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EXT-GROUPS OF REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS

KEI YUEN CHAN

Classification AMS 2020: 22E50, 20C08

Keywords: Representations of p-adic reductive groups, Ext-groups, graded Hecke
algebras, Type H4, Springer correspondence

The classical Langlands program focuses on the classification of irreducible smooth
representations over C in terms of arithmetic data. A modern perspective on this subject
is the categorical Langlands program, aiming at certain ’Langlands duals’ to describe the
whole category. On the other hand, the Ext-group is one basic invariant in describing
a non-semisimple category. The first part of the talk investigates how Ext-groups can
play a role in the categorical Langlands program. The second part of the talk discusses
the possibilities on putting the reflection group of H4 in the framework of Langlands
program, emphasizing on homological viewpoint.

As an example of the interplay between Ext-groups and the categorical Langlands, we
consider the classical cohomological duality: Let π be a smooth representation lying in
certain Bernstein component. One defines a contravariant functor [4]

π 7→ ExtdG(π,C
∞(G)),

where π lies in certain Bernstein component, d is the cohomological degree of the
Bernstein component and C∞ is the space of smooth functions of G. This functor is
extensively studied in the literature. In particular, it is shown to send irreducible
representations to irreducible representations [1], and its Ext-duality theory is explored
in [29], [8] and [24]. It is expected to correspond to variants of Grothendieck-Serre
duals in the spectral side [15, 16].

A first important result on Ext-groups for representation theory of p-adic groups is the
higher Ext-vanishing results between discrete series. A reformulation in the language
of derived category of the complex smooth representation category Rep(G) of G is as
follows:

Theorem 0.1. ([23, 25, 8]) Let Repds(G) be the full Serre subcategory of Rep(G) precisely
consisting of representations of finite length whose simple composition factors are discrete
series. Then Repds(G) is a semisimple subcategory of Rep(G). Moreover, the natural
embedding Db(Repds(G)) ↪→ Db(Rep(G)) is fully-faithful.

We briefly explain the methods of proving the theorem. For [23, 25], the approach is
to consider the Schwartz algebra for p-adic groups or affine Hecke algebras. One shows
that discrete series and tempered modules can be equiped with an action of Schwartz
algebra, and discrete series are projective objects in the category of representations of
Schwartz algebra. Now, [23, 25] show a comparison theorem to transfer the vanishing
theorem from Schwartz algebras to affine Hecke algebras. For the algebraic approach
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in [7, 8], the proof is inductive in nature utilizing the tools of parabolic induction and
Jacquet functor, and in particular, there is an inductive description of discrete series in
[7].

Beyond discrete series, one considers extensions of tempered representations.
Classically, tempered representations can be parametrized by R-groups of some
unitarily parabolically induced modules. Connections to Euler-Poincaré pairing is hinted
in [3, 27], and the work [26] establishes a spectral description of Ext-groups between
tempered modules in terms of R-groups. The study on extensions of standard
representations can be partly reduced to extensions of tempered representations [9].

We now turn to applications of Ext-groups. We investigate the possibility of
developing a Langlands theory for the Coxeter group W of type H4. Although there is
no algebraic group of H4, several characterizations in the Langlands correspondence
can be purely done in the data of root systems and reflections groups. For instance, the
role of distinguished nilpotent orbits can be replaced by the Heckman-Opdam
distinguished points [17] (a generalization of the Bala-Carter theory).

On the other hand, Kazhdan-Lusztig [20] (also see [14]) establishes the
Deligne-Langlands conjecture for the Iwahori block by using affine Hecke algebras.
Their graded version, called graded Hecke algebras, is well-defined for type H4 and this
provides a ground to look for a Langlands theory for type H4.

A first step towards the goal is a classification of ’discrete series’. Here discrete series
and tempered modules for graded Hecke algebras

can be defined from an algebraic criteria due to Casselman. The homological property
of discrete series allows one to establish an upper bound on the number of discrete series
[25, 8], which is the key for the exhaustion part of the classification theorem. For the
construction part, in addition to homological properties in [8], we also use structure of
calibrated modules developed in [12] and [21].

Theorem 0.2. [10] Let H be the graded Hecke algebra of type H4. There are precisely 20
isomorphism classes of discrete series of H.

The next step is a classification of tempered modules:

Theorem 0.3. [10] Let H be the graded Hecke algebra of type H4. Then all tempered
modules are precisely parabolically induced from a discrete series. Moreover, there are 14
isomorphism classes of tempered modules with real central characters.

It is well-known that a tempered module is a direct summand in a parabolically
induced module, and so one has to prove such module is irreducible. Our approach is to
use the orthogonality of discrete series in the homological elliptic pairing.

We finally discuss a Springer theory for type H4. Its importance comes from that the
structure information for geometrically constructed modules is controlled by Springer
theory, see [22, 14, 6]. Although the reflection group of type H4 does not possess
underlying (known) geometry governing such theory, other perspectives [2, 21] suggest
possible generalizations using representation theoretic invariants such as fake degrees.

From the perspective of graded Hecke algebras, the W -structures of tempered modules
are crucial to obtain a Springer theory for type H4 in [10, 11]. The main ingredients in
obtaining the W -structure of discrete series include:

(1) the orthogonality of discrete series in the elliptic space;
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(2) dimensions of calibrated discrete series; and
(3) a bit W -structure of some parabolically induced modules.

In view of the work in [5], one may need some more from the Springer
correspondence for the categorical Langlands program. On the other hand, the derived
Springer correspondence [28] suggests one may look at the skew group ring
AW -structure rather than W -structure. (Precisely, AW = Sym(V ) ⋊ C[W ] for the
polynomial ring Sym(V ) of the reflection representation V of W .) In order to define
AW -structure on tempered modules X, one picks a certain irreducible W -subspace σ in
X naturally corresponding to a Springer representation. Then one defines

Xi := Symi(V ).σ,

where Symi(V ) is the subspace in H with all polynomials on V with degree less than or
equal to i. Define

X := ⊕i∈Z≥0
Xi/Xi−1,

with a natural AW -action descend from H-action on X. In the case of discrete series, we
have the following result (details in progress):

Theorem 0.4. [11] Let H be the graded Hecke algebra of type H4. Let X be a discrete series
of H and let X be defined as above. Then the multiplicity of τ ∈ Irr(W ) of degree i-the piece
comes from a coefficient of q2i-degree of the Green polynomials.

The remaining unexplained notation in the theorem is the Green polynomials, which
can be defined and computed from some semi-orthogonality property of a graded elliptic
pairing on AW -modules (see [19]). Such result also suits well in the theory of Dirac
cohomology, see [13].
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DIMENSION FORMULA, FOLLOWING FRIEDBERG-GINZBURG, FOR PERIODS OF
SMALL REPRESENTATIONS W.R. TO SMALL SUBGROUPS

DMITRY GOUREVITCH

Classification AMS 2020: 11F70, 11F30, 11F67 , 20G05, 14L30

Keywords: Periods of automorphic forms, small representations, Fourier coefficients,
symmetry breaking, algebraic group, nilpotent orbit, homogeneous space, spherical
space, automorphic representation, period integral.

Let G be an algebraic reductive group defined over a number field K, and let H⊂G
be an algebraic subgroup, also defined over K. Let π be an irreducible representation of
G(AK) in the space of automorphic forms. There are many known examples in which
the period integral over H(AK)/H(K), viewed as a functional on π, or on a family of
representations constructed from π, has a number-theoretic importance, e.g. has an
unfolding, is Eulerian, equals a special value of an L-function. In the classical examples,
the subgroup H ⊂ G is spherical. However, there are alos many well-known examples in
which the subgroup is not spherical. Ginzburg suggested that it would be useful to have a
simple geometric criterion that would enable to detect pairs (H, π) that have a potential
to have a number-theoretic importance. He suggested such a criterion in [Gin14] and
a more refined one, joint with Friedberg, in [FG21]. In our work in progress [GS] with
Eitan Sayag we suggest a related criterion, in terms of the nilpotent orbits attached to π
using Fourier coefficients.

Let h ⊂ g denote the Lie algebras of H⊂G. Let g∗ denote the dual space to g, and let
h⊥⊂g∗ denote the space of functionals vanishing on h. Let N denote the nilpotent cone
of g∗. It has finitely many orbits under the coadjoint action of G.

Definition 0.1. Let Ξ⊂N be a G-invariant subset. We say that h is Ξ-spherical if for any
G-orbit O ⊂ Ξ, we have

(0.1) dimO ∩ h⊥ ≤ dimO/2

We say that h is adapted to Ξ if it is Ξ-spherical and satisfies

(0.2) dimΞ ∩ h⊥ = dimΞ/2

Let WO(π) ⊂ g∗(K) denote the union of nilpotent orbits O such that the Fourier
coefficients FO do not vanish identically on π. Let V(π) ⊂ g∗ denote the Zariski closure
of WO(π). Our criterion for the period integral on H(AK)/H(K) to have a
number-theoretic meaning on π is:

(0.3) h is adapted to V(π)

We define the Gelfand-Kirillov dimension of π by dimGK(π) := dimV(π)/2. As we show
below, if h is adapted to V(π) then dim h ≥ dimGK(π). This relates us to the criterion in
[Gin14] which is dim h = dimGK(π). In [FG21] this criterion is refined, to adress cases in
which dim h > dimGK(π), but the period integral still is Eulerian. They say that among
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all subgroups that define periods that are equivalent by unfolding, one should consider
the one with of minimal dimension.

Conjecture 0.2. If h is V(π)-spherical but not V(π)-adapted then the period integral over
H vanishes identically on π.

Our criterion, as well as those of [Gin14, FG21], does not consider convergence issues.
Neither does it take into account the continuous invariants of π. It is motivated by the
recent results [GS21, AG24] on multiplicities of representations of real reductive groups.
Possibly one should refine our criterion using the symplectic structure of nilpotent orbits.

In the next section we give some geometric statements that allow to grasp the notion
of Ξ-spherical.

1. GEOMETRY

Theorem 1.1 ([AG24, Theorem B]). Let P⊂G be a parabolic subgroup. Let OP⊂N denote
the Richardson orbit of P, and OP denote the (Zariski) closure of OP. Then the following
are equivalent.

(i) P has finitely many orbits on G/H.
(ii) h is an OP-spherical subalgebra of g.

Corollary 1.1. If h is a spherical subalgebra of g then it is Ξ-spherical for every G-invariant
subvariety Ξ⊂g∗.

Corollary 1.2 ([AG24, Corollary J]). Let P⊂G be a parabolic subgroup defined over R,
and let P be the corresponding parabolic subgroup of G. Suppose that for all but finitely
many orbits of H on G/P, the set of real points is non-empty and orientable. Then the
following are equivalent.

(i) H is OP-spherical, where OP denotes the Richardson orbit of P.
(ii) Every π ∈ MOP

(G) has finite multiplicities.
(iii) H has finitely many orbits on G/P .
(iv) H has finitely many orbits on G/P.

Proposition 1.3 ([AG24, Proposition 2.2.9]). Let O ⊂ N be a Richardson nilpotent orbit.
Then O ∩ h⊥ is either empty, or has dimension at least dimO/2.

Let us also record the following straightforward lemma.

Lemma 1.4. Let Ξ⊂N be a closed G-invariant subvariety. Then
(i) h is Ξ-spherical if and only if it is O-spherical for every orbit O⊂Ξ of maximal

dimension.
(ii) Suppose h is Ξ-spherical. Then h is Ξ-adapted if and only if dimO∩ h⊥ = dimO/2 for

some orbit O⊂Ξ of maximal dimension.

1.1. Diagonal subgroups. Assume that H is reductive, and consider ∆H as a subgroup
of G×H. This allows to consider integrals of the form∫

[H]

φ(h)f(h)dh,

where φ is an automorphic form on G(A) and f is an automorphic form on H(A). Clearly
this is the same as the period integral of the automorphic for φ⊠ f on G×H over ∆H.
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Let B⊂G and BH⊂H be Borel subgroups. Let N⊂g∗ and Nh⊂h∗ denote the nilpotent
cones. From Theorem 1.1 we obtain the following corollary

Corollary 1.5. Let P⊂G and Q⊂H be parabolic subgroups, and let OP⊂g∗ and OQ⊂h∗ be
the corresponding nilpotent orbits. Then

(i) ∆h is OP ×OQ-spherical if and only if the set of double cosets P\G/Q is finite
(ii) ∆h is N ×OQ-spherical if and only if G/Q is a spherical G-space

(iii) ∆h is OP ×Nh-spherical if and only if P\G is a spherical H-space

For the case when the commutant [g, g] is simple, all pairs (H,P) such that H is a
symmetric subgroup of G, and G/P is a spherical H-space are classified in [HNOO13,
§5, Table 2]. More generally, a strategy for classifying all pairs (H,P) such that H is
reductive, P is a parabolic subgroup, and P\G is a spherical H-space is given in [AP14].
This strategy is also implemented in loc. cit. for G = SLn, and in [AP21] for all the other
classical groups.

The pairs of subgroups Q ⊂ H ⊂ G such that H is a symmetric subgroup of G, and
Q is a parabolic subgroup of H that is also a spherical subgroup of G are classified in
[HNOO13, §6, Table 3]. The main example of non-simple [g, g] is the diagonal symmetric
pair: G = H ×H, with H embedded diagonally. The classification all pair of parabolic
subgroups of R1,R2⊂H such that H/R1 ×H/R2 is ∆H-spherical is given in [Ste03].

2. COMPARISON TO [Gin14, FG21]

• Our (wave-front sphericity) condition automatically holds for spherical
subgroups, while the condition of [FG21] not always holds for them (e.g.
Shalika or linear periods).

• Our condition does not hold for non-Borel constant term (P = LU , Eisenstein
series), while the condition of [FG21] does.

• Our condition requires (complicated) dimension computations, while the
condition of [FG21] requires unfolding.

The following lemma gives some relation between our conditions hold as well.

Lemma 2.1. Let Ξ ⊂ N be a closed G-invariant subset such that h is Ξ-spherical. Then
(i) dim h ≥ dimΞ/2

(ii) If dim h = dimΞ/2 then the projection g∗↠h∗ maps Ξ onto h, and h is Ξ-adapted.

In all the examples given in [Gin14, FG21] our conditions hold.

3. EVIDENCE

3.1. Archimedean evidence. For a representation τ of a real reductive group, let V(τ)
denote the associated variety of the annihilator of τ in U(g).

Theorem 3.1 ([AG24, GS21]). Suppose that h is V(τ)-spherical subalgebra of g. Then
(i) mH(τ) <∞

(ii) If mH(τ) > 0 then h is adapted to V(τ).

Call an automorphic representation π “real-wavefront” if V(π) = V(πν) for some
Archimedean place ν.

Corollary 3.2. For any real-wavefront π, Conjecture 0.2 holds.
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3.2. GLn. In [MW89], Moeglin and Waldspurger showed that the discrete spectrum of
GLn(A) consists of residues of Eisenstein series L(ρ,m) := EPm,n/m

(ρ⊗n/m), where m is
a divisor of n, Pm,n/m is the standard parabolic subgroup of GLn with Levi subgroup
(GLm)

n/m, and ρ is a cuspidal automorphic representation of GLm(A).

Theorem 3.1 ([Gin06, Proposition 5.3 and its proof], cf. [JL13]). We have

V(L(ρ,m)) = Omn/m = V(L(ρ,m)ν)

for every non-archimedean place ν at which L(ρ,m) is unramified.

Theorem 3.2 ([GS]). We have V(L(ρ,m)) = Omn/m = V(L(ρ,m)ν) for every place ν.

In particular, L(ρ,m) is real-wavefront, and satisfies Conjecture 0.2. The proof uses
restriction to the mirabolic subgroup Pn(A).

4. TWISTED VERSION

For a character ψ of the unipotent part of h, we use O ∩ p−1
h (ψ) in place of O ∩ h⊥,

where ph : g∗ → h∗.
Examples: Shalika model, Klyachko models.

G = GLn supsetHk =

(
Sp2k ∗
0 Nn−2k

)
,

where Nn−2k is the unipotent radical of the Bore subgroup of GLn−2k, and ψ is a generic
character of Nn−2k.

Theorem 4.1 ([OS08]). Every π in the discrete spectrum has a non-vanishing Klyachko
period for exactly one k, and this peirod is Eulerian.

They describe the k explicitly, and this is compatible with the twisted version of
Conjecture 0.2.

5. INTEGRAL KERNELS

Let H = H1 ×H2⊂G be reductive. Let Θ be an automorphic function on G(A). Define
transfer of representations of H1(A) to representations of H2(A) by sending τ into the
representation σ spanned by all functions of the form

(5.1) f(h2) =

∫
[H1]

φ(h1)Θ(h1h2)dh1, φ ∈ τ

Friedberg and Ginzburg suggest the following criterion for this correspondence to be
useful and meaningful:

(5.2) dimσ = dim τ + dimΘ− dimH1

Assume that V(Θ) is the closure of a single orbit OΘ. Let pi : OΘ↠h∗i denote the
restrictions to OΘ of the natural projections g↠hi.

We suggest to require that 3 conditions hold:
(a) p1(OΘ) = h∗1
(b) dim p−1

1 (V(τ)) = dim p−1
1 (V(τ)) ∩ p−1

2 (V(σ))
(c) ∆h⊂h× g is V(τ)× V(σ)× V(Θ)-adapted.
Examples: Θ-correspondence, doubling.
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ON A BRAIDED MONOIDAL HALL 2-CATEGORY

QUOC P. HO

Classification AMS 2020: Primary 20C08, 18N25, 18N65. Secondary 57K18.

Keywords: Hall algebras, braided monoidal categories, Hecke categories,
categorification, 2-Segal objects.

The lecture reported on a joint research program in progress with Jonte Gödicke, Yang
Hu, and Walker Stern, whose aim is to provide a novel mechanism to construct braided
monoidal (∞, 2)-categories, refining the classical Hall algebra construction.

1. 2-SEGAL OBJECTS, WALDHAUSEN S• CONSTRUCTION, AND HALL ALGEBRAS

Let C be a category with finite limits. It has been understood by Dyckerhoff and
Kapranov in [1] (and subsequently refined by Stern and Jonte in [2, 3]) that 2-Segal
objects in a category C, which are simplicial objects satisfying certain Segal-like
conditions, are the same as algebra objects in the category of correspondences in C.
These algebra objects can then be turned into more conventional algebra objects via a
certain linearization procedure.

An abundant source of 2-Segal objects is given by the Waldhausen S• construction
applied to suitable input data, such as abelian categories and stable ∞-categories. Upon
linearization, the resulting algebra objects are usually referred to as Hall algebras, which
have been studied extensively in representation theory.

The key observation of our work is that the Waldhausen S• construction can be
iterated, resulting in n-fold 2-Segal objects. Focusing on the case where n = 2, we show
that the resulting double 2-Segal objects give rise to lax braided algebra objects (or
more precisely, lax E2-algebra objects) in the category of higher correspondences. Very
roughly speaking, the term lax refers to the fact that the braiding is not required to be
invertible.

As part of our work, we also construct a linearization procedure which is a lax
symmetric monoidal (∞, 2) functor from the (∞, 2)-category of higher correspondences
in stacks to the category of (∞, 2)-categories, leveraging [4], for example. This allows
us to obtain a new class of lax braided monoidal (∞, 2)-categories.

2. SOME APPLICATIONS

We were motivated by a question posed by Elias and Tolmachov in [5, 6] regarding
the existence of a monoidal functor from the affine Hecke category to the finite Hecke
category for GLn. The main idea behind our approach comes from factorization
homology, necessitating the construction of a certain (∞, 2)-category built out of finite
Hecke categories for GLn, for all n together. Affine Hecke categories would then appear
from taking the factorization homology of this braided monoidal category over an
annulus. The conjectural functor would then be induced by the inclusion of the annulus
back to the 2-dimensional disk.
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From the perspective of Soergel bimodules, such a braided monoidal (∞, 2)-category
was already constructed by hand in [7], using obstruction theoretic methods.
Nonetheless, computing factorization homology is known to be much easier once we
have a geometric model, as already seen in my previous work [8, 9], ultimately inspired
by Ben-Zvi–Nadler’s work in the Betti Geometric Langlands program [10, 11, 12]. As a
direct consequence for the general paradigm discussed above, we obtain a geometric
construction of this braided monoidal (∞, 2)-category.

Our work also has applications to the study of categorified representations of
categorified quantum groups, which will appear in a forthcoming work.
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DESIDERATA AND UNIQUENESS OF LOCAL LANGLANDS CORRESPONDENCE

CHI-HENG LO

Classification AMS 2020:22E50, 11F70

Keywords: Local Langlands correspondence

The local Langlands conjecture predicts a ”canonical” bijection between the set of
smooth irreducible representations of a p-adic reductive algebraic group G and the set
of enhanced L-parameters of G, known as the local Langlands correspondence (LLC).
There are several constructions of LLC in the literature, either on specific types of
groups or on special classes of representations. We refer to [Tai25, §6.6] for a
non-exhaustive summary of known cases. The comparison between different
constructions of LLC is a non-trivial problem. In this talk, I reported on joint work with
Tasho Kaletha and Cheng-Chiang Tsai, where we collect a list of desiderata of LLC for
general quasi-split p-adic group G from the literature. Our main theorem shows that,
when the residue characteristic of the p-adic field F is sufficiently large, any LLC
satisfying these desiderata is unique (if it exists). This provides a unified framework for
comparing different LLC.

We now introduce the notation needed to formulate the desiderata and the main
theorem precisely. Let F be a finite extension of Qp, and let G be a connected reductive
algebraic group defined and quasi-split over F . For simplicity, we do not distinguish
between G and its group of F -points. Denote by Ĝ the complex dual group of G, and by
LG its Langlands dual group. Let Π(G) be the set of irreducible smooth representations
of G, and Φ(G) the set of L-parameters for G, i.e. the set of Ĝ-conjugacy classes of
admissible homomorphisms

ϕ : WF × SL2 −→ LG.

To each L-parameter ϕ, we attach an infinitesimal parameter (L-parameter trivial on
SL2)

λϕ(w) := ϕ

(
w,

(
|w|1/2

|w|−1/2

))
, w ∈ WF ,

and define the component group

Sϕ := π0(ZĜ(ϕ)/Z(Ĝ)Γ).

An enhanced L-parameter of G is a pair (ϕ, ϵ) consisting of ϕ ∈ Φ(G) and an irreducible
representation ϵ of Sϕ. We denote the set of all such pairs by Φe(G).

A local Langlands correspondence (resp. enhanced local Langlands correspondence) is
a surjective (resp. bijective) map

LLCG : Π(G) −→ Φ(G) (resp. LLCe
G : Π(G) −→ Φe(G)).

For a parameter ϕ, we write Πϕ := LLC−1
G (ϕ) for the corresponding L-packet. Finally,

denote by L(G) the set of standard Levi subgroups of G. We shall consider a compatible
system of local Langlands correspondences {LLCM}M∈L(G).
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For π ∈ Π(G) and ϕ ∈ Φ(G), we write π ↔ (Pπ, πt, νπ) and ϕ ↔ (Pϕ, ϕt, νϕ) for
the Langlands classification for representations (see [Kon03]) and for L-parameters (see
[SZ18]). We let M(π) = IndG

Pπ
πt⊗νπ (normalized induction) denote the standard module

of π.
Now we state our list of desiderata for LLC. We fix a choice of Whittaker datum w of

G for simplicity.

(LC) Suppose that LLCG(π) = ϕ, π ↔ (Pπ, πt, νπ), and ϕ ↔ (Pϕ, ϕt, νϕ). Then Pπ = Pϕ,
νπ = νϕ and LLCM(πt) = ϕt. (See [SZ18, §7.2])

(Inf) Let π1, π2 ∈ Π(G). If the standard module M(π1) is w-generic and π2 is the
unique w-generic subquotient of M(π1), then λLLCG(π1) = λLLCG(π2). (See [Hai14,
Conjecture 5.2.2])

(IT) If π is a subquotient of IndG
Pσ for some tempered representation σ of M , then

LLCG(π) = (LM ↪→ LG) ◦ LLCM(σ).
(Ka) If π is generic F -non-singular supercuspidal, then LLCG(π) coincides with the one

constructed in [Kal19].
(Sh) For each tempered L-parameter ϕ, the L-packet Πϕ contains a unique w-generic

member πgen. (See [Sha90, Conjecture 9.4])
(Disc) Let Πdisc(G) denote the set of discrete series representations of G and let Φdisc(G)

denote the set of discrete L-parameters of G. Then Πdisc(G) =
⊔

ϕ∈Φdisc(G) Πϕ.
(St) For each discrete L-parameter ϕ, there exists a finite sum

ηϕ =
∑
π∈Πϕ

mππ,

which gives a stable distribution. Moreover, mπgen = 1.
(SAS) Suppose S = {πi}si=1 is a finite set of discrete series representations and {ai}si=1

is a set of nonzero complex numbers such that Θ :=
∑s

i=1 aiπi is a stable
distribution. Then, S is a disjoint union of discrete L-packets

S =
r⊔

j=1

Πϕj
, and Θ =

r∑
j=1

bjηϕj
.

(See [BY23, §4])

We prove that when p is sufficiently large (with respect to G), every F -non-singular
supercuspidal representation is generic with respect to some Whittaker datum. This is
the main ingredient of the proof of the following theorem on the uniqueness of the local
Langlands correspondence.

Theorem 0.1. Assume that p ≫ 0. Then the local Langlands correspondence {LLCM}M∈L(G)

satisfying the above desiderata is unique if it exists.

Next, we consider the uniqueness of the enhanced local Langlands correspondence.
We shall consider the set of endoscopic groups of G, which we denote by E(G). The
enhanced local Langlands correspondence depends on a choice of Whittaker datum w of
G. Thus, we write

LLCe
G,w : Π(G)

bij.−→ Φe(G),

πw(ϕ, ε) 7−→ (ϕ, ε).
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We need one more desideratum on endoscopic character relation for tempered L-packets.
Suppose that ϕ is a tempered L-parameter of G. For each s ∈ Sϕ, take any preimage x ∈ Ĝ
and form an endoscopic group (G′, x). The L-parameter ϕ factors through LG′ as an L-
parameter ϕ′ of G′. We define ηϕ,x = TransG(G′,x)ηϕ′, the Langlands-Shelstad transfer from
G′ to G of the stable distribution ηϕ′. Here is the last desideratum we need.
(ECR) In the above setting, the distribution ηϕ,x depends only on s. Hence, we write

ηϕ,s := ηϕ,x. Moreover, we have

πw(ϕ, ε) =
1

|Sϕ|
∑
s∈Sϕ

trace(ε(s))ηϕ,s.

Here is our main result on the uniqueness of the enhanced local Langlands
correspondence.

Theorem 0.2. Assume that p ≫ 0. Then the enhanced local Langlands correspondence
{LLCe

G′,w′}G′∈E(G) satisfying the desiderata (LC), (Inf), (IT), (Ka), (Sh), (Disc), (St), (SAS),
(ECR) is unique if it exists.

We also show that our list of desiderata automatically implies several other desiderata
in the literature. These include the recipe for computing the central character [GR10,
§8.2], the Adams–Vogan conjecture on the contragredient of L-packets [AV16], the
decomposition formula for parabolic induction of tempered representations, and the
recipe describing the change of Whittaker datum.
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EXTENSIONS OF HARISH-CHANDRA MODULES AND A-PACKETS

ARVIND NAIR

Classification AMS 2020: 22E45 (primary), 11F75 (secondary)

Keywords: Extensions, Harish-Chandra modules, Arthur packets, cohomological
representations

Let G be a connected reductive real algebraic group, G(R) its group of real points, g
the complexified Lie algebra of G(R), and K ⊂ G(R) a maximal compact subgroup with
associated Cartan involution θ. Let Gu be the compact form of G(R) containing K.

Let M (g, K) be the category of (g, K)-modules and let H (g, K) be the full subcategory
of Harish-Chandra modules (i.e. finite-length objects in M (g, K)). We discuss some
results showing that the groups Exti(g,K)(V,W ) := ExtiM (g,K)(V,W ) behave well for those
modules which are (expected to be) the Archimedean components of automorphic forms,
i.e. for Harish-Chandra modules belonging to Arthur packets.

Unitary cohomological representations. An irreducible (g, K)-module V is
cohomological if Ext∗(g,K)(E, V ) 6= {0} for some finite-dimensional irreducible algebraic
representation of G(C), in which case the infinitesimal character of V agrees with that
of E. We will assume E = C here; the case of general E reduces to this one by means of
translation functors. The irreducible unitary cohomological representations (i.e.
irreducible unitarizable (g, K)-modules) were classified by Vogan and Zuckerman [10]:
They are cohomologically induced modules RS

q (C) as q runs over the Lie algebras of
θ-stable parabolic subgroups for G, i.e. parabolics Q ⊂ G(C) for which θ(Q) = Q and
L = Q ∩ Q̄ is a Levi in Q (and in Q̄). Associated with a θ-stable parabolic Q are the Levi
L = Q∩ Q̄, the compact form Lu := Gu ∩L(C), the compact group KL := K ∩L(R), and
a KC-orbit O in the flag variety X of G(C). The orbit O associated with Q is defined as
follows: Let XQ be the generalized flag variety of parabolics of G(C) conjugate to Q,
and let πQ : X → XQ be the canonical map taking a Borel B to the unique B-standard
conjugate of Q. Then Q ∈ XQ has a closed KC-orbit, and its preimage in X is the
closure of a single KC-orbit, which is O. We will call orbits arising from θ-stable Q
parabolics special orbits.

Theorem 0.1. Let Q1 and Q2 be θ-stable parabolics and let qi, Li, Lui , KLi
be as above for

i = 1, 2. Let Oi ⊂ X be the special KC-orbit associated with Qi and let Ōi be its closure.
If Ō1 ∩ Ō2 = ∅ or, equivalently, if Q1 ∩ kQ2k

−1 is not parabolic for any k ∈ K then
Ext∗(g,K)(R

S1
q1

(C),RS2
q2

(C)) = {0}.
If Ō1 ∩ Ō2 6= ∅ then, replacing Q2 by a K-conjugate, we may assume that Q := Q1 ∩ Q2

is parabolic, and then

(0.1) Ext∗(g,K)(R
S1
q1

(C),RS2
q2

(C)) = H∗−dQ1,Q2 (Lu/KL)

where dQ1,Q2 = dimCO1 + dimCO2 − 2 dimC Ō1 ∩ Ō2 = 1
2

dimR L
u
1/KL1 + 1

2
dimR L

u
2/KL2 −

dimR L
u/KL.
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In particular, if Q1 = Q2 = Q we have dQ,Q = 0 and (0.1) is an isomorphism of rings.
In general, (0.1) is an isomorphism of bimodules for (H∗(Lu1/KL1), H

∗(Lu2/KL2)) via the
restrictions H∗(Lui /KLi

)→ H∗(Lu/KL) for i = 1, 2.

The theorem can be upgraded to an equivalence of categories. The full triangulated
subcategory generated by unitary cohomological representations

Dcoh :=
〈

RS
q (C)

∣∣ θ-stable Q
〉
⊂ Db(H (g, K))

is equivalent to a certain category of sheaves on K\Gu. Let O be the collection of
special KC-orbits in X. (This includes the closed orbits, which come from θ-stable
Borels). Fix x ∈ X belonging to a closed KC-orbit on X and let αx : Gu → X be the
orbit map gu 7→ gu · x. Then

{
K\α−1

x

(
Ō
)}

O∈O
is a collection of smooth connected closed

submanifolds of K\Gu which is closed under taking nonempty intersections. They
generate a stratification S of K\Gu. Define DS to be the following full subcategory of
the bounded derived category of S -constructible complexes of C-sheaves:

DS := {F ∈ Db
S (CK\Gu) : H i(F )|S is constant for S ∈ S } ⊂ Db

S (CK\Gu)

The dimensions of strata in S have the same parity as the discrete series defect δ (:=
rank of the R-split part of a maximally R-anisotropic maximal torus) of G. So if δ = 0
there is a well-defined middle perverse t-structure on DS .

Theorem 0.2. There is a natural equivalence of triangulated categories Dcoh ' DS . If
δ = 0 it relates the standard t-structure on Dcoh and the perverse t-structure on DS .

The proofs of Theorems 0.1 and 0.2 use Beilinson-Bernstein localization for derived
categories of (g, K)-modules – well-known results from [4, 5, 7] – and the properties
of special KC-orbits in the flag variety. The key point is the smoothness of the closures
of special KC-orbits, and of the intersections of these closures, which ensures that the
subtleties of Kazhdan-Lusztig-Vogan theory do not intervene.

Cohomological A-packets. For Harish-Chandra modules V,W let dimExt∗(g,K)(V,W ) :=∑
i≥0 dimExti(g,K)(V,W ). For a finite nonempty set Π of inequivalent (g, K)-modules, set

π(Π) :=
⊕

V ∈Π V . The special case Π1 = {C} of the following was proved in [8]:

Theorem 0.3. For cohomological A-packets Π1,Π2 with the same infinitesimal character,

(0.2) dimExt∗(g,K) (π(Π1), π(Π2)) = 2dimA

∣∣∣∣ W (G, T c)θ

W (G(R), T c(R))

∣∣∣∣
where T c = TA is a θ-stable fundamental (i.e. maximally anisotropic) torus in G with
anisotropic part T and split part A, W (G, T c) is the Weyl group of T c in G, W (G, T c)θ =
{w ∈ W (G, T c) : θw = wθ}, and W (G(R), T c(R)) = NG(R)(T

c(R))/T c(R).

Here by cohomological A-packets we mean the packets of unitary cohomological
representations defined by Adams and Johnson [2] (cf. [8] for a review). For the trivial
A-packet Π1 = Π2 = {C}, (0.2) asserts that

(0.3) dimExt∗(g,K)(C,C) = dimH∗(Gu/K) = 2dimA

∣∣∣∣ W (G, T c)θ

W (G(R), T c(R))

∣∣∣∣.
This is Theorem 14 of [8]. The proof of Theorem 0.3 bootstraps this identity using the
computation (0.1) in Theorem 0.1.
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The choice of Π1,Π2 as in Theorem 0.3 determines cohomological A-packets Π1(G′)
and Π2(G′) on the real points of any inner form G′ of G. Summing over the Vogan
packet, i.e. over pure inner forms of G gives the following (which is [8, Theorem 12]
when Π1 = {C} and follows from Theorem 0.3 by the same arguments made there)

Theorem 0.4. With notation as in Theorem 0.3,

(0.4)
∑

G′∈H1(R,G)

dimExt∗(g′,K′)(π(Π1(G′)), π(Π2(G′))) = |T c(R)2|

where T c(R)2 = {t ∈ T c(R) : t2 = e}.

Tempered representations. Tempered L-packets are A-packets, and for these we have:

Theorem 0.5. For tempered L-packets Π1,Π2 , Ext∗(g,K)(π(Π1), π(Π2)) 6= {0} ⇔ Π1 = Π2.

The proof of this theorem is similar to the computation in Theorem 0.3. The key point
is that the orbits in the flag variety corresponding to tempered representations are special
and the corresponding D-modules come from local systems on these special orbits which
are clean (i.e. their !-extension, !∗-extension, and ∗-extension to the orbit closure all
coincide). The theorem then follows by the same methods as earlier.

Parameters and the dual group. The numerical or nonvanishing results (Theorems 0.3,
0.4, 0.5) above can be reformulated nicely in terms of parameters, which also points the
way to generalizations. (It seems unlikely that explicit computations like Theorem 0.1
are possible in general.) Let WR be the Weil group of R and LG the L-group.

For an A-parameter ψ : WR × SL2(C) −→ LG, the tempered companion T (ψ) of ψ

is the composition WR
σ1−→ WR × SL2(C)

ψ−→ LG where σ1 : WR → LPGL(2,R) =
WR×SL2(C) is the L-parameter of the lowest discrete series representation of PGL(2,R)
(cf. [8, Definition 2]). The p-adic analogue of ψ 7→ T (ψ) is restriction of an A-parameter
ψ : WF×SL2(C)×SL2(C) → LG to WF×∆SL2(C). The following conjecture is then a
uniform statement for all local fields, although we only consider the Archimedean case:

Conjecture 0.6 (K. Y. Chan – D. Prasad). For G quasisplit and A-packets Π1,Π2 with
A-parameters ψ1, ψ2, Ext∗(g,K)(π(Π1), π(Π2)) 6= {0} if and only if T (ψ1) ∼= T (ψ2).

Corollary 0.7. The conjecture holds for (1) cohomological representations, or, more
generally, A-packets of representations with regular infinitesimal character and for (2)
tempered representations.

Here (1) is reduced to the cohomological case, where Theorem 0.3 and [8, Corollary 1]
(which identifies the tempered companions of cohomological A-parameters) do the job.
(2) follows from Theorem 0.5.

Here is a consequence of Theorem 0.4 reformulated in terms of parameters; it refines
a special case of the conjecture and is suggestive:

Corollary 0.8. If G is a pure inner form of a compact group, then for cohomological A-
packets Π1 and Π2 with parameters ψ1 and ψ2 with T (ψ1) ∼= T (ψ2) = φ, we have

(0.5)
∑

G′∈H1(R,G)

dimExt∗(g′,K′)(π(Π1(G′)), π(Π2(G′))) = |π0(C(φ)/Z(Ĝ))|

where C(φ) = {g ∈ Ĝ : Ad(g) ◦ φ ∼= φ} is the centralizer of the L-parameter φ.
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Twisted elliptic pairings and dual group geometry. Corollary 0.7 seems to be as far as
we can go using localization. To treat general A-packets in Conjecture 0.6, by which we
mean here the A-packets defined by Adams-Barbasch-Vogan [1] using the microlocal
geometry of the space of Langlands parameters, a different approach is needed. In the
talk we outlined such an approach, which is work in progress, based on twisted elliptic
pairings of characters and Vogan’s Kazhdan-Lusztig duality. The basic observation, first
made in the very special case (0.3) in [8], is that the θ acts on Exti(RS1

q1
(C),RS2

q2
(C)) is

by (−1)i+c1−c2 where ci = codimXOi (this follows from Theorem 0.1), so that
dimExt∗(RS1

q1
(C),RS2

q2
(C)) is ± the Lefschetz number of θ. Remarkably, this holds in

some generality: The recent work of Davis and Vilonen [6] shows that the unitarity of
(Hermitian) representations is completely characterized by the action of θ on the graded
pieces of the Hodge filtration: it is by a sign depending only on parity. This allows one
to compute θ on Ext groups and relate dimExt∗(π(Π1), π(Π2)) to elliptic pairings using
[3]. (Indeed, all the numerical results above e.g. Theorem 0.3 etc. are statements about
twisted elliptic pairings.) The natural thing to compute is the sum over pure inner
forms, i.e. the twisted elliptic pairings of Vogan A-packets, using the refined Langlands
parametrization in [1]. Vogan’s KL duality (cf. [1, §16]) can then be used to transfer the
computation to the dual side, i.e. to a geometric pairing of perverse sheaves on the
space of Langlands parameters defined in [1]. This being done, proving the criterion for
nonvanishing becomes a geometric problem. More naturally, as in Corollary 0.8, there is
an expression for dimExt∗ between Vogan packets in terms of the symmetry group of
the tempered companion parameter. At the moment we have checked that this
approach works in a special case, namely Conjecture 0.6 holds if one of Π1 or Π2 is
tempered. We expect that the general case can be treated, but this is work in progress.
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CONVEX ELEMENTS AND COHOMOLOGY OF DEEP LEVEL DELIGNE-LUSZTIG
VARIETIES

SIAN NIE
JOINT WITH IVANOV, PANJUN TAN AND QINGCHAO YU

Classification AMS 2020: 11S37, 20G25, 11G25.

Keywords: Convex elements, deep level Deligne-Lusztig varieties, Fargues-Scholze
paremeters.

Deligne-Lusztig varieties/representations have been a cornerstone in the
representation theory of finite reductive groups since their introduction in [2]. Lusztig’s
extension of these constructions to the p-adic setting, known as deep level
Deligne-Lusztig varieties/representations, has since become a major research focus. The
significance of these deep level analogs stems from their dual appeal: the varieties
themselves exhibit exceptional cohomological and arithmetic properties, while their
associated representations serve as key tools for realizing irreducible supercuspidal
representations of p-adic groups, particularly in advancing the local Langlands
correspondence. We refer to

In [1], Boyarchenko–Weinstein started a program toward a complete description of
the cohomology of deep level Deligne-Lusztig varieties. various related/partial results in
this direction were obtained in [3, 6, 4, 5, 8] on deep level Deligne–Lusztig varieties of
Coxeter type. To handle the general case, we introduce the notion of Convex elements in
Weyl groups, and then complete the program of Boyarchenko–Weinstein for deep level
Deligne–Lusztig varieties associated to convex elements.

We sketch the main results as follows.
First we introduce the definition of convex element

Definition 0.1 (Ivanov-Nie). Let Φ be root system and let W be its Weyl group. We fix a
set Φ+ of positive roots. Let σ be an automorphism of Φ. Let x ∈ Wσ be an elliptic element.
For γ ∈ Φ+ we define

nx(γ) := min{i ∈ Z≥1; x
i(γ) ∈ −Φ+}.

We say x is quasi-convex if

nx(α + β) ≤ max{nx(α), nx(β)}

for all α, β ∈ Φ± such that α + β ∈ Φ. Moreover, we say x is convex if both x and xı are
quasi-convex.

It is proved in [10] that convex elements afford very nice properties.

Theorem 0.2. [Nie-Tan-Yu] Let notation be as in Definition 0.1. We have
(1) Each elliptic W -conjugacy of Wσ has a Convex representative;
(2) Each convex element satisfies the Steinberg cross-section theorem.
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Let G be a reductive group over a p-adic field k, and let T be an unramified elliptic
torus of G. Let W denote the Weyl group of T in G. Fix another prime number ℓ ̸= p and
let Λ = {Qℓ,Fℓ}.

It is prove in [9] that there is an explicit description of the cohomology of deep level
Deligne-Lusztig varieties associated to convex elements.

Theorem 0.3 (Ivanov-Nie). Let X be a deep level Deligne-Lusztig variety associated to a
convex element in W . Let ϕ : T (k) → Λ× be a smooth character. Then we have

RΓc(X,Qℓ)[ϕ] ∼= ±κϕ ⊗RΓc(X̄,Λ)[ϕ−1],

where ±κϕ is the complex of the geometric Weil-Heisenberg representation associated to ϕ,
and RΓc(X̄,Λ)[ϕ−1] is the complex of certain classical Deligne-Lusztig representation.

As a consequence, if ϕ−1 is a non-singular character, then the above complex concentrates
at a single cohomological degree Nϕ ∈ Z≥0.

Combining the above results with [7, Corollary 10.4.2], the above result gives
description of the Fargues–Scholze parameters of modular supercuspidal
representations.

Corollary 0.4. Let T,X, ϕ be as in Theorem 0.2. Assume Λ = Fℓ and ϕ is a toral character,
Then

πT,ϕ := c-indG(k)
Z(k)Gx(Ok)

H
Nϕ
c (Xr, λ)[ϕ],

is an irreducible supercuspidal representation of G(k). Here Z is the center of G and Gx is
the parahoric group scheme, over the integer ring Ok of k, associated to T .

Moreover, the Fargues–Scholze parameter of πT,ϕ is

Wk

Lϕ−→ LT (λ)
Lϕ−→ LG(λ),

where Lϕ is the L-parameter given by class field theory and Lj is the canonical L-embedding
(notation as in [7, Theorem 10.4.1]).
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The lecture reported on a joint work done with Santosh Nadimpalli and Santosha
Pattanayak, [NPP]. This work calculates the character of an irreducible representation
of a complex reductive algebraic group G at any element of its principal SL2(C), in
particular, at principal elements of a maximal torus which operates on all simple roots by
the same scalar, giving us another proof of a theorem of Kostant on the character values
at the Coxeter conjugacy class, [Kos76], and more generally for any power of the Coxeter
element.

We prove that these principal elements of order m in the adjoint group have smallest
dimensional centralizer among elements of order m in the adjoint group. Our main
theorem on character values becomes sharper when these principal elements of order m
in the adjoint group are the only elements up to conjugacy having the smallest
dimensional centralizer among elements of order m in the adjoint group. This turns out
to be true for most groups if m|h, where h is the Coxeter number of G, though for
certain pairs (G,m) it fails.

We define a group G(m) which is the dual group of the (connected component of
identity of the) centralizer of the principal element of order m in the adjoint group of Ĝ,
which plays an important role in this work. Our main theorem on character values
depends on identifying a particular irreducible representation of the simply connected
cover of G(m)der, the derived subgroup of G(m), actually only its dimension, of highest
weight ρ/m − ρm (restricted to the maximal torus of G(m)der where it is integral),
involving half-sum of positive roots of G and G(m), which in turn depends on the
precise heights of the simple roots in the centralizer of the powers of the Coxeter
element. A preliminary analysis due to us is completed by Patrick Polo in [Polo].
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[Serre] J.-P. Serre, Zéros de caractères, arXiv:2312.17551.

D.P.: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI-400076
Email address: prasad.dipendra@gmail.com

Page 25



GLUING CLUSTER STRUCTURES

GUS SCHRADER

Fock and Goncharov [FG09a, FG09b, FG10] have constructed a quantization of higher
rank Teichmüller theory based on the cluster Poisson structure on the moduli space of
decorated G = PGLn(C)-local systems on a marked surface S introduced in their earlier
work [FG06]. Such a cluster Poisson variety admits a ‘chartwise’ non-commutative defor-
mation, in which the combinatorics of the cluster atlas is used to construct something like
a non-commutative scheme where each chart in the atlas is assigned a non-commutative
‘quantum torus algebra’ T q defined over Z[q±1], whose q = 1 specialization recovers the
coordinate ring of the chart in question. For a pair of charts related by a single mutation,
it was explained in [FG09a] that there exists a non-commutative analog of the classical
gluing map, defined using the quantum dilogarithm function. Taking ‘global sections’ of
the resulting object yields a single non-commutative algebra L known as the quantum
universal Laurent ring associated to the cluster Poisson variety, which consists of elements
that are skew Laurent polynomials in every quantum torus in the cluster atlas. Moreover,
any symmetry of the classical variety which can be realized via cluster transformations
automatically extends to an automorphism of L.

In this way, given a pair (G,S) as above Fock and Goncharov construct in [FG09a]
a non-commutative algebra LG,S carrying an action of the mapping class group ΓS by
quantum cluster transformations. In the same paper, Fock and Goncharov conjectured
that for fixed G, the assignment S ⇝ LG,S should behave like an algebraic analog of a
modular functor in 2D conformal field theory in the following sense.

Each interior ‘puncture’ point p on S gives rise to a central (and thus mutation-invariant)
subalgebra RT (p) ⊂ LG,S isomorphic to the representation ring of the maximal torus T of
G. Moreover, whenever p is not the only special point on its connected component there
is also an action of the Weyl group WG on LG,S by cluster transformations, which restricts
to the reflection representation on the central subalgebra RT (p). Hence the subalgebra
of invariants RG(p) = RT (p)

Wp gives a canonical copy of the representation ring of G
associated to each such puncture.

Now suppose that c is a simple closed curve on S, and S ′ the surface obtained by cut-
ting S open along c, and S◦ the surface obtained by shrinking the corresponding bound-
ary circles c± on S ′ to punctures p±. Then there is a central ideal Ic ⊂ LG,S′ generated
by the relations χp+ = χ∗

p− identifying the central element in RT (p+) corresponding to a
character χ with the dual character in RT (p−). Assuming that neither of p± is the only
special point on its connected component in S ′, we have an action of the product of Weyl
groups Wp+ × Wp−, and the ideal Ic is preserved by the diagonal subgroup W (c). The
centralizer ΓS;c of the Dehn twist along c in the mapping class group ΓS can be identified
with the quotient of the mapping class group ΓS′ by the central subgroup generated by
the product τc+τc− of Dehn twists along c±.

Conjecture 0.1. [Algebraic modular functor conjecture for G = PGLn; see [FG09a] Section
6.2, [GS19] Conjectures 2.27 and 2.29.] For any essential simple closed curve c as above,
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there is a canonical subalgebra RG(c) ⊂ LG,S, and an isomorphism of algebras

ηc : LRG(c)
G,S ≃ (LG,S′/Ic)

W (c)(0.1)

where LRG(c)
G,S denotes the centralizer of RG(c) in LG,S. The map (0.1) is equivariant with

respect to the action of ΓS;c by cluster transformations on both sides, and restricts to an
isomorphism RG(c) ≃ RG(p).

In this talk we describe the proof of this conjecture obtained in the joint work [SS25]
with A. Shapiro. Our proof requires introducing an enhanced version of the moduli space
of decorated local systems incorporating extra data associated to the boundary compo-
nents c± created when cutting S along c. When G = PGL2(C), the extra data in the new
moduli space can be roughly thought of as incorporating ‘twist’ coordinates canonically
conjugate to the ‘length coordinates’ coming from the copies of RT (c±) associated to the
c± as in [Mir07, AM24]. In order to construct the quantization of the enhanced moduli
space we need to go beyond the standard theory of cluster algebras and work with a
new object we call the residue universal Laurent ring. It is obtained by localizing LG,S′ at
a canonical mutation-invariant collection of divisors Ø(c±), taking invariants for W (c±),
and then passing to the subalgebra consisting of elements having only simple poles at
each such divisor with residues satisfying a certain symmetry condition related to the
affine Weyl group similar to the ones introduced in [GKV97] in the study of affine Hecke
algebras. With these definitions, we in fact prove the following stronger result allowing
us to completely reconstruct LG,S in terms of data associated to the cut surface S ′:

Main Theorem. Let (G,S, c) be as in Conjecture 0.1. Then there is a ΓS;c equivariant
algebra isomorphism

ηc : LG,S ≃ LG,S′;ϕ.(0.2)

The isomorphism ηc is constructed using a version of the Whittaker transform for the
Uq(sln) open Toda integrable system, and the mapping class group equivariance is de-
duced as a consequence of identities satisfied by the Uq(sln) Whittaker functions, gener-
alizing the (generating function of all) Pieri rules. We also discuss an interesting special
case of the Theorem is when S is a punctured disk with two boundary marked points
(cf [SS19]), so that the corresponding universal Laurent ring is a variant of the quan-
tum group Uq(sln). As we will explain in the talk, the isomorphism (0.2) can then be
understood as an explicit ‘universal Clebsch-Gordan intertwiner’ for the quantum group.
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BRAID GROUP SYMMETRIES ON POISSON ALGEBRAS ARISING FROM
QUANTUM SYMMETRIC PAIRS

JINFENG SONG

For a complex semisimple Lie algebra g, the associated Drinfeld-Jimbo quantum group
U = Uq(g) is a central object in modern mathematics. Let A = Z[q±1/2]. The quantum
group U admits two well-known integral A-forms: one, introduced by Lusztig, specializes
to the universal enveloping algebra U(g) at q = 1; the other arises from the work of De
Concini–Kac in the study of the quantum groups at roots of unity. It was proved by De
Concini–Kac–Procesi [DCKP92] that after rescaling, the De Concini–Kac form specializes
at q = 1 to the coordinate algebra C[G∗] for the dual Poisson-Lie group G∗. This builds a
direct connection between the rescaled De Concini–Kac form and Poisson geometry. We
refer to the rescaled De Concini–Kac form as the DCKP-integral form, and denote it by
UA.

Let θ be an algebra involution on g and gθ ⊂ g be the fixed-point subalgebra.
Associated with a symmetric pair (g, gθ), the quantum symmetric pair (U,Uı), introduced
by Letzter, consists of the quantum group U and a coideal subalgebra Uı ⊂ U, called an
ıquantum group. Proposed by Bao–Wang, ıquantum groups can be viewed as vast
generalizations of quantum groups, and the ıprogram aims at generalizing fundamental
constructions on quantum groups to ıquantum groups.

The Lusztig-type integral form on modified ıquantum groups was introduced by Bao
and Wang [BW18] in the study of the ıcanonical basis, and it has been extensively studied
over the last decade in representation theory, categorification, and geometry.

On the other hand, to relate ıquantum groups with Poisson geometry, one is forced to
consider the DCKP-type integral form Uı

A, which was introduced recently [So24], defined
by Uı

A = UA ∩ Uı. This integral form Uı
A specializes to the coordinate algebra of the

Poisson homogeneous space K⊥\G∗, and it has revealed exciting connections with cluster
algebras. Unlike the Lusztig-type integral form, the DCKP-type integral form Uı

A has not
been deeply studied, and its basic algebraic properties remain unclear.

In this talk, we study the DCKP-type integral form for Uı, as well as its semi-classical
limit. We establish relative braid group symmetries and PBW bases on this integral form.
By taking the semi-classical limit, we obtain relative braid group symmetries and a set
of polynomial generators on the coordinate Poisson algebra C[K⊥\G∗]. This allows us to
describe the Poisson bracket on K⊥\G∗ explicitly.

It is well-known that UA is invariant under Lusztig’s braid group symmetries and that
there exists a rescaled PBW basis of UA established using braid group symmetries. As a
generalization of Lusztig braid group symmetries on quantum groups, relative braid
group symmetries Ti on Uı were systematically constructed for arbitrary finite type by
Wang–Zhang [WZ23]. Using the relative braid group symmetries, a PBW basis was
constructed on Uı in [LYZ25].
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Therefore, it is natural to expect that the DCKP-type integral form Uı
A is invariant

under the relative braid group symmetries and admits a (rescaled) PBW basis in general.
In this talk we settles this problem for Uı

A′ where A′ is a certain localization of A.

Theorem 0.1. Let (U,Uı) be a quantum symmetric pair of arbitrary type.
(1) The relative braid group symmetries Ti on Uı preserve the integral form Uı

A′.
(2) There exists a rescaled PBW basis for Uı

A′. In particular, the root vectors arising from
the rescaled PBW basis form a finite generating set of Uı

A′ as an A′-algebra.

Let us briefly explain the ideas in the proof. The difficulty is that Uı
A′ is not

automatically equipped with a finite generating set and it is hard to directly establish a
generating set without the relative braid group symmetries. However, in the q = 1 case,
if one allows the use of Poisson brackets, then a finite set of Poisson generators for
C[K⊥\G∗] has been obtained in [So24]. Motivated by this result, we introduce the
rescaled q-commutator as a q-analog of the Poisson bracket. Then we show that there is a
finite set G such that any element of Uı

A′ can be obtained by taking algebraic operations
and rescaled q-commutators of elements in G. Therefore, to show the integrability of Ti,
it suffices to check formulas of Ti(x) for x ∈ G and this can be done directly.

Let us mention some future directions. The DCKP-type integral forms are closely
related to the quantum groups at roots of unity. In [DCP93], the authors showed that
the Poisson algebra C[G∗] can be identified with a central subalgebra of Uϵ, the quantum
group at roots of unity. This central subalgebra is crucial in the study of representations
of Uϵ. In a future work, we will see the relation between the Poisson algebra P and the
ıquantum group at roots of unity. The rescaled PBW bases are crucial for the cluster
realization of quantum groups and ıquantum groups. We expect that our results provide
fundamental ingredients for the cluster realization of ıquantum groups of general types.

Classification AMS 2020: 17B37, 17B63

Keywords: Quantum symmetric pair, Poisson algebra, Braid group action, PBW basis
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WAVE-FRONT SETS FOR A REDUCTIVE GROUP OVER A LOCAL FIELD

CHENG-CHIANG TSAI

Classification AMS 2020: 22E50

Keywords: wave-front sets, asymptotic cones

Let F be a local field, for simplicity assuming char(F ) = 0. Let G be a connected
reductive group over F . When F is p-adic we furthermore assume that p ≫ rankF̄ G.
We are interested in irreducible admissible complex representations of G := G(F ). Let
π be such a representation. Its character Θπ is an invariant distribution on G, i.e. a
G-(conjugation-)invariant linear functional on the space of test functions on G.

Let g := (LieG)(F ) be the Lie algebra and g∗ := (LieG)∗(F ) the (linear) dual. Let
(g∗)nil ⊂ g∗ be the nilpotent cone. There is a notion of WF(π), the wave-front set
of π (see e.g. [BV80] for F archimedean and [BM97] for F non-archimedean). It is an
Ad∗(G)-invariant closed subset of (g∗)nil that roughly speaking measures the (asymptotic)
support of the Fourier transform of Θπ.

When F is archimedean, WF(π) is related to associated varieties and are known to be
an important invariant of π. When F is non-archimedean, it is known by [MW87] that
WF(π) almost describes the existence of degenerate Whittaker models. Besides the local
character and the degenerate Whittaker models (including Whittaker models as a special
case), there are many examples in which WF(π) for certain collection of π is related to
the enhanced Langlands parameter or other arithmetic properties. Such kind of result
for general π is not available yet to the best of our knowledge.

Let T ⊂ G be a maximal torus and θ : T → C× a “general position” unitary character.
With appropriate setup we can consider the functorial lift from T to G. This will be
an irreducible representation π(T,θ) of G; for example when T is contained in a Borel
subgroup it is given by the parabolic induction, when T is elliptic and F = R it is given
by cohomological induction, and when T is elliptic and F is p-adic this is the regular
supercuspidal representations of Kaletha [Kal19]. What is in common in all these cases
is that WF(πT,θ) has the following description: There exists an element Xθ ∈ t∗ ⊂ g∗ (the
dual Lie algebra of T ) such that

(0.1) WF(π(T,θ)) = AC(Xθ) := (g∗)nil ∩ ((F×)2 · Ad∗(G)Xθ).

Here AC(Xθ) is called the asymptotic cone of the orbit Ad∗(G)Xθ ⊂ g∗. It is very
difficult to compute in general. When F = R, there is an algorithm to compute it, which
makes uses of the Kostant-Sekiguchi correspondence and also the formalism of Cartan
decomposition. In particular, it is crucial that a real Lie group has a unique conjugacy
class of maximal compact subgroups.
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In [Tsa23], we give a badly complicated algorithm to compute AC(X)1 for any X ∈ g∗.
One feature of the algorithm is that it makes use of Bruhat-Tits theory, and the fact that
G can have more than one conjugacy classes of maximal compact subgroups is reflected.
In the talk we explain this feature.

In particular, in [Tsa23, Example 6.2] we consider the following: Denote by ϖF ∈ F
be a fixed uniformizer. Fix an integer n ≥ 6. Let G = Un be a unitary group over F that
splits over the quadratic unramified extension E/F , given by the following hermitian
form:

(0.2) ⟨x, y⟩ = x1ȳ1 + ...+ xn−1ȳn−1 +ϖFxnȳn.

Note that there is an additional ϖF for the n-th coordinate. Fix λ1, λ2, ..., λn ∈ O×
E with

distinct non-zero residues such that TrE/F λi = 0. Consider the following diagonal
elements

X−1 := ϖ−1
F ·


0

0
λ3

λ4

...
λn



X0 :=


λ1

λ2

0
0

...
0

, X := X−1 +X0.

Then, in the calculation of the asymptotic cone of Ad∗(G)(X), two different maximal
compact subgroups of G = Un(E/F ) will contribute, eventually making AC(X) the union
of the closure of a (n − 3, 3)-orbit and the closure of another (n − 2, 1, 1)-orbit. This is
the first known example for which p is arbitrarily large and the wave-front set consists of
two orbits whose geometric orbits are incomparable.
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LEVEL-RANK DUALITIES FROM D-HARISH-CHANDRA SERIES

TING XUE

Classification AMS 2020: 20G99, 14L99

Keywords: Affine Springer fibers, character sheaves, rational Cherednik algebras,
cyclotomic Hecke algebras

In this talk we explain a conjectural generalisation of Uglov’s level-rank (Koszul)
duality that arises from d-Harish-Chandra series introduced by Broué-Malle-Michel. We
discuss connections with character sheaves for graded Lie algebras and Oblomkov-Yun’s
construction of rational Cherednik algebra modules using affine Springer fibres. This is
based on joint work with Minh-Tam Trinh [5].

1. D-HARISH-CHANDRA SERIES

Let G be a connected reductive group defined over an algebraically closed field Fq of
characteristic p. For simplicity, we will assume that G is split over Fq. Let F : G → G
be the Frobenius morphism and G = GF . By the work of Deligne and Lusztig, there are
induction and restriction maps

RG
L : Z Irr(L)→ Z Irr(G), ∗RG

L : Z Irr(G)→ Z Irr(L)

where L is an F -stable Levi subgroup of G and L = LF . If L is contained in a F -stable
parabolic subgroup of G, then this is the usual Harish-Chandra induction and restriction.

Consider the set of unipotent irreducible representations of G

Uch(G) = {ρ ∈ Irr(G) | (ρ : RG
T (1)) ̸= 0 for some F -stable maximal torus T ⊂ G}

where 1 denotes the trivial representation of T = TF . Lusztig has shown that the set
Uch(G) can be parametrized in a way that is independent of q, and that only depends on
the Weyl group W of G.

Motivated by ℓ-modular representation theory of G at primes ℓ ̸= p,
Broué–Malle–Michel [2] show that there exists a decomposition of the set Uch(G) into
d-Harish-Chandra series for each positive integer d, with the case d = 1 being the usual
Harish-Chandra series.

Theorem 1.1 (Broué-Malle-Michel’93 [2]). For each positive integer d, there exists a
partition

Uch(G) =
∐

(L,λ) d-cuspidal pairs/∼

Uch(L,λ)d

where Uch(L,λ)d = {ρ | (ρ : RG
L λ) ̸= 0}. Moreover, there exist bijections

φ(L,λ)d : Uch(L,λ)d

∼−→ Irr(W(L,λ)d)

and signs
ε(L,λ)d : Uch(L,λ)d → {±1}

Date: 22 September, 2025.
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that are compatible with induction and restriction.

Here W(L,λ)d = ZWG
L
(λ) are the relative Weyl groups, where WG

L = NG(L)/L. They
are always complex reflection groups as shown by Broué-Malle-Michel. A d-cuspidal pair
consists of a d-split Levi L and λ ∈ Uch(L) such that ∗RL

Mλ = 0 for any d-split Levi
subgroup M ⊂ L. A d-split Levi is an F -stable Levi subgroup of the form L = ZG(T)◦ for
some d-torus T and a d-torus is an F -stable torus T ⊂ G such that the corresponding |T |
is a power of Φd(q).

Remark 1.2. d-HC series are non-trivial only if d is a singular number, that is, if the d-th
cyclotomic polynomial Φd(q) divides |G|.

Let ζd denote a primitive d-th root of unity.

Conjecture 1.3 (Broué-Malle’93 [1]). For each W(L,λ)d there is a generic cyclotomic Hecke
algebra H(L,λ)d(x) over Q̄[x±1/∞] such that

C⊗Q̄[x±1/∞ H(L,λ)d(x)|x7→ζd
∼= CW(L,λ)d

and such that Q̄ℓ ⊗Q̄[x±1/∞ H(L,λ)d(x)|x7→q is the endomorphism algebra of a Deligne-Lusztig
representation associated to (L, λ).

2. LEVEL-RANK (KOSZUL) DUALITY FROM d-HARISH-CHANDRA SERIES

Fix positive integers l ̸= m. Consider the following diagram

Uch(L,λ)l ∩Uch(M,µ)m
φ(L,λ)l

ss

φ(M,µ)m

++

Ψl

��

Ψm

��

Irr(W(L,λ)l)(M,µ)m

Tits deformation
��

υl,m
// Irr(W(M,µ)m)(L,λ)l

Tits deformation
��

∼
oo

K0(H(L,λ)l(x))(M,µ)m

dζm x7→ζm

��

K0(H(M,µ)m(x))(L,λ)l

dζlx7→ζl

��

Orat
(M,µ)m

(W(L,λ)l)
Koszul←−−→ Orat

(L,λ)l
(W(M,µ)m)

KZ
ss

KZ
++

K0(H(L,λ)l(ζm))(M,µ)m K0(H(M,µ)m(ζl))(L,λ)l

where dζm and dζl are decomposition maps, Orat
(M,µ)m

(W(L,λ)l) denotes a block (specified
by (M, µ)m) of the category O of a rational Cherednik algebra Hrat(W(L,λ)l), similarly for
Orat

(L,λ)l
(W(M,µ)m).

Conjecture 2.1 (Trinh-X.[5]). (1) The image of Ψl, resp. Ψm, is a union of blocks of
the specialised Hecke algebra H(L,λ)d(ζm), resp. H(M,µ)m(ζl).

(2) The bijection υl,m categorifies to a derived (Koszul) equivalence between highest
weight covers of respective blocks of RepH(L,λ)d(ζm) and RepH(M,µ)m(ζl), that is,
an equivalence between Db(Orat

(M,µ)m
(W(L,λ)l)) and Db(Orat

(L,λ)l
(W(M,µ)m)).

Theorem 2.2 (Trinh-X.[5]). When l and m is coprime, the above conjecture holds for GLn

(and GUn). In particular, the image of Ψl (or Ψm) is a single block.
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The complex reflection groups involved in Theorem 2.2 are of the form SN ⋉ (Z/d)N .
To prove the theorem, we use Lyle-Mathas’ classification of blocks of cyclotomic Hecke
algebras attached to SN ⋉ (Z/d)N at roots of unity. We show that the bijections υl,m are
Uglov’s level-rank duality bijections, and make use of the level-rank duality conjectured
by Chuang-Miyachi and proved by Rouquier-Shan-Varagnolo-Vasserot, Shan-Varagnolo-
Vasserot, Losev and Webster.

Remark 2.3. Our conjecture generalises level-rank duality from complex reflection groups
SN ⋉ (Z/d)N to complex reflection groups of exceptional types.

Remark 2.4. Recently Chlouveraki-Malle have verified that part (1) of the conjecture holds
for exceptional groups. They also extend the result to Suzuki-Ree groups.

3. CONNECTIONS WITH CHARACTER SHEAVES ON GRADED LIE ALGEBRAS AND AFFINE

SPRINGER FIBERS

In this section let G be a simply connected almost simple algebraic group over C. For
each regular elliptic number m of G, there exists a unique (up to conjugacy) order m
automorphism θ : G → G that is GIT-stable. Let g = LieG and g = ⊕i∈Z/mgi the grading
induced by θ. GIT-stable means that the action of G0 := Gθ on g1 has stable vectors.
Vinberg shows that (for general Z/m-graded Lie algebras) there exists Cartan subspace
a ⊂ g1 such that

g1//G0
∼= a/C

where C = NG0(a)/ZG0(a) is a complex reflection group.
Define character sheaves on g1 to be the Fourier transform of simple G0-equivariant

perverse sheaves on the nilpotent cone gnil−1, where the Fourier transform is the functor
Four : PervG0(g

nil
−1) → PervG0(g1) (we identify g∗−1 with g1). In our study of character

sheaves on g1, we consider the nearby cycle sheaf P ∈ PervG0(g
nil
−1) associated to the

adjoint quotient map f : g−1 → g−1//G0.

Theorem 3.1 (Grinberg-Vilonen-X.[3], Vilonen-X.[6]).

Four(P ) ∼= IC(grs1 ,HC)

whereHC is a Hecke algebra associated to the complex reflection group C with explicit Hecke
relations.

Here we have πG0
1 (grs1 ) ∼= BrC ⋉ I, where I is a finite abelian group and BrC is the

braid group associated to C.
Combining the above theorem with theorems of Lusztig-Yun, W. Liu, and Etingof, we

obtain (restricting attention to cuspidal character sheaves in the principal block where I
acts trivially)

(3.1) Charcusp
G0

(g1)p,st //

∼
��

SPervcusp
G0

(gnil
−1)p,st

Four

∼
oo

∼
��

Irrp(HC) ∼
// Irrf.d.p (Hrat

1
m

(W ))
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Returning to d-HC series, let A be a 1-split maximal torus and T a m-split maximal
torus. We observe that

the relative Weyl groups W(A,1)1 = W and W(T,1)m = C

the block of category O of rational Cherednik algebras Orat
(T,1)m

(W ) = Op(H
rat
1
m

(W ))

and the specialised Hecke algebra and H(T,1)m(1)
∼= HC .

We conjecture that the bijection in the bottom row of (3.1) is induced by the (1,m)-
duality conjecture discussed in §2.

Now we turn to affine Springer fibers. Let γ ∈ g(C((t))) be an elliptic regular
semisimple element, homogeneous of slope ν = 1/m. Let Spγ ⊂ Fℓ be the affine
Springer fiber at γ contained in the affine flag variety.

Theorem 3.2 (Oblomkov-Yun[4]). The stable part H∗
ϵ=1(Spγ)st of the specialised

Gm-equivariant cohomology of Spγ has a perverse filtration such that the associated graded
Grp∗ H

∗
ϵ=1(Spγ)st has a commuting action of the rational Cherednik algebra Hrat

1
m

(W ) and
the braid group BrC .

Let us write Eν,γ = t− dimSpγ
∑

i,j(−1)itj Grpj H
i
ϵ=1(Spγ)st.

Conjecture 3.3 (Trinh-X.[5]). (i) The action of the braid group BrC on Eν,γ factors
through H(T,1)m(1)

∼= HC .
(ii) In the appropriate Grothendieck groups, we have

[Eν,γ] =
∑

ρ∈Uch(A,1)1
∩Uch(T,1)m

ε(T,1)m(ρ)[∆ν(φ(A,1)1(ρ))⊗ S(φ(T,1)m(ρ))]

where ∆ν(χ) denotes the standard module of Hrat
1
m

(W ) corresponding to χ ∈ IrrW and S(E)

denotes the Specht module of H(T,1)m(1)
∼= HC corresponding to E ∈ IrrC.

We further expect that

[Eν,γ] =
∑

τ∈Irrf.d.p (Hrat
1
m

(W )), σ∈Irrp(HC), τ↔σ

ϵτ,σ[τ ⊗ σ]

where ϵτ,σ ∈ {±1} and the correspondence τ ↔ σ is given by the bottom arrow in (3.1).
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