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TOWARD BALLISTIC ACCELERATION FOR LOG-CONCAVE SAMPLING

SINHO CHEWI

Classification AMS 2020: 60H35, 65C05, 65C40

Keywords: Harnack inequality, hypocoercivity, log-concave sampling, shifted composition,
space-time Poincaré inequality, underdamped Langevin diffusion

This talk is based on a joint work with J. M. Altschuler and M. S. Zhang [4]]. We
consider the problem of sampling from a target density m < exp(—V) over R?, given
access to gradient evaluations of V. A standard approach to this problem is to discretize
the Langevin diffusion, which is the solution to the stochastic differential equation
dX, = —VV(X,)dt + v2dB,. If V?V = al = 0, then it is classical that the law p;
of X, converges toward the stationary distribution 7 with a quantitative decay rate:
(e || m) < exp(—2at) x* (o || ). Algorithmic implementation requires discretization,
and if we additionally impose the smoothness assumption V2V < I, then the continuous-
time decay rate is expected to yield algorithms for log-concave sampling with iteration
complexities scaling as O(k), where k := [/« is the condition number of the problem.
Obtaining algorithms which achieve this expected rate, as well as enjoying good scalings
with the ambient dimension and the target accuracy, has been the subject of intensive
research in the past decade [6].

What if we want to converge faster? The underdamped (or kinetic) Langevin dynamics
augments the state space with a momentum variable, leading to the SDE system
dX, = P, dt, dP, = {-VV(X,) — vP,} dt + /2y dB,;, where v > 0 is a friction coefficient.
Recently, these dynamics have been shown to achieve the “accelerated” convergence rate
(e || m) S exp(—=Q(y/at)) x*(uo || ), via a novel space-time Poincaré inequality [5]. For
algorithmic implementations, this is expected to yield algorithms with a dependence of
O(y/k) on the condition number, analogously to the acceleration phenomenon in convex
optimization. However, prior works on discretization analysis were too lossy to obtain
any result with o(x) dependence.

In our work, we build upon the shifted composition framework—introduced in our
prior works [1}, 2], 3[]—to address this problem. Our main result states that randomized
midpoint discretization, together with the space-time Poincaré inequality, leads to a
sampling algorithm with condition number dependence 5(55/ 6). The main challenge here
is that, compared to the simpler Langevin dynamics, adaptation of shifted composition
to the underdamped Langevin dynamics is considerably more challenging due to the
hypoelliptic nature of the latter process.

REFERENCES

[1] J. M. Altschuler, S. Chewi. Shifted composition I: Harnack and reverse transport inequalities. 2024.
IEEE Transactions on Information Theory, 1-1.

[2] J. M. Altschuler, S. Chewi. Shifted composition II: shift Harnack inequalities and curvature upper
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[3] J. M. Altschuler, S. Chewi. Shifted composition III: local error framework for KL divergence. 2024.
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[4] J. M. Altschuler, S. Chewi, M. S. Zhang. Shifted composition IV: underdamped Langevin and numerical
discretizations with partial acceleration. 2025. arXiv preprint 2506.23062.

[5] Y. Cao, J. Lu, L. Wang. On explicit L2-convergence rate estimate for underdamped Langevin dynamics.
2023. Arch. Ration. Mech. Anal., 247(5), 90.
[6] S. Chewi. Log-concave sampling. 2025+. Draft available online at https://chewisinho.github.iol
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DEEP TENSOR TRAIN APPROXIMATION OF TRANSPORT MAPS FOR BAYESIAN
INVERSE PROBLEMS

TIANGANG CUI, SERGEY DOLGOV, ROBERT SCHEICHL

Classification AMS 2020: 65D15, 65D32, 65C05, 65C40, 65C60, 62F15, 15A69, 15A23,
65N21, 65L09

Keywords: Rare events, Bayesian inference, inverse problems, tensor train, transport
maps

1. INTRODUCTION

Estimating expectations of random variables is central to uncertainty quantification,
but rare events—occurring with very small probabilities—pose significant challenges.
Standard Monte Carlo methods are inefficient because such events are seldom observed.
Importance sampling (IS) mitigates this by biasing the sampling distribution toward
rare events, yet designing effective importance distributions in high dimensions remains
difficult, especially for concentrated or multimodal densities.

We address this problem in the context of high-dimensional Bayesian inverse
problems, where expectations are taken with respect to posterior distributions
conditioned on data [1]. We introduce a deep importance sampling framework that
combines functional tensor-train (TT) decompositions with the deep inverse Rosenblatt
transport (IRT). The method constructs importance distributions as compositions of
TT-based maps, adaptively approximating the optimal IS density. @We provide a
theoretical analysis of variance and bias, and demonstrate scalability and accuracy on
differential equation models involving extremely small probabilities.

2. BACKGROUND AND PROBLEM SETUP

Let X € X C RY be a random variable with prior density m,. The objective is to
estimate the expectation F' = FE, [f(X)] for a function f. In rare event estimation,
f(z) = 14(h(x)) is an indicator function, where h is a response function and A is a
failure set. The probability of failure is then pr, (h(X) € A).

In the Bayesian setting, given data y, the posterior density is 7¥(x) = LY(x)mo(z)/Z,
where LY is the likelihood and Z is the normalizing constant. The posterior failure
probability is E..[f(X)].

The optimal IS density for estimating F' is p*(z) o |f(z)|mo(x). For posterior
expectations, the ratio estimator

) N 2\ LY (Al 7 R N Y (i i
=9 QZ%ZM )Ep(l;)m(x) P ZE ()0 ()
=1

Z (z%) ’ N~ q(2)
is used, with optimal densities p* | f|LYm, and ¢* = 7¥. The challenge is to approximate
the densities p =~ p* and ¢ ~ ¢* and their normalizing constants () ~ (), Z ~ Z accurately
in high dimensions.
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3. DEEP IMPORTANCE SAMPLING WITH TENSOR TRAINS

The core of the proposed method is the approximation of the optimal IS density using
a deep composition of transformations. Each transformation is built via a squared TT
decomposition of the square root of an unnormalized density.

3.1. Squared Inverse Rosenblatt Transport. We approximate the square root of the
unnormalized optimal density p*(x) = | f(z)|mo(z) (or its posterior counterparts) using a
functional TT decomposition:

Vo' (x) = g(z) = Gi(z1) - - - Galza).
This leads to an approximate density:

p(x) = % (3(2)° + 7A(x))

where ) is a reference density (e.g., the prior), ( is the normalizing constant, and 7 > 0
ensures supp(p*) C supp(p). The Hellinger distance between p and p* is controlled by the
TT approximation error.

The IRT Q is then constructed such that the pushforward of A under Q equals p. This
map is lower-triangular and evaluated via a sequence of one-dimensional conditional
distribution functions, enabling efficient sampling.

3.2. Deep Composition of Maps. For rare events, the optimal IS density may be highly
concentrated. To address this, we propose a deep composition of maps:
T = 9Wo...0 QW

Each layer Q) is built to push forward a reference density to approximate an
intermediate density p® (or ¢0 for the posterior), which gradually approaches the
target p* (or n¥). This layered approach adapts to complex density structures.

The algorithm proceeds by recursively applying the squared IRT construction to the
pullback of the intermediate densities under the current composite map. The final
density p = E(L)/\ is used for IS. The estimator for the normalizing constant is:

P ( T(L UZ)) i
Z T(L) U") U~ A

3.3. Theoretical Analysis. We provide a detailed analysis of the estimator’s properties.
Under mild assumptions, the estimator is unbiased and its variance is bounded by the
Hellinger distance between the true and approximate IS densities. Key lemmas establish:

Lemma 3.1. [1, Lemma 3.6] The relative variance var;(p*/p) satisfies
varg(p*/p) < CpDu(p™, p),
or, under stronger assumptions,
varg(p* /) < CouDu(p™, p)*.
For the ratio estimator used in posterior expectations, we show:

Lemma 3.2. [1, Lemmas 3.8, 3.9] The ratio estimator R is asymptotically unbiased, and
its asymptotic variance is minimized when the samples used for the numerator and
denominator are positively correlated.
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4. APPLICATION TO RARE EVENT ESTIMATION

The method is specialized for rare event estimation by smoothing the indicator
function f(x) = 14(h(x)) using a sigmoid function:

fo(x) = [1 + exp (y(a = h(x)))] ",
which converges to the indicator as v — oo. The sequence of intermediate densities uses
increasing ~ values to gradually sharpen the approximation.

For posterior rare event probabilities, we employ likelihood tempering for the
denominator ¢) o (7¥)% and combined smoothing and tempering for the numerator
p9 o f.,(LYm)%. This allows the method to handle the challenges of both rare events
and unnormalized posteriors.

5. NUMERICAL EXPERIMENTS

We present extensive numerical experiments on two models: a spatial SIR model and
a groundwater contaminant transport model.

5.1. Spatial SIR Model. The SIR model describes the spread of an infectious disease
through a network of compartments. The goal is to estimate the posterior probability
that the number of infected individuals in a compartment exceeds a threshold. The
problem dimension is d = 2K, where K is the number of compartments.

Results show:

e The method scales linearly with dimension d (number of parameters).

e The Hellinger error increases only moderately as the event probability decreases.

e The ratio estimator benefits from positive correlation between numerator and
denominator samples.

e The method outperforms the cross-entropy method, which fails for K > 3 even
with large sample sizes.

5.2. Groundwater Contaminant Transport. The model involves a PDE describing
groundwater flow and an ODE for contaminant transport. The rare event is the
breakthrough time of a contaminant being below a threshold. The diffusivity field is
uncertain and represented via a Karhunen-Loeve expansion.
Key findings:
e The posterior risk can differ significantly from the prior risk, highlighting the
importance of using data.
e The method accurately estimates probabilities as low as 10717,
e The method again significantly outperforms the cross-entropy method in high
dimensions.

6. RELATED WORK

The proposed method connects several areas of research:

e Importance Sampling and Rare Events. Traditional IS methods often use
parametric families (e.g., Gaussian mixtures) for the biasing distribution [5, 4].
These can be inefficient in high dimensions. The cross-entropy method [4]
adaptively fits a parametric family but struggles with complex, high-dimensional
densities.
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e Functional Tensor Decompositions [3, [9] provide a scalable way to
approximate multivariate functions. The use of TT in Bayesian inference
includes [6}, [7]. The IRT [11]] has been used in variational inference [12} [2]. The
novel contribution here is the squared IRT and its deep composition for IS.

e Deep Generative Models. The deep composition of maps is inspired by deep
generative models. However, instead of training a neural network, we use TT-
cross approximation, which offers faster computations.

e Multilevel and Multifidelity Methods. Other approaches for rare events
include multilevel Monte Carlo [8, [13] and multifidelity methods [10]. These
can potentially be combined with the proposed method for further efficiency.
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AUTOMATED PDMP SAMPLING AND SCALING LIMITS

KENGO KAMATANI

AMS 2020 Classification: 60J25, 65C05, 65C40, 62F15.

Keywords: piecewise-deterministic Markov process (PDMP), Bouncy Particle Sampler,
Zig-Zag, Forward Event-Chain, thinning, adaptive horizon, grid envelope, scaling limits.

Piecewise-deterministic Markov processes (PDMPs) provide nonreversible, rejection-free
Monte Carlo samplers that expected to mix faster than reversible MCMC on complex tar-
gets. The talk is divivded into two parts. First, it describes an automated way to sim-
ulate PDMP event times by thinning with a tight, piecewise-constant envelope built on
a time grid and combined with an adaptive window proposed in [2]. Second, it sum-
marises scaling-limit guidance for choosing among Bouncy Particle (BPS), Zig-Zag (ZZS),
and Forward Event-Chain (FEC) samplers. A Python/JAX implementation is available at
https://github.com/charlyandral/pdmp_jax.

Let II(dz) o e"Y®@)dz be the target and consider the lifted process Z, = (X,, V;) with
deterministic flow between random events and velocity updates at events. Standard
intensities are Apps(z,v) = (VU(z),v); + A and Agz(z,v) = S0 (v; iU(x)),. Exact
event times solve [/ A(X,,V,)ds = E with E ~ Exp(1); in practice one simulates by
thinning against an envelope A > \ on a local time window.

Envelope construction on a grid, following [2], is straightforward and computationally
efficient. Fix a horizon ¢,,,, and a partition 0 =ty < t; < --- < tn§ = tmax. Evaluate A and
its time derivative )\’ at all grid points. On each segment [¢;,¢;,;] set a constant bound

Ai = max{/\(ti), /\(ti+1>, mi},

where m;, is the ordinate of the intersection of the endpoint tangents. Define A(¢) = A, for
t € [t;,tiy1). Because A is piecewise constant, its integral is piecewise linear, so solving
fOT A = Exp(1) reduces to a simple running sum across segments. Two modest design
choices tend to improve robustness in practice: for BPS/FEC, build the envelope using
the signed inner product (VU(X;),V;) and apply the positive part only at the end; for
Z78S, construct per-coordinate envelopes (optionally in signed form) and sum them. This
mitigates the local loss of derivative information introduced by the [-], operation and
helps maintain reasonably tight bounds.

The horizon adapts automatically. If the process frequently advances to ¢,,,, without an
accepted event, enlarge the window (¢,,.x < @ tmay); if thinning rejections accumulate,
shrink it (f,,ax < tmax/—). Gentle factors such as o, ~ 1.01 and «_ ~ 1.04 stabilise the
trade-off between frequent re-bounding (too small) and low acceptance (too large). Vec-
torised evaluation on the grid typically outpaces per-window optimisation (e.g. Brent)
while using all function/derivative values to shape the envelope.

Correctness follows from a mild separation condition. Let Z be the union of local
maxima of A and zeros of \” on [0, ty.x], and let 6 be the minimum distance between
distinct points of Z. If A is C? and the grid mesh is strictly smaller than d, then A(t) > A(¢)
for all ¢, hence thinning with A is exact. Intuitively, each segment contains at most one
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local maximum or change of concavity, so the graph of )\ lies below the two endpoint
tangents. In implementation, a diagnostic ensures safety: if a proposed time 7' ever
yields A\(T")/A(T') > 1, halve t,,.y, refine the grid, and redraw.

Computation is dominated by gradient evaluations needed to build A and to com-
pute accept ratios at proposals; the deterministic flow is nearly free. Writing Ny for
the number of accepted events in [0, 7] and My for the number of windows processed,
one has E[N7] = E fOT Ardt. Under a stabilised envelope (¢; < Ef, A;dt < C; and
infyea Ai/Ay > o on each window A), this yields E[Nr| < E[Mr], so the expected gra-
dient count is proportional to E[Ny|]. Empirically, on a two-Gaussian mixture with a
sharp secondary mode, the grid-based envelope with adaptive horizon attains the cor-
rect mean near (0.5,0.5) while running markedly faster than Brent-based maximisation.
On a 20-mode local mixture, the vectorised-signed ZZS bound drastically reduces both
the frequency and the size of envelope violations compared with non-vectorised bounds;
for BPS, the signed strategy eliminates violations with modest grids.

Scaling limits offer concise guidance. In high dimension on approximately isotropic
targets, ZZS mixes in O(1) event times (under unit-speed normalisation) with O(d) jumps
per unit time, giving total work O(d); BPS requires O(d) mixing with O(d) jumps, to-
talling O(d?) [5]. Under strong anisotropy with a stiff direction of scale ¢, BPS maintains
O(1) mixing and O(e™!) jump rates (total O(¢™!)), whereas ZZS needs O(¢~!) mixing and
O(e71) jump rates (total O(e7?)), favouring BPS [6]. During burn-in from poor initiali-
sation, a fluid-limit analysis suggests jump-rate scalings of O(¢~'/4) (BPS) and O(e~'/?)
(ZZS), while an FEC variant keeps O(1) rates, making FEC attractive for rapid contraction
toward the typical set [1].
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PROVABLE GUARANTEES FOR SAMPLING MULTIMODAL DISTRIBUTIONS

HOLDEN LEE

Classification AMS 2020: 60J25, 68W20

Keywords: sampling, multimodal distribution, Markov chain Monte Carlo, simulated
tempering, sequential Monte Carlo

Multimodal distributions pose significant challenges for sampling algorithms,
because local algorithms can easily get stuck in a single mode. A variety of methods
inspired by statistical physics have been developed to address this problem, but with
limited theoretical understanding. We show provable guarantees for sampling under
three settings of increasing information:

(1) No advice: only access to the unnormalized density
(2) Weak advice: with warm start points to each of the modes
(3) Strong advice: with a few samples from the distribution

For (1), we give conditions under which simulated tempering [GLR18] and sequential
Monte Carlo are effective [L.S24]. For (2), we show an algorithm based on Annealed Leap
Point Sampling (ALPS) can sample under generic conditions, including unbalanced cases
not covered by (1) [LS25]. Finally, for (3), we show efficient sampling without changing
the Markov chain with a number of data samples almost-linear in the number of modes
[KLV25[], with applications to score-based models and pseudolikelihood estimation.

!Slides are available at https://www.dropbox.com/scl/fi/lmyr4tih78kquhi9bgjsi/Multimodal_
all__presentation_.pdf?rlkey=pgwiufej87109r1s283gt jbmp&st=bfhk1zp7&d1=0.

FIGURE 1. Summary of results.

VaVAVN

No advice Strong advice

No extra information

Warm start for each mode

Samples from distribution

Tempering algorithms
(ST, SMC,...)

ALPS with mode
rebalancing

MC with data initialization
gives fresh samples

Strong assumptions
(necessary)

Very general assumptions

| [GLR18], [L524]

[LS25]]

[KLV25]]
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We formalize the problem as follows: Sample from 7(x) o e”V(® (w.r.t. a reference
measure on §2) within ¢ distance in total variation (TV), given query access to V' (and
perhaps VV, for Q@ = R?%). Assume 7 = > ;" w;m;, where each component r; satisfies a
functional inequality (Poincaré or log-Sobolev); that is, the natural Markov chain on the
space (e.g. Langevin diffusion or Glauber dynamics) mixes rapidly.

1. NO ADVICE

Without extra information, guarantees are available only under strong conditions.
Early work gives guarantees for simulated and parallel tempering assuming suitable
decompositions [MRO2; WSHO09]. To state our result, we assume we are given access to
a sequence of distributions 7, satisfying the following.

(1) (Decomposition at each temperature) For each ¢ € [L], my(z) = > ", w§f>w§f).

(2) (Mixing of each component) Each component satisfies a Poincaré inequality with
constant Cp; or log-Sobolev inequality with constant C ;.

(3) (Mixing at highest temperature) 7; satisfies a Poincaré inequality with constant
Cp; or log-Sobolev inequality with constant Cps;.

(4) (Closeness between temperatures) X2(7r(£+1)|]7rfz)) = O(1).

1
. w®
(5) (Bottleneck) min,p — > .

3

A common choice for the interpolating distributions is 7, = 7°. Simulated tempering
runs a Markov chain on the state space €2 x [L].

Theorem 1.1 ([[GLR18]]). Under the above conditions, the simulated tempering Markov
process mixes in time polynomial in all parameters. In particular, this gives a poly-time
algorithm for sampling from 7 on RY that is a mixture of strongly log-concave distributions,
7; = e fol@=1) ‘where f, is strongly log-concave and smooth.

The main proof technique is Markov chain decomposition (two-scale functional
inequalities). See [GBZ25]] for further results.

Another classical algorithm is Sequential Monte Carlo (SMC), which has the advantage
of only moving particles through distributions uni-directionally, but is more challenging
to analyze. [PJT18; MS24] show guarantees for multimodal distributions but require
separation between modes. We give guarantees under the above general conditions,
with two stronger conditions.

()

i

(1) (Decomposition at each temperature) For each ¢, my(z) = >"\"  wim
(5) (Lower bound on minimum weight) w,,;,, = min w;.
Theorem 1.2 ([LS24]). Under the strengthened conditions, with
N = Q (L max {6%, #}) particles, running SMC for appropriate poly-time, the
distribution of a sample i.n;ng e in TV distance from .

Two main ingredients in the proof are showing intra-mode variance decay and
hypercontractivity for mixtures. The requirement of unchanging component weights is
relaxed by [HIS25].

An inherent challenge that leads to restrictive assumptions in the above results is the
following: in general, a component can have smaller weights at higher temperatures,
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creating a “bottleneck” that prevents samples from moving into that mode. In simple
terms, it is generally difficult to find a mode. Formally, considering a family of
perturbations of two Gaussians with different covariances, no algorithm can generate a
sample within constant TV distance with sub-exponentially many queries to = or Vinr
[GLR18§].

2. WEAK ADVICE

As mode location is an inherent challenge, a natural assumption to isolate the search
problem from the sampling problem is to assume we already have warm starts {z;} to
the modes, e.g. obtained by multiple runs of optimization. [TMR21] introduce the
annealed-leap point sampler (ALPS), which combines tempering towards a mixture of
peaked distributions, with teleportation, and gives asymptotic analysis in the limit as the
modes become gaussian [RRT22]. Using a warm start assumption, we can do away with
the bottleneck assumption and give a general result. The algorithm requires choosing a
tilting function ¢g, for example gaussian ¢~ #I°,

(5”) (Warm start: Tilt towards =, puts at least a constant amount of mass on the ith

mode.) For each i € [m], there exists j; such that for every 5 > 0,

/onim(x)q[g(x —2)dz > co/ (2)gs(x — x;,)dz.

b
Theorem 2.1 ([[LS25]]). Under these (and additional technical) assumptions, ALPS with
mode rebalancing approximately samples in poly-time.

The main algorithmic and proof challenge is estimating partition functions of
components to rebalance weights between modes.

3. STRONG ADVICE

Consider strong advice in the form of a few samples from the target distribution.
Although strong, this is present in the setting of generative modeling, when a dataset of
samples is given and the task is to learn to generate new samples. [KILV25] show that
the problem is generically solvable: for a mixture with m components, given O(m/e?)
samples, a fresh sample within distance ¢ in TV can be generated by simply running the
Markov chain starting from a random sample; this is termed data-based initialization. In
fact, the theorem works under the higher-order spectral gap assumption \,,.; > «
which is implied by being a mixture of distributions satisfying Poincaré.

Theorem 3.1 ([KLV25]). Suppose \,,.1 > « and there are constants ty, R such that
(warm start after time to) Vy € Q, x*(§,P,||7) < R.

Then w.p. > 1 —6, forn = Q (EQﬂ In %), t >to+ < In %, we have TV (y, ) < %,
TV TV

The key notion for the proof is that of a (m, ¢)-eigenfunction balanced initialization:
a random sample of size O(m/c?) satisfies this with high probability by concentration
bounds, and the theorem follows from this initialization by eigenfunction expansion.
The theorem is robust to error in the Markov chain (so that it applies to score matching
and pseudo-likelihood estimation), and gives applications to learning approximately low-
rank Ising models.

This improves prior work by [KV23]; see also follow-up work by [Gay+25].
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INVERSE PROBLEM OVER PROBABILITY MEASURE SPACE
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Inverse problems are ubiquitous. Traditionally, the goal is to infer an unknown vector
or function. We study if we can study inverse problems over probability measure space.
To be more specific, a classical inverse problem can be posed as:

find z sothat G(z)~y

where y is the data and G is the forward map. Here = and y can either be objects living
in a finite dimensional space, such as vectors in R¢, or infinite dimensional space such
as L,(Q2) function space. We examine the problem that levies the question up to the
probability measure space:

find p, sothat Gup, ~p,

where p, is a probability measure of data. It can either be a point cloud so that p, =
~ >, 0y, or something with a smooth density p, = p,dy.

The problem naturally arises in many continuous interpretation of machine learning
algorithms where a probability measure is to be reconstructed. Mean-field limit of neural
network training, for example, can be framed as an inverse problem over the probability
space.

Depending on the over- and under-determinedness of the system, the formulation is
accordingly adjusted. In the overdetermined case, we look for the optimizer through

minD (Gyps , py) -

It turns out

— Setting D to be any ¢ divergence, the reconstruction is the conditional
distribution;

— Setting D to be any Wasserstein distance, the reconstruction is the marginal
distribution.

In the underdetermined case, we look for the optimizer through

min & (pz) -

g#ﬁz =Py
It turns out

— Setting £ to be entropy, the solution is piecewise constant;
— Setting £ to be of moments, the optimizer is generated by least-norm solution.

These finding suggests that Wasserstein is a very close counterpart of Euclidean norm,
while entropy introduces very different structural reconstruction [2]].
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We finally discuss some optimization solvers that finds these solution. In particular,
beyond the gradient flow, we also discussed the Hamiltonian flow, which in theory should
give faster convergence rate in the continuous-in-time setting [1].
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A two layer mean-field neural network (MFNN) with N neurons is defined as an
empirical average of N functions: Ex.,, [h(X,")] = + 3V h(a?,), where each h(z, ")
represents a single neuron with parameter z' and px = %Zf\i 10, is an empirical
distribution. As the number of neurons get infinitely large (N — o0), the mean-field
limit is attained: p, — u, leading to MFNN having an infinite number of particles:
Ex~,[h(X,-)]. Since a distribution p parameterizes the model in this mean-field limit,
training can now be formulated as the optimization over the space of probability
distributions [Nitanda and Suzuki, |2017]. Gradient descent for MFNNs exhibits global
convergence [Chizat and Bach, 2018, Mei et al., 2018]] and adaptivity [Yang and Hu,
2020, Ba et al., 2022]. To improve stability during training, one may consider noisy
gradient training by adding Gaussian noise, giving rise to mean-field Langevin dynamics
(MFLD) [Mei et al., 2018, Hu et al., 2019]. MFLD, with N = oo, also achieves global
convergence to the optimal solution [Hu et al., 2019, Jabir et al., 2019], with an
exponential convergence rate under the uniform log-Sobolev inequality (LSI) Nitanda
et al. [2022], Chizat| [2022] in the continuous-time setting.

However, the mean-field limit attained at N = oo cannot be accurately replicated in
real-life scenarios. When employing a finite-particle system p,, the approximation error
that arises has been studied in the literature on propagation of chaos (PoC) Sznitman
[1991]. In the context of MFLD, Chen et al. [2022], Suzuki et al. [2023] proved the
uniform-in-time PoC for the trajectory of MFLD. In particular, in the long-time limit, they
established the bounds £™ (1{") — £(1.) = O (2), where a > exp (—© (1)) is the LSI
constant on proximal Gibbs distributions, )\ is the regularization coefficient, and
L) (uiN)) and L(u.) are the optimal values in finite- and infinite-particle systems.
Subsequently, Nitanda [2024] improved upon this result by removing « from the above
bound, resulting in O (+ ). This refinement of the bound is significant as previously, the
LSI constant could become exponentially small as A — 0. While Nitandal [2024] also
established PoC for the MFLD trajectory by incorporating the uniform-in-N LSI Chewi
et al| [2024]: £ (™M) = £ (™M), this approach is indirect for showing
convergence to the mean-field limit £(u.) and results in a slower convergence rate over
time.

In this work, we further aim to improve PoC for MFLD by demonstrating a faster
convergence rate in time, while maintaining the final approximation error O (%) attained
at t = oo. We then utilize our result to propose a PoC-based ensemble technique by
demonstrating how finite particle systems can converge towards the mean-field limit
when merging MFNNs trained in parallel.
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0.1. Contributions. The PoC for MFLD Chen et al.| [[2022]], [Suzuki et al. [2023]] consists
of particle approximation error O (=) due to finite-N-particles and optimization error
exp(—O(Aat)). This result basically builds upon the defective LSI: 36 > 0,

) )x
Loy <9 V)],V

implicitly established by Chen et al. [2022] under the uniform LSI condition Nitanda
et al.| [2022], |Chizat [[2022], where FI is Fisher information. The dependence on LSI-
constant « in O () of PoC is basically inherited from 4. In our work, we first remove
the dependence on « from ¢ by introducing uniform directional LSI in training MFNNs
setting. Based on the improved defective LSI, we then derive an improved PoC for MFLD
where the particle approximation error is O () as follows.

Theorem 0.1 (Propagation chaos for MFLD). Under the unifrom directional LSI with a
constant « > 0 and regular conditions. Then, MFLD in the continuous-time satisfies

1 B
LD M) = L) < <+ exp(—2000) A8,

Similar to Nitanda| [[2024]], this improvement exponentially reduces the required
number of particles since the constant v > exp (—©(5)) can exponentially decrease as
A — oo. Moreover, our result demonstrates a faster optimization speed compared to
Nitandal [2024] due to a different exponent « in the optimization error terms:
exp(—O(Aat)). In our analysis, « is a constant of the uniform directional LSI, which is
larger than the LSI constant on uiN) appearing in the optimization error in Nitanda

[2024].
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This talk discusses three related pieces of work, primarily built on connections
between stochastic filtering, sampling and evolutionary dynamics. The first part
discusses recent work [1]] builds on a long-standing view that there is a connection
between the dynamical equations describing evolutionary processes in biology and
sequential Bayesian learning methods. The paper [1]] describes new research in which
this precise connection is rigorously established in the continuous time setting, where
previously this was done in discrete time. We presented a detailed investigation of
connections between continuous time, continuous trait Crow-Kimura replicator-mutator
dynamics [2] and the fundamental equation of non-linear filtering, the
KushnerStratonovich partial differential equation (PDE). Inspired by a non-local fitness
functional presented in the mathematical biology literature [3]], we extended this
connection to obtain a “modified” Kushner-Stratonovich equation. This equation was
shown to beneficial for filtering with misspecified models and a specific choice of
parameters in the fitness functional was shown to coincide with covariance inflated
Kalman Bucy filtering, in the linear-Gaussian setting. Additionally, we considered the
misspecified model filtering problem, with linear-Gaussian dynamics and where the
misspecification arises through an unknown constant bias in the signal dynamics. We
proved that through a judicious choice of parameters in the fitness functional, mean
squared error and uncertainty quantification (through the covariance) could be
improved via this modified Kushner-Stratonovich equation. Estimation is improved over
traditional covariance inflation techniques, as well as over the standard filtering setup
(assuming perfect model knowledge). There are several avenues for further work, most
notably, the analysis on misspecified models which has primarily focused on the scalar
setting which has simplified the analysis. In future works, the multivariate setting, as
well as extensions to nonlinear dynamics should be explored.

The second part discusses recent work [4] that focuses on the related problem of
sampling from an unnormalised target distribution of the form 7 o e™V. It is well
known that this sampling problem can be written as an optimisation problem over the
space of probability distribution in which we aim to minimise the Kullback-Leibler
divergence to w. Doing so allows to derive partial differential equations that are
gradient flows of the Kullback-Leibler divergence to m, which can be formulatd using
either the Wasserstein, Fisher-Rao or Wasserstein-Fisher-Rao metrics. The latter in
particular can be interpreted as a replicator-mutator equation, with the main difference

to the first part being that the fitness function is now static, but dependent on the

Page 20



solution of the PDE p;. We additionally connected these gradient flows to several known
sequential Monte Carlo algorithms in the literature.. We focused in particular on PDEs
obtained by considering the Wasserstein-Fisher-Rao geometry over the space of
probabilities and show that these lead to a natural implementation using importance
sampling and sequential Monte Carlo. We proposed a novel algorithm to approximate
the Wasserstein-Fisher—Rao flow of the Kullback-Leibler divergence which empirically
outperforms the current state-of-the-art.

The third part discussed ongoing work on operator splitting of the
Wasserstein-Fisher-Rao gradient flow PDE. As this PDE consists of the sum of the
Wasserstein and Fisher-Rao operators, a natural approach to numerically solving this
PDE is via operator splitting. We demonstrated that the order of solving the two
operators (Wasserstein first, then Fisher-Rao vs Fisher-Rao first then Wasserstein)
induces biases which can be exploited to improve the speed of convergence to 7, even
compared to the exact solution of the Wasserstein-Fisher-Rao gradient flow PDE. Such
biases do not affect the invariant density, only the path of intermediate densities taken
to reach the invariant density. We quantified this behaviour in the Gaussian case, and
showed that specific pairings of initial and target densities require a specific ordering of
operators to achieve a speed-up. Some open problems related to proving this
phenomenon in the more general setting were discussed.
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Summary. In this talk, a deterministic mean-field formulation of the Pontryagin
minimum principle for stochastic optimal control problems has been sketched out
following our recent technical report [3]]. Contrary to the well-known forward and
backward SDE formulation of the stochastic Pontryagin minimum principle [1]], the
proposed mean-field approach leads to a gauge variable which can be freely chosen and
can be used to decouple the arising forward and reverse time mean-field ODEs.

Problem statement. We consider the optimal control problem for a controlled SDE of
the form

(0.1) dX, = b(X,)dt + GU,dt + ¥Y2dB,, X, = a,

under finite horizon cost function
T 1
(0.2) Jr(a,Upr) =E {/ (c(Xt) + QUtTRlUt) dt + f(XT)} )
0

Here B, denotes d,-dimensional Brownian motion, ¥ € R%*% the symmetric positive
definite diffusion matrix, R € R%>*% a symmetric positive definite weight matrix, G €
R%>du the control matrix, c¢(z) the running cost, and f(x) the terminal cost. See, for
example, reference [[1]] for more details. We also introduce the weighted norm || - ||z via
Jully = «" R

The aim is to find the closed loop control law U; = u(X;) that minimizes Jr(a, Uy.1)
over the set of admissible control laws. It is well-known [1]] that, assuming sufficient
regularity, the desired closed loop control law is provided by

(0.3) uy(r) = —RG"V ()

with the optimal value function v;(x) satisfying the Hamilton—-Jacobi-Bellman (HJB)
equation

1 1
(0.4) —0; =b- Vv + 52 : D2v; +c+ muin (Gu - Vv + §HuH%> . vr = f.

McKean-Pontryagin minimum principle. We now formulate the proposed McKean—
Pontryagin minimum principle. The initial conditions a € R% may be viewed as a label
in the sense of Lagrangian fluid dynamics, which we assume to be distributed according
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to a probability density function 7. We therefore consider functions z(a), p(x), u(a), and
f(a) and introduce the Hamiltonian functional

(0.5) H(z,p,u, ) = [ H(x,p,u,B)(a)m(a)da

Rda
with Hamiltonian density

(0.6a) H(z,p,u, B)(a) := p(a)” (b(x(a)) + Gu(a)) + %Vx - (B¢(z(a))) +

(0.6b) B(a)" (p — B(e(a))) + cla(a)) + 5 (@)%

Here 3(a) € R% takes the role of a gauge variable [2], which does not appear in the
classical Pontryagin minimum principle [4]. We also note the occurrence of the function
¢(z), which will be determined in terms of the non-holonomic constraint arising from
variations with respect to $(a) [2]. More specifically, the desired equations of motion are
induced by the phase space action principle [2] applied to

(0.7) S = / {/T (PtTXt — H(X,, P, U, ﬁt)> dt — f(XT)} moda.
Riz (Jo

Taking variations with respect to U;, we find that the optimal control satisfies
(0.8) V.H(X(a), P(a),Uia), Bi(a)) = R'Uy(a) + GT Pi(a) = 0.
Variations with respect to ; lead on the other hand to the constraint
(0.9) Fi(a) — ¢1(Xi(a)) =0,

which defines the function ¢;(z) in terms of X;(a) and P;(a). Using the thus specified
¢:(x), we obtain the closed loop control

(0.10) uy(z) = —RG ¢y ().

Finally, variations with respect to X; and P, lead to the Hamiltonian evolution equations
in (Xy, B); i.e.,

(0.11a) Xt(a) = +VpH(Xt(a)a Pt(a)v Ut(a)a Bt(a))v
(0.11b) Py(a) = =V, H(X¢(a), Py(a), Usa), Bi(a))

for each a € R%. The boundary conditions are Xy(a) = a ~ 7y and Pr(a) = V. f(Xr(a)).
Dropping the label ¢ € R% from now on, the Hamiltonian equations of motion (0.11)
therefore become

(0.12a) X, =b(X,) + GU, + 6,
(0.12b) P, = (Dyoy (X)) B, — (Db(X,)' P, — %vmvm (Ze(Xy)) — Vel Xy).

The following theorem provides the key result with regard to the gauge variable 5, and
demonstrates that (0.12)) indeed delivers the desired extension of the classical Pontryagin
minimum principle to stochastic optimal control problems.

Theorem 0.1. For any choice of the gauge variable (3, the resulting function ¢;(x) satisfies
(0.13) ¢i(x) = Vv (o)
where vy(z) is the value function satisfying the HJB equation ({0.4).
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Proof. Let us derive the evolution equation for ¢,(z) implied by (0.9):

(0.14a) —0, (X)) = Dty (X)) Xy — P
(0.14b) = Dagu(X0) ((X0) + GU + 5 V.V, (S6(X,)) +
(0.14c) (D2b(X)) " 64(Xy) + Vaee(Xy).

Here we have used that D,¢;(x) is symmetric since ¢;(x) itself is the gradient of the value
function v;(x). Hence, ¢;(x) satisfies the reverse time PDE

(0.15) —0ipy = Doy (b+ GUy) + %vam (2¢y) 4+ (D) " ¢y + Ve

subject to the terminal condition ¢ = V, f, which also follows from by taking the
gradient. Hence ¢;(x) = V,v;(x) independent of f;. O
A natural choice for the gauge function f; is

(0.16) B = —%EVI log 7 (X),

where 7;(z) denotes the law of X,. Alternatively, consider

(0.17) B = GRG ¢u(Xy),

which eliminates the control from the forward evolution equation in X, since

(0.18) GU, = —GRGT¢,(X,) = —B,.

Both choices for the gauge variable can also be combined into
1
(0.19) B = GRGT6u(X,) + Gui (Xy) — 5V, logm( X)),

where u!*f(z) denotes a known reference control; if available.

Applications. Numerical results and an extension to infinite horizon discounted cost
functionals can be found in the report [3]]. An application of the proposed methodology
to model predictive control [5] can also be found in [3]].
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Data assimilation aims to estimate the hidden true state from noisy observations by
utilizing background model dynamics. As a model dynamics, we consider a class of
nonlinear dynamical systems on Hilbert spaces including the two-dimensional
Navier-Stokes equations and the Lorenz 63 and 96 models. For nonlinear model
dynamics, the ensemble Kalman filter (EnKF) is often used to approximate the mean
and covariance of the probability distribution with a set of particles called an ensemble.
There are two major variants of the EnKF: a stochastic one is the Perturbed Observation
(PO) method and a deterministic one is the Ensemble Transform Kalman Filter (ETKF).
The PO method is simple to implement but suffers from sampling errors due to the
perturbation of observations. On the other hand, the ETKF avoids such sampling errors
and often outperforms the PO method [1]]. Recent theoretical studies reveal the basic
properties of the EnKF [2] (3, [4]. While these basic results have been established in
general settings, the long-time accuracy of the EnKF is studied in limited situations. The
uniform-in-time error bound for the PO method has been obtained under suitable
conditions [5]]. However, such a bound for the ETKF has not been established yet due to
difficulty in analyzing the complicated update step of the ETKF.

In this talk, we show that the uniform-in-time error bound for the ETKF is obtained
when the system is finite-dimensional [6], i.e., the state estimation error §,, at a time
step n € N of the ETKF satisfies

limsup E[|d,,])] < C+?,

n—o0
where v > 0 is the standard deviation of random observation noises and C' > 0 is a
constant independent of n and ~. The other conditions are explained in the talk and
the full paper [6]. This bound justifies that the ETKF can accurately estimate the true
state from noisy observations over long time intervals when the observation noise is
sufficiently small. We also show numerical experiments with the Lorenz 96 model to
demonstrate the validity of our result.
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INTRODUCTION AND PROBLEM SET-UP

We consider a generalisation of the classical Poincaré inequality to a Riemannian (or
weighted-matrix) setting, and uses this to design optimal preconditioners for Langevin
dynamics. Recall the usual Poincaré inequality: for a probability measure i on R¢, one
says it satisfies a Poincaré inequality with constant Cp if

Var,(f) < Cp / IV (@)1 ulde),

holds for all sufficiently smooth f. It is well known that this constant governs the
exponential convergence rate of the overdamped Langevin SDE

dX, = —VU(X,) dt + V2 dB,,

whose invariant measure is j(dz) < e~U@dz. In fact, u satisfies the above inequality
with constant Cbp if and only if the dynamics converge at rate at least 1/Cp.

We introduce a Riemannian metric W (x), i.e. a symmetric positive-definite matrix-field,
so that the Poincaré inequality becomes

Var,(f) < CW/Vf(x)T W(x) Vf(z) p(dr).

Here the aim is to choose W(x) so as to make the constant Cy, as small as possible
(ideally equal to 1). Equivalently one can seek

min Cy
W(-) >0

subject to a normalisation constraint
/trace(W)p(dx) = trace(Cov,,),

so as to avoid the trivial scaling freedom W +— aJ¥. In doing so, one effectively finds the
optimal local anisotropic diffusion for the associated Riemannian Langevin diffusion

dX; = —W(X,) VU(X,) dt + V- W(X,) dt + /2 W (X,) dB,,

which accelerates convergence when compared to the standar Langevin dynamic W = I,;.
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MAIN RESULTS

Under the assumption that . is a moment measure, we show that an optimal metric
W*(x) exists and achieves Cy - = 1. In particular we show that 1W* can be expressed as

W*(x) = Vio(Ve '(z))

for some strongly convex function ¢. A key structural result is that any optimal W*(z) is
a SPD Stein kernel of the measure p, and so that the preconditionned Langevin dynamic

simplifies as
dXt = _(Xt - m)dt + v 2 W*(Xt) dBt,
where m = E,[X] is the mean of p.
We also show that the optimal metric can be computed numerically by solving a convex
optimization problem. Using the finite element method permit to compute W* for any

measure 4 in dimension d = 2. The next picture shows the optimal metric W* when p is
a Gaussian mixture with 3 components.

(div(W) — WVV) log trace(v/21V)

Preconditioned ULA

SUMMARY OF MAIN TAKE-AWAYS

e The classical Poincaré inequality can be improved by introducing a matrix-field
metric W (z).

e Under moment-measure assumptions, there is an optimal metric W*(z) attaining
Poincaré constant Cyy- = 1.

e This metric is essentially a Stein kernel of y, providing a new view of Stein kernels
in terms of optimal spectral gap.
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e One can formulate the search for the optimal metric as a convex optimisation
in the space of matrix-fields, solve it numerically by discretisation + gradient
methods.

e The resulting metric can be used to precondition Langevin dynamics, giving
improved convergence rates in practice.
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Deep neural networks with structures have been applied in many fields to various
problems of learning from vectors. In particular, transformers have provided
breakthroughs in learning tasks involving natural language processing.

In this talk, we discuss the topic of distribution regression to learn a function from the
Wasserstein space U := (P(2), W) of probability measures on 2 C R? to R. A special
feature of distribution regression is two-stage sampling, meaning that the available
sample for learning is not one D = {(u;,y;)}!™, drawn from a Borel probability measure
pon Z =U x R, but a second-stage sample

- . m
D = {({z, ?;17%)}2.:1
with {z; ; € Q}2, drawn from ;, for each i. Then the empirical risk minimization over a

hypothesis space H of continuous functions on P({2) for learning the regression function
for distribution regression f,(p) = fy ydp(y|p) defined on U takes the form

m

1
fou = argmin — z; (FOa) =)

A classical approach for distribution regression is kernel mean embedding with a
continuous positive semi-definite (Mercer) kernel & : Q2 x 2 — R which embed p € P(Q)
to a function k, in the reproducing kernel Hilbert space #; induced by k defined as
k, = Jok(-,x)du(x). Then one can apply the kernel methods to solve the learning
problem for distribution regression [1]].

We apply deep neural networks to distribution regression. For an input distribution
1 € P(R), a deep neural network for distribution regression {h") : P(2) — R%}/_; of
type (J1,J), with depth J € N and realizing level J; € {0,1,..., J}, and width {d;}/_, is
defined by

0.1) B (1) = / o (Fg (<o (FDz — b)) = b) du(a),
Q

and h9(p) = o (FORU-D(p) —bD), j = J +1,...,J, where FU) € R%*%-1 js g
connection matrix with dy, = d, and bY) € R% is a bias vector.

The case with J = 2, J; = 1 was introduced in [22].

When the target regression function takes a composite form with a polynomial ) and
a univariate function ¢, we <can take J = 3, Ji = 2 and
H = {c-hD () : |[FO | < RN?, b9V <R, |c|oc < RN}. We assume |y| < M
almost surely and take the projection 7y, onto [—M, M] of the learned function fp ,,.
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Then the following learning rates with the error measured by the L? norm || - || 12, with
respect to the marginal distribution p;, of p on U = P(2) were derived in [3].

Theorem 0.1. Assume f,(p) = f ([, 9 (Q(x)) du(x)) for p € P(Q) with a polynomial Q,
g€ O, and f € CF for some 0 < B < 1. If

1 48417
N = [mw“}, Ny =...=nNy > {mw“—‘

2
then using ‘H with a constant R depending on d, Q, g, f, we have E {HwaD = I i } =
: I’y

O (m_%il log m) .

Now we apply transformers to distribution regression.
With an input sequence @ = [z; - - - z,,]7 € R™*? of length m and feature dimension d,
the single-head attention is defined as

SoftmaxAttn(z;) = i oXp «quiv Wiz;) /v dm)
Z Z?Zl exp (<qui7 Wk-l'j/>/ vV dln)

j=1
where W, W, € R%»*4 1/, € R™? are parameter matrices.

We view the above as - > ey k(xi, z;) f(z;) with a data-dependent kernel k on 2 x Q
and f : Q — R and introduce an attention operator attn(u) = [, k(-,z)f(z)du(z) and a
transformer encoder as

WUZC]',

¢+ (Afatm()] |r +b).

where T is a set of n, points in 2, A € R™*"2 h € R™and ¢ € R".

We generate the hypothesis space by bounding the parameters as
| Al < BmPBle™ Jic|l; < Ry/m, ||bl|oc < Rwith R > 0.

Assume a Barron type condition

o= ([ o)

with a Mercer kernel k, f satisfying c¢; < |f(x)| < C; with some ¢y > 0, and the functional
® having a representation

B(g) = / GO (), gl <
Hi,

with some r» > 0,0 : H;, — R and a nonnegative function F satisfying fHk ||lwl||x F(dw) <

2 2
oo. Then we can achieve E {Hwabﬂ — [ ] =0 <M> See Theorem 5 in [4].

L2, vm
We can apply other structured deep neural networks [5, 6] to distribution regression.
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