex manifold M .

χ(X,E) =
∑
i

(−1)iH i(M,E) =

∫
M

ch(E) Td(M),

where ch(E) is the Chern character of E and Td(M) is the Todd class of M .

In complex geometry, Hirzebruch’s Riemann-Roch theorem represents a substantial
advance beyond the case of Riemann surfaces, the classical Riemann-Roch theorem. It
is the generalization of Hirzebruch’s result, dating back to the work of Borel and Serre
in the 1950s, that led Grothendieck to his ingenious introduction of the K-theory and
the Grothendieck-Riemann-Roch theorem, which are fundamental objects in the study of
both differential geometry and algebraic geometry. Substantial developments appeared
in the works of Baum, Fulton, MacPherson and in SGA 6 (led by Grothendieck). Beyond
algebraic schemes, a notable advance is Toen’s result on Riemann-Roch for algebraic
stacks of Deligne-Mumford type. In the 1980s, the Grothendieck-Riemann-Roch theorem
was successfully introduced into Arakelov geometry, which led to exciting progress in
arithmetic geometry.

Unlike projective varieties in algebraic geometry, not all coherent sheaves on a general
complex manifold have a resolution by holomorphic vector bundles. This key difference
from algebraic geometry was for a long time an obstruction to a Grothendieck-Riemann-
Roch theorem on general complex manifolds. A recent major breakthrough was obtained
by Bismut, Shen, and Wei [BSW23] by integrating new ideas from derived geometry,
antiholomorphic superconnections, and geometric analysis, in particular the hypoelliptic
Laplacian.

Let K0(M) be the Grothendieck group of OM -coherent sheaves on M , and let
H•,•BC(M,R) be the Bott-Chern Cohomology of M .
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Theorem 0.2 (Bismut-Shen-Wei). There is a (unique) Chern character map

chBC : K0(M)→ ⊕pH
p,p
BC(M,R)

satisfying the following property, for a holomorphic map f : M → N ,

TdBC(TM) chBC(f!E) = f∗[TdBC(TN) chBC(E)],

for any coherent sheaf E on M .

In this talk, we reported the recent attempt to generalize the above Grothendieck-
Riemann-Roch theorem on complex manifolds to complex orbifolds.

We study a complex orbifold through its representation by a proper étale groupoid with
an invariant complex structure. Such a groupoid is called a complex orbifold groupoid.

Definition 0.3. Let G be a complex orbifold groupoid. A sheaf F of OG-modules is called a
coherent sheaf if it satisfies the following conditions.

(1) F is finite type, i.e. for every x ∈ G0 there exists an invariant neighborhood (U,G)
of x and a G-sheafM, a finite rank free sheaf on G0, such that there exists a G|U -
equivariant surjective mapM|U � F|U ;

(2) For every (U,G) and any G|U -equivariant map φ : M|U → F|U , the kernel of φ is
also finite type.

We denote the category of coherent sheaves on G by coh(G), and the derived category of
coherent G-sheaves by Db

coh(G).

Inspired by [BD10], we generalize the approach [BSW23] to coherent sheaves on
complex orbifolds via antiholomorphic flat superconnections. Let B(G) be the dg-category
of antiholomorphic flat superconnections on G and B(G) be the associated homotopy
category. Given a complex orbifold X, we establish the following equivalence of dg-
categories

(0.1) Db
coh(X) ' B(X).

Such an equivalence (0.1) allows us to introduce the orbifold Chern character, which
is a group homomorphism

(0.2) chBC : K(X)→ H
(=)
BC (IX,C),

from the K-group of coherent sheaves on X to the Bott-Chern cohomology H(=)
BC (IX,C)

of the inertia orbifold IX. We show that the orbifold Chern character has the following
property.

Theorem 0.4. Let iX,Y : X ↪→ Y be an embedding of a compact complex orbifold groupoid.
Let F ∈ Db

coh(X) and iX,Y,∗F ∈ Db
coh(Y ) be its direct image. We have

(0.3) chBC(iX,Y,∗F) = IiX,Y,∗

(
chBC(F)

TdBC(NX/Y )

)
in H(=)

BC (IY,C),

where IiX,Y is the induced morphism between inertia groupoids.

With Theorem 0.4 we establish the following property about the orbifold Chern
character:

Theorem 0.5. The orbifold Chern character chBC : K(X) → H
(=)
BC (IX,C) in (0.2) is the

unique group homomorphism satisfying the following properties.
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(?1) For complex vector bundles E on complex orbifolds, our definition of chBC(E) agrees
with the one in [Ma05, Section 1.2].

(?2) chBC is functorial under pullbacks.
(?3) chBC satisfies the Riemann-Roch-Grothendieck formula for orbifold embeddings,

Equation (0.3).

After our paper [MTTW25] appeared on the arXiv, we became aware of the paper
[Xu25] by Guangzhe Xu. The paper [Xu25] establishes the main results of [BSW23]
in the setting of equivariant geometry of a finite group acting on a complex manifold.
On one hand, [Xu25] establishes our Theorems 0.4 and 0.5 in the (more restrictive)
setting of equivariant geometry with respect to finite group actions. On the other hand,
[Xu25] establishes Riemann-Roch-Grothendieck for proper morphisms between complex
manifolds equivariant with respect to finite group actions, which is more general than
what is available in this paper (our Theorem 0.4 is only valid for embeddings).

In literature, the Grothendieck-Riemann-Roch type results refer to transformations
from K-theory to suitable cohomology theories that commute with pushforwards of
proper morphisms.

For algebraic orbifolds, more precisely Deligne-Mumford stacks, a Riemann-Roch
theorem was proved by Toen [Toe99].

We aim to establish a Riemann-Roch-Grothendieck theorem for complex orbifolds,
which will calculate the orbifold Chern character chBC(f∗F) of the pushforward of a
coherent sheaf F under a holomorphic map f .

A holomorphic map
f : X → Y

between complex orbifolds can be decomposed as the composition of the embedding

if : X → X × Y

and the projection
p : X × Y → Y.

Our plan to establish the Riemann-Roch-Grothendieck theorem for f is by proving the
Riemann-Roch-Grothendieck theorems for if and p separately. In Theorem 0.4, we have
solved the case of embeddings. In the sequel, we will prove the case that covers p and
thus complete the proof of the Riemann-Roch-Grothendieck for f .

REFERENCES

[BD10] Jonathan Block and Calder Daenzer. Mukai duality for gerbes with connection. J. Reine Angew.
Math., 639:131–171, 2010.

[BSW23] Jean-Michel Bismut, Shu Shen, and Zhaoting Wei. Coherent Sheaves, Superconnections, and
Riemann-Roch-Grothendieck, volume 347 of Progress in Mathematics. Birkhäuser/Springer, Cham,
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1. INTRODUCTION

Donaldson moduli spaces [3] of instantons on four-manifolds are fundamental in
differential geometry and gauge theory, but their structure is often complicated by
quotient singularities and bubbling phenomena in the compactitications. We will
provide Lie groupoid structures on Donaldson moduli spaces and their bubble tree
compactifications, providing a smooth and categorical framework that captures their
stratified and singular nature. This construction lays the groundwork for future
applications, including the definition of K-theoretical Donaldson invariants, the
geometric realization of µ-maps. Some applications will be discussed. This is based on
joint work with Bohui Chen and Shuauge Qiao.

Gauge theory provides a profound link between the differential geometry of
four-manifolds and topological invariants. Let P → X be a principal G-bundle over a
closed, oriented Riemannian four-manifold (X, g), with G = SU(2) or SO(3). A
connection A on P has curvature FA ∈ Ω2(X, gP ), and the Yang-Mills functional

YM(A) =

∫
X

|FA|2 dvolg

measures its total curvature energy. The Euler-Lagrange equation of YM is the
Yang?Mills equation d∗AFA = 0, whose critical points are the Yang-Mills connections. In
four dimensions, the Hodge decomposition of two-forms

Ω2(gP ) = Ω2,+(gP )⊕ Ω2,−(gP )

splits curvature into self-dual and anti-self-dual components FA = F+
A + F−A . The energy

identity
‖FA‖2L2 = ‖F+

A ‖
2
L2 + ‖F−A ‖

2
L2 = 8π2 k + 2‖F+

A ‖
2
L2

(where k = c2(P ) or −p1(P )/4) shows that the absolute minima of the Yang?Mills
functional are those connections satisfying

F+
A = 0, equivalently ∗ FA = −FA,

the anti-self-dual (ASD) Yang-Mills equations. Such solutions are called instantons, and
their moduli spaces

Mk(X, g) = {A ∈ A(P ) | F+
A = 0}/G(P )

are finite?dimensional quotients of the infinite-dimensional affine space A(P ) of
connections by the gauge group G(P ). For a generic Riemannian metric g, the linearized
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operator d+A : Ω1(gP ) → Ω2,+(gP ) is surjective, and Mk(X, g) is a smooth manifold of
dimension

dimMk(X, g) = −2p1(P )− 3(1− b1(X) + b+2 (X)) = 8k − 3(1− b1 + b+2 )

given by the index of the Atiyah-Hitchin-Singer deformation complex

0 −→ Ω0(gP )
dA−−→ Ω1(gP )

d+A−−→ Ω2,+(gP ) −→ 0.

Points of Mk(X, g) correspond to gauge-equivalence classes of irreducible ASD
connections, while reducible ones (with stabilizer U(1)) form lower-dimensional
singular strata. The compactness problem forMk is governed by bubbling phenomena:
sequences of instantons with bounded energy may develop curvature concentration at
finitely many points, where the energy lost is carried by instantons on S4. The
Uhlenbeck compactification MU

k (X) augments the moduli space by such ideal
connections, but its corner structure is only stratified topologically.

For a smooth, closed, oriented 4-manifold (X, g), the Donaldson invariants are defined
via the moduli spacesMk(X, g) of anti-self-dual (ASD) SU(2) or SO(3) connections on
a principal bundle P → X. When b+2 (X) > 1, these invariants are independent of the
metric. The case b+2 (X) = 1 is subtler: the invariants depend on the chamber structure
of the positive cone in H2(X;R).

Kotschick and Morgan [5] conjectured that for b+2 (X) = 1 and b1(X) = 0, the wall-
crossing difference

δP (α) = D+
X(P )−D−X(P )

arising when the self-dual harmonic form crosses the hyperplane α⊥ is a polynomial in
α and the intersection form QX , with coefficients depending only on α2, p1(P ), and the
homotopy type of X.

Earlier approaches, including algebraic-geometric calculations for rational surfaces
[4] and topological computations [6] for partial cases. Our work establishes the
conjecture for all walls, including the obstructed case α2 = −1, by constructing a
smooth compactification of the moduli space with an explicit local model around
reducible and bubbling configurations.

In our work we employ the stronger bubble tree compactification of Chen [2], which
records not only the positions of bubbling points but also the entire hierarchical
configuration of bubbles and the gluing parameters between them. Each stratum is
indexed by a weighted rooted tree T , whose vertices represent the base manifold and
successive S4 bubbles, and whose edges record gluing scales λe and group elements
ρe ∈ G. This yields a smooth orbifold structure near all lower strata and provides a
precise analytic framework for the wall-crossing analysis required to prove the
Kotschick-Morgan conjecture.

2. BUBBLE TREE COMPACTIFICATION AND LIE GROUPOID STRUCTURE

The key analytic tool is the bubble tree compactification of the instanton moduli space
Mk(X) introduced by Chen [2]. Unlike the Uhlenbeck compactification, which records
only bubbling points, the bubble tree compactification keeps track of the entire hierarchy
of bubbled spheres (S4) and the gluing data between them.

For each weighted rooted tree T with total weight k, the associated stratum

ST (X) =Mw(v0)(X)×
(∏

vi∈child(v0)

Pvi(X)
)/

Smv0
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parametrizes configurations where bubbling occurs according to T . The Taubes gluing
construction produces an orbibundle

GLT (X)→ ST (X),

whose fibre encodes the gluing parameters ρe ∈ G and scales λe > 0 for each edge e of
T .

A smooth orbifold structure onMk(X) is then obtained by gluing these local models
via perturbed gluing maps Ψb

T , compatible across overlapping strata. Ghost vertices
(zero-energy bubbles) are resolved by a flip resolution procedure that replaces singular
corners by exceptional divisors, ensuring smoothness throughout the compactification.

The orbifold structure on Mk(X) admits a natural and more precise description in
terms of a Lie groupoid. This point of view clarifies the analytic gluing construction and
provides a canonical language for encoding gauge symmetries and local isotropy.

Let A(P ) denote the Fréchet manifold of smooth connections on the principal
G?bundle P → X, and G(P ) the corresponding gauge group. The classical
configuration groupoid

C = (G(P )×A(P ) ⇒ A(P ))

has source and target maps s(g, A) = A and t(g, A) = g ·A, with composition (h, g ·A) ◦
(g, A) = (hg,A). Its orbits are the gauge equivalence classes of connections. Restricting
C to the submanifold of anti-self-dual connections AASD ⊂ A(P ) yields the ASD groupoid

GASD = (G(P )×AASD ⇒ AASD),

whose orbit space is precisely the moduli space Mk(X, g). Each object A ∈ AASD has
isotropy group ΓA ⊂ G equal to its stabilizer under the gauge action; for irreducible A,
ΓA = {±1}, while for reducible connections ΓA ' S1.

The local slice theorem for the gauge action implies that GASD is a smooth, étale Lie
groupoid: near any [A] ∈Mk(X, g) there exists a local slice UA ⊂ Ω1(gP ) on which G(P )
acts smoothly with finite isotropy, and the quotient UA/ΓA provides an orbifold chart.
Transition functions between such slices are encoded by the morphisms of the groupoid
and are smooth on overlaps, givingMk(X, g) a natural differentiable stack structure.

The bubble tree compactification Mk(X) inherits a compatible groupoid description:
for each weighted tree T , the local gluing model GLT (X) → ST (X) is endowed with a
groupoid

GT ⇒ ST (X),

whose arrows correspond to gauge transformations on the bubble components and
whose isotropy groups ΓAT

record the residual symmetries of the glued configurations.
The compatibility of the gluing maps ΨT across adjacent trees extends to a morphism of
Lie groupoids ΨT : GT → GASD, and the collection {GT} assembles into a global groupoid
atlas

Gk(X) =
⋃
T

GT ⇒
⊔
T

ST (X),

whose differentiable stack quotient [Gk(X)] defines the smooth orbifold structure on
Mk(X). The isotropy groups of Gk(X) describe the local symmetry type of each
boundary point (trivial for irreducible bubbles, S1 for reducibles, and higher tori for
multi-bubble collisions).
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3. REDUCIBLE INSTANTONS AND EQUIVARIANT LOCALIZATION

When b+2 = 1, wall-crossing arises from the change in orientation of Mk(X, g) as the
metric crosses a wall Wα. The contribution is concentrated near reducible instantons
corresponding to line bundles L→ X with c1(L) = α. The neighbourhood of a reducible
solution A is described by a Kuranishi model

φ : H1
A → H2

A, Mk(X, g) ' φ−1(0)/ΓA,

where ΓA ' S1 acts by complex multiplication on H1
A ' CN .

For α2 < −1, the moduli space is smooth near A; when α2 = −1, obstructions appear
and are resolved by passing to a thickened moduli space Mthicken

A . This yields a global
virtual cycle amenable to equivariant localization.

Equivariant de Rham theory [1] provides a natural framework: the relevant S1-action
induces an equivariant differential dS1, and the localization formula expresses integrals
over ∂(Mk(X,λ)) in terms of fixed-point data on the reducible loci. For a local model
UA ' CN , one obtains∫

∂UA/S1

(2µ(Σ))N−1 = (−2π)N−1 1
2π
〈c1(L), [Σ]〉N−1,

reproducing the wall-crossing coefficient predicted by Kotschick-Morgan.

4. WALL-CROSSING FORMULA AND MAIN THEOREM

Let X be a simply connected 4-manifold with b+2 = 1, P → X an SO(3)-bundle, and
α ∈ H2(X;Z) an integral lift of w2(P ) satisfying p1(P ) ≤ α2 < 0. Denote by δP (α) the
difference of Donaldson invariants across the wall Wα. We prove:

Theorem 0.1. For all α as above, including the obstructed case α2 = −1, the wall-crossing
term is a universal polynomial

δP (α) =
r∑
i=0

ai(r, d,X)Q r−i
X α d−2r−2i, r =

α2 − p1(P )

4
,

where QX is the intersection form and the coefficients ai(r, d,X) depend only on r, d, and
the homotopy type of X.
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Voiculescu’s classical example [6] of almost commuting unitary matrices that cannot
be approximated by exactly commuting ones revealed a fundamental obstruction in the
stability theory of operator algebras. This phenomenon is naturally formulated in terms
of finite-dimensional quasi-representations: maps from a group (or a C∗-algebra) into
matrices that satisfy multiplicativity only up to small error.

A central problem is to determine when such quasi-representations can be perturbed
(in the operator norm) to genuine representations, and when this fails due to
topological obstructions. Earlier work connects quasi-representations of π1(M) to
almost-flat vector bundles over M and thus to K-theory; however, these invariants are
often not fine enough to detect all quasi-representations.

In joint work with Weinberger and Yu, we introduce a refined invariant—a character
map—taking values in equivariant K-theory of the universal proper G-space. For
amenable groups, this invariant completely classifies quasi-representations up to stable
equivalence.

Quasi-representations and Stability. Let G be a discrete group and F ⊆ G finite.

Definition 0.1. An (F, ε)-representation is a map

ρ : F 2 → U(n)

such that
∥ρ(ab)− ρ(a)ρ(b)∥ < ε for any a, b ∈ F.

A group is said to be matricially stable if approximate multiplicativity on a sufficiently
large finite set forces ρ to be close to a genuine unitary representation.

Examples include finite groups, Z and free groups, but Voiculescu’s example shows Z2

is not matricially stable. More precisely, for each n > 1, consider n× n unitary matrices

un =


1

e
1
n
2πi

e
2
n
2πi

. . .
e

n−1
n

2πi

 and vn =


0 1

0 1
. . . . . .

0 1
1 0


Since they approximately commute when n is sufficiently large, they induce
quasi-representations ρn of Z2 by sending the two canonical generators to un and vn,
respectively, but the fact that these unitary matrices cannot be perturbed to commuting
ones (a particularly slick proof of this fact is given in [3]) amounts to saying that for
large n, the quasi-representations ρn’s are not close to genuine representations. A bit
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more generally, for finitely generated abelian groups, matricial stability holds precisely
when the group is virtually Z.

Almost-flat Bundles and a Character Map. Given a compact manifold M with π1(M) =
G, previous work [1, 5] shows that quasi-representations correspond asymptotically to
almost-flat vector bundles [2], i.e., Hermitian vector bundles equipped with connections
whose curvature can be made arbitrarily small. Given a quasi-representation ρ, such a
bundle then determines a class

[Eρ] ∈ K0(M),

which gives a topological invariant that can be used to obstruct the perturbation of quasi-
representations into genuine ones.

Since this invariant is K-theoretic in nature, it only distinguishes
quasi-representations up to stable equivalence—here one can show that two natural
equivalence relations for quasi-representations, namely stable homotopy and stable
approximate unitary equivalence, coincide. Hence we form the Grothendieck group
QR(G) consisting of formal differences of stable equivalence classes of
quasi-representations. More precisely, we actually form the group QR(F, ε) for each
fixed pair (F, ε) and then take an inverse limit. With this Grothendieck construction, we
see that the above prescription ρ 7→ [Eρ] ∈ K0(M) produces a group homomorphism

χ : QR(G) → K0(M)

that we call the character map.
Combined with the Chern character, this reproduces classical obstructions: for

example, a flat bundle has vanishing higher Chern classes, so if ρ were close to a
genuine representation, ch(χ(ρ)) would lie in H0(M).

However, this map into K0(M) is generally far from injective or surjective. Even if we
take a limit over M and obtain a more canonical map

χ : QR(G) → K0(BG)

replacing M with the classifying space BG (if no finite model for BG exists, we need
to take an inverse limit to define K0(BG)), we still cannot expect χ to be a bijection,
particularly when torsion is present, even in simple examples such as G = Z/2. This
motivates a refinement of the character map χ.

A Refined Target: Equivariant K-theory of EG. The universal free G-space EG yields
the classifying space BG. However, taking a lesson from the formulation of the
Baum-Connes conjecture, we argue that topological information relevant to
quasi-representations naturally lives in the universal proper G-space EG, characterized
by being H-equivariantly contractible for every finite subgroup H ≤ G.

We consider the equivariant K-theory

K0
G(EG) = lim−→

Y

K0
G(Y ),

where Y ranges over proper cocompact G-spaces, and where K0
G(Y ) ∼= K0(C0(Y ) ⋊ G)

via the Green–Julg theorem. There is a canonical map K0
G(EG) → K0(BG); this is an

isomorphism when G is torsion-free, but only a rational surjection in general.
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For each proper cocompact G-space Y and sufficiently good (F, ε), we construct a
homomorphism χ : QR(F, ε) → K0

G(Y ). Parallel to what was done above, we take an
inverse limit of the right-hand side over Y and obtain a homomorphism

χ : QR(G) −→ K0
G(EG).

There is a relatively simple construction of this refined character map χ, with the help
of Fell’s absorption principle. Composing this χ with the canonical map
K0

G(EG) → K0(BG) recovers the classical character map discussed above, but our
adapted character map χ remembers more information: we show that it completely
classifies quasi-representations up to stable equivalence.

Theorem 0.2 (Weinberger–Wu–Yu). If G is amenable, then the character map

χ : QR(G) −→ K0
G(EG)

is an isomorphism.

The proof, inspired by the Baum-Connes conjecture, uses the Dirac–dual-Dirac
method [4], viewing χ as a type of coassembly map. Quasidiagonality of C∗(G) also
plays an important role by allowing finite-dimensional approximation of Fredholm
quasi-representations.
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1. ANALYTIC TORSION

Let M be a compact Kähler manifold. Let F be a holomorphic Hermitian vector bundle
on M . Let A0,q(M,F ) be the vector space of F -valued smooth (0, q)-forms on M , which
is endowed with the L2 metric with respect to the metrics on M and F . Let □0,q

F be the
Hodge-Kodaira Laplacian acting on A0,q(M,F ). We denote by σ(□0,q

F ) the eigenvalues of
□0,q

F . Let E(λ;□0,q
F ) be the eigenspace of □0,q

F with eigenvalue λ ∈ σ(□0,q
F ). Define

Z(s) :=
∑
q≥0

(−1)qq
∑

λ∈σ(□0,q
F )\{0}

λ−s dimE(λ;□0,q
F ), s ∈ C.

It is classical that Z(s) converges when Re s > dimM , extends to a meromorphic function
on C and is holomorphic at s = 0.

Definition 1.1. ([12], [3]) The analytic torsion of (M,F ) is the real number defined as

τ(M,F ) := exp(−Z ′(0)).

For the basic properties of analytic torsion, we refer to [3], [4]. Analytic torsion plays
a crucial role in several areas in mathematics, such as Arakelov geometry [13], mirror
symmetry at genus one [2], [5], [7], [19], [17], [11]. In this note, we report a recent
progress on the boundary behavior of analytic torsion.

2. SINGULARITY OF ANALYTIC TORSION

Let X be a connected complex manifold of dimension n+ 1 and let S ⊂ C be the unit
disc. Let π : X → S be a surjective holomorphic map with connected fibers. Let Σ be
the critical locus of π. Assume that π(Σ) = {0}, that there is an ample line bundle on
X, and that X is an open subset of a projective manifold. We set So = S \ {0}. Then
π : π−1(So) → So is a family of projective algebraic manifolds.

Let hX be a Kähler metric on X. Let KX/S be the relative canonical bundle of π. Let
ξ → X be a holomorphic vector bundle on X endowed with a Hermitian metric hξ.
We assume that ξ extends to a holomorphic vector bundle on the projective manifold
containing X as an open subset. We define KX/S(ξ) = KX/S ⊗ ξ. For s ∈ S, we set
Xs := π−1(s) and ξs = ξ|Xs. Throughout this note, we make the following:

Assumption (ξ, hξ)|X is Nakano semi-positive. Namely, if Rξ denotes the curvature form
of (ξ, hξ), then

√
−1Rξ induces a semi-positive Hermitian form on TX ⊗ ξ.

1
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Under this assumption, dimHq(Xs, KXs(ξs)) is independent of s ∈ S ([14], [9]). We
set hq := dimHq(Xs, KXs(ξs)). Then Rqπ∗KX/S(ξ) is a locally free sheaf on S of rank hq

for all q ≥ 0. By [8], the family π : X → S admits a semi-stable reduction, whose base
space is a ramified covering of S with ramification index d ∈ N (cf. Section 3).

Theorem 2.1. ([20]) For s ∈ So, let τ(Xs, KXs(ξs)) be the analytic torsion of (Xs, KXs(ξs))
with respect to hX |Xs and hξ|Xs, where KXs is the canonical bundle of Xs. Then

log τ(Xs, KXs(ξs)) = κ log |s|2 + c+
∑

0≤m≤n

∑
i∈I

|s|2ri(log |s|−2)mϕi,m(s)

−
∑
q≥0

(−1)q log

( ∑
0≤k≤nhq

{cqk +
∑

1≤j≤d

|s|
2j
d ψq

j,k(s)}(log |s|
−2)k

)
,

where κ ∈ Q, {ri}i∈I ⊂ Q ∩ (0, 1] is a finite set of positive rational numbers, c ∈ R,
(cq0, . . . , c

q
nrq) ̸= (0, . . . , 0) is a non-zero real vector, and ϕi,m(s), ψ

q
j,k(s) are smooth functions

on S. In particular, by setting ϱ :=
∑

q≥0(−1)qϱq ∈ Z with ϱq := max{0 ≤ k ≤ nhq; cqk ̸= 0},
there exists a constant γ ∈ R such that as s→ 0

log τ(Xs, KXs(ξs)) = κ log |s|2 − ϱ log log(|s|−2) + γ +O
(
1/ log |s|−1

)
.

In this theorem, κ is given by an integral of certain characteristic classes associated to
the semi-stable reduction of π : X → S. Since the formula for κ is complicated, we omit
the detail here. See [20, Sects. 6, 8]. However, when X0 has only isolated singularities,
there is a simple formula for κ in terms of Milnor number and spectral genus. Let us
recall these invariants to give an explicit formula for κ when dimSingX0 = 0.

We identify an isolated hypersurface singularity germ (X0, 0) ⊂ (Cn+1, 0) with its
defining equation f(z) = 0, where f(z) ∈ OCn+1,0 has an isolated critical point at the
origin. The Milnor number of f , denoted by µ(f), is defined as

µ(f) := dimOCn+1,0/(
∂f

∂z0
, . . . ,

∂f

∂zn
)OCn+1,0.

We need another invariant of f called the spectral genus, introduced recently by
Eriksson-Freixas i Montplet [6]. Let Milf be the Milnor fiber of f . Then Hn(Milf ) carries
a mixed Hodge structure. Let F •Hn(Milf ) be the Hodge filtration on Hn(Milf ). Let
Ms ∈ GL(Hn(Milf )) be the semi-simple part of the monodromy acting on Hn(Milf ). Let
log z be the branch of the logarithm with imaginary part lying in [0, 2π). Let logMs be
the corresponding logarithm of Ms. Since Ms preserves F •Hn(Milf ), logMs acts on
GrnFH

n(Milf ). By [6], the spectral genus of f is the rational number defined as

p̃g(f) :=
1

2πi
Tr
[
logMs|GrnFHn(Milf )

]
.

Theorem 2.2. ([20]) Suppose that SingX0 consists of isolated points. Let r(ξ) be the rank
of ξ. Then

κ = −r(ξ)
∑

x∈SingX0

(
µ(x)

(n+ 2)!
− p̃g(x)

)
.

In [6], it is conjectured that µ(x)
(n+2)!

− p̃g(x) > 0 for any isolated hypersurface singularity
of dimension n.
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3. SINGULARITY OF THE L2-METRIC

Since the analytic torsion is the ratio of the Quillen metric and the L2-metric on the
determinant of the cohomology [3], Theorem 2.1 is reduced to the behavior of the
Quillen and L2 metrics as s → 0. For the Quillen metrics, this was determined in [18].
For the L2-metrics, it will be determined in [20], which we explain briefly here.

Let T be another unit disc in C. Set T o := T \ {0}. By the semi-stable reduction
theorem [8], there is a commutative diagram

(Y, Y0)
F−−−→ (X,X0)

f

y π

y
(T, 0)

µ−−−→ (S, 0).

Here Y is a complex manifold of dimension n+1, µ : (T, 0) → (S, 0) is given by µ(t) = td,
Yt := f−1(t) is isomorphic to Xµ(t) for t ̸= 0, and Y0 = f−1(0) is a reduced normal crossing
divisor of Y . Since (F ∗ξ, F ∗hξ) is Nakano semi-positive, Rqf∗KY (F

∗ξ) is a locally free
sheaf on T of rank hq.

Theorem 3.1. ([20]) Let m∞
0 (T ) be the smooth functions on T vanishing at t = 0. By

choosing suitable bases {θ1, . . . , θhq} of Rqπ∗KX/S(ξ) and {θ̃1, . . . , θ̃hq} of Rqf∗KY/T (F
∗ξ)

respectively, there exist integers eq1, . . . , e
q
hq ≥ 0 with the following properties:

(1) The hq × hq-Hermitian matrix H(s) := (Hαβ(s)), Hαβ(s) := (θα|Xs , θβ|Xs)L2 is
expressed as follows:

H(µ(t)) = D(t) · H̃(t) ·D(t), D(t) = diag(t−eq1 , . . . , t−eq
hq ),

where H̃(t) = (H̃αβ̄(t)), H̃αβ(s) := (θ̃α|Yt , θ̃β|Yt)L2, admits an expression

H̃(t) ≡
∑

0≤m≤n

(log |t|−2)mAm mod
⊕

0≤k≤n

(log |t|−2)km∞
0 (T )⊗Mhq(C)

with some constant Hermitian hq × hq-matrices Am (1 ≤ m ≤ n). In particular, there exist
cqm ∈ R (1 ≤ m ≤ nhq) such that

det H̃(t) =
∑

0≤m≤nhq

cqm(log |t|−2)m mod
⊕

0≤k≤nhq

(log |t|−2)km∞
0 (T ).

(2) There exists a constant C > 0 such that H̃(t) ≥ C Ihq for all t ∈ T o as positive definite
Hermitian matrices. In particular, cqm ̸= 0 for some 1 ≤ m ≤ nhq.

(3) Set δq =
∑

1≤α≤hq eqα/d. Then there exist real-valued smooth functions ψq
j,k(s) on S

such that

∥θ1 ∧ . . . ∧ θhq(s)∥2L2 = |s|−2δq
∑

0≤m≤nhq

{cqm +
∑

1≤j≤d

|s|
2j
d ψq

j,m(s)}(log |s|−2)m.

In particular, setting ϱq := max{0 ≤ m ≤ nhq; cqm ̸= 0}, as s→ 0, one has

log ∥θ1 ∧ . . . ∧ θhq(s)∥2L2 = −δq log |s|2 + ϱq log log(|s|−2) + cq +O
(
1/ log |s|−1

)
.

Moreover, if ϱq = 0, then cq ̸= 0.
(4) The rational numbers eqα/d (1 ≤ α ≤ hq) are independent of the choice of semi-stable

reduction of π : X → S.
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The proof of Theorem 3.1 relies on the theory of harmonic integrals for Nakano
semi-positive vector bundles on open Kähler manifolds [14], the existence of an
asymptotic expansion of the fiber integral of a differential form [1], [15], [16] and the
non-degeneracy of the L2-metric on the higher direct image sheaves of KY/T (F

∗ξ) [10].
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Math. 68 (1982), 129–174.

[2] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. Kodaira-Spencer theory of gravity and exact results for
quantum string amplitudes, Commun. Math. Phys. 165 (1994), 311–427.
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