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INDEX FORMULA FOR QUARTER-PLANE TOEPLITZ OPERATORS VIA EXTENDED
SYMBOLS

SHIN HAYASHI

Classification AMS 2020: 19K56, 15A23, 47B35, 81V99.

Keywords: Quarter-plane Toeplitz operator, Wiener-Hopf factorization, K-theory and
index theory

In this talk, we presented an index formula for some Toeplitz operators on a discrete
quarter-plane of two-variable rational matrix function symbols.

Let N be a positive integer and S! be the unit circle in the complex plane. Let f: S! x
S' — M(N,C) be a continuous map. We focus on cases where each entry of the matrices
consists of two-variable rational matrix functions with respect to (z,w) € S! x S!. We
consider a bounded linear operator 77* on [*(N*, C") obtained as the compression of
the multiplication operator M, on L*(S' x S*,C") = [?(Z? ,C") onto its closed subspace
I2(N2,CY), which we call the quarter-plane Toeplitz operator of symbol f. In the same
way, two half-plane Toeplitz operators T} on I*(Z x N,C") and T{ on I*(N x Z, CN) are
defined as the compressions of the multiplication operator M.

Index theory for quarter-plane Toeplitz operators has been investigated by Simonenko,
Douglas-Howe, Park [18, 5, 15]. A necessary and sufficient condition for these operators
to be Fredholm is stated as follows.

Theorem 0.1 (Douglas-Howe [5]). The quarter-plane Toeplitz operator T is Fredholm
if and only if two half-plane Toeplitz operators T} and T}’ are invertible.

Index formulas for Fredholm quarter-plane Toeplitz operators are obtained by
Coburn-Douglas-Singer, Duducava, Park [4, 6, 15]. Coburn-Douglas-Singer derived
their formula by showing that there is a deformation to some quarter-plane Toeplitz
operators of a standard form preserving Fredholm indices [4]. Duducava employed
Wiener—Hopf factorizations for matrix-valued functions on a circle developed by
Gohberg—Krein [8, 3, 9] and obtained a formula by using a construction of a parametrix
[6]. Park obtained an index formula by constructing a cyclic cocycle and using a pairing
between K-theory and cyclic cohomology [15].

A motivation of our work comes from an application to higher-order topological
insulators [2], a topic in condensed matter physics. In [10], we introduced a
characteristic for them (especially for (extrinsic) second-order topological insulators).
by using index theory for quarter-plane Toeplitz operators. In this application, we want
a method to compute Fredholm indices for qurater-plane Toeplitz operators for given
matrix-valued functions, therefore investigate their index formulas. For that purpose,
we revisit Duducava’s idea from geometric viewpoint.

The following is the main theorem of this talk.
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Theorem 0.2 ([11]). Let f: S' x S' — GL(N,C) be a two-variable rational matrix
function. Assume that the quarter-plane Toeplitz operator Ty is Fredholm. Under this
setup, the following holds.

(1) The symbol f canonically extends as a continuous invertible matrix-valued function
onto a three sphere through Wiener—Hopf factorizations.

fP:S* = GL(N,C) satisfying f|sixst = f.

(2) The Fredholm index of T;f Y coincides with the three-dimensional winding number of
the extension f¥, that is,

indexT" = Ws(f").

Note that, when the quarter-plane Toeplitz operator 7% is Fredholm, its symbol f
takes values in invertible matrices, and two half-plane Toeplitz operators 7% and T;:’
are both invertible by Douglas—Howe’s result. For (1) of our theorem, we investigate
geometric implications of the invertibility of two half-plane Toeplitz operators by using
Wiener-Hopf factorizations, which are introduced next.

Let D, ={z€C||z]<1}and D_ ={z € C| |z| > 1} U {oo}, which are open disks.
We write D, = S'U D (the double sign corresponds) for closed disks whose union is the
Riemann sphere S* = C U {oo}. For a (single variable) rational invertible matrix-valued
function g: S' — GL(N,C) (with poles off S'), the following decomposition, called the
Wiener-Hopf factorization, exists:

(0.1) 9= 9-Agy,

where g and A are continuous maps S' — GL(N, C) satisfying the following conditions.

e A is the diagonal matrix-valued function of the form A(z) = diag(z",...,z"),
where k; > - - > k, is a nonincreasing sequence of integers called partial indices.

e f, admits a continuous extension onto D, that is holomorphic on D, as an
invertible matrix-valued function.

e f_ admits a continuous extension onto ID_ that is holomorphic on D_ as an
invertible matrix-valued function.

Among many results known for Wiener-Hopf factorizations [8, 3, 9], we notice the
followings.

Lemma 0.3. (1) The partial indices are uniquely determined by g.
(2) The Toeplitz operator T, is invertible if and only if all of the partial indices are zero
(in this case, called the canonical factorization).
3 If g = g_g = h_h, are two canonical factorizations, there exists an invertible
matrix B € GL(N,C) (considered a constant matrix-valued function) such that
gy =Bhyand g. = h_B™1.

Under our setup, through the isomorphism ?(N x Z, CY) = [?(N,C") @ L?(S'), the
invertible half-plane Toeplitz operator 77} corresponds to a family of invertible Toeplitz
operators {T(...) }wes:. Therefore, for each w, € S', there exists a canonical factorization,

f(z,wo) = f-(2,w0) f+(2,wo).
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f- and f, admits a holomorphic extension onto D_ and D, for which we write f¢ and
[, respectibely. For each z € D, we define an invertible matrix as follows:

FP(zywo) = f9(271 wo) f5 (2, wo).

By the above lemma, f¥ is independent of the choice of Wiener-Hopf factorizations.
Since f¢ and f¢ are extensions of f_ and f,, and that z~! = z for = € §!, f¥ is an
extension of f. By considering this construction for families (with respect to w € S'), we
obtain an extension f¥ of f onto D, x S!, which is an invertible matrix-valued function.
By using the invertibility of another half-plane plane Toeplitz operator T¢, we obtain a

similar extension onto S! x .. Their continuity follows from Subin’s study of Wiener—
Hopf factorizations for families of matrix-valued functions [19]. Summarizing, when
the quarter-plane Toeplitz operator T]‘f’y is Fredholm, there exists a canonical extension
fE of the symbol f, initially defined on the two-dimensional torus, onto the following
three-sphere,

S* =D, x S'Usixg S' x Dy = 9(D,. x D) C C2,

as an invertible matrix-valued function. This provides (1) of our main theorem.

In the rest of my talk, I briefly explained the ideas for the proof of (2) of our main
theorem, which utilizes (mainly) topological K -theory relying both on Coburn-Douglas—
Singer’s topological study [4] and Park’s C*-algebraic study [15].

Note that our index formula can be generalized to families of quarter-plane Toeplitz
operators and those preserving some real structures, which are contained in [11].

In this report, we add a comment on the applications to (higher-order) topological
insulators. Mathematical studies of topological insulators were initiated by Bellissard
[1] and Kellendonk-Richter-Schulz-Baldes provided a proof of the bulk-boundary
correspondence, a characteristic for topological insulators, by using index theory for
Toeplitz operators [13]. K-theory is employed to classify topological insulators [14],
and K-theoretic study has been widely expanded (for some equivariant setup, in its
relation to topological crystalline insulators, for example), see also [7, 17]. As for
higher-order topological insulators, an index theoretic approach is presented in [10]
which do not include any point group symmetry. For intrinsic higher-order topological
insulators, which have attracted much interest for condensed matter physicists, point
group symmetry should be incorporated into the framework. Such a framework was
established by Ojito—Prodan-Stoiber [16]. An alternative approach for a specific setup
based on extensions of symbols for quarter-plane Toeplitz operators, as presented in this
talk, can be found in our recent preprint [12].
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NONCOMMUTATIVE GEOMETRY OF THE SATAKE COMPACTIFICATION

NIGEL HIGSON

Classification AMS 2020: 22E45, 22E46, 46180

Keywords: Satake compactification, Discrete series representations, Parabolic induction,
C*-algebras

This is a report on a joint project with Jacob Bradd and Robert Yuncken, about which
further details may be found in [1]] and [2] (this document borrows from those papers).
The goal of our work has been to examine from the perspective of C*-algebras and
noncommutative geometry the following celebrated discovery of Harish-Chandra (see
[7] or [114]D):

Theorem O0.1. Let G be a real reductive group. A tempered irreducible unitary
representation of G is either square-integrable, modulo center, or embeddable into a
principal series representation, meaning one that is unitarily parabolically induced from a
square-integrable, modulo center; irreducible unitary representation of a Levi subgroup.

Harish-Chandra’s result played an important role in his pursuit of the Plancherel
formula. In his review of Harish-Chandra’s Collected Works, Robert Langlands [8] writes
that

Harish-Chandra discovered quite early on the principles which allowed
him to do this [obtain an explicit Plancherel formula] ... The critical
notions are those of a Cartan subgroup, of a parabolic subgroup, of an
induced, and of a square-integrable representation.

... The first principle is that the representations [parabolically] induced
from ...square-integrable [representations] suffice for the Plancherel
formula ...

...The second is that [a real reductive group] has square-integrable
representations if and only if there are [compact] Cartan subgroups ...

The second principle has long been studied from a geometric perspective, culminating in
the work of Lafforgue [6], who recovered Harish-Chandra’s classification of the discrete
series using noncommutative geometry and K-theory. The theorem that we stated above
is a precise version of the first principle. Combined, the two principles paint in broad
outline a picture of the tempered dual of any real reductive group.

Our approach to the theorem proceeds via the (maximal) Satake compactification .2~
of the Riemmanian symmetric space associated to a real reductive group G [13]. We
incorporate the Satake compactification into an argument involving C*-algebras by
associating to 2" first a groupoid, and then the C*-algebra of that groupoid.

The purpose of [[1] is to describe the groupoid from three different points of view:
those of topology, Lie theory and geometry. The fastest way to present the Satake
groupoid (as we call it) is to use the following simple observation of Omar Mohsen [9]
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(which he has used to great effect in his own work): if G is any group, and if {S} is any
collection of subgroups of G that is closed under conjugation by elements of G, then the
collection {C} of all cosets of all the subgroups in {S} carries the following structure of
a groupoid over the object space {S}:

source(C) = C7'C, target(C) = CC™' and CjoCy = CCs.

Now, the Satake compactification 2~ of a real reductive group G may be defined to be
the closure of the space of maximal compact subgroups of G within the compact space
of all closed subgroups of G [5]. So Mohsen’s observation immediately applies, and we
obtain a locally compact Hausdorff topological groupoid. This is our Satake groupoid.

Although the above quickly characterizes the Satake compactification and the Satake
groupoid, for computations it is much more convenient to construct both the
compactification and the groupoid using Lie theory. This may be done following the
approach of Toshio Oshima [12]] to the Satake compactification.

Oshima’s construction makes it clear that the Satake compactification has finitely many
G-orbits, which may be described using an Iwasawa decomposition G=K AN, as follows.
It is well-known in Lie theory that a standard parabolic subgroup P;=M;A;N; of G may
be associated to each subset I of the set > of simple restricted roots that is associated
to the given Iwasawa decomposition, and that these are the only standard parabolic
subgroups. The G-orbits in 2" are also in bijection with the subsets I C ¥, with the orbit
27 C Z being of the type

21 = G/KAN],

where K;=K N M;, and where N; = #[N;], and where @ is the Cartan involution. It
follows that the Satake compactification, viewed as a collection of closed subgroups of
G, consists of all the conjugates in G of all the groups H;=K;N;.

The orbit 27 is contained in the closure of the orbit .27 if and only if / C J. It follows,
for instance, that the orbit 2% is open and dense in .2". In addition, Ky, = K, while the
group Ay is the intersection of the center of G with A, and Ny is the trivial one-element
group. The orbit

2y 2 G/K Ay,
therefore identifies, via the map gK Ay, — gKg~!, with the space of maximal compact
subgroups of G.

As for the Satake groupoid, ¥4, each of the orbits 27 above is a locally closed,
saturated subset of 2", and also a smooth embedded submanifold, and the reduction of
the Satake groupoid ¢, to 27 has the form

g] = G/K[N] 1>4< G/K[N[

(quotient by the diagonal right action of A;). For instance, the open and dense
subgroupoid % is
% ~G/K A G/K.

When G has compact center, the group Ay is trivial, and the above is simply the pair
groupoid on 2% = G/K.

Oshima actually constructed a smooth, closed G-manifold .# into which the variety
of maximal compact subgroups of G embeds as an open subset, while the Satake
compactification embeds smoothly as a compact submanifold with corners. We in fact
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construct a Lie groupoid ¢, over .# that we call the Oshima groupoid. It is a quotient
of the transformation groupoid for the action of G on .#. The Satake compactification,
viewed as a subset of ./, is a saturated subset for the Oshima groupoid, and we prove
that the reduction of ¢, to this subset is our Satake groupoid.

Now, the bounding submanifolds (of top dimension) of the Satake compactification
within the Oshima space .# extend to smooth, closed hypersurfaces in .# that cross
one another normally. And to any manifold, such as .#, that is equipped with a finite
family of normally crossing, closed hypersufaces there is associated a Lie groupoid [11];
the construction is an elaboration of ideas from the b-calculus of Richard Melrose; for
instance the Lie algebroid is Melrose’s b-tangent bundle. Our third view of the Satake
groupoid identifies the Oshima groupoid with this geometrically-defined b-groupoid.

Turning to Harish-Chandra’s principle and the paper [2], C*-algebras play two roles
in our argument. First, Harish-Chandra’s tempered irreducible unitary representations
correspond precisely those irreducible unitary representations of GG that integrate to
irreducible representations of the reduced group C*-algebra C}(G), and every
irreducible representation of C(G) is so-obtained [4]. Second, C*-algebra theory
provides a simple tool to separate the space of all these irreducible representations into
two parts: indeed if A is any C*-algebra, and if J is any ideal in A, then there is a
partition the spectrum A (the set of irreducible representations, up to equivalence) into
those representations that vanish on all elements of J, and those that don’t, and this
partition takes the simple form

A=A/T U T

In broad terms our proof of the theorem above goes as follows. We introduce an ideal

I in A=C}(G) for which

I = { discrete series representations of G }.

This is a very general construction that may be applied to any unimodular locally compact
group. Then we define a second ideal .J < A such that

Z/\J | tempered irreducible representations of G that
N embed in a principal series representation '

The definition is specific to real reductive groups, of course, but it is otherwise very
elementary, using only the definition of parabolic induction, as viewed from the
perspective of C*-algebra theory [3]. Harish-Chandra’s principle amounts to the
assertion that I = J.

We prove that the ideals 7 and J coincide using the Satake groupoid ¢¥4. The reduced
C*-algebra of the groupoid, C*(¥) fits into an exact sequence

according to the decomposition of .2 into its interior and boundary. We prove that /=.J
by relating I to the image of the inclusion morphism in the exact sequence, and J to the
kernel of the quotient morphism; obviously the two ideals in the groupoid C*-algebra
are the same. Crucial to the argument is a C*-algebra morphism

CH(G) — Cl (YD)
that was introduced by Mohsen in [10].
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ALGEBRAIC TOPOLOGY OF 24 DIMENSIONAL STRING MANIFOLDS

RUIZHI HUANG

Classification AMS 2020: 57R15, 57R20, 53C21, 57R90, 58J26

Keywords: string manifolds, string cobordism, Witten genus, elliptic genus, Ricci
curvature

String manifolds of dimension 24 are of special interest in geometry and topology. In
this dimension, by [5, Page 85-87] the famous Witten genus W (M) [[9] satisfies

W(M) = A(M)A + A(M,T)A,

where A(M) is the A-hat genus, A(M,T) is the twisted A-hat by the tangent bundle, and
A = E} —744-A with E, being the Eisenstein series of weight 4 and A being the modular
discriminant of weight 12.

Hirzebruch raised his prize question in [5] that whether there exists a 24 dimensional
compact string manifold M such that W (M) = A (or equivalently E(M ) =1, E(M ,T) =
0) and the Monster group acts on M as self-diffeomorphisms. The existence of such
manifold was confirmed by Mahowald-Hopkins [7]. Indeed, they determined the image
of Witten genus at this dimension via ¢tm f. However, the part of the question concerning
the Monster group is still open.

In two joint works [3| 4] with Fei Han, we find representatives of an integral basis
of the string cobordism group at dimension 24. Historically, Gorbounov-Mahowald [2]
showed that

QM 7 LB LS L.

Our main theorem is stated as follows:

Theorem 0.1. The correspondence r : Q5" — 7.® 7. & 7. & 7 defined by

5(M) = (A(M), 5 A, T), AM, A%), SSig(M)

is an isomorphism of abelian groups, where E(M ,A?) is the twisted A-hat by the second
exterior power of the tangent bundle and Sig(M) is the signature. Moreover, there exist two
geometrically constructed manifolds Mz, M, € ker W such that

r(M)\ " 0 1 0 0

oo | PO | _ ~1 0 0 0
T k(M) | T | 2235 22.3-17-1069 -1 0]’

k(M) 28.3.61  28.5.37  22.7 1

where My, M, € image W are the two manifolds constructed by Mohowald-Hopkins [7].

A notable consequence is that the four manifolds M; in Theorem form a basis of
the group Q51"
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This theorem implies various Rokhlin type divisibility results of the characteristic
numbers of 24 dimensional string manifolds. For instance, we have

32 | Sig(M) — ((v{")* (M), [M]),
HS

where v,"° (M) is the spin integral Wu class of Hopkins-Singer [6].

Furthermore, we use Theorem to show that the elliptic genus [8]], a higher index
theoretic invariant, determines 24 dimensional string cobordism, and thereby obtain an
geometric application:

Theorem 0.2. Given positive number )\, there exists some ¢ = £(\) > 0 such that if a
compact 24  dimensional  string  Rimannian  manifold (M,g)  satisfies
diam(M, g) < 1,Ric(g) < g, sectional curvature > —\ and has infinite isometry group,
then M bounds a string manifold.

This result corresponds to a higher version of a conjecture of Farrell-Zdravkovska [[1]
and Yau [10] which claims that every almost flat manifold is the boundary of a closed
manifold.

Theorem also provides potential clue for understanding a question of Weiping
Zhang:

Question 0.3. Is iE(M ,T') the index of a twisted Dirac operator?

REFERENCES

[1] F. T. Farrell and S. Zdravkovska, Do almost flat manifolds bound?, Michigan Math. J. 30 (1983),
199-208.

[2] V. Gorbounov and M. E. Mahowald, Some homotopy of the cobordism spectrum MO(8), in: Homotopy
Theory and Its Applications, Cocoyoc, 1993, in: Contemp. Math., vol. 188, Amer. Math. Soc.,
Providence, RI, 1995, pp. 105-119.

[3] F. Han and R. Huang, On characteristic numbers of 24 dimensional string manifolds, Math. Z. 301
(2022), no. 1, 541-563.

[4] F. Han and R. Huang, Elliptic genus and string cobordism at dimension 24, Pacific J. Math. 328 (2024),
no. 2, 275-286.

[5] F. Hirzebruch, T. Berger and R. Jung, Manifolds and modular forms, Aspects of Mathematics, second
edition (Friedrich Vieweg and Sohn, Braunschweig, 1994); with appendices by N.-P. Skoruppa and
P. Baum.

[6] M. J.Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and M-theory, J. Differential
Geom. 70 (2005), 329-452.

[7]1 M. Mahowald and M. J. Hopkins, The structure of 24 dimensional manifolds having normal bundles
which lift to BOI8], from “Recent progress in homotopy theory” (D. M. Davis, J. Morava, G. Nishida,
W. S. Wilson, N. Yagita, editors), Contemp. Math. 293, Amer. Math. Soc., Providence, RI (2002),
89-110.

[8] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26, no. 2
(1987), 143-151.

[9] E. Witten, The index of the Dirac operator in loop space, in P.S. Landweber, ed., Elliptic Curves and
Modular Forms in Algebraic Topology (Proceedings, Princeton 1986), Lecture Notes in Math., 1326,
pp. 161-181, Springer, 1988.

[10] S.T. Yau, Open problems in geometry, Proc. Sympos. Pure Math., Part 1 54 (1993), 1-28.

STATE KEY LABORATORY OF MATHEMATICAL SCIENCES & INSTITUTE OF MATHEMATICS, ACADEMY OF

MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING 100190, CHINA
E-mail address: huangrz@amss.ac.cn

Page 12



TENSOR NETWORKS IN CONDENSED MATTER PHYSICS AND SUBFACTORS

YASUYUKI KAWAHIGASHI

Classification AMS 2020: 15A69, 81R15, 18M15, 46137, 81T40, 81V27
Keywords: tensor network, topological order, fusion category, subfactor, anyon

As studied in [2], [17], many researchers in two-dimensional topological order in
condensed matter physics are interested in studies of (braided) fusion categories [3]]
using tensor networks recently. It has been well-known that subfactor theory of Jones
[[71, [8] in operator algebras gives useful and powerful tools to study structures of fusion
categories. This approach is closely related to operator algebraic studies of quantum field
theory [15], [16], [5].

In a usual operator algebraic study of fusion categories, we realize an object as a
bimodule over (type II;) factors or an endomorphism of a (type III) factor [4]. Another
approach [1] based on bi-unitary connections [18], [20], [9] is less common, but
contains the same information as these two methods and has an advantage that
everything is finite dimensional. = Recall that a bi-unitary connection gives a
characterization [20], [4] of a non-degenerate commuting square [19]. It has been
pointed out in [10], [12] that the 4-tensors in [2] are mathematically the same as
bi-unitary connections, and identification of some objects in condensed matter physics
and subfactor theory has been given in [11]]. This shows that anyons [?] are studied
with such 4-tensor networks [6]. We have Tables 1| and |2| for correspondences between
these methods to represent fusion categories.

Our aim is now to complete this table by identifying tensors satisfying the zipper
condition in [2], flat fields of strings in [1]], [4], and elements in the higher relative

TABLE 1. Correspondence among endomorphisms, bimodules and

connections
| endomorphism \ bimodules \ connections |
identity identiry bimodule trivial connection
direct sum direct sum direct sum
composition relative tensor product composition
cojugate endomorphism dual bimodule dual connection

dimension (Jones index)'/? Perron-Frobenius eigenvalue
intertwiner intertwiner flat field of strings
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TABLE 2. Correspondence between connections, commuting squares and

4-tensors
connections | commuting square | 4-tensor
trivial connection commuting square trivial 4-tensor
direct sum direct sum direct sum
composition composition concatenation
dual connection basic construction complex conjugate tensor
Perron-Frobenius eigenvalue | (Pimsner-Popa index)!/? |  Perron-Frobenius eigenvalue
flat fields of strings relative commutant | tensors with the zipper condition

commutants of a subfactor [1]], [4] arising from the commuting square. We then prove
the following, which is the main theorem in [13].

Theorem 0.1. The following are equivalent for a 2-tensor F' and the corresponding field f
of strings in the setting of tensor networks of 4-tensors describing fusion categories..

(1) [The zipper condition] The 2-tensors I’ satisfies the invariance property, which gives
an equivalent formulation of the zipper condition.

(2) [Flatness] The field f of strings satisfies the flatness in the usual meaning of subfactor
theory.
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STABLE HOMOTOPY THEORY OF INVERTIBLE GAPPED QUANTUM SPIN
SYSTEMS

YOSUKE KUBOTA

Classification AMS 2020: 55P42, 81R15
Keywords: SPT phase, stable homotopy theory, coarse geometry

In his talk [5], A. Kitaev proposed that the set of d-dimensional invertible gapped
quantum spin systems {/P4}4cz., should form an Q-spectrum. This talk outlines the
framework developed in [7], which provides a rigorous formulation of quantum spin
systems based on functional analysis in which Kitaev’s conjecture holds.

For a Hamiltonian in quantum spin systems, we impose the three conditions: short-
range, gapped, and invertible. At each point x in a discrete metric space A, namely
a d-dimensional lattice, we place a matrix algebra A4, = M, (C). The full observable
algebra is defined by their tensor product A, := @, ., A.. A Hamiltonian is specified
by a family of operators H,,, each supported on a the open ball B,(x) with radius r > 0,
which define a x-derivation [H, a] = )" _[H, a]. In [7], we relax the locality assumption,
following earlier work such as [8], and treat almost local Hamiltonians. Namely, we
do not require each H, to be strictly supported on a ball, but instead assume that it is
well approximated by operators that are supported on such balls. Ground state, the non-
degeneracy, and the spectral gap for such H are formulated in terms of the GNS theory.
A gapped Hamiltonian H is called invertible if there exists another Hamiltonian H such
that the composite system H X H is homotopic to the trivial one.

An important motivation of this conjecture is that it provides a homotopy theoretic
interpretation of the group-cohomology valued topological invariant of Hamiltonians
that are invariant under an on-site action of a compact Lie group G, as studied in the
literature for low dimensions (e.g., [3}, 9, [10, [12]]). Indeed, the invariant is obtained as
the composition

[pt, IP4]¢ — [EG, IP4)° — [BG,IP4] — [BG, K(Z,d + 2)].

The existence of the second and the third morphisms are guaranteed by Kitaev’s
conjecture.

Kitaev’s conjecture was inspired by the work of Kitaev himself [4], and also of
Schnyder—Ryu-Furusaki-Ludwig [11], on the topological classification of gapped free
fermions by real or complex K-theory. In the functional-analytic formulation by [6], a
free-fermion Hamiltonian is defined analogously to a quantm spin system, but with
direct sums in place of tensor products. The space of gapped Hamiltonians is identified
with the space of projection operators of the C*-algebra so-called the (uniform) Roe
algebra. Kitaev’s conjecture for these spaces is proved by Higson—-Roe-Yu [2] in their
early work. We emphasize that the short-range condition for /P, is highly compatible
with the concept of coarse geometry and our proof of Kitaev’s conjecture run in parallel
to [2]].
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The map kq: [Py — QP4 is given in the following way. First, by the assumption
of invertibility, we have a path connecting the trivial Hamiltonian, say h, and H X H. By
regarding an infinite stack of this homotopy as a (d+1)-dimensional layered Hamiltonian,
we obtain a path connecting h and the infinite stack

. HXHXHXHXHXHXHXHX--- .

We then return to the trivial Hamiltonian by the same homotopy, but with a rearranged
pairing of H and H. Such a 1-parameter family is called Kitaev’s pump. A central part of
[[7] is to constructed a homotopy inverse of x, following the line of Kitaev and [2], with
a careful treatment of the subtle analysis of spectral gap in quantum spin systems.

Replacing the tensor products with Z/2-graded tensor products yields the fermionic
version fIP,;. As the name suggests, a free fermion is a special case of a fermionic system,
and this inclusion is ultimately realized as a morphism of €2-spectra

Q: X?KO — fIP.

A rigorous construction of this morphism Q is provided by Araki’s quasi-free second
quantization [1]]. Truncating these spectra in degrees —1, ..., 2 gives a weak equivalence

Y2(KO(1,4)) ~ fIP(—2,0),

which answers to a question by D. Freed: we obtain an explicit homotopy equivalence
between KO(1,4) and the truncated Picard spectrum picj K U, which had previously been
known to be abstractly homotopy equivalent by comparing their Postnikov k-invariants.

Finally, this talk also briefly discusses the main theme of latter part of [7], which
studies quantum spin systems placed on spaces X more general than Euclidean space.
The space ‘/P(X)’ of invertible gapped Hamiltonians placed on X should form a coarse
homology theory, rather than a homology theory, and therefore violates the local
topology of X. For example, the cases X = S? and X = pt are not distinguished. In [7],
inspired by early work by Yu [[13], we introduce the notion of localization flow of
gapped Hamiltonians.

Roughly speaking, a localization flow of gapped Hamiltonians on X is a family
{H(s)}sep1,00) Of uniformly gapped Hamiltonians whose interaction range decays as
s — oo. This notion is named after Yu’s localization algebra, as well as matrix product
renormalization group flow. We prove that the my-group of the space IP),.(X) of
localization flows on X forms a generalized homology theory that agrees with the one
associated to the Q2-spectrum /P via the Spanier-Whitehead duality.

Moreover, one can also incorporate spatial symmetries given by a crystallographic
group I" acting on X into this framework. In this setting, the map

pr: To(IPy

loc

(X)) = mo(IPH (X))

which forgets the parameter s > 1 can be regarded as a quantum-spin analogue of
the Baum—Connes assembly map in noncommutative geometry. Following a well-known
idea in coarse geometry, the split injectivity of our ur can be proved. That is, the group
mo(IPT (X)) of our interest contains a subgroup (P}, (X)) as a direct summand, which

is computable from the homotopy groups =, (IP,) by algebraic topology.
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GENERALIZED POSITIVE SCALAR CURVATURE ON SPIN“ MANIFOLDS
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This is joint work with Boris Botvinnik (University of Oregon) and Paolo Piazza (La
Sapienza University, Rome), which has appeared in [1} 2} [3].

1. GENERALIZED POSITIVE SCALAR CURVATURE AND THE SPIN® DIRAC OPERATOR

If M is a closed spin manifold with a Riemannian metric g, then ¢ determines a
natural connection on the spinor bundle S and we have a (spin) Dirac operator
D = ) .c(e;)V, where {e;} is a local orthonormal frame and ¢ denotes Clifford
multiplication on spinors. (One can check that D is independent of the choice of
frame.) The Schrédinger-Lichnerowicz Formula says that

1
D2 = C * C + ZRQ,
where R, is the scalar curvature function.

Corollary 1.1. If R, > 0 everywhere, and R, is not identically 0, then all index invariants
of D vanish.

This is the starting point for all work on positive scalar curvature (psc).
In dimension 2, R is just (twice) the Gaussian curvature and everything we need to
know is given by Gauss-Bonnet. But in dimensions > 3, we have

Theorem 1.2 (Kazdan-Warner, 1975). Every closed connected manifold M of dimension
> 3 falls into exactly one of the following three classes:

(1) Those admitting a psc metric, in which case every smooth function on M is the scalar
curvature of some metric;

(2) Those admitting a metric g with R, = 0 but not a metric with R, > 0 and R,
positive somewhere — in this case a metric with R, = 0 is necessarily Ricci-flat,
and the possible scalar curvature functions on M are 0 and the functions negative
somewhere;

(3) All other manifolds, those not admitting any metric with nonnegative scalar
curvature — in this case, the possible scalar curvature functions of metrics on M
are exactly those functions which are negative somewhere.

We sought an analogue of the above results for closed spin® manifolds, relating an
analogue of the scalar curvature to index theory of the spin® Dirac operator. A spin®
manifold M comes with a choice of a spin® line bundle L that satisfies ¢;(L) mod 2 =

Date: 25 November, 2025.
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wy(M). In addition to the metric g, we need to choose a hermitian metric and unitary
connection A on L. Then we obtain a spinor bundle and Dirac operator D on M, and the
Schrodinger-Lichnerowicz Formula now takes the form

1
D?* =V*V + Z—lRtW,

where R™ = R, + 2ic(2), €, the curvature 2-form of A.

The quantity R", the twisted scalar curvature, is matrix-valued. It is easier to work
with the generalized scalar curvature R8" = R, — 2|€);|op, which is scalar-valued. It is not
hard to show that R™ > 0 <= R#" > (, and thus positivity of R&" implies vanishing of
all index invariants of the spin® Dirac operator D.

We have an analogue of the Kazdan-Warner trichotomy theorem in this context:

Theorem 1.3 ([2]). Every closed connected spin® manifold M of dimension > 3 falls into
exactly one of the following three classes:

(1) Those admitting a metric and connection (g, A) with ngez) > 0, in which case
every smooth function on M is the generalized scalar curvature of some metric and
connection;

(2) Those admitting a pair (g, A) with R?;;) > (0 but not one with R(ggez) > (0 —in
this case, the possible generalized scalar curvature functions on M are 0 and the
functions negative somewhere;

(3) All other manifolds, those not admitting any metric and connection with
nonnegative generalized scalar curvature — in this case, a smooth function on M
is Ry for some (g, A) if and only if it’s negative somewhere.

As in the classical case of scalar curvature, there is a rigidity phenomenon in case (2).

Theorem 1.4 ([2]]). Suppose M is a closed simply connected non-spin spin® manifold with
spin® line bundle L. Assume M admits a pair (g, A) with R{",) = 0 but not one with

Rf;’“A) > (. Then M admits a parallel spinor, and if M does not split as a product, then M is
conformally Kdhler, and L is either the canonical or the anti-canonical line bundle on M.

2. CLASSIFICATION OF SPIN® MANIFOLDS WITH GENERALIZED POSITIVE SCALAR
CURVATURE

Parallel to many results about psc on spin manifolds, we have a classification theory
of gpsc (generalized positive scalar curvature — maybe it would be better to say positive
generalized scalar curvature) in the totally non-spin case. We say a connected manifold M
is totally non-spin if its universal cover M does not admit a spin structure, i.e., wQ(M ) # 0.

Let ku denote connective complex K-theory, and let per: ku, — K, denote the
periodization map (inversion of the Bott element). For any group =, let
As: K.(Bm) — K.(C*(m)) denote the assembly map (which appears in study of the
Novikov Conjecture). The following theorem is parallel to a result of Stolz, Jung, and
Fiihring [4], though the proof requires some additional homotopy theoretic techniques.

Theorem 2.1 ([3]]). Let 7 be a finitely presented group. Then for each n > b5, there is a
subgroup ku}(Bm) of ku,(Bw), contained in the kernel of the composite
Asoper: ku,(Br) — K,(C*(m)), with the property that if M" is a closed totally non-spin
connected spin® manifold with n > 5, with fundamental group =, with classifying map
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f: M — Bmr, and with ku-fundamental class [M], then M admits gpsc if and only if
e ([M]) € kut (Bm).

Parallel to the so-called Gromov-Lawson-Rosenberg (GLR) Conjecture in the spin case,
one can then formulate:

Conjecture 2.2 (GLR® Conjecture). For M™ a connected closed totally non-spin spin®
manifold with n > 5 and fundamental group = and classifying map f: M — Bm, M
admits gpsc iff As o per(f.([M])) =0in K,(C*(m)).

As for the GLR Conjecture in the spin case, this holds if Asoper: ku,(Bn) — K,,(C*(7))
is injective, for example if 7 is free abelian or a surface group. Here is another one of our
major results:

Theorem 2.3. The GLR® Conjecture holds if  is finite with periodic cohomology.

However, by the same method used by Schick [5], we have constructed
counterexamples to the GLR® Conjecture with = = Z* x Z/p.

By mimicking Stolz’s theory of the “R-group” for concordance classes of psc metrics,
we are able to construct an analogous theory for classification of gpsc pairs:

Theorem 2.4 ([3]). Fix a finitely presented group w. There is a long exact sequence
<= RPY (Br) & Pos™ (Br) — QP (Br) — RP™ (Br) — -+ .

Here the groups Pos®®™ and Q*™ are spin® bordism groups, the former also keeping track of
a gpsc pair. RP"° is a relative group of equivalence classes of spin® manifolds with boundary,
with gpsc on the boundary, and 0 comes from restriction to the boundary.

Theorem 2.5 ([3]). If M™ is a closed connected totally non-spin spin® manifold with
spin®

fundamental group w, admitting gpsc, and n > 5, then R,"" (Bm) acts simply transitively

spin®

on the concordance classes of gpsc pairs on M. In particular, if R}, (Bm) # 0, then the
space of gpsc pairs on M is disconnected.

In some cases one can map the R-group sequence to the Higson-Roe analytic surgery
sequence to conclude that the space of concordance classes is quite complicated.
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AUTOMORPHIC FORMS AND THE SUP NORM PROBLEM: A SURVEY

JYOTIRMOY SENGUPTA

In this talk we will review automorphic forms starting from the classical holomorphic
forms on the Poincare upper half plane and discuss the sup norm problem associated
with them.

Notations.G = SL(2,R), I' = SL(2,Z). k € X is even. Recall that the quotient G/I"
has a finite G invariant measure. This induces a measure on H/T',

This measure is finite and with appropriate normalisation is % Recall that H has the
G invariant Riemannian measure which in Cartesian coordinates is du(z) = d;#.
Definition 1.

Modular form of weight & for I'

Let f : H — C be holomorphic and satisfy the following properties.

1. f(v2) :f(%j:s) = (cz+d)ff(2) Vy = (i Z) elandz e H

2. f is holomorphic at cc.

Definition 2:

Cusps of I' These are the subset Q U ioo of P'(R) = R U ioco where a point z € H
approaches ioc if z stays bounded and y tends to co. We are interested in inequivalent
cusps i.e. ( representatives ) of the various I" orbits in Q U ico. For our I" as above, there
is only one I' orbit , the orbit of ico. A modular form [ as defined above is a cusp form if
it vanishes at the cusp ico. Equivalently its zeroth Fourier coefficient at the cusp ico is 0.

Examples of modular forms.
1. Holomorphic Eisenstein series of weight k, k > 4 is even.

1 1
B =5 2. orar
2 e (cz +d)
This series converges absolutely and uniformly on compact subsets of H and is a

modular form of weight £. It is not a cusp form. We have Ej(ic0) = 1.

2. Poincare Series.
Let m € N be fixed but arbitary. The m th holomorphic Poincare series of weight P, is
defined by

]. ; az
Pn(2) = 5 Z 2D (cz + )

(e,d)=1

Date: 5th August 2025.
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Here (ZL Z) € I' is any completion of the last row (c, d). It is well defined since any

two completions of (c,d), differ by an element of the form ((1) D for some [ € Z and

the function ¢*?™™%, is translation invariant.

Propostion

P,, is a cusp form. In fact, since the space of modular forms of weight k (and hence a
fortiori the subspace of cusp forms) S, is finite dimensional, the first d, Poincare series
i.e. P,... P, (where d; = dim Sy) is a basis of 5.

Petersson inner product on cusp forms. We have < f,g >= [ F Yk f (z)ﬁdzgy where F
is any fundamental domain for I" in H. We now turn to the sup norm problem itself.

Proposition: f € S) < the I invariant function y*/? | f(z) | on H is bounded.

Definition 3. The sup norm of f,|| f [eo= sup,cy ¥*/? | f(2) |= sup,c» y*/* | f(z) | by
I' invariance.

The sup norm problem is to obtain (as sharp as possible) upper and lower bounds for
|| f |l in terms of the weight k which is the spectral parameter. It suffices to do this for
f which is a normalised eigenfunction for all the Hecke operators 7'(n),n € N.

The Hecke operators 7'(n) acting on Mj.

(T(n)f)(z) =nz ! Zi f(gzc;L b); zeH

din b=0

Facts 1. T'(n) maps M, into M) and leaves Sk invariant.

2. T(n) : Sg — S is Hermitian w.r.t. the Petersson inner product on Sk.

3. T(n) | n € N} is a commuting family of Hermitian operators on .
By 3, Sy has an orthonormal basis {f;;1 < j < di} consisting of simultaneous
eigenfunctions of the various 7'(n). Let f € Sy be a simultaneous eigenfunction of the
T(n) and let f(z) = >.°7 a(n)e™ be the Fourier expansion of f. Then we have
a(l) #0and f(z) = a(l) >°7, A(n)e®™* where T'(n)f = A\(n) f.

We are now in a position to state Xia’s result.

Theorem (Xia, 20) ¢ > 0, we have
KO fy oo KT

Recall that f; is a L? normalised Hecke eigenform. Thus we have a sharp result in this
case.
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Method of proof: A direct approach using the Fourier expansion of f; i.e.

fi(2) = 3200, aj(n)e?™

Automorphic forms (not so classical) There are forms of weight £ = 0 i.e. they are I'
invariant functions having the following additional properties.

(1) fis C*™.

(2) f is an eigenfunction of the hyperbolic Laplacian Ay = —y*( 86; z+ 5 2 )

(3) f has polynomial growth at ico i.e. | f(2) |< ¢! for some | € NU {0} as y — oc.
Examples of nonholomorphic modular forms.

Nonholomorphic Eisenstein series, F(z, s) which is defined by

( ) -2 Z(Cd |(cz+d |25 Res>1

Note that since Ay is an SL(2,R) invariant differential operator on H and the power
function p(z) = (Imz)* = y° is an eigenfunction of Ay with eigenvalue
A = s(1 —s),s € C it follows that E(z, s) is an eigenfunction of Ay with eigenvalue A
since all necessary convergence conditions on the series above are satisfied for Re s > 1.
However, E(z, s) is not a cusp form since it does not vanish at the cusps.

Definition ( special for the modular group I")
A Maass cusp form is a non-constant eigenfunction of Ay in L*(T'\H
Example of a Maass cusp form for I". Not known!

Let f be a Maass cusp form with Laplacian eigenvalue \. Since f decays exponentially
at oo, it is a bounded function.

Definition. Let f be as above. The L* norm of f s
| f [loo=sup.ep | f(2)| = sup.cx [ f(2)| by I" invariance.

Results. Here the baseline bound is || f ||< A!/* We have here that f is L? normalised.
The improved result by Iwaniec-Sarnak ( 1995 ) is || f [|< Azite,

The above result of Iwaniec and Sarnak remains unbeatable to this day.

Conjecture: Iwaniec and Sarnak conjectured that ¢ > 0 we have || f ||o<< A for f an L?
normalised. Hecke-Maass eigencusp as in their theorem. This conjecture was shown to
be false by Brumley and Templier who showed that for = = I + 5% + o(1) we have

X~ fi(z) A =14 02
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In view of this Iwaniec-Sarnak modified their conjecture.
Modified Conjecture: Ve > 0, f;(2) <. A

This conjecture is open.

Modular forms of higher level.

These are modular forms which are automorphic with respect to congruence subgroups
of I'. A typical example of such a subgroup is the Hecke congruence subgroup I'g(V)
where N € N

Definition: T'y(N) = {(z Z) e€I,N|cie. c=0mod N}.

Note that I'y(1) =T
Definition: Let f : H — C be holomorphic and have the following properties
(k € 2N).

1. f(v2) = (cz + d)*f(z), Vy € To(N)
2. f is holmorphic at the cusps of T'.

Definition of sup norm of f, || f ||« is the same except that now F has to be replaced
by F,, = any fundamental domain of I'y(V).

Newforms and oldforms: Roughly speaking oldforms are those which are
automorphic forms for overgroups of I'y(/N) inside I'. In fact the space Si(I'o(N)), N > 1
splits into the orthogonal direct sum of two subspaces, oldforms and its
orthocomplement in Sk (I'o(N)) which are newforms. Their definition is given
inductively.

Now the supnorm problem (for newforms) on I'((/N) acquires 2 different aspects,

(1) the level N varies with the weight & remaining fixed.
(2) hybrid i.e. the weight £ and the level N both vary.

Results for cases 1 and 2.
Case 1. (Blomer and Halowinsky). || f || N~ for N squarefree; f is L2 normalised
newform .

Case 2. || f |le<<e (kN)TT€ ¥ €> 0. This is the result of Y. Hu and A. Saha.

We now turn to the theory of oldforms and newforms in the case of Maass cusp
forms. This is exactly the same as that of holomorphic form. Furthermore the Hecke
operators 7'(n) for (n, N) = all commute with them Laplacian Ay and with each other.
Thus we can find a o.n basis of newforms for any fixed value of the eigengvalue \ of Ay
which are all eigenfunctions of the 7'(n) also.
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We can now state the supnorm result for Maass cusp forms (newforms, L? normalised).
Case(1) || f |loe < Nz~37. This is due to Blomer-Holowinsky for squarefree level N.

Remark: In all of the results above the authors first prove the result for Maass cusp
forms for I'y(/V) and then observe that the same holds for holomorphic cusp forms
(newforms, L? normalised ) without too much work.

More general automorphic forms. Here there is more, than one avenue of
generalisation. In the more modern theory of automorphic forms the group SL(2,R) is
replaced by GL(2,R).

We have H = -2 where now G = (GL2,R)= all 222 real invertible matrices by

representing H as the homogenous space G/KZ where

G:GMZMKEﬂ@RLZ:Z@%ﬂHMe&G:(éS)AGW.

Note that Z(G) C GL'(2,R) = the group of 222 real matrices having positive
determinant. In this way, one can regard Maass forms as functions on the group
GL(2,R) which are invariant under the subgroup K7 of G.

There are Iwasawa coordinates on H,,; each z € H is uniquely of the form z = z.y
where (see the board)/

Let v = (v, 19, ,0,_1) € C"7L,

The analogue of the power function p(y)(n = 2) is the function I,,(z) = 1}~ H;L;ll Yy,

with

ij

ij if i+j<n
(n—=1mn-j)ifi+tj=>n

is an eigenfunction of every G invariant differential operator D on H,, Let us write
DI(Z) = Ap - L(2)

The map D — \p is a character of D" = commutative algebra of G invariant differential
operators on H,.

Definition An SL(n,Z) Maass cusp form on H, is a C> function ¢ € L*(SL(n,2)/H,)
having the following properties

(1) ¢ is an eigenfunction of every D € D with eigenhomorphism D — \p for a
suitable \.
(2) ¢ is cuspidal .

Condition (2) implies that ¢ is a bounded, SL(n,Z) invariant C* function on H,.
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Upper Bounds ( Blomer-Harcos-Maga ) Let ¢ be as above. Then we have ,
2_1)(n+1>_|_E
16

(n
[0 floo< A

Lower bounds ( Brumley-Templier ). Here the spectral parameter of ¢ is very regular.

n(n—1)(n—2) )

| @ [Joc> 2“5~ where 0(2—") — L)

Note that for n > 6, @ > % where d = dim H,,. Thus Hormander’s local bound

(which is very general) doesn’t hold globally for ¢ when n > 6.

Another avenue of generalisation.
Siegel modular forms

Recall that H = upper half-plane in C = SL(2,(R)/SO(2,R) but SL(2,R) = Sp(1,R) =
the symplectic group in dimension two. Therefore we define H,, by Sp(n,R)/U(n)
where U(n) = nazn unitary group = maximal compact subgroup of Sp(n,R) via itsreal

embedding. We have Sp(n, R) = {g € Mn(R) | t,J g = J} | J = <_0] %) I, = nan

identity matrix.

Just like  Sp(1,R),Sp(n,R) acts on the Siegel upper half-space
H,={Z € S,(C) | Z=X+1iY, Y > 0 (positive definite). Here S5,,(C) = n x n complex
symmetric matrices. The action is (g,z) + ¢ -2z = (AZ + B)(CZ + D)~! where

A B
g= (C D) € Sp(n, R).

Let I',, = Sp(n,Z) be the modular group of degree n.
Definition: Let £ € N. A Siegel modular form F of degree n and weight % is a
holomorphic function on #,, having the property

F((AZ+B)(CZ+D) ') = det (CZ + D)*F(z)... (%)
A B
o2 B)er,
Fourier expansion of Siegel Modular forms.
F(z) = ZTzo r 1 integral Ap(T) 2™ T7(T2) Ty = trace
T 4 integral means that 27}; € Z for i # j and t;; € Z for 1 < i < n.
Definition: A Siegel modular form F'is a cusp form if Ap(7) #0 =T > 0.

Definition: Let F' and G be a Siegel cusp forms of degree n. Their Petersson inner
product is < F,G >£ [,.(det Y)*F(2)G(Z)du(z) where du(z) = Sp(n,R) invariant
measure on H, and F" = any fundamental domain for I, in H,,

Hecke operators : T'(n) on Siegel modular forms are defined in a similar fashion with the
set of integral matrices of determinant n being replaced by integral matrices which are
symplectic similitudes with factor n.
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Definition: The sup norm of F, || F' || is
supzen, (det Y)? | F(z) |

Some sample results for n = 2, k even > 10,

Here there is a distinguished subspace, S; of the space of S, = Siegel cusp forms of
weigh & which is Hecke stable. It is called the Maass subpsace and for F' a Hecke
eigenform in S} with || ' ||= 1 we have Ve > 0, .

Theorem (Blomer) || F [joo<< k17

This is conditional on the Generalized Lindeloff hypothesis for L(3, f x xp) for all
negative fundamental discriminants with F' being the lift of f € Sy 2(SL,(2,Z), a
normalised Hecke eigenform.

Unconditionally we have || F ||oo<<c k17

Theorem (Das-Sengupta). A simplified proof of the above result with a slightly larger
value of the exponent namely || F ||o<c k7. Our proof uses the theory of Jacobi
forms.

Das and his collaborators mainly P. Anamby and H. Krishna have studied the sup norm
problem for Siegel cusp forms extensively. They use a ‘new’ tool namely the Bergman
Kernel. We quote some of their results.

Let B} denote an orthonormal basis of S}'. The Bergman Kernel By(z, W)) for z, W €
H™.. is ZGeBg G(z2)G(W).

The quantity of interest here is

Bi(Z,7) = Z | F(Z) |? (det Y)* = ((det Y)'B(Z, 2))
FeB"

and by abuse of notation call this the Bergman Kernel as well. We measure the size of S}
by the quantity sup,cyn Br(Z, Z)
Conjecture: With the above notation and setting the following is true

3n(n+1) 3n(n+1)

k™1 <L sup,eyn Bi(Z,Z2) < k™ 7

Theorem (Das-Krishna). Let n € N be given. Put [(n) = W Then with the above
notation and setting we have
L) ey
k1) } 0 sup By (z, 2) ne { kl2+e
kl(”) 2E€H™ km(sn)_w_i_g.

Epilogue.

Where does the future lie ?

All indications are that it lies in ” The orbit method in the analysis of automorphic
forms ” created and developed by Paul Nelson and Akhshay Venkatesh.
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In a nutshell this is microlocal analysis on coadjoint orbits of real reductive groups
coupled with representation theory, which takes care of the needs of number theory.
Microlocalisation of test vectors lying in various representation (spaces ) has to be done,
both for representation of real groups as well as for representations of p-adic groups.

Using this method, Assing and Toma have obtained the following result for Hecke-
Maass newforms of powerful level.

Theorem ( Assing-Toma ) Let ¢ be an L? normalised Hecke-Maass newform of level
N = p*, p a prime with Laplacian eigenvalue \. If X is sufficiently large, then we have

| lloope (AN)2I*
This is a new, hybrid result for powerful levels !

INDIA ASSOCIATION FOR THE CULTIVATION OF SCIENCE, INDIA
Email address: jyotirmoy.sengupta@iacs.res.in
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LLARULL’S THEOREM ON ODD DIMENSIONAL MANIFOLDS AND SPECTRAL
FLOW

GUANGXIANG SU

Classification AMS 2020: 53C21, 58J30
Keywords: Dirac operator, scalar curvature, spectral flow

Llarull’s rigidity theorem [6] states that for a closed spin Riemannian manifold
(M, g™ of dimension n such that the associated scalar curvature k™™ verifies that
k™ > n(n — 1), then any (non-strictly) area decreasing smooth map f : M — S"(1) of
nonzero degree is an isometry, where S™(1) is the standard unit n-sphere. In [3], we
gave a direct proof of Llarull’s theorem in odd dimensions by the spectral flow. In [3]],
we also proved the following spin-area convex extremality theorem in odd dimensions,
which compares with [1] and [5] for even dimensional case.

Theorem 0.1 ([3]). Let M be a closed spin manifold of odd dimension 2k — 1(k > 2)
equipped with a Riemannian metric g*™, and X C R?* be a smooth strictly convex closed
hypersurface equipped with the metric g, induced by the Euclidean metric in R?*. Suppose
that there exists a (1, A%)-contracting map f : (M, g*™) — (X, go) of nonzero degree. Then,
either there exists a point x € M where the scalar curvature k™ (x) < kTX(f(x)), or f is
an isometry.

In [7], Zhang proved that for an even dimensional noncompact complete spin
Riemannian manifold (M, ¢"™™) and a smooth (non-strictly) area decreasing map
f: M — S4mM(1) which is locally constant near infinity and of nonzero degree, if the
associated scalar curvature k7 verifies

(0.1) ' > (dim M)(dim M — 1) on Supp(df),

then inf(k™™) < 0. When dim M is odd, Zhang [7] proved that inf(k7) < 0 still holds
if the inequality in (0.1)) is strict, by using the standard trick of passing M to M x S'. In
[4], we improved Zhang’s result in the odd dimensional case so that one gets a complete
answer to Gromov’s question ([2]).

Theorem 0.2 ([4]). Let (M, g*™) be an odd dimensional (dim M > 3) connected oriented
noncompact complete spin Riemannian manifold. Let k™ be the associated scalar
curvature. Let f : M — SYmM(1) be a smooth area decreasing map which is locally
constant near infinity and of nonzero degree. Suppose

(0.2) ™™ > (dim M)(dim M — 1) on Supp(df),

then inf(kT™) < 0.
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SUPERCONNECTION AND ORBIFOLD CHERN CHARACTER

XIANG TANG

Classification AMS 2020: 57R18, 58HO05

Keywords: orbifold Chern character, proper étale groupoid, antiholomorphic
superconnection

Let M be a closed complex manifold. Consider the d-bar operator
QO (A1) 225 QO (M) 25 QD (ar) ...
Let FE be a holomorphic vector bundle on M. Consider the generalized d-bar operator
Q0O (0, B) -2 QO (M, E) -2 QOD(ML E) - -

Let H*(M, E) be the k-th cohomology group of E.
The Riemann-Roch-Hirzebruch theorem computes the holomorphic Euler
characteristic of M.

Theorem 0.1 (Riemann-Roch-Hirzebruch). Let E be a holomorphic vector bundle on a
closed complex manifold M.

X(X.B) = YD) = [ (B Ta(a),

where ch(F) is the Chern character of E and Td(M) is the Todd class of M.

In complex geometry, Hirzebruch’s Riemann-Roch theorem represents a substantial
advance beyond the case of Riemann surfaces, the classical Riemann-Roch theorem. It
is the generalization of Hirzebruch’s result, dating back to the work of Borel and Serre
in the 1950s, that led Grothendieck to his ingenious introduction of the K-theory and
the Grothendieck-Riemann-Roch theorem, which are fundamental objects in the study of
both differential geometry and algebraic geometry. Substantial developments appeared
in the works of Baum, Fulton, MacPherson and in SGA 6 (led by Grothendieck). Beyond
algebraic schemes, a notable advance is Toen’s result on Riemann-Roch for algebraic
stacks of Deligne-Mumford type. In the 1980s, the Grothendieck-Riemann-Roch theorem
was successfully introduced into Arakelov geometry, which led to exciting progress in
arithmetic geometry.

Unlike projective varieties in algebraic geometry, not all coherent sheaves on a general
complex manifold have a resolution by holomorphic vector bundles. This key difference
from algebraic geometry was for a long time an obstruction to a Grothendieck-Riemann-
Roch theorem on general complex manifolds. A recent major breakthrough was obtained
by Bismut, Shen, and Wei [BSW23] by integrating new ideas from derived geometry,
antiholomorphic superconnections, and geometric analysis, in particular the hypoelliptic
Laplacian.

Let Ky(M) be the Grothendieck group of O-coherent sheaves on M, and let
HEL(M,R) be the Bott-Chern Cohomology of M.
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Theorem 0.2 (Bismut-Shen-Wei). There is a (unique) Chern character map
chpe : Ko(M) — &, HEE(M, R)
satisfying the following property, for a holomorphic map f : M — N,
Tdpc(TM) chpe(fi€) = f.[Tdpc(TN) chpc(E)],
for any coherent sheaf € on M.

In this talk, we reported the recent attempt to generalize the above Grothendieck-
Riemann-Roch theorem on complex manifolds to complex orbifolds.

We study a complex orbifold through its representation by a proper étale groupoid with
an invariant complex structure. Such a groupoid is called a complex orbifold groupoid.

Definition 0.3. Let G be a complex orbifold groupoid. A sheaf F of Og-modules is called a
coherent sheaf if it satisfies the following conditions.

(1) Fis finite type, i.e. for every x € G there exists an invariant neighborhood (U, )
of © and a G-sheaf M, a finite rank free sheaf on Gy, such that there exists a G|y-
equivariant surjective map M|y — Flu;

(2) For every (U,G) and any G|y-equivariant map ¢: M|y — F|y, the kernel of ¢ is
also finite type.

We denote the category of coherent sheaves on G by coh(G), and the derived category of
coherent G-sheaves by D, (G).

coh

Inspired by [BD10], we generalize the approach [BSW23] to coherent sheaves on
complex orbifolds via antiholomorphic flat superconnections. Let B(G) be the dg-category
of antiholomorphic flat superconnections on G and B(G) be the associated homotopy
category. Given a complex orbifold X, we establish the following equivalence of dg-
categories

(0.1) Db

coh

(X) =~ B(X).

Such an equivalence (0.1)) allows us to introduce the orbifold Chern character, which
is a group homomorphism
(0.2) chpe : K(X) — HSJ(IX,C),
from the K-group of coherent sheaves on X to the Bott-Chern cohomology H](;j) (I1X,C)
of the inertia orbifold 7/ X. We show that the orbifold Chern character has the following
property.
Theorem 0.4. Let ixy: X — Y be an embedding of a compact complex orbifold groupoid.
Let F € Db, (X) and ix y.F € Db, (Y) be its direct image. We have

ChBC (.F )

Tdec(Nx/y)
where Iix y is the induced morphism between inertia groupoids.

With Theorem we establish the following property about the orbifold Chern
character:

Theorem 0.5. The orbifold Chern character chpc: K(X) — H](;C)(I X,C) in is the
unique group homomorphism satisfying the following properties.

(03) Cth(i)gy,*f) = [Z‘_)(’Y’* ( ) in Hl(gzc)(IY, (C),
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(x1) For complex vector bundles E on complex orbifolds, our definition of chgc(FE) agrees
with the one in [Ma05) Section 1.2].

(*2) chgc is functorial under pullbacks.

(*x3) chpe satisfies the Riemann-Roch-Grothendieck formula for orbifold embeddings,
Equation (|0.3)).

After our paper [MTTW25]] appeared on the arXiv, we became aware of the paper
[Xu25] by Guangzhe Xu. The paper [Xu25] establishes the main results of [BSW23]
in the setting of equivariant geometry of a finite group acting on a complex manifold.
On one hand, [Xu25] establishes our Theorems [0.4] and in the (more restrictive)
setting of equivariant geometry with respect to finite group actions. On the other hand,
[Xu25]] establishes Riemann-Roch-Grothendieck for proper morphisms between complex
manifolds equivariant with respect to finite group actions, which is more general than
what is available in this paper (our Theorem is only valid for embeddings).

In literature, the Grothendieck-Riemann-Roch type results refer to transformations
from K-theory to suitable cohomology theories that commute with pushforwards of
proper morphisms.

For algebraic orbifolds, more precisely Deligne-Mumford stacks, a Riemann-Roch
theorem was proved by Toen [Toe99].

We aim to establish a Riemann-Roch-Grothendieck theorem for complex orbifolds,
which will calculate the orbifold Chern character chpc(f.F) of the pushforward of a
coherent sheaf 7 under a holomorphic map f.

A holomorphic map

f: X—=>Y
between complex orbifolds can be decomposed as the composition of the embedding
if: X - X xY
and the projection
p: X xY =Y.

Our plan to establish the Riemann-Roch-Grothendieck theorem for f is by proving the
Riemann-Roch-Grothendieck theorems for i; and p separately. In Theorem we have
solved the case of embeddings. In the sequel, we will prove the case that covers p and
thus complete the proof of the Riemann-Roch-Grothendieck for f.
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LIE GROUPOID STRUCTURES ON DONALDSON MODULI SPACES

BAI-LING WANG

Classification AMS 2020: 57R57, 53C07 , 58D27.

Keywords: Anti-self-dual  Yang-Mills equations, instantons, bubble tree
compactifications, Kotschick-Morgan conjecture.

1. INTRODUCTION

Donaldson moduli spaces [3] of instantons on four-manifolds are fundamental in
differential geometry and gauge theory, but their structure is often complicated by
quotient singularities and bubbling phenomena in the compactitications. We will
provide Lie groupoid structures on Donaldson moduli spaces and their bubble tree
compactifications, providing a smooth and categorical framework that captures their
stratified and singular nature. This construction lays the groundwork for future
applications, including the definition of K-theoretical Donaldson invariants, the
geometric realization of y-maps. Some applications will be discussed. This is based on
joint work with Bohui Chen and Shuauge Qiao.

Gauge theory provides a profound link between the differential geometry of
four-manifolds and topological invariants. Let P — X be a principal GG-bundle over a
closed, oriented Riemannian four-manifold (X, g), with G = SU(2) or SO(3). A
connection A on P has curvature F, € Q?(X, gp), and the Yang-Mills functional

YM(A) = / |F4]? dvol,,
X

measures its total curvature energy. The Euler-Lagrange equation of Y M is the
Yang?Mills equation ¢, F4 = 0, whose critical points are the Yang-Mills connections. In
four dimensions, the Hodge decomposition of two-forms

Q(gp) = Q> (gp) & Q¥ (gp)

splits curvature into self-dual and anti-self-dual components F,y = F'f + F;. The energy
identity
IFallZ> = [F4 172 + 1 Fx 1172 = 8% k + 2 Fi |17
(where £ = c(P) or —p,(P)/4) shows that the absolute minima of the Yang?Mills
functional are those connections satisfying
Fi=0, equivalently * Fy = —F},

the anti-self-dual (ASD) Yang-Mills equations. Such solutions are called instantons, and
their moduli spaces

M(X,g) ={A € A(P) | Fi =0}/G(P)

are finite?dimensional quotients of the infinite-dimensional affine space A(P) of
connections by the gauge group G(P). For a generic Riemannian metric g, the linearized
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operator d}; : Q'(gp) — Q> T (gp) is surjective, and My (X, g) is a smooth manifold of
dimension

dim M, (X, g) = —2p1(P) — 3(1 — b1 (X) + b3 (X)) = 8k — 3(1 — by + by)

given by the index of the Atiyah-Hitchin-Singer deformation complex

+
0 — O%gp) 25 QY (ap) 5 Q> (gp) — 0.

Points of My(X,g) correspond to gauge-equivalence classes of irreducible ASD
connections, while reducible ones (with stabilizer U(1)) form lower-dimensional
singular strata. The compactness problem for M, is governed by bubbling phenomena:
sequences of instantons with bounded energy may develop curvature concentration at
finitely many points, where the energy lost is carried by instantons on S* The

Uhlenbeck compactification ﬂ,g (X) augments the moduli space by such ideal
connections, but its corner structure is only stratified topologically.

For a smooth, closed, oriented 4-manifold (X, ¢), the Donaldson invariants are defined
via the moduli spaces M, (X, g) of anti-self-dual (ASD) SU(2) or SO(3) connections on
a principal bundle P — X. When b3 (X) > 1, these invariants are independent of the
metric. The case b (X) = 1 is subtler: the invariants depend on the chamber structure
of the positive cone in H?(X;R).

Kotschick and Morgan [5] conjectured that for b5 (X) = 1 and b,(X) = 0, the wall-
crossing difference

dp(a) = DX (P) = Dx(P)
arising when the self-dual harmonic form crosses the hyperplane o is a polynomial in
« and the intersection form @ x, with coefficients depending only on o?, p;(P), and the
homotopy type of X.

Earlier approaches, including algebraic-geometric calculations for rational surfaces
[4] and topological computations [6] for partial cases. Our work establishes the
conjecture for all walls, including the obstructed case o?> = —1, by constructing a
smooth compactification of the moduli space with an explicit local model around
reducible and bubbling configurations.

In our work we employ the stronger bubble tree compactification of Chen [2], which
records not only the positions of bubbling points but also the entire hierarchical
configuration of bubbles and the gluing parameters between them. Each stratum is
indexed by a weighted rooted tree 7, whose vertices represent the base manifold and
successive S* bubbles, and whose edges record gluing scales )\, and group elements
p. € G. This yields a smooth orbifold structure near all lower strata and provides a
precise analytic framework for the wall-crossing analysis required to prove the
Kotschick-Morgan conjecture.

2. BUBBLE TREE COMPACTIFICATION AND LIE GROUPOID STRUCTURE

The key analytic tool is the bubble tree compactification of the instanton moduli space
M;.(X) introduced by Chen [2]. Unlike the Uhlenbeck compactification, which records
only bubbling points, the bubble tree compactification keeps track of the entire hierarchy
of bubbled spheres (S5*) and the gluing data between them.

For each weighted rooted tree 7" with total weight k, the associated stratum

S1(X) = Mugon) (X) x ([[Pu(X)) / S

v;Echild(vg)
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parametrizes configurations where bubbling occurs according to 7. The Taubes gluing
construction produces an orbibundle

GLr(X) — Sr(X),

whose fibre encodes the gluing parameters p. € G and scales A, > 0 for each edge e of
T.

A smooth orbifold structure on M, (X) is then obtained by gluing these local models
via perturbed gluing maps V%, compatible across overlapping strata. Ghost vertices
(zero-energy bubbles) are resolved by a flip resolution procedure that replaces singular
corners by exceptional divisors, ensuring smoothness throughout the compactification.

The orbifold structure on M, (X) admits a natural and more precise description in
terms of a Lie groupoid. This point of view clarifies the analytic gluing construction and
provides a canonical language for encoding gauge symmetries and local isotropy.

Let A(P) denote the Fréchet manifold of smooth connections on the principal
G?bundle P — X, and G(P) the corresponding gauge group. The classical
configuration groupoid

C = (G(P) x A(P) = A(P))

has source and target maps s(g, A) = A and ¢(g, A) = g- A, with composition (h, g-A) o
(g, A) = (hg, A). Its orbits are the gauge equivalence classes of connections. Restricting
C to the submanifold of anti-self-dual connections Axsp C A(P) yields the ASD groupoid

Gasp = (G(P) x Aasp =2 Aasp),

whose orbit space is precisely the moduli space M, (X, g). Each object A € Axsp has
isotropy group I'y C G equal to its stabilizer under the gauge action; for irreducible A,
I'4 = {+£1}, while for reducible connections Iy ~ S*.

The local slice theorem for the gauge action implies that Gagp is a smooth, étale Lie
groupoid: near any [A] € M(X, g) there exists a local slice Uy C Q'(gp) on which G(P)
acts smoothly with finite isotropy, and the quotient U,/T"4 provides an orbifold chart.
Transition functions between such slices are encoded by the morphisms of the groupoid
and are smooth on overlaps, giving M (X, g) a natural differentiable stack structure.

The bubble tree compactification M, (X) inherits a compatible groupoid description:
for each weighted tree 7', the local gluing model GL+(X) — Sp(X) is endowed with a
groupoid

gT = ST(X)J

whose arrows correspond to gauge transformations on the bubble components and
whose isotropy groups I'4,. record the residual symmetries of the glued configurations.
The compatibility of the gluing maps ¥+ across adjacent trees extends to a morphism of
Lie groupoids V7 : Gr — Gasp, and the collection {Gr} assembles into a global groupoid
atlas

6u(X) = Gr = | |Sr(X),

whose differentiable stack quotient [&,(X)] defines the smooth orbifold structure on
M (X). The isotropy groups of &,(X) describe the local symmetry type of each
boundary point (trivial for irreducible bubbles, S! for reducibles, and higher tori for
multi-bubble collisions).
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3. REDUCIBLE INSTANTONS AND EQUIVARIANT LOCALIZATION

When 0] = 1, wall-crossing arises from the change in orientation of My (X, g) as the
metric crosses a wall 1W,. The contribution is concentrated near reducible instantons
corresponding to line bundles L — X with ¢;(L) = «. The neighbourhood of a reducible
solution A is described by a Kuranishi model

o HA%HEU Mk(X’g) 2¢_1(0)/FA’
where I'y ~ S! acts by complex multiplication on H} ~ CV.

For o> < —1, the moduli space is smooth near A; when o? = —1, obstructions appear
and are resolved by passing to a thickened moduli space Mk, This yields a global
virtual cycle amenable to equivariant localization.

Equivariant de Rham theory [I] provides a natural framework: the relevant S!-action
induces an equivariant differential dg:, and the localization formula expresses integrals
over 0(My (X, A)) in terms of fixed-point data on the reducible loci. For a local model
U, ~ CV, one obtains

[ )Y = (2 S
AU,/ S1

reproducing the wall-crossing coefficient predicted by Kotschick-Morgan.

4. WALL-CROSSING FORMULA AND MAIN THEOREM

Let X be a simply connected 4-manifold with by = 1, P — X an SO(3)-bundle, and
a € H?(X;Z) an integral lift of wo(P) satisfying p;(P) < a* < 0. Denote by dp(«) the
difference of Donaldson invariants across the wall WW,,. We prove:

Theorem 0.1. For all « as above, including the obstructed case o® = —1, the wall-crossing
term is a universal polynomial
. r—1 —2r—21 aQ — pl(P)
5P(Oz):Zai(T,d,X)QX i r=

=0
where (Qx is the intersection form and the coefficients a;(r,d, X) depend only on r, d, and
the homotopy type of X.
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Voiculescu’s classical example [6] of almost commuting unitary matrices that cannot
be approximated by exactly commuting ones revealed a fundamental obstruction in the
stability theory of operator algebras. This phenomenon is naturally formulated in terms
of finite-dimensional quasi-representations: maps from a group (or a C*-algebra) into
matrices that satisfy multiplicativity only up to small error.

A central problem is to determine when such quasi-representations can be perturbed
(in the operator norm) to genuine representations, and when this fails due to
topological obstructions. Earlier work connects quasi-representations of (M) to
almost-flat vector bundles over M and thus to K-theory; however, these invariants are
often not fine enough to detect all quasi-representations.

In joint work with Weinberger and Yu, we introduce a refined invariant—a character
map—taking values in equivariant K-theory of the universal proper G-space. For
amenable groups, this invariant completely classifies quasi-representations up to stable
equivalence.

Quasi-representations and Stability. Let GG be a discrete group and F' C G finite.

Definition 0.1. An (F), ¢)-representation is a map
p: F? = U(n)

such that
[p(ab) — pla)p(b)]| <& foranya,be F.

A group is said to be matricially stable if approximate multiplicativity on a sufficiently
large finite set forces p to be close to a genuine unitary representation.

Examples include finite groups, Z and free groups, but Voiculescu’s example shows Z>
is not matricially stable. More precisely, for each n > 1, consider n x n unitary matrices

L 0 1
en?m 0 1
Uy = e and v,, = )

0 1

e%%ri 1 0
Since they approximately commute when n is sufficiently large, they induce
quasi-representations p, of Z? by sending the two canonical generators to u, and v,,
respectively, but the fact that these unitary matrices cannot be perturbed to commuting
ones (a particularly slick proof of this fact is given in [3]) amounts to saying that for
large n, the quasi-representations p,’s are not close to genuine representations. A bit
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more generally, for finitely generated abelian groups, matricial stability holds precisely
when the group is virtually Z.

Almost-flat Bundles and a Character Map. Given a compact manifold M with m (M) =
G, previous work [, 5] shows that quasi-representations correspond asymptotically to
almost-flat vector bundles [2], i.e., Hermitian vector bundles equipped with connections
whose curvature can be made arbitrarily small. Given a quasi-representation p, such a
bundle then determines a class

[Ep] S KO(M)7

which gives a topological invariant that can be used to obstruct the perturbation of quasi-
representations into genuine ones.

Since this invariant is K-theoretic in nature, it only distinguishes
quasi-representations up to stable equivalence—here one can show that two natural
equivalence relations for quasi-representations, namely stable homotopy and stable
approximate unitary equivalence, coincide. Hence we form the Grothendieck group
QR(G) consisting of formal differences of stable equivalence classes of
quasi-representations. More precisely, we actually form the group QR(F,¢) for each
fixed pair (F,¢) and then take an inverse limit. With this Grothendieck construction, we
see that the above prescription p — [E,] € K°(M) produces a group homomorphism

X 1 QR(G) — K"(M)

that we call the character map.

Combined with the Chern character, this reproduces classical obstructions: for
example, a flat bundle has vanishing higher Chern classes, so if p were close to a
genuine representation, ch(x(p)) would lie in H°(M).

However, this map into K°(M) is generally far from injective or surjective. Even if we
take a limit over M and obtain a more canonical map

X : QR(G) — K°(BG)

replacing M with the classifying space BG (if no finite model for BG exists, we need
to take an inverse limit to define K°(BG)), we still cannot expect y to be a bijection,
particularly when torsion is present, even in simple examples such as G = Z/2. This
motivates a refinement of the character map y.

A Refined Target: Equivariant K-theory of EG. The universal free G-space EG yields
the classifying space BG. However, taking a lesson from the formulation of the
Baum-Connes conjecture, we argue that topological information relevant to
quasi-representations naturally lives in the universal proper G-space EG, characterized
by being H-equivariantly contractible for every finite subgroup H < G.

We consider the equivariant K -theory

K(EG) = lig KY(Y),

where Y ranges over proper cocompact G-spaces, and where K2 (Y) = Ky(Co(Y) x G)
via the Green—Julg theorem. There is a canonical map K%(EG) — K°(BG); this is an
isomorphism when G is torsion-free, but only a rational surjection in general.
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For each proper cocompact GG-space Y and sufficiently good (F,¢), we construct a
homomorphism x : QR(F,e) — K(Y). Parallel to what was done above, we take an
inverse limit of the right-hand side over Y and obtain a homomorphism

Y QR(G) — K4(EG).

There is a relatively simple construction of this refined character map y, with the help
of Fell’'s absorption principle. Composing this x with the canonical map
KY%(EG) — K°BG) recovers the classical character map discussed above, but our
adapted character map y remembers more information: we show that it completely
classifies quasi-representations up to stable equivalence.

Theorem 0.2 (Weinberger-Wu-Yu). If G is amenable, then the character map
X 1 QR(G) — Kg(EG)
is an isomorphism.

The proof, inspired by the Baum-Connes conjecture, uses the Dirac—dual-Dirac
method [4]], viewing x as a type of coassembly map. Quasidiagonality of C*(G) also
plays an important role by allowing finite-dimensional approximation of Fredholm
quasi-representations.
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1. ANALYTIC TORSION

Let M be a compact Kahler manifold. Let /' be a holomorphic Hermitian vector bundle
on M. Let A%(M, F) be the vector space of F-valued smooth (0, ¢)-forms on M, which
is endowed with the L? metric with respect to the metrics on M and F. Let D%’q be the
Hodge-Kodaira Laplacian acting on A%¢(M, F). We denote by o(C0%?) the eigenvalues of
%7, Let E()\;0%%) be the eigenspace of (1%¢ with eigenvalue )\ € o(C0%?). Define

Z(s):=>» (-1)% > A TdmE(\Op),  seC.
=0 Aeo(@RM\{0}

It is classical that Z(s) converges when Re s > dim M, extends to a meromorphic function
on C and is holomorphic at s = 0.

Definition 1.1. ([12[], [3]) The analytic torsion of (M, F') is the real number defined as
(M, F) := exp(—Z'(0)).

For the basic properties of analytic torsion, we refer to [3], [4]. Analytic torsion plays
a crucial role in several areas in mathematics, such as Arakelov geometry [13]], mirror
symmetry at genus one [2[, [5, [71, [19]1, [17]1, [11]. In this note, we report a recent
progress on the boundary behavior of analytic torsion.

2. SINGULARITY OF ANALYTIC TORSION

Let X be a connected complex manifold of dimension n + 1 and let S C C be the unit
disc. Let 7: X — S be a surjective holomorphic map with connected fibers. Let ¥ be
the critical locus of 7. Assume that 7(3) = {0}, that there is an ample line bundle on
X, and that X is an open subset of a projective manifold. We set S° = S\ {0}. Then
7w 1(S°) — S° is a family of projective algebraic manifolds.

Let hx be a Kahler metric on X. Let Kx/g be the relative canonical bundle of 7. Let
¢ — X be a holomorphic vector bundle on X endowed with a Hermitian metric he.
We assume that ¢ extends to a holomorphic vector bundle on the projective manifold
containing X as an open subset. We define Kx/5(§{) = Kx/s ® {&. For s € S, we set
X, :=n71(s) and & = £|x,. Throughout this note, we make the following:

Assumption (¢, he)|x is Nakano semi-positive. Namely, if R, denotes the curvature form
of (¢, he), then v/—1R, induces a semi-positive Hermitian form on 77X ® .
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Under this assumption, dim H?(X;, Kx,_(;)) is independent of s € S ([[14], [9]). We
set h? := dim H9(X,, Kx,(&)). Then Rim, Kx/s(§) is a locally free sheaf on S of rank h?
for all ¢ > 0. By [8]], the family 7: X — S admits a semi-stable reduction, whose base
space is a ramified covering of S with ramification index d € IN (cf. Section 3).

Theorem 2.1. ([20]) For s € S°, let (X, Kx,(&s)) be the analytic torsion of (X5, Kx,(&s))
with respect to hx|x, and he|x,, where K is the canonical bundle of X,. Then

log 7(X,, Kx, (&) = mlog|s* + e+ Y Y [sI” (logs| )" dim(s)

0<m<n i€l
Sy qlog( S (@ S st (s og sl 2>)
q>0 0<k<nh4 1<j<d

where k € Q, {ri}icr C QN (0,1] is a finite set of positive rational numbers, ¢ € R,
(cfy s Capa) # (0,...,0) is @ non-zero real vector, and ¢;m(s), 1], (s) are smooth functions
on S. In particular, by setting ¢ := > -,(—1)70? € Zwith ¢? := max{0 < k < nh?; cf # 0},

there exists a constant ~y € R such that as s — 0
log 7(Xy, Kx,(&)) = rlog [s|* — ¢ loglog(|s| ™) +~ + O (1/log|s| ") .

In this theorem, « is given by an integral of certain characteristic classes associated to
the semi-stable reduction of 7: X — S. Since the formula for « is complicated, we omit
the detail here. See [20, Sects. 6, 8]. However, when X, has only isolated singularities,
there is a simple formula for « in terms of Milnor number and spectral genus. Let us
recall these invariants to give an explicit formula for x when dim Sing X, = 0.

We identify an isolated hypersurface singularity germ (X,,0) C (C"*',0) with its
defining equation f(z) = 0, where f(z) € Ogn+1 has an isolated critical point at the
origin. The Milnor number of f, denoted by p(f), is defined as

af of
0z 0 8Zn

We need another invariant of f called the spectral genus, introduced recently by
Eriksson-Freixas i Montplet [6]. Let Mil; be the Milnor fiber of f. Then H™(Mil;) carries
a mixed Hodge structure. Let F*H"(Mil;) be the Hodge filtration on H"(Mils). Let
M, € GL(H™(Mily)) be the semi-simple part of the monodromy acting on H™(Mily). Let
log z be the branch of the logarithm with imaginary part lying in [0, 27). Let log M, be
the corresponding logarithm of M. Since M, preserves F*H"(Mils), log M, acts on
GrpH"(Mily). By [6], the spectral genus of f is the rational number defined as

,u(f) = dim Ocn+1 0/( )OCn-«—l,O.

- 1
pg(f) = 2—mTI' |:10g MS|GY’}H”(Mi1f):| .

Theorem 2.2. ([20]) Suppose that Sing X, consists of isolated points. Let r(&) be the rank

of & Then
o= ¥ (M55 mw).

z€Sing X

In [6], it is conjectured that £ +”2)), Pg(x) > 0 for any isolated hypersurface singularity
of dimension n.
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3. SINGULARITY OF THE L?-METRIC

Since the analytic torsion is the ratio of the Quillen metric and the L?-metric on the
determinant of the cohomology [3]], Theorem is reduced to the behavior of the
Quillen and L? metrics as s — 0. For the Quillen metrics, this was determined in [18].
For the L?-metrics, it will be determined in [20], which we explain briefly here.

Let T be another unit disc in C. Set 7° := T\ {0}. By the semi-stable reduction
theorem [8], there is a commutative diagram

(Y, Yy) —— (X, Xo)

/| |

(T,0) —— (S,0).
Here Y is a complex manifold of dimension n+ 1, p: (T,0) — (5, 0) is given by u(t) = t¢,
Y, := f~!(t) is isomorphic to X, for t # 0, and Y, = f~'(0) is a reduced normal crossing
divisor of Y. Since (F*¢, F*he) is Nakano semi-positive, R?f, Ky (F*{) is a locally free
sheaf on 7" of rank A“.

Theorem 3.1. ([20]1) Let m3°(T") be the smooth functions on T vanishing at t = 0. By
choosing suitable bases {61, ...,0x} of Rim. Kx/s(&) and {01, ....0ha} of RIf, Ky p(F*€)
respectively, there exist integers e, ..., e}, > 0 with the following properties:

(1) The h? x hi-Hermitian matrix H(s) := (Hap(s)), Hap(s) = (6,
expressed as follows:

H(u(t))=D(t)-H(t)- D),  D(t) =diag(t™c1,... t ),

Xss 9[3 XS)LZ is

where H(t) = (ﬁag(t)), Hos(s) := (Baly,, O5ly: ) 12, admits an expression
Ht)= Y (log[t|™)™A, mod @ (log[t| ) m(T) @ My(C)
0<m<n 0<k<n
with some constant Hermitian h? x hi-matrices A,, (1 < m < n). In particular, there exist

¢ € R (1 <m < nh?) such that

det Hit)= Y cL(log|t| )™ mod P (logt| ) m(T).

0<m<nhd 0<k<nh?

(2) There exists a constant C' > 0 such that H (t) > C I forall t € T° as positive definite
Hermitian matrices. In particular, ¢, # 0 for some 1 < m < nh?.

(3) Set 67 =3, 4<pa€l/d. Then there exist real-valued smooth functions ¥, (s) on S
such that

10 A A G122 = 1172 Y {et+ Y sl )}(log |s| 7)™

0<m<nhs 1<j<d
In particular, setting ¢? := max{0 < m < nh?; ¢!, # 0}, as s — 0, one has
log [|61 A ... A bpa(s)]|72 = =07 log |s|* + o?loglog(|s| %) + ¢+ O (1/log |s| ") .

Moreover, if 07 = 0, then ¢? # 0.
(4) The rational numbers el /d (1 < a < h%) are independent of the choice of semi-stable
reduction of m: X — S.
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The proof of Theorem relies on the theory of harmonic integrals for Nakano
semi-positive vector bundles on open Kéahler manifolds [14], the existence of an
asymptotic expansion of the fiber integral of a differential form [[1]], [15], [16] and the
non-degeneracy of the L?-metric on the higher direct image sheaves of Ky (£*¢) [10].

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]
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