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RAMIFICATION OF WEAK ARTHUR PACKETS FOR p-ADIC

GROUPS

MAXIM GUREVICH AND EMILE OKADA

Abstract. Weak Arthur packets have long been instrumental in the study of the unitary
dual and automorphic spectrum of reductive Lie groups, and were recently introduced in
the p-adic setting by Ciubotaru–Mason-Brown–Okada.

For split odd orthogonal and symplectic p-adic groups, we explicitly determine the
decomposition of weak Arthur packets into Arthur packets that arise from endoscopic
transfer. We establish a characterization of the Arthur packets that partake in such
decompositions by means of ramification properties of their constituents.

A notion of weak sphericity for an irreducible representation is introduced: The prop-
erty of containing fixed vectors with respect to a (not necessarily hyperspecial) maximal
compact subgroup. We show that this property determines the weak Arthur packets in a
precise sense.

As steps towards this description, we explore alignments between Langlands-type re-
ciprocities for finite and p-adic groups, and their dependence on the geometry of the
unipotent locus of the dual Langlands group.

Weak sphericity is shown to match with Lusztig’s canonical quotient spaces that feature
in the geometric theory for Weyl group representations, while the fine composition of weak
Arthur packets is found to be governed by the partition of the unipotent locus into special
pieces.

Contents

1. Introduction 1
2. Background 12
3. Arthur theory 26
4. Reduction to Springer theory 52
5. Hecke algebras 58
6. Decomposition of Springer representations 64
References 77

1. Introduction

Weak Arthur packets, as defined via microlocal invariants as opposed to endoscopic
transfer, were first studied in [BV85a] under the guise of special unipotent representations.
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2 MAXIM GUREVICH AND EMILE OKADA

These packets formed the basis of their investigation of the automorphic part of the unitary
spectrum of complex reductive groups.

Later introduced into the representation theory of real reductive Lie groups in [ABV92,
Section 13], weak Arthur packets decompose into unipotent Arthur packets, forming the
building blocks of the Adams–Barbasch–Vogan conjectural description of the automorphic
spectrum.

Given a reductive group G, selecting a unipotent conjugacy class O∨ in its complex
Langlands dual group determines a corresponding unipotent infinitesimal character χO∨

for G-representations. In brief, the weak Arthur packet consists of the irreducible G-
representations whose Gelfand-Kirillov dimension is minimal among those admitting χO∨

as their infinitesimal character.
Our work deals with the composition of the analogous notion for reductive p-adic groups

of classical type.
Let F be a non-Archimedean local field of characteristic 0, with a large enough residue

characteristic (see Section 2.1). Let G be an F -split symplectic or special odd orthogonal
group. Its Langlands dual group is the complex reductive group

G∨ =

{
Sp2n , if G = SO2n+1(F )
SO2n+1 , if G = Sp2n(F )

.

Let U∨ denote the finite set of unipotent conjugacy classes in G∨(C).
We fix sG = 1 for the case of symplectic G, and sG = −1 for an odd orthogonal G.

1.1. What are weak Arthur packets for G ? The theory of local Arthur packets
[Art13] attaches to each A-parameter ψ ∈ Ψ(G) a finite subset ΠA

ψ of Irr(G), the collection
of isomorphism classes of irreducible smooth complex G-representations.

We recall that A-parameters for the group G may be viewed as G∨(C)-conjugation
classes of continuous group homomorphisms

ψ : WF × SL2(C)× SL2(C) → G∨(C) ,

whose restriction to SL2(C)×SL2(C) is algebraic, while ψ(WF ) is bounded and consists of
semisimple elements. Here, WF is the Weil group of the local field F .

The local Langlands reciprocity attaches an infinitesimal character χπ to each represen-
tation π ∈ Irr(G). This is a G∨(C)-conjugation class of a homomorphism

χπ : WF → G∨(C) .

We write Irrχ(G) ⊆ Irr(G) for irreducible representations π admitting χπ = χ.
A known property of local Arthur packets is that representations within a single packet

share a common infinitesimal character. In other words, for each ψ ∈ Ψ(G) a map χψ
exists, so that ΠA

ψ ⊆ Irrχψ(G).
One distinguished family in Ψ(G) are the basic unipotent A-parameters, defined to be

those whose restriction to the Weil-Deligne group WF × SL2(C) is trivial.
Basic unipotent A-parameters are visibly in bijection with algebraic homomorphisms

SL2 → G∨, and thus, by the Jacobson-Morozov theorem, are indexed by the classes in U∨:
{ψO∨}O∨∈U∨ ⊆ Ψ(G).
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To each class O∨ ∈ U∨ we write the asssociated basic unipotent Arthur packet

ΠO∨ := ΠA
ψO∨

⊆ Irr(G) ,

and its infinitesimal character as χO∨ := χψO∨ .
A basic unipotent Arthur packet ΠO∨ consists of all anti-tempered (that is, Aubert-dual

to tempered) representations in IrrχO∨ (G).
Since special odd orthogonal groups are not simply connected and admit a non-trivial

complex character, a curious complexity appears in our study of that case. Considering
that quadratic unramified character κ0 of G that arises from the spinor norm, we write, in
the orthogonal case, κ0⊗Π ⊆ Irr(G) for the set of representations obtained by κ0-twisting
of a given set Π ⊆ Irr(G).

We say that the resulting Arthur packet

Π−1,O∨ := κ0 ⊗ΠO∨

is quasi-basic unipotent, and record its infinitesimal character as χ−1,O∨.
We also mark Π1,O∨ = ΠO∨ and χ1,O∨ = χO∨ in all cases.
The second ingredient needed for the definition of weak Arthur packets is the Gelfand-

Kirillov dimension of an irreducible representation. As commonly done in the p-adic setting,
we extract this invariant out of the finer concept of the algebraic wavefront set.

Let NF be the set of nilpotent Ad(G)-orbits in the Lie algebra Lie(G).
Briefly, the logarithm of the Harish-Chandra–Howe character [Har99] of a representation

π ∈ Irr(G) gives a distribution around 0 ∈ Lie(G), which is expanded as a linear combina-
tion

∑
O∈NF cO(π)µ̂O of Fourier transforms of nilpotent orbital integrals {µ̂O}O∈NF .

The Gelfand-Kirillov dimension of π ∈ Irr(G) is then set to be

GKdim(π) = max

{
1

2
dim(O) : O ∈ NF , cO(π) 6= 0

}
,

where dim(O) is the Zariski dimension of the orbit as an algebraic variety.

Definition 1.1.1 (Based on [CMO23a]). For a unipotent conjugacy class O∨ ∈ U∨ and
a sign z ∈ {±1} (z = 1, when G is symplectic), its associated weak Arthur packet is
constructed as

Πw
z,O∨ =

{
π ∈ Irrχz,O∨ (G) : GKdim(π) ≤ GKdim(σ), for all σ ∈ Irrχz,O∨ (G)

}
.

It was proved in [CMO23a] that an inclusion Π1,O∨ ⊆ Πw
1,O∨ holds, for all O∨ ∈ U∨.

A follow-up conjecture [CMO23a, Conjecture 3.1.2] was raised, whose claim is that in
a natural analogy with the Lie groups case, each weak Arthur packet Πw

1,O∨ is a union of
Arthur packets.

This conjecture, for the case of the classical groups in hand, is resolved as a consequence
of our Theorem B, and also through a parallel work of [LL23].
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1.2. The ’Arthur-closure’ of the weakly spherical spectrum. Our main result phrases
a new characterization of weak Arthur packets in terms of ramification properties of irre-
ducible representations.

Let us note that basic unipotent infinitesimal characters {χz,O∨}O∨∈U∨,z=±1 are unram-
ified homomorphisms, that is, they are trivial on the inertia subgroup IF < WF . In
particular, that designates the representations in Irrχz,O∨ (G) as unipotent in the sense of

Lusztig [Lus95].
For each O∨ ∈ U∨ and a possible sign z = ±1, that also means that a choice of a

hyperspecial open compact subgroupK0 < G gives rise to a unique spherical representation
δz,O∨ ∈ Irrχz,O∨ (G), that is, a representation possessing a non-zero K0-invariant vector.

Indeed, the semisimple conjugacy class of the element sz,O∨ = χz,O∨(Fr) ∈ G∨(C), Fr ∈ WF

being a choice of a Frobenius element, is the Satake parameter that determines δz,O∨ .
It is known [Mœg09a, Proposition 6.4] that Πz,O∨ is the unique (spherical) Arthur packet

containing the irreducible spherical representation δz,O∨.
We now formulate a characterization of weak Arthur packets further extending this

phenomenon.

Definition 1.2.1. A representation π ∈ Irr(G) is weakly spherical, when a (any) maximal
open compact subgroup K < G exists, for which π possesses a non-zero K-invariant vector.

Although literature typically emphasizes the hyperspecial case, due to its role in the
automorphic context, the groups G under consideration admit a finite sequence of non-
conjugate maximal compact subgroups that are conveniently classified using the Iwahori-
Matsumoto theory [IM65].

Let Πsph
z,O∨ ⊆ ΠO∨ be the subset of weakly spherical representations in the spherical

Arthur packet. Hence, we are given a chain of containments

(1) δz,O∨ ∈ Πsph
z,O∨ ⊆ Πz,O∨ ⊆ Πw

z,O∨ .

Recalling the overlapping nature of Arthur packets, the following definition is meaningful.

Definition 1.2.2. Let O∨ ∈ U∨ be a unipotent conjugacy class, and z ∈ {±1} be a sign
(z = 1, when G is symplectic).

An A-parameter ψ ∈ Ψ(G) with infinitesimal character χψ = χz,O∨, and its associated
Arthur packet Πψ ⊆ Irrχz,O∨ (G), are said to be weakly spherical (or, 1-weakly spherical),
whenever

Πψ ∩Πsph
z,O∨ 6= ∅

holds.
In the orthogonal case, the A-parameter ψ and Arthur packet Πψ are said to be −1-weakly

spherical, whenever the Arthur packet κ0 ⊗Πψ ⊆ Irrχ−z,O∨ (G) is weakly spherical.

In essence, we say that an Arthur packet is weakly spherical when it admits a quasi-
basic unipotent infinitesimal character, and contains an anti-tempered weakly spherical
representation.

We are now ready to state the main result.
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Theorem A. (1) Let ψ ∈ Ψ(G) be an A-parameter with infinitesimal character χψ =
χz,O∨, for a conjugacy class O∨ ∈ U∨, and a sign z ∈ {±1}.
Then, ψ is zsG-weakly spherical, if and only if, an inclusion of packets

ΠA
ψ ⊆ Πw

z,O∨

holds.
(2) For each conjugacy class O∨ ∈ U∨, the weak Arthur packet Πw

z,O∨ consists of the
union of all zsG-weakly spherical Arthur packets admitting the infinitesimal char-
acter χz,O∨.

In particular, it follows that all constituents of weak Arthur packets are unitarizable
representations.

The result of Theorem A naturally prompts the question of whether a comparable def-
inition of weak Arthur packets for broader families of infinitesimal characters could be
characterized through similar ramification properties. Progress in this area should be
coupled with further advancement in connecting wavefront invariants with the Langlands
reciprocity.

Our path towards the proof of Theorem A passes through two preparatory tasks of
standalone interest.

One is an explicit description of representations inside weak Arthur packets in terms of
A-parameters and the Langlands reciprocity.

The other is an explicit description of the anti-tempered weakly spherical representations
of Πsph

sG,O∨ in terms of an enhanced Langlands parameterization.

1.3. Constituents of weak Arthur packets. An explicit decomposition of weak Arthur
packets will be given in terms of the geometry of the unipotent locus of G∨(C).

For a class O∨ ∈ U∨, let us denote as O∨ ⊆ U∨ the set of conjugacy classes contained in
the the topological closure of O∨.

A prominent subset of conjugacy classes U∨
spc ⊆ U∨ are known as the special unipotent

classes, as introduced in [Lus84b, §13.1.1]
Pivoting around this concept, for any O∨ ∈ U∨ we define its relative special piece as

Spc(O∨) = O∨ −
⋃

O′∨∈Uspc :O∨ 6=O′∨∈O∨

O′∨ ⊆ U∨ .

Those sets, in our case of groups of classical type, are always of power-of-2 cardinality,
while their inherited topological partial orders are of a hypercube lattice form.

The resulting disjoint division

U∨ =
⊔

O∨∈U∨
spc

Spc(O∨)

of the unipotent locus into its special pieces has been thoroughly studied in the context of
perverse sheaves and singularity theory by [Lus81a; Spa82; KP89; FJLS24]. In particular,
explicit combinatorial descriptions of the special pieces for classical groups in terms of the
standard parameterization of U∨ by partitions trace back to [KP89].
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For an effective description of weak Arthur packets we now need to recall further de-
tails of the local Langlands reciprocity. Indeed, we take this reciprocity as an established
consequence of the Arthur theory for classical groups.

The reciprocity provides a map π 7→ φ(π) from Irr(G) onto Φ(G), the collection of L-
parameters for the group G. Each fiber of the reciprocity map over a given L-parameter
φ ∈ Φ(G) is known as an L-packet

Πφ ⊆ Irrχφ(G) .

Here, in similarity with Arthur packets, χφ is the infinitesimal character shared by all
constituents of Πφ.

An L-parameter may be viewed as the G∨(C)-conjugation class of a continuous group
homomorphism

φ : WF × SL2(C) → G∨(C) ,

whose restriction to SL2(C) is algebraic, while φ(WF ) consists of semisimple elements.
For φ ∈ Φ(G), we take note of the unipotent element

uφ = φ

(
1,

(
1 1
0 1

))
∈ G∨(C) ,

and write O∨
φ ∈ U∨ for the conjugacy class containing uφ.

This invariant is of high relevance for our discussion as, for example, exhibited by the
main result of [CMO23b]. The latter states (Theorem 2.3.5) that for certain L-parameters
φ ∈ Φ(G) (i.e. having an unramified and real χφ), the algebraic wavefront sets of all
representations Aubert-dual to consituents of Πφ are determined by O∨

φ through means of
Barbasch–Vogan–Lusztig–Spaltenstein duality.

Finally, we recall that the collection of A-parameters is naturally embedded Ψ(G) →֒
Φ(G), ψ 7→ φψ, into the collection of L-parameters, as a sub-collection that is often regarded
as L-parameters of Arthur-type. In this setup, an inclusion Πφψ ⊆ ΠA

ψ of packets holds, for
all ψ ∈ Ψ(G).

Proposition 1.3.1. For any O∨
1 ∈ U∨ and O∨

2 ∈ Spc(O∨
1 ), and a possible sign z ∈ {±1}

there is a unique L-parameter φ = φz,O∨
1 ,O∨

2
∈ Φ(G) which satisfies χφ = χz,O∨

1
and O∨

φ =
O∨

2 , and it is of Arthur-type.

While L-packets may not be well-behaved with respect to the Aubert involution π 7→ πt

on Irr(G), Arthur packets are better situated. This is arithmetically manifested in the
involution ψ 7→ ψt on Ψ(G) given by a transposition of the pair of SL2(C) components of
the parameter (see [Ato22, Theorem 1.6]).

Considering any L-parameter φ = φz,O∨
1 ,O∨

2
= φψ of the form stated in Proposition 1.3.1,

with corresponding ψ = ψz,O∨
1 ,O∨

2
∈ Ψ(G), we denote the Arthur packet associated with its

transposed parameter as

(2) Πz,O∨
1 ,O∨

2
:= ΠA

ψt ⊆ Irrχz,O∨ (G) .
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In particular, we see that for any O∨ ∈ U∨, ψtz,O∨,O∨ = ψz,O∨ is the quasi-basic unipotent
parameter, while Πz,O∨,O∨ = Πz,O∨ is the associated anti-tempered, or spherical, Arthur
packet.

Theorem B. For any unipotent conjugacy class O∨ ∈ U∨ and a sign z ∈ {±1}, we have

(1) a decomposition into a (disjoint) union of L-packets

(Πw
z,O∨)t =

⊔

O1∨∈Spc(O∨)

Πφz,O∨,O1∨ ,

where (Πw
z,O∨)t = {πt : π ∈ Πw

z,O∨} is the Aubert duality image of the weak Arthur
packet.

(2) a (non-disjoint) decomposition into a union of local Arthur packets

Πw
z,O∨ =

⋃

O1∨∈Spc(O∨)

Πz,O∨,O1∨ .

As mentioned, Theorem B should be compared with the parallel work in [LL23] and
could be viewed as its explication.

1.4. Weakly spherical constituents of the spherical Arthur packet. Another aspect
of this study describes the location of weakly spherical representations within the spherical
Arthur packet Πz,O∨ and the characterization of all additional Arthur packets that may
contain these representations.

While essential for the proof of Theorem A, it is also notable that our findings (Section
4) relate this problem with the Springer correspondence for the (finite) Weyl group WG of
G∨.

Each conjugacy class O∨ ∈ U∨ comes equipped with a component group A(O∨) =
Z(u)/Z(u)◦, that is, the group of connected components of the centralizer subgroup Z(u) <
G∨(C) of a representative u ∈ O∨.

It is a finite 2-group, whose character group Â(O∨) parameterizes constituents of the
Arthur packet ΠO∨ . That is the scope of the enhanced Langlands reciprocity, that may be
constructed through two distinct, yet interplaying, approaches.

The first is inherent in the design of Arthur’s theory for classical groups, which produces
local Arthur packets by means of endoscopic transfer. Pending a choice of a Whittaker
datum for G, a parameterization

(3) Πz,O∨ =
{
δ(z,O∨, ǫ) : ǫ ∈ Â(O∨)0

}

for the anti-tempered Arthur packet is canonically assigned, where Â(O∨)0 < Â(O∨) is
a specified subgroup (of index 1 or 2).

Here, the trivial character ǫ = trv would give the aforementioned spherical representation
δ(z,O∨, trv) = δz,O∨ ∈ Πz,O∨.

A second approach traces back to the Kazhdan-Lusztig [KL87] geometric construction of
the irreducible spectrum of affine Hecke algebras, which established Langlands reciprocity
for G-representations in the principal Bernstein block.
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Lusztig in [Lus95], using further geometric methods, later gave a parameterisation for
all unipotent representations in Irr(G), providing further means for reinterpreting the pa-
rameterization in (3).

The issue of matching between Lusztig’s and Arthur’s parameterizations of the enhanced
(unipotent) Langlands reciprocity was treated in [Wal19b] for the case of odd orthogonal
groups, via pinning of endoscopic identities.

In our analysis we rely on Assumption 5.1.6 for a similar expected match in the sym-
plectic case, which remains to be clarified due to an apparent gap in existing literature.

1.4.1. The Springer leap. The geometric point of view brings this discussion nearer to the

role of the group Â(O∨) as irreducible local systems on the variety O∨.
This is the perspective of the Springer correspondence. It attaches to each irreducible

(complex) WG-representation, a pair (O∨
σ , ǫσ), consisting of a conjugacy class O∨

σ ∈ U∨ and

an irreducible local system ǫσ ∈ Â(O∨
σ ) on it.

From a separate angle Lusztig provides in [Lus84b, Section 4.2] a division of the set of
isomorphism of irreducible WG-representations into families

Irr(WG) =
⊔

c

Irrc(WG) ,

according to the two-sided Kazhdan-Lusztig cell c on which the representation is supported.
A part of Lusztig’s theory sets up a bijection between those cells and the set of special

orbits of U∨ via the Springer correspondence. Accordingly, for O∨ ∈ U∨, we write c(O∨)
for the cell associated with the special piece to which O∨ belongs.

Yet, detection of familial affiliations of representations in Irr(WG) in terms of their
Springer parameters is a subtle issue.

To that aim the subsets

(4) A†(O∨) =
{
ǫ ∈ Â(O∨) : ∃σ ∈ Irrc(O∨)(WG) s.t. (O∨

σ , ǫσ) = (O∨, ǫ)
}

of the character groups Â(O∨) are defined.
It was shown by Achar-Sage [AS08], that A†(O∨) is in fact an explicitly described sub-

group, dual to what is known as Lusztig’s canonical quotient of the component group
A(O∨).

1.4.2. Characterization of weak sphericity. Returning to our original question, we now
present an answer of similar nature in terms of the enhanced Langlands parameterization.

Theorem C. For any unipotent conjugacy class O∨ ∈ U∨ and a sign z ∈ {±1}, the set of
anti-tempered zsG-weakly spherical representations in Irrχz,O∨ (G) is given as

Πsph
z,O∨ =

{
δ(z,O∨, ǫ) : ǫ ∈ A†(O∨)

}
,

in terms of the parameterization of (3).

It follows from the analysis of Achar-Sage that canonical group embeddings

ιO∨
1 ,O∨ : A†(O∨

1 ) →֒ A†(O∨)
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exist, for any O∨ ∈ U∨ and any O∨
1 ∈ Spc(O∨).

They are compatible with the partial order on U∨, in the sense that

ιO∨
1 ,O∨ ◦ ιO∨

2 ,O∨
1
= ιO∨

2 ,O∨

holds, whenever O∨
2 ∈ Spc(O∨

1 ) and O∨
1 ∈ Spc(O∨).

Definition 1.4.1. Given O∨ ∈ U∨ and O∨
1 ∈ Spc(O∨), we say that a character ǫ ∈ A†(O∨)

is O∨
1 -primitive, when there is no class O∨

1 ≤ O∨
2 � O∨ (in the topological partial order on

U∨) with ǫ ∈ Im(ιO∨
2 ,O∨).

The following theorem fully characterizes the set of Arthur packets that contain a given
weakly spherical anti-tempered representation that admits a quasi-basic infinitesimal char-
acter.

Theorem D. Let O∨ ∈ U∨ be a unipotent conjugacy class, z ∈ {±1} a possible sign, and

δ = δ(z,O∨, ǫ) ∈ Πz,O∨

an anti-tempered zsG-weakly spherical representation (according to Theorem C), parame-
terized by a character ǫ ∈ A†(O∨).

Let Π = ΠA
ψ ⊆ Irr(G) be an Arthur packet, associated to an A-parameter ψ ∈ Ψ(G).

Then, an inclusion δ ∈ Π is valid, if and only if, Π = Πz,O∨,O∨
1
, for a class O∨

1 ∈ Spc(O∨),
for which ǫ is O∨

1 -primitive.

1.5. Example: Triangular partitions. One appealing family of examples for our anal-
ysis appears when considering the dual unipotent conjugacy class O∨ in SO4k(k+1)+1(C)
that is indexed by the triangular partition (4k + 1, 4k − 1, 4k − 3 . . . , 1), for k ≥ 1.

The spherical Arthur packet ΠO∨ ⊆ Irr(Sp4k(k+1)(F )) in this case contains
∣∣∣Â(O∨)0

∣∣∣ = 4k

representations.
A total of |Πs

O∨| =
∣∣A†(O∨)

∣∣ = 2k out of them are weakly spherical. Those weakly

spherical representations can be found as consituents of a total of |Spc(O∨)| = 2k distinct
weakly spherical Arthur packets.

Counting the union of those Arthur packets brings us to 5k distinct constituents of the
weak Arthur packet Πw

O∨ .
Let us also consider the case of G = Sp8(F ) in greater precision. Here, O∨

135 is the
unipotent conjugacy class indexed by the partition (135) in the Langlands dual group
SO9(C).

Viewed as a representation of WF × SL2(C) × SL2(C), the associated basic unipotent
A-parameter is given as

ψO∨
135

= (1⊗ ν1 ⊗ ν1)⊕ (1⊗ ν1 ⊗ ν3)⊕ (1⊗ ν1 ⊗ ν5) ,

where νk is the k-dimensional irreducible SL2(C)-representation, while 1 denotes the trivial
representation of WF .

The tempered Arthur packet ΠφO∨
135

,O∨
135

is known to contain a supercuspidal representa-

tion πsc. Indeed, in [Ato23, Section 3.4] a total of 9 distinct Arthur packets were exhibited
to contain πsc.
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Since supercuspidal irreducible representations are self-Aubert-dual, one of those Arthur
packets is the anti-tempered packet ΠO∨

135
. In further detail, the packet has 4 constituents

ΠO∨
135

=

{
δO∨

135
= δ(O∨

135,+++), π1 = δ(O∨
135,−−+),

π2 = δ(O∨
135,+−−), πsc = δ(O∨

135,−+−)

}
,

including the spherical representation δO∨
135

.

The group of characters Â(O∨
135)0 is identified with a subgroup of (Z/2Z)3, read as signs

attached to each part of the partition. The subgroup A†(O∨
135) is of order 2, marking, by

Theorem C,

Πsph
O∨

135
= {δO∨

135
, π1}

as the set of weakly spherical representations in ΠO∨
135

.
Now, the relative special piece is given as Spc(O∨

135) = {O∨
135,O∨

144}. The additional
Arthur-type L-parameter

φO∨
135,O∨

144
= (1⊗ ν1)⊕ (q1/2 ⊗ ν4)⊕ (q−1/2 ⊗ ν4) ∈ Φ(G)

produces a singleton L-packet ΠφO∨
135

,O∨
144

= {τ}, while the resulting weak Arthur packet

then consists of the 5 representations

Πw
O∨

135
= ΠO∨

135
∪ ΠO∨

135,O∨
144

= {δO∨
135
, π1, π2, πsc, τ

t} .
The additional weakly spherical Arthur packet ΠO∨

135,O∨
144

= {π1, πsc, τ t} is given by the
A-parameter

φtO∨
135,O∨

144
= (1⊗ ν1 ⊗ ν1)⊕ (1⊗ ν2 ⊗ ν4) ∈ Ψ(G) .

Indeed, the inclusion π1 ∈ ΠO∨
135,O∨

144
follows, by Theorem D, from O∨

144-primitivity of

the element (−−+) ∈ A†(O∨
135), since Â(O∨

144)0 is a trivial group.

1.6. Methods. Theorem A is in fact an immediate corollary of the combination of Theo-
rems B,C, and D.

Each of these latter three results necessitates the application of distinct toolkits of re-
cently developed techniques, which we will now outline.

For Theorem B, Gelfand–Kirillov dimensions of representations are extracted out of
the nilpotent orbits that comprise the algebraic wavefront invariant. Here, we utilize the
recent advancements in [CMO23b] that provide an explicit knowledge of these invariants
for certain cases of unipotent representations.

The proof of Theorem D hinges on techniques within the combinatorial theory of Arthur
packet intersections, as developed in recent years by Xu [Xu21] and Atobe [Ato22; Ato23].
For given tempered representations, whose parameters are associated with the Lusztig
canonical quotient, we apply this theory to exhaust all possible Arthur packets that may
contain a specified representation.

To that aim we recall the essentials of the theory of Moeglin parameters for Arthur
packets in Sections 3.2 and 3.3, narrowing our focus to what we term near-tempered Arthur
packets in Section 3.4. This analysis suffices to complete the proofs of Theorems B and D
in Sections 3.5 and 3.6, respectively.
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Theorem C is tackled through categorical equivalences and deformation techniques, fa-
cilitating a direct reduction to the representation theory of finite Weyl groups. This is the
concern of the last three sections.

Section 4 presents a full proof scheme for Theorem C. The main tools are the Borel-
Casselman equivalence between the category of Iwahori-spherical representations and the
module category of the Iwahori-Hecke algebra, and Iwahori and Matsumoto’s classification
of maximal compact subgroups.

Section 5 elaborates on how the finite-dimensional module categories of Hecke algebras,
through the Kazhdan–Lusztig construction, provide the proof for the pivotal reduction,
Theorem 4.4.1.

A critical aspect that arises is the fact that the convolution algebras attached to maximal
compact subgroups may lie in the class of extended (finite) Hecke algebras. To harness
the full strength of deformation techniques for computations of invariants, we reproduce,
in Section 5.2, the theory of Lusztig’s asymptotic algebras in the extended case.

Lastly, Section 6 delves into the representation theory of finite signed permutations
groups, that is, the Weyl groups of classical Lie type. Its goal is to prove Theorem 4.4.3,
the final ingredient in the proof of Theorem C, which relates to the decomposition of (full)
Springer fibre representations into irreducible constituents.

Indeed, such decompositions, referred to as Green theory for their links with classical
Green functions, are typically challenging to access. Yet, recent advancements by Wald-
spurger [Wal19a] and La [La24] supply a novel algorithmic approach. We employ their
results to exhibit a link (Proposition 6.0.1) between those Springer representations whose
parameterization is associated with Lusztig’s canonical quotient and a Weyl group analogue
of weak-sphericity.
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L-parameters and a close form of Proposition 6.1.4 were worked out in a private corre-
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Investigations into the themes that lead up to this work began at the January 2023
”Representation Theory, Combinatorics, and Geometry” program hosted by the Institute
for Mathematical Sciences in Singapore, which provided valuable opportunities for the
exchange of ideas. We also thank the Mathematics departments at the National University
of Singapore and the Technion Institute for their subsequent hospitality and support,
during reciprocal visits.



12 MAXIM GUREVICH AND EMILE OKADA

This research is supported by the Israel Science Foundation (Grant Number: 737/20).

2. Background

2.1. Classical p-adic groups. Repeating some notions, we fix F , a non-Archimedean
local field of characteristic 0. We write pF < OF < F for its ring of integers, and the
maximal ideal of the ring. The residue field OF/pF is finite of size q = ph.

Let NG ≥ 3 be a fixed integer.
Throughout this work we will be concerned with the totally disconnected locally compact

group G = GNG , defined as the F -split special orthogonal group G = SONG+1(F ), when
NG is even, or (F -split) symplectic group G = SpNG−1(F ), when NG is odd.

We set

sG =

{
−1 NG is even
1 NG is odd

,

and write nG for the rank of the simple group G, that is, either NG − sG = 2nG or
NG − sG = 2nG + 1.

We assume that p > 6nG for applications of results from [CMO23a] (Theorem 2.3.5)1.
The group G may be concretely realized as follows.
Consider a (NG − sG)-dimensional F -vector space V , with a basis

e1, . . . , enG, v, fnG, . . . , f1 ∈ V ,

when NG is even, or
e1, . . . , enG, fnG , . . . , f1 ∈ V ,

when NG is odd.
Let B be a bilinear form on V given as

B(ei, ej) = B(fi, fj) = 0, B(ei, fj) = δi,j, B(fj , ei) = −sGδi,j 1 ≤ i, j ≤ nG ,

(here, δi,j is the Kronecker delta function), and

B(fj , v) = B(ei, v) = B(v, ei) = B(v, fi) = 0, B(v, v) = 1, 1 ≤ i, j ≤ nG ,

if defined.
The group G is then realized as the identity connected component of the isometry group

of the form B.

2.1.1. Weyl groups and compact subgroups. The above-designated Witt basis for the form
B gives rise to an integralOF -structure for V . The corresponding isometry group GOF < G
of the OF -lattice constitutes a hyperspecial maximal compact subgroup of G.

It also gives rise to an (open compact) Iwahori subgroup IG < GOF , that is defined as
the pullback of the subgroup of upper-triangular matrices through the resulting projection
GOF → GOF /pF .

Let us consider the maximal F -torus T < G of transformations that are diagonal with
respect to the Witt basis, and its integral form TOF = T ∩GOF = T ∩ IG.

1The second author can confirm that not much effort was put into this bound and it is expected that
p > 2 will suffice.
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The (finite) Weyl group

WG = N(G, T )/T

of G arises when taking a quotient of the normalizer subgroup of T in G.
The Iwahori-Weyl group of G is defined as the quotient

W̃G = N(G, T )/TOF ,

clearly equipped with a projection p : W̃G →WG.
The Iwahori decomposition [IM65, Theorem 2.16] describes the double cosets of IG in G

as

(5) G =
⊔

w∈W̃G

IGwIG .

Moreover, Iwahori-Matsumoto give a correspondence between the set of compact sub-

groups IG < K < G and the set of finite subgroups WK < W̃G.
A particular focus of this work is on the set of maximal open compact subgroups of

G. It is known [Gar97, Section 14.7], that up to G-conjugation, a maximal compact open
subgroup of G must contain IG. Thus, the classification of such groups reduces to the

classification of finite subgroups of W̃G.

Indeed, as we recall in greater detail in Section 4.2, each maximal finite subgroup of W̃G

is conjugate to a member of the sequence of subgroups

WK0 ,WK1, . . . ,WKnG
< W̃G ,

whose corresponding compact groups IG < Ki < G we now describe explicitly.
Embedding G in a matrix form using the Witt basis for B, we write

(6) Ki =



OF OF p−1

F

pF Gi
OF

OF

pF pF OF


 ∩G, 0 ≤ i ≤ nG ,

where Gi
OF

< GNG−2i stands for the integral form of the lower-rank group of same type as
G.

Note, that taking i = 0 recovers the hyperspecial maximal compact subgroup K0 = GOF

featuring at the outset of our analysis.
Let us also note that, when NG is odd, the symplectic group G is simply connected. This

fact causes the maximal compact subgroups of G to coincide with maximal parahoric sub-
groups from the standard Bruhat-Tits theory. Indeed, there are precisely nG+1 conjugacy
classes of maximal parahoric subgroups.

Yet, in the odd orthogonal case of even NG, when G is no longer simply connected, the
classification of its maximal compact subgroups slightly diverges from the parahoric case.
For 0 < i ≤ nG, each of the groups Ki contains a maximal parahoric as a subgroup of
index 2.

2.2. Unipotent locus of the dual group.
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2.2.1. Symplectic and orthogonal partitions. The toplogical structure of U∨ is described
through combinatorics of integers partitions, which we explicate here.

We treat partitions as the set P of tuples λ = (0 < λ1 ≤ λ2 ≤ . . . ≤ λℓ(λ)) of integers.

For an integer N ≥ 1, its partitions P(N) ⊆ P consist of λ ∈ P with |λ| :=∑ℓ(λ)
i=1 λi = N .

The multiplicity of a part m(c, λ) = #{i : λi = c} is defined for each integer c ∈ Z>0

and a partition λ ∈ P.
Given integers a ≤ b and a partition λ ∈ P as above, we set the interval λa↔b ∈ P to

be the partition consisting of all parts λ′i of λ with a ≤ λ′i ≤ b. In other words,

λa↔b = (λi ≤ λi+1 ≤ . . . ≤ λj) ∈ P ,

so that i is the minimal index with a ≤ λi and j is the maximal index with λj ≤ b.
For λ ∈ P, we set

supp(λ) = {c ∈ Z>0 : m(c, λ) > 0}
to be its support. We also write supp(λ) = {c1 < . . . < ct} and describe partitions in the
common notation of

λ = (c
m(c1,λ)
1 c

m(c2,λ)
2 . . . c

m(ct,λ)
t ) ∈ P .

For λ1, λ2 ∈ P, we write λ1 ∪ λ2 ∈ P for the partition that is given by multiplicities
m(c, λ1 ∪ λ2) = m(c, λ1) +m(c, λ2), for all parts c ∈ Z>0.

Similarly, we write λ1\λ2 for the construction given bym(c, λ1\λ2) = m(c, λ1)−m(c, λ2),
whenever those are all non-negative numbers.

Let us denote P1
0 (respectively, P−1

0 ) the subset of P of partitions whose support consists
of odd (respectively, even) integers.

For each choice of a sign s ∈ {±1}, we define the sets of partitions

Ps = {λ ∈ P : ∃µ ∈ Ps
0 , ∃ν ∈ P, λ = µ ∪ ν ∪ ν} ,

and write Ps(N) = P(N) ∩ Ps, for every integer N ≥ 1.

Proposition 2.2.1. (e.g. [KP82, Theorem 2.2]) The conjugacy classes in U∨ are in bi-
jection with PsG(NG).

A class O∨
λ ∈ U∨ that corresponds to a partition λ consist of unipotent matrices whose

multiset of lengths of Jordan blocks is given by the multiset of parts of λ.

Let us write

Pmf = {λ ∈ P : m(c, λ) ≤ 1, ∀c ∈ Z>0}
for the set of multiplicity-free partitions.

For a partition λ ∈ P, a unique decomposition λ = λmf ∪ λm ∪ λm with λmf ∈ Pmf and
λm ∈ P exists.

Clearly, for any partition λ ∈ P, the condition λ ∈ P±1 is equivalent to λmf ∈ P±1
0 .

Let us now fix a sign s ∈ {±1} and a partition λ ∈ Ps.
There are unique partitions λgp ∈ Ps

0 and λbp ∈ P−s
0 , so that λ = λgp ∪ λbp ∪ λbp holds.

In particular, λmf = (λgp)mf holds.
Let us denote the set

S(λ) := supp(λgp) ⊆ Z>0 .
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We consider its power set

P (λ) = {A ⊆ S(λ)} ,

which we view as a F2-vector space, and in particular, a group of cardinality 2|S(λ)|.
Alternatively, elements of P (λ) may be taken as boolean functions on S(λ).
As a vector space, P (λ) is equipped with a natural pairing given by 〈A,B〉 = (−1)|A∩B|,

for A,B ⊆ S(λ). The pairing provides a canonical identification of its dual group of

complex characters P̂ (λ) with P (λ) itself.
Recalling that S0(λ) := supp(λmf) is a subset of S(λ), we let

P (λ)0 = P (λ)/{∅, S0(λ)}

be a quotient group of P (λ) by a two-element subgroup.
We also take note the subgroups

P (λ)0 = {A ∈ P (λ) : |A ∩ S0(λ)| is even} , P (λ)′ = {A ∈ P (λ) : |A| is even} < P (λ) .

Clearly, the previous identification P̂ (λ) ∼= P (λ) factors through P̂ (λ)0 ∼= P (λ)0.
Moreover, when s = 1 and |λ| is odd, the set S0(λ) must be of odd cardinality. Thus, the

pairing 〈 , 〉 restricts to a perfect pairing between the subgroups P (λ)′ and P (λ)0, giving a

natural meaning to an identity P̂ (λ)′ ∼= P (λ)0 in this case.

Proposition 2.2.2. [CM93, Theorem 5.1.6, Corollary 6.1.6]

(1) For a partition λ ∈ P1(2n+ 1), the associated unipotent conjugacy class O∨
λ of the

group SO2n+1(C) has a natural identification of its component group A(O∨
λ ) with

the 2-group P (λ)′.

In particular, the character group Â(O∨
λ ) is thus identified with P (λ)0.

(2) For a partition λ ∈ P−1(2n), the associated unipotent conjugacy class O∨
λ of the

group Sp2n(C) has a natural identification of its component group A(O∨
λ ) with the

2-group P (λ).

In particular, the character group Â(O∨
λ ) is thus identified with P (λ) as well.

Let z ∈ A(O∨
λ ) be the representative of the central element −1 ∈ Sp2n(C) in the

component group.
Then, z corresponds to the element S0(λ) ∈ P (λ) under the above identification,

and the character subgroup

̂A(O∨
λ )/(z) < Â(O∨

λ )

corresponds to the subgroup P (λ)0 < P (λ).

We denote by Â(O∨
λ )0 < Â(O∨

λ ) the subgroup that corresponds to P (λ)0 under the
identifications of Proposition 2.2.2.
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2.2.2. Lusztig’s canonical quotient. Still holding to a fixed partition λ ∈ Ps, we now write

S(λ) = {µ1 < . . . < µk}
and obtain

λmf = (µα1 . . . µαr) ,

for indices 1 ≤ α1 < . . . < αr ≤ k.
We now define an equivalence relation ∼ on S(λ).
When s = −1, we impose the relations

µαr−2j−1
∼ µαr−2j−1+1 ∼ µαr−2j−1+2 ∼ · · · ∼ µαr−2j

,

for each 0 ≤ j < ⌊r/2⌋, and
µ1 ∼ µ2 ∼ · · · ∼ µα1 ,

in case r is odd.
When s = 1, we impose the relations

µαr−2j
∼ µαr−2j−1+1 ∼ µαr−2j−1+2 ∼ · · · ∼ µαr−2j+1

,

for each 0 < j < r/2, and

µαr ∼ µαr+1 ∼ µαr+2 ∼ · · · ∼ µk .

Let S†(λ) := S(λ)/ ∼ denote the resulting set of equivalence classes, and p : S(λ) →
S†(λ) the natural projection.

Let P †(λ) = {B ⊆ S†(λ)} be the power set of S†(λ), viewed again as a 2-group.
Considering P (λ) and P †(λ) as spaces of boolean functions on S(λ) and S†(λ), we can

pullback through the projection p to obtain an embedding p∗ : P †(λ) →֒ P (λ) of groups.
More concretely, we identify

P †(λ) ∼= p∗(P †(λ)) = {A ⊆ S(λ) : ∃B ∈ S†(λ), A = p−1(B)}
as the subgroup of P (λ) consisting of functions that are constant on ∼-classes.

We also set P †(λ)0 = P †(λ) ∩ P (λ)0.

Proposition 2.2.3. Under the realizations of the character groups Â(O∨
λ ) of Proposition

2.2.2 as P (λ) (in case G∨ = Sp2n) or as P (λ)0 (in case G∨ = SO2n+1), the subset

A†(O∨
λ ) < Â(O∨

λ )

that was defined in equation (4), is mapped to the subgroup P †(λ)0.

Proof. For example, this is content of the combinatorial description in [Ach03, Section 3.4],
after identifying the canonical quotient with our definition in (4) using [AS08, Theorem
2.1]. �

Remark 2.2.4. A more common approach in literature arrives at the character subgroup
A†(O∨

λ ) in terms of dualizing a quotient space construction, rather than a subspace con-
struction. That approach is compatible with our presentation in the following sense.
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Fixing an isomorphism P̂ †(λ) ∼= P †(λ) using the standard pairing in the same manner

as the isomorphism P̂ (λ) ∼= P (λ) was exhibited, we may consider p∗ as an embedding of
dual groups. In particular, dualizing it produces an onto group homomorphism

p̂∗ : P (λ) → P †(λ) ,

that can easily be explicated.
This is the quotient map that gives rise to Lusztig’s canonical quotient of A(O∨

λ ) through
the identifications of Proposition 2.2.2.

2.2.3. Special pieces. For a partition λ ∈ Ps and an element θ ∈ S†(λ), we set the integers

θmin = min{µ ∈ S(λ) : p(µ) = θ} , θmax = max{µ ∈ S(λ) : p(µ) = θ} .
In these terms we define the blocks of the partition λ to be the set of partitions

Blk(λ) = {λ(θ)}θ∈S†(λ) ,

given as intervals of λ of the form

λ(θ) = λθmin↔θmax ∈ Ps ,

for each θ ∈ S†(λ). It will be convenient to refer to the elements of S†(λ), the indexing set
of Blk(λ), also as blocks.

It follows that a decomposition

λ = λ# ∪ λ# ∪
⋃

θ∈S†(λ)

λ(θ) ,

holds, for a partition λ# ∈ P−s.
We take note of the set of integers

I(λ) := supp(λbp \ λ#) .
Definition 2.2.5. A partition λ ∈ Ps, for s ∈ {±1}, is said to be special, when one of the
following equivalent conditions holds:

(1) Each of the blocks λ(θ) ∈ Blk(λ) satisfies λ(θ) ∈ P±1
0 (i.e. λ(θ)gp = λ(θ)).

(2) Equality λgp =
⋃
θ∈S†(λ) λ(θ) holds in Ps.

(3) The set I(λ) is empty.

We denote by Ps
spc ⊆ Ps the set of special partitions, and set Ps

spc(N) = P(N) ∩ Ps
spc.

We may now characterize the special classes in the unipotent locus of G∨(C) as

U∨
spc = {O∨

λ ∈ U∨ : λ ∈ Ps
spc} .

Given a partition λ ∈ Ps(N) and a subset I ⊆ I(λ), we define an operation

T I(λ) = λ ∪c∈I (c− 1 c+ 1) \ ∪c∈I(c2) ∈ Ps(N) ,

where (02) = (2) ∈ P is assumed if necessary.
It is easily verified that

I(T I(λ)) = I(λ) \ I
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holds.
In particular, T I(λ)(λ) is a special partition, for any λ ∈ Ps.
Moreover, operation of the form T I are compatible with the block structure of partitions

in the following sense. For any λ′ = T I(λ) ∈ Ps, there is a surjective map

(7) ι∗ = ι∗λ,λ′ : S
†(λ′) → S†(λ) ,

so that a decomposition

λ(θ) = (θmin θmax) ∪
⋃

θ′∈(ι∗)−1(θ)

(λ′(θ′) \ (θ′min θ
′
max)) ∪

⋃

c∈I(θ)
(cm(c,λ))

holds, for any block θ ∈ S†(λ), where I(θ) = I ∩ supp(λ(θ)).
Let us also describe the family of inverted operations to those of the form T I on Ps(N).
For a partition λ ∈ Ps, we say that a block θ ∈ S†(λ) is admissible, if either a block

θ′ ∈ S†(λ) exists, for which θ′max = θmin − 2, or one of

θmax = θmin = 2 , θmax > θmin = 2 ∈ S0(λ)

holds.
Let us denote by S††(λ) ⊆ S†(λ) the set of admissible blocks.
We write the set of integers

J(λ) = {θmin − 1 : θ ∈ S††(λ)} .
For a partition λ ∈ Ps(N) and a subset J ⊆ J(λ), we define

TJ(λ) = λ ∪c∈J (c2) \ ∪c∈J(c− 1 c+ 1) ∈ Ps(N) .

It is then evident that equalities J(TJ(λ)) = J(λ) \ J and I(TJ(λ)) = I(λ) ∪ J hold, and
that T J(TJ(λ)) = λ.

Definition 2.2.6. For any partition λ ∈ Ps(N), we let the relative special piece of λ be
the set of partitions

Spc(λ) = {TJ(λ) : J ⊆ J(λ)} ⊆ Ps(N) .

Proposition 2.2.7. For any conjugacy class O∨
λ ∈ U∨ as in Proposition 2.2.1, given by a

partition λ ∈ PsG(NG), we have a combinatorial description

Spc(O∨
λ ) = {O∨

µ : µ ∈ Spc(λ)} ⊆ U∨

for the relative special piece of the unipotent locus of G∨(C) that is defined by O∨
λ .

In particular, the set Spc(O∨
λ ) consists of 2

|J(λ)| conjugacy classes.

Proof. Let us first assume that λ ∈ PsG
spc(NG) is a special partition.

In [KP89, Proposition 4.2] (attributed to Spaltenstein), it was shown that for all µ ∈
PsG(NG), the class O∨ = O∨

T I(µ)(µ)
∈ U∨

spc is the unique special unipotent class which

satisfies O∨
µ ∈ O∨ and is minimal with respect to the topological partial order on U∨.

It then follows that

Spc(O∨
λ ) = {O∨

µ : µ ∈ PsG(NG) , T
I(µ)(µ) = λ} .
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Since T I(µ)(µ) = λ is equivalent to µ = TI(µ)(λ), our statement now follows for the case
of a special partition.

Let us now take a general partition λ ∈ PsG(NG).
We mark the special partition λ′ = T I(λ)(λ). By definition of relative special pieces we

have Spc(O∨
λ ) = Spc(O∨

λ′) ∩ O∨
λ .

Recalling the combinatorial description of the topological order on U∨, it is easy to verify
that for any subsets J1, J2 ⊆ J(λ′), an inclusion O∨

TJ1 (λ
′) ∈ O∨

TJ2 (λ
′) holds, if and only if,

J2 ⊆ J1.
In particular, since λ = TI(λ)(λ

′), we obtain a description

Spc(O∨
λ ) = {O∨

TJ (λ′)
: I(λ) ⊆ J ⊆ J(λ′)} .

The full statement now follows, when observing that I(λ) ∪ J(λ) = J(λ′) and that
TJ(λ) = TI(λ)∪J (λ

′), for any subset J ⊆ J(λ).
�

Remark 2.2.8. It follows from Proposition 2.2.7 and its proof that the topological partial
order on the conjugacy classes of Spc(O∨

λ ) ⊆ U∨ is naturally isomorphic to the hypercube
lattice of the subsets of J(λ).

We record several basic properties of the construction.

Lemma 2.2.9. Suppose that c − 1, c + 1 ∈ J(λ), for an integer c and a partition λ ∈
PsG(NG).

Then, c 6∈ S0(λ), and, in particular, the multiplicity m(c, λ) is even.

Proof. Clearly, the assumption implies c ∈ S(λ) and that (p(c))min = (p(c))max = c. By
construction of S†(λ) that cannot happen when c ∈ S0(λ). �

Lemma 2.2.10. Suppose that 2 ∈ S(λ), for a partition λ ∈ PsG(NG).
Then, either 1 ∈ J(λ), or 2 6∈ A, for all A ∈ P †(λ)0.

Proof. Note, that we are in the sG = −1 situation. We consider the projection S(λ) →
S†(λ) and write θ0 = p(2).

Suppose that 1 6∈ J(λ).
By construction of S†(λ), we must have |p−1(θ0) ∩ S0(λ)| = |{(θ0)max}| = 1, while

|p−1(θ) ∩ S0(λ)| = 2, for all θ0 6= θ ∈ S†(λ).
Hence, for any A ∈ P †(λ)0, we must have A ∩ p−1(θ0) = ∅.

�

Lemma 2.2.11. Suppose that sG = 1 and a partition λ ∈ PsG(NG) is given.
Let a = maxS(λ). Then, a 6∈ A, for all A ∈ P †(λ)0.

Proof. A similar argument to that in the previous proof of Lemma 2.2.10 holds. Namely,
from the construction of S†(λ), we have |p−1(p(a)) ∩ S0(λ)| = |{a}| = 1, while |p−1(θ) ∩
S0(λ)| = 2, for all p(a) 6= θ ∈ S†(λ).

Hence, for any A ∈ P †(λ)0, the parity condition of P (λ)0 forces a 6∈ A.
�
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2.2.4. Primitivity. Suppose that partitions λ ∈ PsG(NG) and µ ∈ Spc(λ) are given. Then,
a subset I ⊆ I(µ) exists for which λ = T I(µ).

Dualizing the map ι∗µ,λ from (7), we obtain an injective map

ιµ,λ : P
†(µ) →֒ P †(λ) ,

when the groups involved viewed as boolean function spaces on S†(µ) and S†(λ).
It is easy to verify that ιµ,λ(P

†(µ)0) ⊆ P †(λ)0 is fulfilled.
Thus, by invoking the identification of Proposition 2.2.3 on ιµ,λ, we arrive at a definition

of an embedding of character groups

ιO∨
µ ,O∨

λ
: A†(O∨

µ ) →֒ A†(O∨
λ ) .

Now, for a partition λ ∈ PsG(NG) and an integer c ∈ J(λ), we define a character

(8) tc ∈ P̂ (λ) , tc(A) =

{
(−1)|A∩{c−1,c+1}| c > 1
(−1)|A∩{2}| c = 1

,

where A ∈ P (λ) is viewed as a subset of S(λ).
Let us also recall the notion of primitivity that was outlined in Definition 1.4.1.

Proposition 2.2.12. Let λ ∈ PsG(NG) be a partition, and ǫ ∈ A†(O∨) a character of the
corresponding component group.

Let Bǫ ⊆ S(λ) be the subset corresponding to ǫ under the identification of Proposition
2.2.2.

For each µ ∈ Spc(λ), ǫ is O∨
µ -primitive, if and only if, tc(Bǫ) 6= 1, for all c ∈ J(λ)\J(µ).

Proof. For c ∈ J(µ), we take note of the partition λc = T{c}(λ).
Let us see that tc(Bǫ) = 1 holds, if and only if, ǫ ∈ Im(ιO∨

λc
,O∨
λ
).

When c = 1, one direction of the latter claim follows from Lemma 2.2.10. Conversely,
since ιλ1,λ is a bijection in this case, we only need to observe that any subset B ⊆ S†(λ1) \
{p(2)} must satisfy the parity condition B ∈ P (λ1)0.

When c > 1, the fibers of the surjection ι∗λc,λ : S†(λ) → S†(λc) are all singletons, except

for the occurrence of (ι∗λc,λ)
−1(θ) = {θ′, θ′′}, where θ′max = c− 1 and θ′′min = c+ 1.

Thus, as boolean functions on S(λ), we have the equality

Im(ιO∨
λc
,O∨
λ
) = {ǫ′ ∈ P †(λ)0 : ǫ′(c− 1) = ǫ′(c+ 1)} ,

which is equivalent to our claim.
Now, suppose that ǫ is not O∨

µ -primitive. Then, a class O∨ ∈ U∨ exists with O∨
µ ≤ O∨ �

O∨
λ in the topological partial order on U∨, so that ǫ ∈ Im(ιO∨,O∨

λ
).

A partition µ′ ∈ Spc(λ) can then be found, so that O∨ = O∨
µ′ . In particular, µ′ = TJ(λ),

for ∅ 6= J ⊆ J(λ) \ J(µ). Picking c ∈ J , we see that λc = T J\{c}(µ′), Im(ιO∨
µ′
,O∨
λ
) ⊆

Im(ιO∨
λc
,O∨
λ
), and consequently, tc(Bǫ) = 1.

Similarly, when it is assumed that ǫ is O∨
µ -primitive, we obtain that ǫ 6∈ Im(ιO∨

λc
,O∨
λ
), for

any c ∈ J(λ) \ J(µ), since O∨
µ ≤ O∨

λc
� O∨

λ .
�
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2.2.5. Barbasch–Vogan–Lusztig–Spaltenstein duality. The Lie-theoretic duality between types
B and C is known to be manifested in the context of unipotent conjugacy classes. For
each integer n ≥ 1, explicit maps

P−1(2n) → P1(2n+ 1), P1(2n+ 1) → P−1(2n)

are defined in [Spa82, Chapter 3] or [BV85b, Appendix A], all of which we will simply
denote as d.

Here we list some meaningful properties of these duality maps.

Proposition 2.2.13. Let d : PsG(NG) → P−sG(NG−sG) be the Barbasch–Vogan–Lusztig–
Spaltenstein map.

Then,

(1) The image of d is the set of special partitions P−sG
spc (NG − sG).

(2) The decomposition of PsG(NG) into the fibers of the map d amounts precisely to the
decomposition

PsG(NG) =
⊔

λ∈PsGspc(NG)

Spc(λ)

of the set of partitions into its special pieces.
In particular, for any λ ∈ PsG(NG), d remains constant on the relative special

piece Spc(λ).
(3) Setting d′ : P−sG(NG − sG) → PsG(NG) to be the duality map in the reverse direc-

tion, we have d′(d(λ)) = T I(λ)(λ), for any partition λ ∈ PsG(NG).

It is evidently read from Proposition 2.2.13 that the duality maps restrict to explicit
bijections P−1

spc(2n)
∼= P1

spc(2n + 1) between special partitions, for each n ≥ 1. In more
accurate terms, the duality sets up a bijection between the sets of special pieces that
compose P−1(2n) and P1(2n+ 1), respectively.

2.3. Representation theory. We study smoothG-representations over the complex field.
We write a pair (π, V ), or more often simply π, to refer to a complex vector space V on
which G acts continuously by π : G→ GL(V ).

Let Irr(G) denote the collection of isomorphism classes of irreducible such representa-
tions.

We take note of the involution π 7→ πt on Irr(G) that is known as the Aubert duality.
The reader may be invited to the introduction section of [AM23] for a review of the various
definitions and manifestations of that duality.

2.3.1. Local Langlands Reciprocity (split groups). The collection Irr(G), for our groups of
interest, was successfully described in arithmetic terms that we now recall. We assume the
variant of the Langlands reciprocity that is derived from Arthur’s endoscopic treatment,
and refer to [AG17, Appendix B] for a succinct review.

Let WF be Weil subgroup of the absolute Galois group of the field F . We write | · | for
the norm function on WF .
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Repeating the definition of the previous section, we set Φ(G) to be theG∨(C)-conjugation
classes of continuous group homomorphisms

φ : WF × SL2(C) → G∨(C) ,

whose restriction to SL2(C) is an algebraic map, while φ(WF ) consists of semisimple ele-
ments.

Elements φ ∈ Φ(G) are called the L-parameters of the group G.
Langlands reciprocity constructs a canonical finite-to-one surjective map

Irr(G) → Φ(G) π 7→ φπ ,

with favourable properties.
For an L-parameter φ ∈ Φ(G), the set of isomorphism classes of representations

Πφ = {π ∈ Irr(G) : φπ = φ}
is the L-packet attached to φ.

We recall that for any L-parameter φ ∈ Φ(G), a unipotent conjugacy class O∨
φ ∈ U∨ is

attached by taking the class of the element

uφ := φ

(
1,

(
1 1
0 1

))
∈ G∨(C) .

In particular, a partition λ(φ) ∈ PsG(NG) is an invariant that we define by the identity
O∨
λ(φ) = O∨

φ .

2.3.2. Infinitesimal characters. The reciprocity also gives rise to the infinitesimal character
invariant of representations in Irr(G) which is coarser than the L-parameter.

Let Λ(G) be the collection of G∨(C)-conjugation classes of continuous group homomor-
phisms χ : WF → G∨(C), with χ(WF ) consisting of semisimple elements.

We fix the homomorphism

(9) rF : WF → WF × SL2(C), rF (w) =

(
w,

(
|w|1/2 0
0 |w|−1/2

))
.

For each L-parameter φ ∈ Φ(G), its infinitesimal character χφ := φ ◦ rF ∈ Λ(G) is now
defined by precomposition.

A decomposition

(10) Irr(G) =
⊔

χ∈Λ(G)

Irrχ(G)

now arises, when setting

Irrχ(G) :=
⊔

φ∈Φ(G) :χφ=χ

Πφ .

For a representation π ∈ Irrχ(G), we say that its infinitesimal character is χπ := χ ∈ Λ(G).
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2.3.3. Unipotent representations. We say that an infinitesimal character χ ∈ Λ(G) is un-
ramified, when it is trivial on the inertia subgroup IF < WF . We denote by Λu(G) the
collection of unramified infinitesimal characters.

We recall that the quotient WF/IF is a cyclic group generated by the image of (a choice
of) a Frobenius element Fr ∈ WF .

Thus, a character χ ∈ Λu(G) is determined by the conjugacy class of the semisimple
element sχ = χ(Fr) ∈ G∨(C). In practice, we may identify Λu(G) with the set of semisimple
conjugacy classes in G∨(C).

Indeed, this is the point of view taken by the theory of Satake parameters. For a fixed
hyperspecial maximal compact subgroup K < G, we say that a representation π ∈ Irr(G)
is spherical, when its space contains a non-zero K-invariant vector.

For each unramified χ ∈ Λu(G), there is a unique spherical representation

δ(χ) ∈ Irrχ(G) .

We define the sets of unipotent L-parameters

Φu(G) = {φ ∈ Φ(G) : χφ ∈ Λu(G)} ,
and unipotent irreducible G-representations

Irru(G) =
⊔

χ∈Λu(G)

Irrχ(G) =
⊔

φ∈Φu(G)

Πφ .

This latter set happens to coincide with the Lusztig notion of unipotent representations
that is defined in terms of parahoric restriction [Lus95].

Remark 2.3.1. Note also that an L-parameter φ ∈ Φ(G) is unipotent, if and only if, its
restriction φ|IF is a trivial homomorphism. In particular, an L-parameter φ ∈ Φu(G) is
determined by the congjugacy class of the pair of commuting elements (φ(Fr), uφ), which
amounts to the Jordan decomposition of the element gφ := φ(Fr)uφ ∈ G∨(C) in the reduc-
tive algebraic group.

Thus, the set of unipotent L-parameters Φu(G) is in a natural bijection with the conjugacy
classes of G∨(C). Yet, this point of view will not be prominent in our discussion.

2.3.4. Spinor norm character. Let us note that the center ZSO2n+1
is trivial, while ZSp2n

is a group of 2 elements. In the latter case, we write −1 ∈ Sp2n(C) for the non-trivial
element in the center.

We write κ0 : WF → {±1} for the quadratic character corresponding to the unique
unramified quadratic extension of the field F .

Viewing κ0 as a homormophism WF → ZSp2n
, we see that the tensor operation κ0 ⊗ −

gives an involution on the set of L-parameters Φ(SO2n+1(F )), for any n ≥ 1, which preserves
the set of unramified L-parameters Φu(SO2n+1(F )).

Clearly, we have κ0 ⊗ χφ = χκ0⊗φ, for φ ∈ Φ(SO2n+1(F )).
Indeed, this involution may be explicated on the level of corresponding G-representations.
Special orthogonal groups admit a homomorphism

sp : SO2n+1(F ) → F×/(F×)2
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known as the spinor norm. It can be characterized as the homomorphism that takes any
reflection along an anisotropic vector w ∈ V to B(w,w)(F×)2 ([Lam05, Theorem V.1.13]),
where (V,B) is the quadratic space defining the p-adic group as in Section 2.1.

Composing the norm sp with the quadratic character of F× obtained from κ0 via local
class field theory, produces a quadratic SO2n+1(F )-character, which is trivial on the Iwahori
subgroup ISO2n+1(F ).

Abusing notation, we denote that character by κ0 as well.
In these terms, the Langlands reciprocity map satisfies

κ0 ⊗ φπ = φκ0⊗π ,

for any representation π ∈ Irr(SO2n+1(F )).

2.3.5. Explication of L-parameters. We denote by Φ(N) the set of isomorphism classes of
complex N -dimensional continuous representations φ of the group WF × SL2(C), whose
restriction to SL2(C) is algebraic, while φ(WF ) consists of semisimple elements. (i.e. L-
parameters for the group GLN (F ).)

It is convenient to define the set Φ =
⊕

N≥1Φ(N) and treat it as an additive semigroup
with respect to the direct sum operation on representations.

We denote by Φu ⊆ Φ the collection of representations that are trivial on the intertia
group IF < WF .

By assuming the standard embedding ofG∨ intoGLNG, we obtain an embedding Φ(G) ⊆
Φ(NG). Clearly, Φu(G) = Φu ∩ Φ(G) holds.

We now recall the explicit structure of L-parameters in Φ(G). Since our main focus is
set on unipotent representations, we limit this description to Φu(G).

For ζ ∈ C× and an integer k ≥ 1, we write

ζ ⊗ νk ∈ Φu

for theWF×SL2(C)-representation given by the k-dimensional irreducible SL2(C)-representation,
tensored with the 1-dimensional character of WF/IF that is determined by Fr 7→ ζ .

Remark 2.3.2. We note that for such φ = ζ⊗νk ∈ Φu, the precomposition φ(rF (Fr)) may
be viewed as a semisimple matrix whose eigenvalues are specified by the set

{ζq k−1
2 , ζq

k−3
2 , . . . , ζq−

k−1
2 } ,

all appearing with multiplicity 1.

For a partition λ = (λ1 ≤ . . . ≤ λℓ(λ)) ∈ P and a tuple of numbers ζ = (ζ1, . . . , ζℓ(λ)) in
C×, we write

(11) φζ,λ =

ℓ(λ)∑

i=1

ζi ⊗ νλi ∈ Φu .

Proposition 2.3.3. Every L-parameter φ ∈ Φu(G) can be written in the form

φ = φ(1,...,1),λ + φ(−1,...,−1),λ′ + φ(ζ1,...,ζk),µ + φ(ζ−1
1 ,...,ζ−1

k
),µ ,



WEAK ARTHUR PACKETS ARE WEAKLY SPHERICAL 25

where λ, λ′ ∈ PsG and µ ∈ P are partitions with |λ|+ |λ′|+ 2|µ| = NG.
This form is unique for a given L-parameter, when assuming ζi 6= ±1, for all 1 ≤ i ≤ k.
The associated partition to the L-parameter φ ∈ Φ(G) is given by

λ(φ) = λ ∪ λ′ ∪ µ ∪ µ ∈ PsG(NG) .

Proof. This is a straightforward translation into our notation of standard descriptions, such
as in [Ato20, Section 3.1]. �

The following property is easily verified.

Lemma 2.3.4. Let λ ∈ PsG(NG) be a partition, and z ∈ {±1}.
Suppose that φ ∈ Φ(G) is an L-parameter satisfying

χφ = χφ(z,...,z),λ .

Then, the class O∨
φ ∈ U∨ must be contained in the Zariski closure of the class O∨

λ ∈ U∨.

2.3.6. Wavefront sets. We recall that NF was defined to be the set of nilpotent Ad(G)-
orbits in the Lie algebra Lie(G).

Similarly, for the algebraic closure of the field F < F , we denote NF to be the set of
nilpotent Ad(G(F ))-orbits in the Lie algebra Lie(G(F )).

Clearly, there is a (toplogical) order-preserving orbit inclusion map alg : NF → NF .
It is possible to identify the orbits in NF with the corresponding set of adjoint orbits in

Lie(G(C)). Furthermore, the exponential map then allows for an identification of NF with
the set of unipotent conjugacy classes in the complex group G(C). Altogether, we may
apply Proposition 2.2.1 to obtain a natural parameterization of NF by the set of partitions
P−sG(NG − sG).

In this manner, we write Oλ ∈ NF , for a partition λ ∈ P−sG(NG − sG).
The celebrated theory [Har99] of the Harish-Chandra–Howe character studies the trace

distribution Θπ on G that is attached to each representation π ∈ Irr(G).
The local character expansion states that when Θπ is pushed onto the Lie algebra through

the exponential map and restricted to a small enough neighborhood of 0 ∈ Lie(G), it will
equal to a linear combination of the form

∑

O∈NF
cO(π)µ̂O .

Here, the distributions {µ̂O}O∈NF on Lie(G) are Fourier transforms of those given by the
corresponding nilpotent orbital integrals, while {cO(π)}O∈NF are scalars.

We say that an representation π ∈ Irr(G) admits an algebraic wavefront orbit, if there
exists a nilpotent orbit O ∈ NF with cO(π) 6= 0, such that for any orbit O′ ∈ NF with
cO′(π) 6= 0, alg(O′) is contained in the Zariski closure of alg(O).

In this case we can write

WF(π) := alg(O) ∈ NF ,

which is clearly well-defined.
The recent work of Tsai [Tsa24] provides further insight into this concept.
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Clearly, when a representation π admits an algebraic wavefront orbit, its Gelfand-Kirillov
dimension GKdim(π), as defined in the introduction section, will equal half the Zariski
dimension of the algebraic variety WF(π).

A main result of [CMO23b] is a formula for the algebraic wavefront orbit of unipotent
representations in terms of the Langlands reciprocity.

Theorem 2.3.5. Let χ ∈ Λu(G) be an unramified infinitesimal character, for which sχ ∈
G∨(C) is a matrix with real positive eigenvalues.

Then, all irreducible representations in Irrχ(G) admit an algebraic wavefront orbit.
For a representation π ∈ Irrχ(G), whose Aubert dual π

t ∈ Πφ is contained in an L-packet
given by a unipotent L-parameter φ ∈ Φu(G), the formula

WF(π) = Od(λ(φ)) ∈ NF

holds, where d is the Barbasch–Vogan–Lusztig–Spaltenstein duality map.

This extends an analogous result due to Waldspurger for anti-tempered representations
of odd orthogonal groups [Wal18].

3. Arthur theory

Let us recall some properties of the theory of local Arthur packets, that were developed
in [Art13] through an intricate analysis of endoscopic transfer.

For each A-parameter ψ ∈ Ψ(G) (as defined in the introduction section), the associated
Arthur packet, or A-packet, is a finite set of representations ΠA

ψ ⊆ Irr(G).
Irreducible representations in the collection

⋃

ψ∈Ψ(G)

ΠA
ψ ⊆ Irr(G)

are called Arthur-type representations. In contrast with the L-packet decomposition of
(10), the union in the preceeding equation is not disjoint, i.e. A-packets are known to
overlap.

A key feature of the theory, though one which will not play a direct role in our discussion,
is that all Arthur-type representations are unitarizable.

For an A-parameter ψ ∈ Ψ(G), we set the precomposition φψ := ψ ◦ r′F ∈ Φ(G) to be its
associated L-parameter, where

r′F : WF × SL2(C) →WF × SL2(C)× SL2(C), r′F (w, x) =

(
w, x,

(
|w|1/2 0
0 |w|−1/2

))
.

is a homomorphism resembling the form of the one defined in (9).
We also set χψ := χφψ = ψ ◦ r′F ◦ rF ∈ Λ(G) to be the associated infinitesimal character.
Marking the flip fp(x, y) = (y, x) on SL2(R)× SL2(R), we obtain an involution

ψt := ψ ◦ fp

on the set of A-parameters Ψ(G).
We note that χψt = χψ holds.
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Proposition 3.0.1. [Art13, Proposition 7.4.1][Mœg09a, Proposition 4.1][Ato22, Theorem
1.6]

For any A-parameter ψ ∈ Ψ(G), we have containments

Πφψ ⊆ ΠA
ψ ⊆ Irrχψ(G) ,

and a compatibility with the Aubert duality in Irr(G) in the sense of

ΠA
ψt = {πt : π ∈ ΠA

ψ} .
For notation purposes, let us write the domain of A-parameters as a group

WF × SLL2 (C)× SLA2 (C) ,

where each of SLL2 , SL
A
2 stands for a copy of the algebraic group SL2.

A parameter ψ ∈ Ψ(G) is said to be tempered, when its restriction ψ|SLA2 (C) is a trivial
homomorphism.

For a tempered A-parameter ψ ∈ Ψ(G), an equality Πφψ = ΠA
ψ is known to hold.

Moreover, a representation in Irr(G) is tempered in the analytic sense, if and only if, it
belongs to an A-packet (which is also an L-packet) for a tempered parameter.

A parameter ψ ∈ Ψ(G) is said to be anti-tempered, when its restriction ψ|SLL2 (C) is a
trivial homomorphism.

A representation π ∈ Irr(G) is said to be anti-tempered, whenever πt is tempered.
Thus, by Proposition 3.0.1 anti-tempered irreducible representations clearly coincide

with the constituents of A-packets that arise from anti-tempered A-parameters.

3.0.1. Arthur’s characters. For ψ ∈ Ψ(G), we write

Sψ = Zψ/Z
◦
ψZG∨

for the component group of the centralizer subgroup Zψ = ZG∨(C)(Im(ψ)) < G∨(C), taken
modulo the representatives of the center ZG∨ = Z(G∨(C)).

We write Ŝψ for the dual group of complex characters on Sψ. Both are finite 2-groups.

Analogous definitions for the group Sφ, and its dual Ŝφ, are also set in place for each
L-parameter φ ∈ Φ(G).

For an A-parameter ψ ∈ Ψ(G), the embedding of centralizers Zψ < Zφψ gives rise to a

surjective map Sψ → Sφψ . Dualizing, we obtain an embedding Ŝφψ < Ŝψ of finite groups.
Arthur has attached a map

(12) ΠA
ψ → Ŝψ π 7→ ǫψπ ,

to each A-packet ψ ∈ Ψ(G). Its definition is pinned down by certain endoscopic identities
that are required to be satisfied by the constituents of ΠA

ψ .

In particular, the invariant ǫψπ , for Arthur-type representations π, provides an approach
for an enhanced Langlands reciprocity, that is, a meaningful labelling of irreducible repre-
sentation within a single L-packet.

In that regard, the information that is provided by the following proposition will suffice
for our needs.
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Proposition 3.0.2. [Art13, Proposition 7.4.1]
For any A-parameter ψ ∈ Ψ(G), the map in (12) is injective when restricted to the

L-packet Πφψ ⊆ ΠA
ψ .

Moreover, an equality

Ŝφψ = {ǫψπ : π ∈ Πφψ}
holds.

In particular, for the L-parameter φ = φψ ∈ Φ(G), we may parameterize the associated
L-packet as

Πφ = {π(φ, ǫ) : ǫ ∈ Ŝφ} ,
so that ǫ = ǫπψ, whenever π = π(φ, ǫ). .

Corollary 3.0.3. For any tempered or anti-tempered A-parameter ψ ∈ Ψ(G), the map in
(12) is a bijection, and can be used to parameterize the representations

ΠA
ψ = {π(ψ, ǫ) : ǫ ∈ Ŝψ} ,

of the associated A-packet, so that ǫ = ǫπψ, whenever π = π(ψ, ǫ). .

Proof. The tempered case follows from Proposition 3.0.2 when recalling that Πφψ = ΠA
ψ

and that Ŝφψ = Ŝψ hold.
For an anti-tempered A-parameter ψ ∈ Ψ(G), we clearly have Sψ = Sψt . Hence, this

case follows from the tempered case through Aubert duality. �

Remark 3.0.4. The map in (12) is in general dependant on a fixed choice of a Whittaker
datum for the group G, which is not canonical in the case that the group is symplectic.

Yet, the interest of this work in the characters ǫψπ will be limited to the case of A-
parameters that admit a quasi-basic infinitesimal character χz,O∨, in the sense of Section
3.1.

One can consult the established formulas for change of character under a change of
Whittaker datum. These formulas are detailed, for instance, in [JLZ22, Section 3.2.1],
revealing that in these cases ǫψπ is in fact independent of the chosen datum.

3.1. Basic A-packets. Among anti-tempered A-parameters, we say that ψ ∈ Ψ(G) is
basic, when its restriction ψ|WF×SLL2 (C)

is a trivial homomorphism.

More generally, we say that an A-parameter ψ ∈ Ψ(G) is quasi-basic, when its restriction
ψ|IF×SLL2 (C)

is a trivial homomorphism, and ψ(Fr) ∈ ZG∨ .
It is evident that basic A-parameters are classified by the collection of algebraic homo-

morphisms SLA2 → G∨, up to conjugation. By the Jacobson-Morozov theorem those may
be parameterized by the classes of U∨.

Namely, for each conjugacy class O∨ ∈ U∨, we denote by ψO∨ ∈ Ψ(G) the basic A-
paramater which satisfies

ψO∨ |SLA2 (C)

((
1 1
0 1

))
∈ O∨ .
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The set of quasi-basic A-parameters in Ψ(G) is easily seen to be described as

Ψqb(G) := {ψz,O∨}z∈Z
G∨ ,O∨∈U∨ ,

where each ψz,O∨ ∈ Ψ(G) is determined by

ψz,O∨(Fr) = z , ψz,O∨ |IF×SLL2 (C)×SLA2 (C) = ψO∨ |IF×SLL2 (C)×SLA2 (C) .

For a quasi-basic A-parameter ψ = ψz,O∨ ∈ Ψ(G), let us also write

χz,O∨ := χψ ∈ Λu(G) , φz,O∨ := φψ ∈ Φu(G) ,

for its associated (unipotent) infinitesimal character and L-parameter.
Since the center ZSO2n+1 is trivial, all quasi-basic A-parameters are basic in the case of

G∨ = SO2n+1.
In the case of G∨ = Sp2n, we treat the central parameter z ∈ ZSp2n

, for ψz,O∨ ∈ Ψ(G),
merely as a choice of a sign z ∈ {±1}.

Still is the same case, we clearly have κ0 ⊗ φz,O∨ = φ−z,O∨ and κ0 ⊗ χz,O∨ = χ−z,O∨.

Definition 3.1.1. For a unipotent conjugacy class O∨ ∈ U∨ and a central element z ∈
ZG∨, we set

Πz,O∨ := ΠA
ψz,O∨

⊆ Irrχz,O∨ (G)

to be the associated quasi-basic A-packet.
When z is trivial, we write ΠO∨ = Π1,O∨ and call it a basic A-packet.

We take note of the subclass of unipotent representations given as

Irr0(G) :=
⊔

ψ∈Ψqb(G)

Irrχψ(G) ⊆ Irru(G) ,

in which all quasi-basic A-packets are contained. We say that representations in Irr0(G)
are integral.

Note, that integral representations may be found as constituents of Arthur packets that
are not quasi-basic (or not be of Arthur-type). Therefore, it makes sense to define the set
of integral A-parameters as

Ψ0(G) = {ψ ∈ Ψ(G) : ∃ψ′ ∈ Ψqb(G), χψ = χψ′} ,
whose associated A-packets give rise to all integral Arthur-type representations.

3.1.1. Formally weakly spherical representations. We note that for each O∨ ∈ U∨ and
z ∈ ZG∨, an identity

(13) Sψz,O∨ = A(O∨)/ZG∨

holds, by definition of both its sides.
Building upon this identification and the labelling of anti-tempered representations given

in Corollary 3.0.3, we may now define the introduction section notation of (3), as

δ(z,O∨, ǫ) := π(ψz,O∨, ǫ) ∈ Πz,O∨ ,

for each z ∈ ZG∨ , O∨ ∈ U∨ and ǫ ∈ Â(O∨)0.
Within this labelling, we take note of the following class of irreducible representations.
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Definition 3.1.2. For a unipotent conjugacy class O∨ ∈ U∨ and a central element z ∈
ZG∨, we denote the set of irreducible anti-tempered representations

Πf
z,O∨ = {δ(z,O∨, ǫ) ∈ Πz,O∨ : ǫ ∈ A†(O∨)}

parameterized by the group of characters A†(O∨) < Â(O∨)0 of Proposition 2.2.3.

We say that the representations in Πf
z,O∨ are formally weakly spherical.

A canonical constituent in Πf
z,O∨, for each O∨ ∈ U∨ and z ∈ ZG∨, is the spherical

representation

δz,O∨ := δ(χz,O∨) = δ(z,O∨, trv) ∈ Irrχz,O∨ (G) .

Here, trv ∈ Ŝψz,O∨ is the trivial character.
Furthermore, it is also easy to verify that the group Sφz,O∨ , for the associated L-

parameter φz,O∨, is a trivial group, i.e. that the centralizer of χO∨(Fr) ∈ G∨(C) is connected
modulo ZG∨.

Hence, with the character group Ŝψz,O∨ being trivial, we see by Proposition 3.0.2 that
the associated L-packet to a quasi-basic A-parameter is the singleton set

{δz,O∨} = Πφz,O∨ ⊆ Πf
z,O∨ ⊆ Πz,O∨ ⊆ Irrχz,O∨ (G)

consisting of the spherical representation that admits the corresponding infinitesimal char-
acter.

3.2. Explication of A-parameters. Let us recall the existing theory on the explication of
the composition of A-packets in combinatorial terms, when applied the case of Arthur-type
representations in Irr0(G).

3.2.1. Tables. A table m will consist of a finite indexing set I(m) and a set of pairs of
integers (ai, bi) ∈ Z>0 × Z>0, for each i ∈ I(m).

We write T for the set of tables.
For an integer N ≥ 1, we set T (N) ⊆ T to be the set of tables m with |m| :=∑
i∈I(m) aibi = N .
We fix natural maps

i : P →֒ T , p : T ։ P
between the set of tables and the set of partitions P.

Given a partition λ = (λ1 ≤ . . . ≤ λℓ(λ) ∈ P, a table mλ = i(λ) ∈ T is constructed
by taking the indexing set I(mλ) = {1, . . . , ℓ(λ)} and setting (ai, bi) = (λi, 1), for each
i ∈ I(mλ).

In an adjoint manner, for a table m ∈ T , we construct

λm = p(m) = ∪i∈I(m)(a
bi
i ) ∈ P .

It is evident that p(i(λ)) = λ holds, for any partition λ ∈ P.
Form1,m2 ∈ T , we writem1∪m2 ∈ T for the table given by the pairs {(ai, bi)}i∈I(m1)∪I(m2),

with I(m1 ∪m2) = I(m1) ⊔ I(m2).
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For a table m ∈ T and a set S ⊆ Z>0 × Z>0, we may also write a table m ∪ S ∈ T ,
by implicitly assuming an auxiliary indexing set IS, so that I(m ∪ S) = I(m) ⊔ IS with
S = {(ai, bi)}i∈IS .

We write T 1
0 (respectively, T −1

0 ) for the set of tables m ∈ T , for which ai + bi is even
(respectively, odd), for all i ∈ I(m).

For each choice of a sign s ∈ {±1}, we define the sets of tables

T s = {m ∈ T : ∃m0 ∈ T s
0 , ∃n ∈ T , m = m0 ∪ n ∪ n} ,

and write T s(N) = T (N) ∩ T s, for every integer N ≥ 1.
The maps i, p clearly restrict to well-defined maps

i : Ps(N) →֒ T s(N) , p : T s(N) ։ Ps(N) ,

for any N ≥ 1 and a choice of sign s ∈ {±1}.
3.2.2. Integral A-packets. We denote by Ψ(N) the set of isomorphism classes of complex
N -dimensional continuous representations ψ of the group WF × SL2(C) × SL2(C), whose
restriction to SL2(C)×SL2(C) is algebraic, while ψ(WF ) is bounded and consists of semisim-
ple elements. (i.e. A-parameters for the group GLN(F ).)

A natural map (in fact, injection) Ψ(N) →֒ Φ(N) is given by ψ 7→ φψ := ψ ◦ r′F .
For z ∈ ZG∨ and integers a, b ≥ 1, we write

z ⊗ νa ⊗ νb ∈ Ψ(ab)

for the tensored representation, with νk denoting the k-dimensional irreducible SL2(C)-
representation, and z denoting the 1-dimensional character of WF/IF that is determined
by Fr 7→ z.

An explication shows that for ψ = z ⊗ νa ⊗ νb, we have

(14) φψ =

b−1∑

i=0

zqi−
b−1
2 ⊗ νa ∈ Φ(N) .

In similarity with Section 2.3.5, we embed Ψ(G) ⊆ Ψ(NG), and treat Ψ =
⊕

N≥1Ψ(N)
as an additive semigroup with respect to the direct sum operation on representations.

For a table m ∈ T (N) and an element z ∈ ZG∨ , we define

ψz,m =
∑

i∈I(m)

z ⊗ νai ⊗ νbi ∈ Ψ(N) .

Proposition 3.2.1. (1) The assignment (z,m) 7→ ψz,m is a bijection between the set
ZG∨ × T sG(NG) and the set Ψ0(G) of integral A-parameters.

(2) Restricting the previous assignment to the case of partitions, gives a bijection (z, λ) 7→
ψz,mλ between the set ZG∨ × PsG(NG) and the subset of tempered A-parameters in
Ψ0(G).

(3) For any partition λ ∈ PsG(NG) and z ∈ ZG∨, the associated quasi-basic A-parameter
may be described as

ψz,O∨
λ
= (ψz,mλ)

t ∈ Ψ0(G) ,
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while the associated tempered L-parameter is given by

φ(z,...,z),λ = φψz,mλ ∈ Φu(G) ,

in the sense of the notation in (11).
(4) For any ψ = ψz,m ∈ Ψ0(G), we have λ(φψ) = λm.

Proof. It is a direct consequence of standard properties of A-parameters (see, for example,
[Ato22, Section 2.3]) that any ψ ∈ Ψ(G) with infinitesimal character χψ = χz,O∨, for
z ∈ ZG∨ and O∨ ∈ U∨, must be of the form ψ = ψz,m, for a table m ∈ T sG(NG).

For λ ∈ PsG(NG), clearly ψz,mλ is a tempered A-parameter that may be viewed as an L-
parameter. By Proposition 2.3.3 it then follows that χψz,mλ = χz,O∨

λ
. Hence, ψz,mλ ∈ Ψ0(G).

For a given ψz,m ∈ Ψ(G), the partition λ′ = p(m) ∈ PsG(NG) satisfies χψz,m = χψz,m
λ′
,

which implies ψz,m ∈ Ψ0(G).
The rest of the statement amounts to simple fact collecting, assisted by the formula in

(14) and Proposition 2.3.3.
�

3.2.3. Component groups. Let us write T mf ⊆ T for the set of multiplicity-free tables,
that is, m ∈ T with (ai, bi) 6= (aj, bj), for all distinct i, j ∈ I(m).

For a table m ∈ T , a unique decomposition m = mmf ∪mm ∪mm with mmf ∈ T mf and
mm ∈ T exists.

Clearly, for a table m ∈ T , we have m ∈ T ±1, if and only if, mmf ∈ T ±1
0 .

Let us now fix a sign s ∈ {±1} and a table m ∈ T s.
There are unique tables mgp ∈ T s

0 and mbp ∈ T −s
0 , so that m = mgp ∪mbp ∪mbp holds.

In particular, mmf = (mgp)mf holds.
Let us denote the set

S(m) = {(a, b) ∈ Z>0 × Z>0 : ∃i ∈ I(mgp), (a, b) = (ai, bi)} .
A natural surjective map

κ : S(m) ։ supp(λm)

is given by κ(a, b) = a.
Note that the partition λm ∈ Ps may not belong to Ps

0 , even when m ∈ T s
0 . For example,

m = mgp = {(3, 3), (4, 2)} ∈ T 1
0 , while λm = (3342) ∈ P1 has (λm)

gp = (33).
Thus, we further refine the construction by writing

(15) S(m) = S(m)♯ ⊔ S(m)♭ ,

where S(m)♯ = κ−1(S(λ)), and attain a map κ : S(m)♯ ։ S(λm) by restriction.
Now, in further similarity with Section 2.2.1 we consider the power set

P (m) = {A ⊆ S(m)}
as a F2-vector space, a group of cardinality 2|S(m)|, or as a space of boolean functions on
S(m).

The decomposition in (15) naturally gives a direct sum decomposition

P (m) = P (m)♯ ⊕ P (m)♭
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of vector spaces.
A pullback through κ gives an embedding

κ∗ : P (λm) →֒ P (m)♯ < P (m) .

Explicitly, for a set A ⊆ S(λm), we have κ∗(A) = {(ai, bi) : i ∈ I(mgp) , ai ∈ A} .
We also take note of the subgroup

P (m)0 = {A ⊆ S(m) : |A ∩ S(mmf)| is even} < P (m) .

It can be verified that the map κ∗ embeds the subgroup P (λm)0 into P (m)0.

Proposition 3.2.2. (e.g. [Xu17, Section 2])
For any A-parameter ψ = ψz,m ∈ Ψ0(G), given by z ∈ ZG∨ and a table m ∈ T sG(NG),

there are natural identifications

Ŝφψ ∼= P (λm)0 , Ŝψ ∼= P (m)0 ,

under which the embedding given by κ∗ corresponds to the containment Ŝφψ < Ŝψ.
We note that for the case of a tempered A-parameter ψ = ψz,mλ ∈ Ψ0(G) and its

associated quasi-basic A-parameter ψz,O∨
λ
= ψt ∈ Ψ0(G), the map κ∗ is an isomorphism.

The identifications of Proposition 2.2.2, equation (13) and Proposition 3.2.2 all coincide in
this case, to produce an identification

(16) ̂Sφ(z,...,z),λ = Ŝψz,mλ = Ŝψz,O∨
λ

∼= P (λ)0 = P (mλ)0

of groups.

3.3. Moeglin’s parameters and A-packet intersections. Beyond the case of tempered
A-parameters, where the associated A-packets are well-situated with respect to the Lang-
lands reciprocity (in particular, are disjoint), the composition of general A-packets and
their possible intersections remains a largely difficult question.

A line of study by Moeglin [Mœg06; Mœg09b; Mœg11], Xu [Xu17; Xu21] and Atobe
[Ato22; Ato23] offered meaningful tools to approach such issues. We will now sketch some
of its features, when applied on the case of integral A-packets.

For a table m ∈ T , we set the integers

αi := ai + bi , βi = ai − bi ,

for all i ∈ I(m).
For a sign s ∈ {±1} and a table m ∈ T s, we associate the Moeglin parameter set

W(m) =



(l, η) :

l : I(mgp) → Z, s.t. 0 ≤ l(i) ≤ bi/2 ,
η : Rl → {±1} ,
where Rl := I(mgp) \ {i : l(i) = bi/2}



 .

An admissible order ≺ on a table m ∈ T s is any linear order on the indexing set

I(mgp) = {x1 ≺ . . . ≺ xt} ,
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for which the condition

βxi ≤ βxj , or





βx1 ≥ 0
βxi > βxj ≥ 0
αxi ≤ αxj

is satisfied, for all 1 ≤ i < j ≤ t.
For ease of presentation, when an admissible order ≺ is fixed on m ∈ T s, we will

often simply assume that I(mgp) = {1, . . . , t} is indexed by integers number, so that
i < j ⇔ i ≺ j.

For each integral A-parameter ψ = ψz,m ∈ Ψ0(G), with m ∈ T sG(NG) and z ∈ ZG∨, and
a choice of an admissible order ≺ on m, Moeglin’s construction gives an embedding

M≺ : ΠA
ψ →֒ W(m) .

For a representation π ∈ ΠA
ψ , we will write π = π≺(ψ, l, η), when (l, η) =M≺(π).

As visible from its definition, the invariant (l, η) ∈ W(m), for a given representation

π ∈ ΠA
ψ , is not canonical, in the sense that it may vary along different choices of admissible

orders.
Yet, for a representation π ∈ ΠA

ψz,m
, the canonical Arthur character ǫ

ψz,m
π can still be read

off Moeglin’s parameterization in the following sense.

Proposition 3.3.1. ([Ato22, Theorem 3.6] combined with erratum in [Ato23, Appendix
A])

Let ≺ be an admissible order on a table m ∈ T sG(NG) and ψ = ψz,m ∈ Ψ0(G) an
associated integral A-parameter.

Then, a function γψ≺ : I(mgp) → {±1} exists (explicit formula in [Xu17, Definition 5.2]),
so that

(−1)ǫ
ψ
π (ai,bi) =

{
γψ≺(i)(−1)⌊bi/2⌋+l(i)η(i)bi l(i) < bi/2

γψ≺(i) l(i) = bi/2
,

holds for all i ∈ I(mgp), and any

π = π≺(ψ, l, η) ∈ ΠA
ψ .

Here, we identify ǫψπ ∈ Ŝψ ∼= P (m)0 as a boolean function on S(m).

For a table m ∈ T s, it will be useful to set the convention

Ĩ(mgp) =

{
I(mgp) s = 1
I(mgp) ⊔ {0} s = −1

,

while assuming (a0, b0) = (0, 1), when s = −1.
Similarly, for a parameter (l, η) ∈ W(m) we assume the convention l(0) = 0 and η(0) = 1.
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3.3.1. Intersections between A-packets. In [Ato22], Atobe gave an algorithmic description
of all possible pairs of tuples (ψ1,≺1, l1, η1), (ψ2,≺2, l2, η2) that give isomorphic represen-
tations

π≺1(ψ1, l1, η1)
∼= π≺2(ψ2, l2, η2) ∈ ΠA

ψ1
∩ ΠA

ψ2
.

Let us recall parts of this theory that will be essential to our discussion.

Proposition 3.3.2. [Ato22, Theorem 5.2 and Corollary 5.3] Let ≺ be an admissible order
on a table m ∈ T sG(NG), for which we assume I(mgp) = {1 ≺ . . . ≺ t}.

Let ψ = ψz,m ∈ Ψ0(G) be the associated integral A-parameter, for a choice of z ∈ ZG∨.
Let

π = π≺(ψ, l, η) ∈ ΠA
ψ

be a given representation.

Suppose that t > k ∈ Ĩ(mgp) is such that βk ≥ −1 holds, and that one of the following
conditions is satisfied:

(1) 



ak+1 − ak = (bk − 2lk)− (bk+1 − 2lk+1)
lk+1 − lk > 0
lk+1 − lk > bk+1 − bk
ηk+1 = (−1)bk+1ηk

,

(2) 



ak+1 − ak = −(bk − 2lk) + (bk+1 − 2lk+1)
lk+1 − lk < 0
lk+1 − lk < bk+1 − bk
ηk+1 = (−1)bk+1ηk

,

(3) 



ak+1 − ak = (bk − 2lk) + (bk+1 − 2lk+1)
lk+1 + lk < bk
lk+1 + lk < bk+1

ηk+1 = (−1)bkηk

.

Here, we shortcut notation to li = l(i) and ηi = η(i).
Then, we have an inclusion

π ∈ ΠA
ψz,m′

,

where m′ ∈ T sG(NG) is the table given by

m′ = {(ai, bi)}i∈I(m)\{k,k+1} ∪ {(a∗, b∗), (a∗∗, b∗∗)} ,
if added values are non-zero, where

a∗ =
ak + ak+1

2
+
bk+1 − bk

2
, b∗ =

bk + bk+1

2
+
ak+1 − ak

2
,

a∗∗ =
ak + ak+1

2
− bk+1 − bk

2
, b∗∗ =

bk + bk+1

2
− ak+1 − ak

2
.
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Corollary 3.3.3. Let m, z, ψ,≺ be as in Proposition 3.3.2, and suppose that t > k ∈ Ĩ(mgp)
is such that βk ≥ −1 and αk = βk+1 hold.

Suppose that (l, η) ∈ W(m) is a Moeglin parameter that satisfies
{
lk+1 = lk = 0
ηk+1 = (−1)bkηk

.

Let

m′ = {(ai, bi)}i∈I(m)\{k,k+1} ∪ {(a∗, b∗)} ∈ T sG(NG) ,

where a∗ =
1
2
(βk + αk+1), b∗ = bk + bk+1, be a table, constructed out of m and k.

Let (l′, η′) ∈ W(m′) be the Moeglin parameter constructed out of (l, η) by setting

l′(∗) = 0, η′(∗) = ηk ,

while retaining equalities l′ = l, η′ = η on I(mgp) \ {k, k + 1}.
Let ≺′ be the admissible order on m′ that is constructed out of ≺ by replacing the relative

position of {k, k + 1} with the index ∗.
Then, the parameter (l, η) is in the image of M≺, for the A-parameter ψz,m, if and only

if, the parameter (l′, η′) is in the image of M≺′, for the A-parameter ψz,m′.
In case the equivalent conditions hold, we have

π≺(ψz,m, l, η) ∼= π≺′(ψz,m′, l′, η′) ∈ ΠA
ψz,m ∩ ΠA

ψz,m′
.

Proof. Assuming that π≺(ψz,m, l, η) is well-defined, this is a particular case of Proposition

3.3.2(3), where ≺′, l′, η′ are stated in [Ato22, Theorem 5.2].
�

We say that a table m ∈ T s is non-negative, if for all i ∈ I(mgp), we have βi ≥ −1.

Remark 3.3.4. Our definition for non-negativity of A-parameters notably differs from
that of [Ato22] and other sources, where the condition βi ≥ 0 is taken.

Proposition 3.3.5. Let ≺ be an admissible order on a table m ∈ T sG(NG). We assume
1 ∈ I(mgp) to be the minimal index with respect to ≺.

Let ψ = ψz,m ∈ Ψ0(G) be the associated integral A-parameter.
Let

π = π≺(ψ, l, η) ∈ ΠA
ψ

be a given representation.
Suppose that we have β1 ∈ {−1, 0, 1}, d := min{a1, b1} > 1 and that the conditions





l(1) = 0 if β1 = 0
l(1) = 0, η(1) = −1 if β1 = 1
l(1) = 1, η(1) = −1 if β1 = −1

hold.
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Then, for any 1 ≤ c < d, we have an inclusion π ∈ ΠA
ψz,mc

, where mc ∈ T sG(NG) is the

(not non-negative) table defined as

mc =





{(ai, bi)}i∈I(m)\{1} ∪ {(c, c), (d− c, d+ c)} if β1 = 0
{(ai, bi)}i∈I(m)\{1} ∪ {(c+ 1, c), (d− c− 1, d+ c)} if β1 = 1
{(ai, bi)}i∈I(m)\{1} ∪ {(c, c+ 1), (d− c− 1, d+ c)} if β1 = −1

.

Proof. This is an explication of cases of ’operation (P)’ in [Ato23, Theorem 3.5]. �

The following proposition fully characterizes the possible intersections of an A-packet
arising from ψz,m for a non-negative table m ∈ T sG(NG) with any another A-packet.

Proposition 3.3.6. [Ato23, cases of Theorem 3.5]
Suppose that a representation π ∈ Πψ ∩ Πψ̂ belongs to an intersection of A-packets, for

two distinct A-parameters ψ, ψ̂ ∈ Ψ0(G).

We write ψ = ψz,m and ψ̂ = ψz,m̂ for tables m, m̂ ∈ T sG(NG), and z ∈ ZG∨.

(1) Suppose that m and m̂ are both non-negative.
Then, a sequence m = m1,m2, . . . ,mr = m̂ of non-negative tables in T sG(NG)

exists, so that inclusions

π ∈ ΠA
ψz,mi

, i = 1, . . . , r

hold, and so that for each 1 ≤ i < r we can write {mi,mi+1} = {mi,m
′
i} and find an

admissible order ≺i on mi, under which the inclusion π ∈ ΠA
ψz,m′

i

is obtained from

the parameter M≺i(π) by one of the moves described in Proposition 3.3.2.
(2) Suppose that m is non-negative, while m̂ is not non-negative.

Then, there exist a non-negative table m′ ∈ T sG(NG) with π ∈ Πψz,m′ , an admissi-

ble order ≺′ on m′, and a (not non-negative) table m̂′ ∈ T sG(NG) which is obtained
from M≺′(π) by a move described in Proposition 3.3.5.

3.4. Near-tempered A-parameters. We say that a table m ∈ T s is near-tempered, if
bi ∈ {1, 2}, for all i ∈ I(mgp).

Note, that for a near-tempered table m, bi is determined by ai, for all i ∈ I(mgp), due to
the parity condition. Near-tempered tables are non-negative.

We say that an integral A-parameter ψz,m ∈ Ψ0(G) is near-tempered, when the table m
is near-tempered.

3.4.1. Special pieces in Arthur theory. Our interest in near-tempered A-parameters arises
naturally through the proof process of Proposition 1.3.1.

Given a partition λ ∈ PsG(NG) and a subset J ⊆ J(λ), we define the near-tempered
table

mλ,J = i (λ \ ∪c∈J(c− 1 c+ 1)) ∪ {(c, 2)}c∈J ∈ T sG(NG) .

It is evident that

(17) p(mλ,J) = TJ(λ)

holds.
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Example 3.4.1. Taking the partition

λ = (1 32 42 53 74 92 102 11) = (1 32 53 74 92 11) ∪ (4 10) ∪ (4 10) ∈ P1(107) ,

we see that J(λ) = {6, 8, 10}.
Picking J = {6, 10}, would give the A-packet

ψ1,mλ,J = 1⊗ ν1 ⊗ ν1 + 1⊗ ν7 ⊗ ν1 + 1⊗ ν9 ⊗ ν1
+(q1/2 + q−1/2)⊗ ν6 ⊗ ν2 + (q1/2 + q−1/2)⊗ ν10 ⊗ ν2
+2 (1⊗ ν3 ⊗ ν1 + 1⊗ ν4 ⊗ ν1 + 1⊗ ν5 ⊗ ν1 + 1⊗ ν10 ⊗ ν1)

∈ Ψ0(Sp106) .

Now, suppose that partitions λ, µ ∈ PsG(NG) are given so that µ ∈ Spc(λ). In other
words, there is a unique subset J ⊆ J(λ) with µ = TJ(λ).

For z ∈ ZG∨, we define the L-parameter

φz,λ,µ := φψz,mλ,J ∈ Φu(G) .

The following lemma now gives the existence part of Proposition 1.3.1.

Lemma 3.4.2. Let φ = φz,λ,µ ∈ Φu(G) be the L-parameter defined by partitions λ, µ ∈
PsG(NG) with µ ∈ Spc(λ), and z ∈ ZG∨.

Then, both identities

O∨
φ = O∨

µ ∈ U∨ , χφ = χz,O∨
λ
∈ Λu(G)

hold.

Proof. The equality in U∨ follows from Proposition 3.2.1(4) and (17).
Setting λ′ = λ \ ∪c∈J(c− 1 c+ 1), we see from formula (14) that

φ = φ(z,...,z),λ′ +
∑

c∈J
zq1/2 ⊗ νc + zq−1/2 ⊗ νc .

On the other hand, straightforward identities of infinitesimal characters show that

χz,O∨
λ
= χψz,O∨

λ

= χψz,mλ = χφ(z,...,z),λ .

Since φ(z,...,z),λ = φ(z,...,z),λ′+
∑

c∈J z⊗νc−1+z⊗νc+1 (taking ν0 as an L-parameter neutral to

addition, if necessary), it suffices to show that zq1/2⊗νc+zq−1/2⊗νc and z⊗νc−1+z⊗νc+1

have equal infinitesimal characters, for c ∈ J .
Indeed, a direct computation through Remark 2.3.2 shows that, as semisimple conjugacy

classes, both elements of Λu(G) consist of a matrices whose multisets of eigenvalues are
described as

{zq c−2
2 , zq

c−4
2 , . . . , zq−

c−2
2 } ,

all with multiplicity 2, added with {zq c2 , zq− c
2} of multiplicity 1.

�

Theorem 3.4.3. Let λ ∈ PsG(NG) be a partition.
Suppose that φ ∈ Φ(G) is an L-parameter satisfying χφ = χz,O∨

λ
, for z ∈ ZG∨, and

d(λ(φ)) = d(λ).
Then, a partition µ ∈ Spc(λ) exists, so that φ = φz,λ,µ.
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Proof. We denote the partition µ = λ(φ) ∈ PsG(NG). By Proposition 2.2.13, λ, µ must
share the same special piece. In other words, both partitions share the same special
partition ν := T I(λ)(λ) = T I(µ)(µ).

In particular, µ = TI(µ)(T
I(λ)(λ)). Setting

I = I(λ) \ I(µ) , J = I(µ) \ I(λ) ⊆ J(λ) ,

we may shortcut the equation to the form µ = TJ(T
I(λ)), so that I and J are disjoint sets.

Let us denote the largest integer amax ∈ supp(λ), and record the multiplicity k :=
m(amax, λ) > 0.

We will now prove by induction on the parameter amax, that I is empty and that φ =
φψz,mλ,J .

Let us consider the infinitesimal character S := χz,O∨
λ
= χφ(z,...,z),λ = χφ ∈ Λu(G) as a

semisimple matrix.
An observation that follows from Remark 2.3.2 is that for all eigenvalues α of S, 2 logq(z

−1α)
are integers with absolute value ≤ amax − 1.

Moreover, both zq±
amax−1

2 appear as eigenvalues of S with multiplicity k.
We note that amax 6∈ I always holds. Indeed, otherwise, we should have m(amax+1, µ) >

0, which would force a summand of the form s⊗ νamax+1 to appear in the L-parameter φ,
according to Proposition 2.3.3. Thus, both sq

amax
2 and sq−

amax
2 would appear as eigenvalues

of S, contradicting the previously observed bounds.
We note that same bounds on S-eigenvalues force any summand of the form s⊗ νamax in

φ to satisfy s = z.
Thus, an occurrence amax − 1 ∈ I would have implied that m(amax, µ) = k + 1, and

hence, that z ⊗ νamax appears k + 1 times as a summand of φ. That would have caused a

contradiction to the mulitiplicity of zq±
amax−1

2 as an eigenvalue of S.
Hence, amax − 1 6∈ I.
Suppose first that amax − 1 6∈ J (and amax > 2, since otherwise we are done).
In this case, m(amax, µ) = k. Arguing as before, we see that z ⊗ νamax must appear k

times in φ.
Let us write

φ = φ(z,...,z),µ0 + φ(ζ1,...,ζm),µ1 + φ(ζ−1
1 ,...,ζ−1

m ),µ1

in the form of Proposition 2.3.3.
We construct the partition

λ′ =

{
λ \ (akmax) k is even
λ \ (akmax) ∪ (amax − 2) k is odd

,

and similarly, µ′ out of µ, and µ′
0 out of µ0.

By construction, λ′, µ′, µ′
0 ∈ PsG(NG′), for a smaller rank group G′ of same type as G.

In particular,

φ′ := φ(z,...,z),µ′0
+ φ(ζ1,...,ζm),µ1 + φ(ζ−1

1 ,...,ζ−1
m ),µ1

∈ Φu(G
′)

is a well-defined L-parameter.
It is easy to verify that I ⊆ I(λ′), J ⊆ J(λ′) and that λ(φ′) = µ′ = TJ(T

I(λ′)) holds.
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Since Proposition 2.2.13 implies d(µ′) = d(λ′), by the induction hypothesis we know that
I is empty and that φ′ = φψz,m

λ′,J
. The claim now clearly follows.

We are left with the case of amax − 1 ∈ J .
Let us write l = m(amax−1, λ). Again, we see that both zq±

amax−2
2 appear as eigenvalues

of S with multiplicity l. Yet, from the assumption we have m(amax − 1, µ) = l + 2 and
m(amax, µ) = k − 1.

For one, it means that z ⊗ νamax appears k − 1 times in φ. Furthermore, we see the
existence of two summands in φ of the form si ⊗ νamax−1, with si 6= z, for i = 1, 2.

Once again by S-eigenvalue bounds, we are forced into the situation of {s1, s2} =

{zq 1
2 , zq−

1
2}.

The assumption also shows that m(amax − 2, λ) > 0, or that amax = 2 (in which case, k
is even).

Assuming without loss of generality that ζ1 = zq1/2, we define an L-parameter

φ′ =





φ(z,...,z), µ0\(ak−1
max)

+φ(ζ2,...,ζm), µ1\(amax−1) + φ(ζ−1
2 ,...,ζ−1

m ), µ1\(amax−1) k is odd

φ(z,...,z), µ0\(ak−1
max)∪(amax−2) +φ(ζ2,...,ζm), µ1\(amax−1) + φ(ζ−1

2 ,...,ζ−1
m ), µ1\(amax−1) k is even

φ(z,...,z), µ0\(2k−1) +φ(ζ2,...,ζm), µ1\(1) + φ(ζ−1
2 ,...,ζ−1

m ), µ1\(1) amax = 2

in Φu(G
′), and

λ′ =

{
λ \ (amax − 2 akmax) k is odd
λ \ (akmax) k is even

∈ PsG(NG′) .

It now follows that χφ′ = χz,O∨
λ′
, that I ⊆ I(λ′), J ′ := J \ {amax−1} ⊆ J(λ′). In particular,

λ(φ′) = TJ ′(T I(λ′)).
By the induction hypothesis, I is empty and we have φ′ = φψz,m

λ′,J′
. Consequently,

φ = φψz,mλ,J .

�

A particular consequence is Proposition 1.3.1, which now follows as a corollary of The-
orem 3.4.3, Lemma 3.4.2 and the description of Proposition 2.2.7.

3.4.2. A-packets in the near-tempered case. In what follows we exploit the near-tempered
condition to reach a higher level of precision on the composition of A-packets that are
attached to A-parameters within that class.

Proposition 3.4.4. Let ≺ be any linear order on the set I(mgp), for a near-tempered table
m ∈ T s.

We assume I(mgp) = {1 ≺ . . . ≺ t}.
(1) If the order ≺ is admissible, then:

• For all 1 ≤ i < j ≤ t, we have ai ≤ aj + 1.
• If (a1, b1) = (2, 1), then 1 < ai, for all i ∈ I(mgp).

(2) If ai ≤ aj+1 holds, for all 1 ≤ i < j ≤ t, and (1, 2) 6∈ S(m), then ≺ is an admissible
order.

(3) If ai ≤ aj holds, for all 1 ≤ i < j ≤ t, then ≺ is an admissible order.
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Proof. (1) For 1 ≤ i < j ≤ t, the near-tempered property implies |bj − bi| ≤ 1. Hence,
inequalities

βj − βi, αj − αi ≤ aj − ai + 1

hold. Yet, one of βj − βi, αj − αi must be non-negative.
Assuming (a1, b1) = (2, 1) and (ai, bi) = (1, 2) would result in β1 > βi and βi < 0

which contradicts admissibility.
(2) By assumption βi ≥ 0 holds, for all 1 ≤ i ≤ t. Hence, it suffices to verify that both

βi > βj and αi > αj cannot be valid simultaneously, for indices 1 ≤ i < j ≤ t.
Indeed, the parity condition would have implied both αi− αj and βi− βj are no

smaller than 2. Summing the two inequalities would have resulted in 2ai ≥ 2aj+4,
which is a contradiction.

(3) An occurrence of βi > βj for 1 ≤ i < j ≤ t is impossible, since the parity condition
would have implied βi − βj ≥ 2 and ai − aj ≥ 1.

�

For a near-tempered table m ∈ T s, we say that a linear order ≺ on I(mgp) (or, on m) is
standard admissible, when ai ≤ aj holds, for all i ≺ j in I(mgp).

Clearly, standard admissible orders always exist. By Proposition 3.4.4, a standard ad-
missible order is admissible.

Proposition 3.4.5. Let ≺ be an admissible order on the set I(mgp), for a near-tempered
table m ∈ T sG(NG), for which we assume I(mgp) = {1 ≺ . . . ≺ t}.

Then, the function γψ≺, in case of the A-packet ψ = ψz,m ∈ Ψ0(G), that was considered
in Proposition 3.3.1, is given by the formula

γψ≺(i) = (−1)|Zi| ,

for all i ∈ I(mgp), where

Zi = {1 ≤ j < i : aj = ai + 1} ∪ {i < j ≤ tρ : aj = ai − 1} .
In particular, when ≺ is standard admissible, the function γψ≺ ≡ 1 is constant.

Proof. Follow from the formula in [Ato23, Definition A.1], which reproduces [Xu17, Defi-
nition 5.2]. �

Lemma 3.4.6. Let m ∈ T sG(NG) be a near-tempered A-parameter, ψ = ψz,m ∈ Ψ0(G) the
associated A-packet for a choice of z ∈ ZG∨, and π ∈ ΠA

ψ a representation.

Suppose that the character ǫ = ǫψπ ∈ Ŝψ belongs to the subgroup Ŝφψ .
Then, π must be included in the associated L-packet Πφψ ⊆ ΠA

ψ . More precisely, we have

π = π(φψ, ǫ) ∈ Πφψ .

Proof. We denote the representation π′ = π(φψ, ǫ) ∈ Πφψ .

We recall that according to the setup of Proposition 3.0.2, we have ǫψπ′ = ǫ in Ŝψ.
Let us fix a standard admissible order ≺ on m and write π = π≺(ψ, l, η) and π′ =

π≺(ψ, l′, η′) in terms of Moeglin’s parameters.
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Using Proposition 3.2.2, we identify the inclusion Ŝφψ < Ŝψ with P (λm)0 < P (m)0.
Let i ∈ I(mgp) be an index.
Suppose first that bi = 2. Since ǫ ∈ P (λm) < P (m)♯ is assumed and bi is even, we must

have ǫ(ai, bi) = 0. Now, since γψ≺ is trivial (Proposition 3.4.5), the formula in Proposition
3.3.1 must imply l(i) = l′(i) = 1.

Otherwise, we have bi = 1. We are clearly restricted to l(i) = l′(i) = 0, while the formula
of Proposition 3.3.1 forces η(i) = η′(i).

Put together, we see that l = l′ and η = η′ hold. Thus, π and π′ are isomorphic
representations.

�

Let us now explicate Proposition 3.3.2 and Corollary 3.3.3 on cases of A-packet inter-
sections, for the case of near-tempered A-parameters.

Proposition 3.4.7. Let ≺ be an admissible order on a near-tempered table m ∈ T sG(NG),
for which we assume I(mgp) = {1 ≺ . . . ≺ t}.

Let ψ = ψz,m ∈ Ψ0(G) be an associated integral A-parameter, for a choice of z ∈ ZG∨.
Let

π = π≺(ψ, l, η) ∈ ΠA
ψ

be a given representation.

Suppose that t > k ∈ Ĩ(mgp) satisfies one of the following conditions:

(1) 



ak+1 − ak = 2
bk = bk+1 = 1
ηk+1 = −ηk

,

(2) 



ak+1 − ak = 2
bk = bk+1 = 2
lk+1 + lk = 1

,

(3) 



ak+1 − ak = 3
lk+1 = lk = 0
ηk+1 = (−1)bkηk

,

(4) 



ak+1 − ak = 4
bk = bk+1 = 2
lk+1 = lk = 0
ηk+1 = ηk

.

Here, we shortcut notation to li = l(i) and ηi = η(i).

Each such case gives rise to a table m′ ∈ T sG(NG), for which π ∈ ΠA
ψz,m′

.
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In case (1), we have

m′ = {(ai, bi)}i∈I(m)\{k,k+1} ∪ {(a∗, b∗)} ,
so that (a∗, b∗) = (ak + 1, 2), and we may write

π ∼= π≺′(ψz,m′, l′, η′) ,

where the order ≺′ on m′ is constructed out of ≺ by replacing the relative position of
k ≺ k + 1 with the index ∗, and setting

l′(∗) = 0, η′(∗) = ηk ,

while retaining equalities l′ = l, η′ = η on I(mgp) \ {k, k + 1}.
Proof. It is straightforward to verify that the near-tempered restriction of

(bi, li) ∈ {(1, 0), (2, 0), (2, 1)} , ∀0 ≤ i < t ,

forces all instances of cases (1) and (2) of Proposition 3.3.2 to incarnate as case (2) of our
current statement.

Case (3) of Proposition 3.3.2 is now explicated into the three remaining cases. In par-
ticular, case (1) falls under the scope of Corollary 3.3.3, which is explicated by m.

�

Corollary 3.4.8. Suppose that m′ is a table obtained out of a table m ∈ T sG(NG) using
one of the procedures described in Proposition 3.3.2.

If m is non-negative and m′ is near-tempered, then m must be near-tempered and m′ is
obtained through an application of the case (1) of Proposition 3.4.7 on m.

Proof. It is evident from the description in Proposition 3.3.2, that for each i ∈ I(mgp),
there must be i′ ∈ I(m′gp) with bi ≤ bi′ . Hence, m must be near-tempered.

Similarly, we that each of the cases (2), (3), (4) of Proposition 3.4.7 produces i′ ∈ I(m′gp)
with 2 < bi′ .

�

We are set to explore the intersections of A-packets that arise from a tempered parameter
with A-packets that arise from near-tempered A-parameters.

In the following lemma, characters ǫψπ ∈ Ŝψz,mλ , for tempered representations π ∈ ΠA
ψz,mλ

defined by a partition λ ∈ PsG(NG) and z ∈ ZG∨ , are treated as boolean functions on

S(λ), according to the identification Ŝψz,m ∼= P (λ)0 of (16).

Lemma 3.4.9. Let λ ∈ PsG(NG) be a partition, and z ∈ ZG∨. Let ψ = ψz,mλ ∈ Ψ0(G) be
the associated tempered integral A-parameter.

Let J ⊆ J(λ) be a subset, and ψ′ = ψz,mλ,J ∈ Ψ0(G) be the associated near-tempered
A-parameter.

The following properties hold.
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(1) There is an equality

ΠA
ψ ∩ ΠA

ψ′ = {π ∈ ΠA
ψ : tc(ǫ

ψ
π ) 6= 1, ∀c ∈ J} ,

with tc defined as in (8).
(2) Let ≺0 be a standard admissible order on mλ,J .

For any representation π = π≺0(ψ
′, l, η) ∈ ΠA

ψ ∩ ΠA
ψ′, and any i ∈ I(mgp

λ,J), we
have l(i) = 0, and

{
(−1)ǫ

ψ
π (ai,1) = (−1)ǫ

ψ′

π (ai,1) = η(i) if bi = 1

ǫψ
′

π (ai, 2) = 1 if bi = 2
.

Proof. We first give a proof of the first part, out of which the second readily follows.
Suppose that π ∈ ΠA

ψ is such that tc(ǫ
ψ
π ) 6= 1 holds, for all c ∈ J .

Let us write π = π≺0(ψ, l
0, η), with l0 ≡ 0, and ≺0 a standard admissible order on mλ.

Propositions 3.3.1 and 3.4.5 show that (−1)ǫ
ψ
π (ai,1) = η(i) holds, for all i ∈ I(mgp

λ ), in this
case.

Hence, η(i) = −η(j) holds, for all i, j ∈ I(mgp
λ ), with ai + 1 = aj − 1 ∈ J .

By successive applications, for each c ∈ J , of case (1) of Proposition 3.4.7, we can now
arrive at an inclusion π ∈ ΠA

ψ′ .

Conversely, suppose that we have π = π≺0(ψ
′, l′, η′) ∈ ΠA

ψ ∩ ΠA
ψ′ .

By Proposition 3.3.1, we see an equality

(18) ǫψJπ (ai, 2) = 1− l′(i) ,

for any i ∈ I(mgp
λ ) with ai ∈ J .

Let us denote the set

J ′ = {c ∈ J : l′(i) = 0, when ai = c} .
Hence, l′(i) = 1, for all i ∈ I(mgp

λ,J) with ai ∈ J \ J ′.
Successively applying Corollary 3.3.3 (that is, case (1) of Proposition 3.4.7 in reverse),

we see that

π ∼= π≺0(ψ
′′, l′′, η′′) ∈ ΠA

ψ′′ ,

for ψ′′ = ψz,mλ,J\J′ , with l
′′(i) = l′(i), for all i ∈ I(mgp

λ,J\J ′), such that ai ∈ J \ J ′, and

(19) η′′(i) = −η′′(j) ,
for all i, j ∈ I(mgp

λ,J\J ′), with ai + 1 = aj − 1 ∈ J ′.

From equation (18) we now see that ǫψ
′′

π (c, 2) = 0, for all c ∈ J \ J ′. Thus, ǫψ
′′

π lies in the
subgroup P (TJ\J ′(λ)) of P (mλ,J\J ′), and by Lemma 3.4.6 we must have π ∈ Πφψ′′ .

Since L-packets are disjoint and ΠA
ψ = Πφψ is tempered, we must have ψ = ψ′′ and

J = J ′.
Consequently, when identifying (−1)ǫ

ψ
π with η′′ as before, we deduce tc(ǫ

ψ
π ) 6= 1, for all

c ∈ J , from the condition in equation (19). �
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3.4.3. Further refinement. In order to advance towards the proofs of our main theorems,
we need to gather some refined information regarding Moeglin parameters and Arthur
characters of representations found in intersections of A-packets.

The following lemma sums up phenomena that were detected in [Xu21].

Lemma 3.4.10. Let ≺ be an admissible order on a near-tempered table m ∈ T sG(NG), for
which we assume I(mgp) = {1 ≺ . . . ≺ t}.

Let ψ = ψz,m ∈ Ψ0(G) be the associated A-packet, for a choice of z ∈ ZG∨.
Suppose that 1 ≤ k ≤ t is such that (ak, bk) = (a, 2), for a > 1.
Let

π = π≺(ψ, l, η) ∈ ΠA
ψ

be any representation with l(k) = 0.

If ak−1 ≤ a− 1 = ak+1 holds, then (−1)ǫ
ψ
π (a−1,1) = η(k).

If ak−1 = a + 1 ≤ ak+1 holds, then (−1)ǫ
ψ
π (a+1,1) = −η(k).

Proof. In the former case, since the parity condinition forces bk+1 = 1, it follows from
[Xu21, Lemma 5.7] that η(k + 1) = −η(k).

By Proposition 3.4.4, we know that a − 1 ≤ aj holds, for all k + 1 < j, and that
aj ≤ ak−1 + 1 ≤ ak+1, for all j < k − 1.

Thus, we have an equality Zk+1 = {k}, for the set that was defined in Proposition 3.4.5,

and γψ≺(k + 1) = −1, by the same proposition.
The claim now follows from the formula of Proposition 3.3.1.
In the latter case, [Xu21, Lemma 5.6] shows η(k−1) = η(k). The claim follows similarly

from Zk−1 = {k}.
�

Lemma 3.4.11. Let λ, z, J, ψ, ψ′ be as in Lemma 3.4.9.
Let ≺ be any admissible order on the near-tempered table mλ,J , and

π = π≺(ψ
′, l, η) ∈ ΠA

ψ ∩ΠA
ψ′

a representation.
If k ∈ I(mgp

λ,J) is such that bk = 2 and l(k) = 0, then

(−1)ǫ
ψ
π (ak−1,1) = η(k) = (−1)ǫ

ψ
π (ak+1,1)+1 .

Here, we may take ǫψπ (0, 1) = 0 if necessary.

Proof. Let us assume I(mgp
λ,J) = {1 ≺ . . . ≺ t}, and write a = ak.

We first treat the case of a > 1.
It follows from Lemma 3.4.9 that ǫψπ (a− 1, 1) = 1− ǫψπ (a + 1, 1).
If either ak+1 = a− 1 or ak−1 = a+ 1 hold, the claim follows from Lemma 3.4.10.
Otherwise, by Proposition 3.4.4, we are left with the case of ak−1 < a < ak+1.
Arguing by Corollary 3.3.3, we see an inclusion

π ∼= π≺∗(ψ
′′, l∗, η∗) ∈ ΠA

ψ′′ ,
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for ψ′′ = ψz,mλ,J\{a}.
Here, ≺∗ is an admissible order on the table mλ,J\{a}, that is constructed out of ≺, by

replacing the relative position of k with (a∗, b∗) = (a− 1, 1) ≺∗ (a+ 1, 1) = (a∗∗, b∗∗). The
parameter (l∗, η∗) ∈ W(mλ,J\{a}) is constructed out of (l, η) by setting η∗(∗) = η(k) and

η∗(∗∗) = −η(k).
Using the formula of Proposition 3.4.5, it is evident that γψ

′′

≺∗
(∗) = 1. From Proposition

3.3.1 we then have

(−1)ǫ
ψ′′

π (a−1,1) = η∗(∗) = η(k) .

Yet, from part (2) of Lemma 3.4.9 we know that ǫψπ (a − 1, 1) = ǫψ
′′

π (a − 1, 1), and the
statement follows.

The case of a = 1 needs to be treated with a slightly different argument.
First, we know that k = 1 (Proposition 3.4.4). We take ≺∗ to be the admissible order

on mλ,J\{1} constructed out of ≺ by replacing (a1, b1) = (1, 2) with (2, 1).
We know that π ∈ ΠA

ψmz,λ,J\{1}
from the first part Lemma 3.4.9. Hence, we may write

π = π≺∗(ψmz,λ,J\{1} , l∗, η∗).

Also, by same lemma, we have t1(ǫ
ψ
π ) 6= 1, which implies ǫψ

′′

π (2, 1) = ǫψπ (2, 1) = 1.

By Proposition 3.4.5, γψ
′′

≺∗
(1) = 1. Hence, it follows from Proposition 3.3.1 that η∗(1) =−1.

Thus, the inclusion π ∈ ΠA
ψ′ may be obtained out of ψ′′ as a case of Proposition 3.4.7.

In particular, from injectivity of M≺ we conclude that η(1) = −η∗(1) = 1.
�

3.5. Weak Arthur packets. Let us recall Definition 1.1.1 for a weak Arthur packet Πw
z,O∨

that is attached to a unipotent conjugacy class O∨ ∈ U∨ and a possible sign z = ±1.
We also recall that according to Theorem 2.3.5, all representations π ∈ Irrχz,O∨ (G), for

z ∈ ZG∨, admit an algebraic wavefront orbit WF(π) ∈ NF .
A following consequence is now evident.

Proposition 3.5.1 (following [CMO23a]). For a partition λ ∈ PsG(NG) and z ∈ ZG∨, we
have

Πw
z,O∨

λ
= {π ∈ Irrχz,O∨

λ

(G) : WF(π) = Od(λ)}
= {π ∈ Irrχz,O∨

λ

(G) : d(λ(φ(πt))) = d(λ)} ,

and an inclusion Πz,O∨
λ
⊆ Πw

z,O∨
λ
holds.

Proof. The duality d, viewed as a map U∨ → NF between sets of orbits, is known to be
order-reversing, with respect to the Zariski topological order.

Hence, it follows from Lemma 2.3.4, that for any L-parameter φ ∈ Φ(G) with infinitesi-
mal character χφ = χz,O∨, the Zariski closure of the orbit Od(λ(φ)) contains Od(λ).

In particular, by Theorem 2.3.5, for any π ∈ Irrχz,O∨
λ

(G), we have

WF(π) = Od(λ(φ(πt)))
⇒ dim(WF(π)) ≥ dim(Od(λ)) .
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The last implication employs the fact that Irrχz,O∨
λ

(G) is closed under the Aubert involution.

Yet, we also know that for φ = φψz,mλ = φ(z,...,z),λ, we have χφ = χz,O∨
λ
and λ(φ) = λ.

Hence, by same theorem, WF(πt) = Od(λ), for all (tempered) π ∈ Πφ = ΠA
ψz,mλ

.

By Proposition 3.2.1(3) and Proposition 3.0.1, that can also be stated as an equality
WF(π) = Od(λ), for all representations π ∈ Πz,O∨

λ
in the qausi-basic A-packet.

�

We now explicate certain unions of A-packets, arising from near-tempered parameters,
in terms of the Langlands reciprocity (i.e. as unions of L-packets).

Proposition 3.5.2. Let λ ∈ PsG(NG) be a given partition.
Then, for any choice of J ⊆ J(λ) and z ∈ ZG∨, an equality

⋃

J ′⊆J
ΠA
ψz,m

λ,J′
=
⊔

J ′⊆J
Πφz,λ,TJ (λ)

of sets of integral representations in Irr0(G) holds.

Proof. We write ψ = ψz,mλ,J . Arguing by induction on the cardinality of J , it suffices to
prove the containment

ΠA
ψ ⊆ Πφψ ∪

⋃

J ′(J

ΠA
ψz,m

λ,J′
.

Let π ∈ ΠA
ψ be a given representation.

Suppose first that ǫψπ ∈ Ŝφψ . By Lemma 3.4.6, we have π ∈ Πφψ .

Otherwise, using the identification of Proposition 3.2.2, we treat ǫψπ as a boolean function
on the set

S(m) = {(c, 1)}c∈S(TJ(λ)) ∪ {(c, 2)}c∈J ,

with the condition of not being contained in Ŝφψ amounting to the support of ǫψπ not being
contained in {(c, 1)}c∈S(TJ(λ)).

In other words, there must exist a ∈ J , for which ǫψπ (a, 2) = 1.
Let us fix a standard admissible order ≺′ on the near-tempered table mλ,J , and write

π = π≺′(ψ, l′, η′).

Since the function γψ≺′ is trivial by Proposition 3.4.5, the formula in Proposition 3.3.1
implies an equality ǫψπ (a, 2) = 1+ l′(i), for the index i ∈ I(mgp

λ,J), such that (ai, bi) = (a, 2).

Thus, l′(i) = 0.
Appropriately constructing (l, η) ∈ W(mλ,J\{a}) out of (l

′, η′) and an admissible order ≺
on the table mλ,J\{a} out of ≺′, Corollary 3.3.3 now implies that

π ∼= π≺(ψmz,J\{a}, l, η) ∈ ΠA
ψmz,J\{a}

.

�
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3.5.1. Proof of Theorem B. Given a partition λ ∈ PsG(NG) and z ∈ ZG∨, we see from
Proposition 3.5.1, Theorem 3.4.3 and Lemma 3.4.2, that an equality

(20)
⊔

µ∈Spc(λ)
Πφz,λ,µ = {πt : π ∈ Πw

O∨
λ
}

holds.
Adding in Proposition 3.5.2 and recalling compatibility (Proposition 3.0.1) with Aubert

involution, we may write

(21) Πw
z,O∨

λ
=

⋃

J⊆J(λ)

ΠA
(ψz,mλ,J )

t .

Finally, from a geometric perspective, given any classes O∨,O∨
1 ∈ U∨ with O∨

1 ∈
Spc(O∨), by Proposition 2.2.7 there are partitions µ ∈ Spc(λ) so that O∨ = O∨

λ and
O∨

1 = O∨
µ .

We then define an L-parameter

φz,O∨,O∨
1
:= φz,λ,µ = φψz,mλ,J ∈ Φu(G) ,

where J ⊆ J(λ) is such that µ = TJ(λ), and an A-packet

(22) Πz,O∨,O∨
1
:= ΠA

(ψz,mλ,J )
t ,

coinciding with the definition of (2).
In these terms, the equalities (20) and (21) now amount to the statement of Theorem

B.

3.6. Weakly spherical A-packets. In order to establish Theorem D, we first examine the
structure of A-packets that contain those tempered representations that are Aubert-dual
to the formally weakly spherical representations.

Namely, for a partition λ ∈ PsG(NG) and z ∈ ZG∨ , we set the tempered A-parameter
ψ = ψz,mλ , and define the set

Πf
z,λ = {π ∈ ΠA

ψ : ǫψπ ∈ A†(O∨
λ )}

of tempered representations.

Here, we identified A†(O∨
λ ) as a subgroup of the character group Ŝψ using (13).

Lemma 3.6.1. Let λ ∈ PsG(NG) be a partition, and z ∈ ZG∨.
Let J ⊆ J(λ) be a subset, and ψ = ψz,mλ, ψ

′ = ψz,mλ,J ∈ Ψ0(G) be the associated near-
tempered A-parameters.

Let ≺ be an admissible order on the table mλ,J , for which we assume I(mgp
λ,J) = {1 ≺

. . . ≺ t}. Let

π = π≺(ψ
′, l, η) ∈ ΠA

ψ′ ∩Πf
z,λ

be a given representation.

Suppose that t > k ∈ ˜I(mgp
λ,J) is an index with ak+1 − ak = 2.

Then,
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(1) If bk = bk+1 = 1 and η(k + 1) = −η(k) hold, then necessarily ak + 1 ∈ J(λ) \ J .
(2) If bk = bk+1 = 2 holds, then l(k + 1) + l(k) 6= 1.

Proof. Let us write a = ak + 1.
The formula of Proposition 3.4.5 gives

(23) γψ
′

≺ (k) = (−1)#{1≤i<k : ai=a}, γψ
′

≺ (k + 1) = (−1)#{k+1<i<≤t : ai=a} .

We prove the first part: Suppose that we have bk = bk+1 = 1 and η(k + 1) = −η(k).
Proposition 3.3.1 shows the equalities

(−1)ǫ
ψ′

π (ak ,1) = γψ
′

≺ (k)η(k), (−1)ǫ
ψ′

π (ak+1,1) = γψ
′

≺ (k + 1)η(k + 1) .

Here, we formally set ǫψπ (0, 1) = ǫψ
′

π (0, 1) = 0 and γψ
′

≺ (0) = 1, if necessary.
In combination with Lemma 3.4.9(2), we obtain

(24) (−1)ǫ
ψ
π (ak ,1)γψ

′

≺ (k) = (−1)1+ǫ
ψ
π (ak+1,1)γψ

′

≺ (k + 1) .

Suppose first that a 6∈ J(λ).
In this case, when a 6= 1, we must have p(ak) = p(ak+1), where p : S(λ) → S†(λ) is the

projection map (Section 2.2.2).
Thus, when identifying A†(O∨

λ ) with P
†(λ)0 (Proposition 3.2.2), we see that ǫψπ (ak, 1) =

ǫψπ (ak+1, 1). The same conclusion follows in the a = 1 case from Lemma 2.2.10.

Since a 6∈ J , we have ai 6= a for all 1 ≤ i ≤ t, implying that γψ
′

≺ (k) = γψ
′

≺ (k + 1) = 1 by
(23). We reach a contradiction to (24).

It follows that a ∈ J(λ).
Suppose now that a ∈ J . That means there is a unique 1 ≤ i0 ≤ t with a = ai0 . Hence,

γψ
′

≺ (k) = −γψ′

≺ (k + 1) must follow from (23).
Yet, from Lemma 3.4.9 we know that ta(ǫ

ψ
π ) 6= 1. This fact implies ǫψπ (ak, 1) = 1 −

ǫψπ (ak+1, 1) and contradicts (24) again.

We prove the second part: Let assume the contrary, that is, bk = bk+1 = 2 and l(k +
1) + l(k) = 1.

In this case ak = a − 1, ak+1 = a + 1 ∈ J . By Lemma 2.2.9, the multiplicity m(a, λ)
must be even.

By Lemma 3.4.9(2), we have

ǫψ
′

π (ak, 2) = ǫψ
′

π (ak+1, 2) = 1 .

Adding in the equation of Proposition 3.3.1, we see equalities

γψ
′

≺ (k) = (−1)l(k) , γψ
′

≺ (k + 1) = (−1)l(k+1) ,

which together with the assumption imply γψ
′

≺ (k)γψ
′

≺ (k + 1) = −1.
From (23) we see that #{1 ≤ i ≤ t : ai = a} is odd. That in particular implies, using

(17), that the multiplicity m(a, TJ (λ)) is odd.
Consequently, m(a, λ) = m(a, TJ(λ)) + 2 is odd as well, providing a contradiction.

�
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Theorem 3.6.2. Let λ ∈ PsG(NG) be a partition, and z ∈ ZG∨. Let ψ = ψz,mλ ∈ Ψ0(G)
be the associated tempered A-parameter.

Suppose that ψ′ ∈ Ψ(G) is an A-parameter, so that the intersection ΠA
ψ′ ∩ Πf

z,λ is non-
empty.

Then, a subset J ⊆ J(λ) must exist, so that ψ′ = ψz,mλ,J .

Moreover, the set of representations ΠA
ψ′ ∩Πf

z,λ consists precisely of those tempered rep-

resentations π ∈ ΠA
ψz,mλ

, for which the character ǫψπ ∈ A†(O∨
λ ) is O∨

TJ (λ)
-primitive.

Proof. The last statement is a consequence of Lemma 3.4.9(1) and Proposition 2.2.12.
Assume the contrary, that is, that ψ′ is not of the desired form.
For the intersection to be non-empty χψ′ = χψ must be satisfied. In particular, a table

m′ ∈ PsG(NG) exists, for which ψ
′ = ψz,m′ (Proposition 3.2.1).

Suppose first that m′ is non-negative.
By Proposition 3.3.6(1) we deduce that there is a set J ⊆ J(λ), an admissible order ≺

on mλ,J and an A-parameter ψ′′ = ψz,m′′ ∈ Ψ(G) not of the form ψz,mλ,J′ , for any J
′ ⊆ J(λ),

so that

π = π≺(ψz,mλ,J , l, η) ∈ ΠA
ψz,mλ,J

∩ΠA
ψ′′

holds, and the inclusion π ∈ ΠA
ψ′′ is obtained out of M≺(π) through an application of one

of the moves described in Proposition 3.4.7.

Let us assume I(mgp
λ,J) = {1 ≺ . . . ≺ t}, and that t > k ∈ ˜I(mgp

λ,J) is the index for which

the move to produce the inclusion π ∈ ΠA
ψ′′ is performed.

If ak+1 − ak = 2, confronting cases (1) and (2) of Proposition 3.4.7 with Lemma 3.6.1,
implies that a ∈ J(λ)\J and that m′′ = mλ,J∪{a}. This is a contradiction to our assumption.

Hence, we are left with cases (3) and (4) of Proposition 3.4.7. We assume that




ak+1 − ak ∈ {3, 4}
l(k + 1) = l(k) = 0
η(k + 1) = (−1)bkη(k)

.

We may also assume, without loss of generality, that bk+1 = 2, since analogous arguments
are valid with roles of k, k + 1 switched.

In particular, ak+1 ∈ J . By Lemma 3.4.9(2) we have ǫψ
′

π (ak+1, 2) = 1. Then, from

Proposition 3.3.1, we also have γψ
′

≺ (k + 1) = 1.
Therefore, by Proposition 3.4.5 the number of indices 1 ≤ i ≤ t with ai = ak+1 − 1 is

even. This implies that the multiplicity m := m(ak+1 − 1, TJ(λ)) is even.
Let us take note of the identity

(25) (−1)ǫ
ψ
π (ak+1−1,1) = η(k + 1)

that follows from Lemma 3.4.11.
We assume first that ak+1 − 2 ∈ J(λ).
By Lemma 2.2.9, this assumption forces m(ak+1 − 1, λ) to be even. That can be the

case, only when ak+1 − 2 ∈ J and m(ak+1 − 1, λ) = m+ 2.
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Since ≺ is admissible and (ak+1−2, 2) ∈ S(mλ,J), we see that ak = ak+1−3, and bk = 1.

Moreover, γψ
′

≺ (k) = −1 follows from Proposition 3.4.5.
Hence, applying Proposition 3.3.1 again, together with the assumption and (25), we see

that

(−1)ǫ
ψ
π (ak ,1) = −η(k) = η(k + 1) = (−1)ǫ

ψ
π (ak+1−1,1) .

By Lemma 3.4.9(1), we also have tak+1−2(ǫ
ψ
π ) 6= 1. In other words, ǫψπ (ak, 1) = 1−ǫψπ (ak+1−

1, 1), which is a contradiction.
Now we assume that ak+1 − 2 6∈ J(λ).
Since ak+1 − 1, ak+1 − 3 ∈ S(λ) are valid in all cases, ak+1 − 1, ak+1 − 3 must share the

same block in S†(λ) in this case.

In particular, since π ∈ Πf
z,λ is assumed, we must have

(26) ǫψπ (ak+1 − 3, 1) = ǫψπ (ak+1 − 1, 1) .

If ak = ak+1 − 4, this is a contradiction to Lemma 3.4.11.

Otherwise, ak = ak+1 − 3, and reasoning as before, we have, γψ
′

≺ (k) = 1 because of

(ak + 1, 2) 6∈ S(mλ,J). Similarly, that implies (−1)ǫ
ψ
π (ak ,1) = −η(k + 1), which contradicts

(25) and (26).

Finally, suppose that m′ is not non-negative. In this case, we apply Proposition 3.3.6(2)
to produce a constellation of the form

π ∼= π≺(ψ̃, l, η) ∈ ΠA
ψ̃
∩ ΠA

ψ′′ ,

where ψ̃ = ψz,m̃ ∈ Ψ0(G), for a non-negative table m̃, ≺ an admissible order on m̃, while
ψ′′ = ψz,m′′ ∈ Ψ(G), with a not non-negative table m′′, is produced out of (l, η) using a
move described in Proposition 3.3.5.

The first part of the proof implies that m̃ = mλ,J , for a subset J ⊆ J(λ).
We retain the notation of I(mgp

λ,J) = {1 ≺ . . . ≺ t}.
The possible moves of Proposition 3.3.5 become limited to only two cases.
One case is that of (a1, b1) = (2, 2) and l(1) = 0. The other case is that of (a1, b1) = (3, 2),

l(1) = 0 and η(1) = −1.
In the former case, we have 2 ∈ J , which means that the multiplicity m(1, λ) =

m(1, TJ(λ)) + 1 is even.
In the latter case, from Lemma 3.4.11 we see that ǫψπ (2, 1) = 1. By Lemma 2.2.10, and

the inclusion π ∈ Πf
z,λ, that implies 1 ∈ J(λ). Since 3 ∈ J(λ) as well, Lemma 2.2.9 forces

m(2, λ) = m(2, TJ(λ)) + 1 to be even.
We see that in both cases #{i : ai = a1 − 1} is an odd number. By Proposition 3.4.5,

that means γψ̃≺(a1, b1) = −1.

Yet, by Lemma 3.4.9(2) ǫψ̃π (a1, b1) = 1 and we see a contradiction to the formula of
Proposition 3.3.1.

�



52 MAXIM GUREVICH AND EMILE OKADA

3.6.1. Proof of Theorem D. Let O∨ ∈ U∨ a unipotent conjugacy class, z ∈ {±1} a sign,
λ ∈ PsG(NG) a partition, and ǫ ∈ A†(O∨

λ ) a character.
Let

δ = δ(z,O∨
λ , ǫ) ∈ Πz,O∨

λ

be the resulting (formally weakly spherical) anti-tempered representation.

By construction of Corollary 3.0.3, we see that δt ∈ Πf
z,λ.

Let ψ ∈ Ψ(G) be an A-parameter.
Since the A-packet ΠA

ψt consists of the irreducible representations that are Aubert-dual

to the constituents of ΠA
ψ (Proposition 3.0.1), we see by Theorem 3.6.2, that δ ∈ ΠA

ψ holds,
if and only if, ψt = ψz,mλ,J , for a subset J ⊆ J(λ), such that ǫ is O∨

TJ (λ)
-primitive.

Indeed, the latter condition is equivalent to δ ∈ Πz,O∨
λ
,O∨
TJ (λ)

(as defined in (22)).

Theorem D now follows, pending the parameterization of Πsph
z,O∨ given by Theorem C,

which is proved independently in the following sections.

4. Reduction to Springer theory

The remainder of this work is devoted to a proof of Theorem C.
We translate the problem of detecting weak sphericity in the anti-tempered A-packet

ΠO∨ , for O∨ ∈ U∨, into a property of corresponding WG-representations that arise in the
cohomology of Springer fibres.

4.1. Springer representations. For a conjugacy class O∨ ∈ U∨, we set the Springer
fibre BO∨ to be the projective complex variety of Borel subgroups of G∨(C) that contain
a fixed representative u ∈ O∨.

The Springer representation [Spr78] is a linear action of the finite Weyl group WG on
the finite-dimensional complex cohomology space

H∗(BO∨) =

dO∨⊕

i=0

H i(BO∨) .

Here we mark HdO∨ (BO∨) as the top degree, for which the space is non-zero.
The action of the centralizer group of u on the variety BO∨ , naturally produces a linear

action of the component group A(O∨) on same cohomology space H∗(BO∨). In fact, the
actions of WG and A(O∨) commute.

Thus, for any irreducible local system ǫ ∈ Â(O∨) on O∨, the space

Σ(O∨, ǫ) := HomA(O∨)(ǫ,H
∗(BO∨)) ,

when non-zero, is a WG-representation.
Special attention of Springer theory is typically drawn to the sub-representation given

by the top degree cohomology space

σ(O∨, ǫ) := HomA(O∨)(ǫ,H
dO∨ (BO∨)) < Σ(O∨, ǫ),

When non-zero, σ(O∨, ǫ) is an irreducible WG-representation. The local system ǫ is said
to be of Springer-type in this case.
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Moreover, each irreducible complex WG-representation σ is isomorphic to a Springer
representation σ(O∨, ǫ), for a unique pair (O∨

σ , ǫσ) := (O∨, ǫ).

For any ǫ ∈ Â(O∨), we also write Σ(O∨, ǫ) for the representation of W̃G obtained from

inflating Σ(O∨, ǫ) through the projection p : W̃G →WG.

4.2. Iwahori–Matsumoto theory. In order to compare the p-adic group situation with
the Springer construction, we now revisit the setup of Section 2.1.1, while recalling further
details of the Iwahori–Matsumoto theory ([IM65], see also [ACR21]).

4.2.1. Lie theory. The choice of maximal torus T for the F -split simple group G, produces
a root datum (X, Y,R,R∨), where R denotes the set of roots in the algebraic character
lattice X , and R∨ the set of corresponding co-roots in the the algebraic co-character lattice
Y .

Our choice of the Iwahori subgroup IG < G also pins down a basis of positive roots
Π ⊆ R. We denote by sα ∈ WG the reflection given by a root α ∈ R and view (WG, S) as
a (finite) Coxeter system, with S = {sα | α ∈ Π}.

An identification of the Weyl group WG with the quotient N(GOF , TOF )/TOF < W̃G

of the normalizer subgroup, and of the group T/TOF with Y , sets up a splitting for the
projection

p : W̃G
∼= WG ⋉ Y → WG .

Through this identification, the subgroup

Wa :=WG ⋉ ZR∨ < W̃G

is visible, to which we refer as the affine Weyl group.
Taking the highest, relative to Π, root α0 ∈ R, we write s0 := (sα0 ,−α∨

0 ) ∈ Wa.
Then, (Wa, S

a) becomes an (affine) Coxeter system, where Sa = S ∪ {s0}.
When G is a symplectic (simply-connected) group, an equality Wa = W̃G is valid. In

general, we take note of the subgroup

Ω := (N(G, TOF ) ∩N(G, IG))/TOF < W̃G ,

which is isomorphic to Y/ZR∨.
A decomposition

W̃G = Wa ⋊ Ω

holds. Moreover, the group Ω acts by conjugation on the set of Coxeter generators Sa for
Wa.

4.2.2. Compact subgroups. It follows from the Iwahori decomposition of (5) that any com-
pact subgroup IG < K < G gives rise to a finite subgroup

WK = (K ∩N(G, TOF ))/TOF < W̃G ,

so that a decomposition

(27) K =
⊔

w∈WK

IGwIG
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holds.

Theorem 4.2.1. [IM65, Theorem 2.27]

(1) For any compact subgroup IG < K < G, let us denote the group ΩK = WK ∩ Ω
and the set JK = WK ∩ Sa. Let W ′

K < Wa be the group generated by JK (so that
(W ′

K , JK) is a finite Coxeter system).
Then, the conjugation action of ΩK normalizes W ′

K , and an equality

WK = W ′
K ⋊ ΩK < W̃G

holds.
(2) For any subgroup Ω′ < Ω and a proper subset J ( Sa, stable under the Ω′-action,

there is a compact subgroup IG < K < G with (ΩK , JK) = (Ω′, J).
(3) [ACR21, Section 6.1] A compact subgroup IG < K < G is maximal, if and only if,

Sa − JK is a single non-empty ΩK orbit, and ΩK = StabΩ(JK).

Note, that since WK is a finite group, while the kernel Y of the projection p : W̃G → WG

is torsion-free, we may naturally identify

(28) WK
∼= ŴK := p(WK) < WG ,

with a subgroup of the Weyl group.

Let us also take note of the subgroup W ′
K

∼= Ŵ ′
K := p(W ′

K) < ŴK , so that ŴK/Ŵ
′
K

∼=
Ω ∩K.

4.2.3. Unramified characters. Suppose that ζ : G → C× is a group character, for which
the restriction ζ |IG is trivial.

With the previous setting in place, ζ factors through a character ofWK and consequently

produces a character of the subgroup ŴK < WG.

We denote that character as ζ̂K : ŴK → C×.

Lemma 4.2.2. For any compact subgroup IG < K < G and a group character ζ : G→ C×

for which ζ |IG is trivial, the restriction (ζ̂K)|Ŵ ′
K
is trivial.

If ζ |K is non-trivial, then ζ̂K is non-trivial.

Proof. By the Iwahori decomposition (27), a non-trivial ζ |K must factor through a non-
trivial character of WK .

Yet, by [IM65, Proposition 2.20] the commutator subgroup G′ < G satisfies

G′IG =
⊔

w∈Wa

IGwIG .

Thus, ζ must factor through the quotient W̃G/Wa
∼= Ω. �

4.3. Classical groups specifics.
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4.3.1. Maximal compacts subgroups of classical groups. It will be useful to explicate further
the Iwahori–Matsumoto theory for the specific groups G of our interest.

Viewed as algebraic characters of the torus T of diagonal matrices, the simple roots
Π = {α1, . . . , αnG} are realized as

αi (diag(a1, . . . , anG)) = aia
−1
i+1 , i = 1, . . . , nG − 1 ,

and αnG (diag(a1, . . . , anG)) = anG (for orthogonal G), or = 2anG (for symplectic G).
We then write S = {s1, . . . , snG}, with si = sαi , for the generators of WG.
The resulting affine Coxeter system (Wa, S

a) corresonds to the affine Dynkin diagram

(29)
s0 s1 s2 snG−2 snG−1 snG

.

in the symplectic case, or to the diagram

(30)

s0

s1

s2 s3 snG−2 snG−1 snG

in the odd orthogonal case.
Recall again that the group Ω is trivial in the symplectic case.

For odd orthogonal G, Ω is a two-element group, whose generator we denote as ω ∈ ŴG.
The action of ω on Wa is given by the non-trivial automorphism of the diagram (30).

Thus, the specification of Theorem 4.2.1(3) onto our case provides the following.

Proposition 4.3.1. (1) In the case of G = Sp2nG
(F ), the set of maximal compact

subgroups of G that contain IG is described as K0, . . . , KnG, where

(ΩKi , JKi) = ({1}, Sa − {si}), i = 0, 1 . . . , nG ,

is their Iwahori–Matsumoto parameterization as in Theorem 4.2.1.
(2) In the case of G = SO2nG+1(F ), the set of maximal compact subgroups of G that

contain IG is described as K0, . . . , KnG, where

(ΩKi, JKi) = (Ω, Sa − {si}), i = 2, . . . , nG ,

and,

(ΩK0 , JK0) = ({1}, Sa − {s0}), (ΩK1 , JK1) = (Ω, Sa − {s0, s1}) ,

is their Iwahori–Matsumoto parameterization as in Theorem 4.2.1.

The enumaration of maximal compacts subgroups in Proposition 4.3.1 now agrees with
the matrix description of Section 2.1.1.
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4.3.2. Signed permutations. As preparation for the combinatorial analysis of Springer rep-
resentations in Section 6, we would like to explicate the structure ofWG and of its subgroups

of the form ŴKi , that arise from maximal compact subgroups of G.

Definition 4.3.2. For an integer n ≥ 1, let Wn be the group of signed permutations on
n letters. This is the group of permutations σ of the set of indices {±1, . . . ,±n}, which
satisfy σ(−i) = −σ(i), for all 1 ≤ i ≤ n.

Let sgn± :Wn → {±1} be the quadractic group character given by

sgn±(σ) =
n∏

i=1

sgn±(σ(i)) ,

where sgn±(i) = 1 if i > 0 and = −1 if i < 0.
Let W ′

n < Wn be the kernel subgroup of sgn±.
A natural isomorphism

(31) WG
∼= WnG

appears, when identifying si ∈ S with (i, i + 1)(−i, −(i + 1)) ∈ Wn (in cycle notation),
for each 1 ≤ i ≤ nG − 1, and snG ∈ S with (n, −n) ∈ WnG .

Let us denote the element ŝ0 := p(s0) ∈ WnG , viewed as a signed permutation, as well
as ω̂ := p(ω) ∈ WnG in the case of orthogonal G.

Since the highest the root α0 ∈ R is given as

α0 (diag(a1, . . . , anG)) =

{
a21 symplectic G
a1a2 orthogonal G

,

we see the description

ŝ0 =

{
(1, −1) symplectic G
(1, −2)(−1, 2) orthogonal G

.

Observing the action of ω ∈ Ω on the affine Dynkin diagram in the orthogonal case, it is
easy to verify that ω̂ = (1, −1).

Proposition 4.3.3. For each 1 ≤ i ≤ nG, the identification (31) sends the subgroup

ŴKi < WG to the subgroup

WnG,i := {σ ∈ WnG : σ({±1, · · · ± i}) ⊆ {±1, . . . ,±i}} < WnG .

A factorization Wn,i
∼= Wi ×Wn−i holds, through which we denote the subgroup

W ′
i ×WnG−i ∼= W ′

nG,i
< WnG,i .

In the case of orthogonal G, the identification (31) sends the subgroup Ŵ ′
Ki
< WG to the

subgroup W ′
nG,i

< WnG.

Proof. In the symplectic case, by Proposition 4.3.1, the group WKi, for 1 ≤ i ≤ nG, is
generated by {ŝ0} ∪ Π− {si}.
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In the orthogonal case, by Proposition 4.3.1, the groupWKi, for 2 ≤ i ≤ nG, is generated

by {ω̂, ŝ0} ∪Π− {si}, while WK1 is generated by {ω̂} ∪Π− {s1}. The subgroups Ŵ ′
Ki

are
obtained similarly when omitting the generator ω̂.

The statement now follows from our description of generators in terms of signed permu-
tations. �

We also write WnG,0 =WnG , which is then identified with ŴK0 =WnG .

4.4. Anti-tempered weakly-spherical spectrum. The effective description of compact
subgroups of G of previous sections allows for a reduction of the study of invariants of anti-
tempered G-representations into properties of associated Springer representations.

The following theorem will be proved in Section 5 through methods of categorical equiv-
alences arising from affine Hecke algebras.

Theorem 4.4.1. Let IG < K < G be a compact subgroup, and ŴK < WG its corresponding
subgroup from (28).

Let ζ be a complex group character of G, which is trivial on IG. Let ζ̂K be resulting group

character of ŴK.

Let O∨ ∈ U∨ and ǫ ∈ Â(O∨)0 be choices of a unipotent conjugacy class and a character,
for which the anti-tempered representation

δ(1,O∨, ǫ) ∈ Π1,O∨

possesses non-zero IG-invariant vectors.
Then, the equality of dimensions

dimHomŴK

(
ζ̂K ,Σ(O∨, ǫ)

)
= dimHomK(ζ, δ(1,O∨, ǫ))

holds.

Corollary 4.4.2. Let O∨ ∈ U∨ and ǫ ∈ Â(O∨)0 be choices of a unipotent conjugacy class
and a character, for which the anti-tempered representation

δ(1,O∨, ǫ) ∈ Π1,O∨

possesses non-zero IG-invariant vectors.
Then, for all i = 0, . . . , nG, the equality of dimensions of invariant spaces

dimΣ(O∨, ǫ)WnG, i = dim δ(1,O∨, ǫ)Ki

holds, when the identification WG
∼= WnG is assumed.

In the case of orthogonal G, when the quasi-basic A-packet Π−1,O∨ is defined, the equality

dimHomWnG, i
(sgn±

⊠ triv,Σ(O∨, ǫ)) = dim δ(−1,O∨, ǫ)Ki

holds, for all i = 0, . . . , nG, when the quadratic character sgn±
⊠ triv is taken under the

decomposition WnG,i = Wi ×WnG−i.
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Proof. The first statement follows from Proposition 4.3.3, when taking trivial ζ in Theorem
4.4.1.

In the orthogonal case, κ0(ω) = −1, since κ0 is non-trivial.
For 0 < i ≤ nG, we have ω ∈ WKi. Thus, Lemma 4.2.2 claims that κ̂0Ki must produce a

non-trivial character of ŴKi/Ŵ
′
Ki
. According to Proposition 4.3.3, that claim amounts to

χ̂Ki = sgn±
⊠ triv under the identification of ŴKi with WnG,i.

For i = 0, Ŵ ′
K0

= ŴK0, while both κ̂0K0
and sgn±

⊠ triv stand for the trivial character.
The second statement now follows similarly when taking ζ = κ0 in Theorem 4.4.1, and

recalling that δ(−1,O∨, ǫ) ∼= κ0 ⊗ δ(1,O∨, ǫ).
�

The Green theory analysis of Springer representations in Section 6 produces the following
result.

Theorem 4.4.3. Let O∨ ∈ U∨ and ǫ ∈ Â(O∨)0 be choices of a unipotent conjugacy class
and a character, for which the Springer representation σ(O∨, ǫ) is non-zero.

In the case of symplectic G, an inclusion ǫ ∈ A†(O∨) holds, if and only if, there exists
an index 0 ≤ i ≤ nG, for which

Σ(O∨, ǫ)WnG, i 6= {0} .
In the case of orthogonal G, an inclusion ǫ ∈ A†(O∨) holds, if and only if, there exists

an index 0 ≤ i ≤ nG, for which

HomWnG, i
(sgn±

⊠ triv,Σ(O∨, ǫ)) 6= {0} .
A direct consequence of the combination of Theorem 4.4.3 with Corollary 4.4.2 is that a

representation in the anti-tempered A-packet ΠsG,O∨, for any O∨ ∈ U∨, is weakly spherical
(Definition 1.1.1), if and only if, it is formally weakly spherical (Definition 3.1.2). The last
statement is equivalent to Theorem C.

5. Hecke algebras

Our aim now is to prove Theorem 4.4.1 by means of the representation theory of Hecke
algebras. The key advantage of this approach is that a move into an algebraic setting
allows for a rigorous limiting process q → 1, where q is the cardinality of residue field of
F . In the limit we recover the Springer theory setup.

In greater detail, for a maximal compact subgroup IG < K < G, we describe a C[v, v−1]-
algebra H, which interpolates between G-representations in basic A-packets and Springer
representations of WG, in the following sense. For an anti-tempered representation δ ∈
ΠO∨ , a H-module M(δ) is constructed, whose specialization at v =

√
q describes the

decomposition of δ|K , while its specialization at v = 1 describes the decomposition of
Σ|ŴK

for the corresponding Springer WG-representation Σ.

However, it is not a priori clear that M(δ) is unique and that its decomposition as a
generic module governs both of the multiplicities which we would like to compare.
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Indeed, we prove that claim in Section 5.2, by showing that in the class of extended
Hecke algebras, to which H belongs, there is in fact a distinguished isomorphism between
the specializations H1, H√

q (a construction which goes back to [Lus81b]).

5.1. Algebraic reduction.

Definition 5.1.1. For a subgroup IG < H < G, we denote the Iwahori-Hecke algebra HH

to be the space of compactly supported functions f : H → C, for which

f(i1hi2) = f(h), ∀i1, i2 ∈ IG, h ∈ H

holds, endowed with the convolution associative product

(f1 ⋆ f2)(h) =

∫

H

f1(x)f2(x
−1h) dx .

Here, dx stands for the Haar measure on H, normalized so that IG has volume 1.

5.1.1. Categorical equivalences. Let (π, V ) be a smooth representation of either G = H or
of a compact subgroup IG < H < G.

There is a natural action of the algebra HH on the finite-dimensional space V IG of
IG-invariant vectors, given by

φ ⋆ v =

∫

G

φ(x)π(x)v dx, φ ∈ HH, v ∈ V I .

We denote by πIG the resulting HH-module.
Let Rep0(H) to be the full subcategory of smooth complex H-representations that are

generated by their IG-invariant vectors.
We also write Mod(HH) for the category of HH-modules.
The following foundational result, for its case of G = H , is often taken as the impetus

for the study of Iwahori-Hecke algebras.

Theorem 5.1.2. For either G = H or a compact subgroup IG < H < G, the functor

MH : Rep0(H) → Mod(HH)

given by π 7→ πIG is an equivalence of abelian categories.
In particular, for each irreducible representation π in Rep0(H), πIG is an irreducible

HH-module.
Moreover, for a compact subgroup IG < K < G, when naturally embedding HK as a

subalgebra of HG, the diagram

(32)

Rep0(G) Mod(HG)

Rep0(K) Mod(HK)

MG

resGK res
HG
HK

MK

commutes.
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Proof. When H = G this is due to [Bor76, Corollary 4.11]. When H is compact this follows
from the semisimplicity of both categories. The commutation of the diagram is immediate
from definitions. �

5.1.2. Generic Hecke algebras. Let A = C[v, v−1] be the ring of Laurent polynomials.

Definition 5.1.3. Let (W1, S1) be a Coxeter system, and Ω be a finite group equipped with
an action on W1 by group automorphisms that stabilize S1.

Let W = W1 ⋊ Ω be the resulting group extension.
Let ℓ : W → N0 be the length function, that extends the Coxeter length on W1 through

ℓ|Ω = 0.
The extended generic Hecke algebra for W is defined to be the A-algebra HW , presented

with the basis {Tw : w ∈ W} ⊆ HW , as a free A-module, that is subject to the multiplicative
relations

(33)
Tw · Tw′ = Tww′, if ℓ(ww′) = ℓ(w) + ℓ(w′),

T 2
s = (v2 − 1)Ts + v2, s ∈ S1.

For a ∈ C×, we let θa : A → C denote the ring homomorphism determined by v 7→ a
and write Ca for the 1-dimensional A-module determined by θa.

In the context of Definition 5.1.3, we write HW
a = HW ⊗ACa for the specialized complex

algebra.
Given a HW -module M which is free over A, we also write Ma = M ⊗A Ca for the

specialized HW
a -module.

Considering the group algebra C [W ] with its natural basis {δw}w∈W , an isomorphism of
complex associative algebras

HW
1

∼= C [W ]

sends Tw ⊗ 1 to δw, for all w ∈ W .
Now, let us note that the Iwahori decomposition of (5) gives a basis

{fw}w∈W̃G
⊆ HG ,

for the Iwahori-Hecke algebra, which is parameterized by elements of the Iwahori-Weyl
group.

Here, fw is the characteristic function of the double coset IGwIG ⊆ G.

Proposition 5.1.4. [IM65, Theorem 3.3, Corollary 3.6]

Decomposing the Iwahori-Weyl group W̃G = Wa ⋊ Ω as an extended Coxeter group,
produces an isomorphism

H
W̃G√
q

∼= HG

Tw ⊗ 1 ↔ fw
,

of complex associative algebras.
For any compact subgroup IG < K < G, the decomposition

WK =W ′
K ⋊ ΩK < W̃G ,

as in Theorem 4.2.1 corresponds to an algebra embedding of HWK into HW̃G.
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The specialization isomorphism sends the resulting sub-algebra H
WK√
q < H

W̃G√
q to the sub-

algebra HK < HG.

5.1.3. Kazhdan–Lusztig construction. Springer representations of the Weyl group WG be-
come relevant for our discussion of weak Arthur packets, when recalling the Kazhdan–
Lusztig construction of the local Langlands correspondence for irreducible representations
in the principal Bernstein block Rep0(G).

Their approach gives a Springer-type geometric realization of affine Hecke algebra mod-
ules. A particular convenience is that the realization uses anti-tempered representation as
its building blocks in terms of parabolic induction.

We convey the parts of this theory that are needed for our discussion in the following
proposition.

Proposition 5.1.5. Let O∨ ∈ U∨ be a unipotent conjugacy class in G∨(C).
Let π ∈ Π1,O∨ be an anti-tempered representation, for which πIG 6= 0.

Then, there exist a character ǫπ ∈ Â(O∨) and an A-free HW̃G-module M(π), for which
both isomorphisms

M(π)√q ∼= πIG , M(π)1 ∼= Σ(O∨, ǫπ)

hold, as HG-modules, and, respectively, W̃G-representations, under the identifications of
Proposition 5.1.4.

Proof. The analogous result was established in generality for tempered representations of
split adjoint groups by Reeder in [Ree00, Theorem 8.1] using Kazhdan and Lusztig’s [KL87]
construction of tempered representations. Twisting by the Aubert-Zelevinsky involution
gives the required result for anti-tempered representations.

For groups of arbitrary isogeny we combine the result for adjoint groups with [Ree02,
Lemma 5.3.1]. �

Assumption 5.1.6. For any O∨ ∈ U∨ and ǫ ∈ Â(O∨)0, the anti-tempered representation

δ = δ(1,O∨, ǫ) ∈ Π1,O∨ ,

as parameterized in Section 3.1.1 satisfies ǫδ = ǫ, where ǫδ is the character provided by
Proposition 5.1.5.

In other words, the irreducible local systems, that are used in the Kazhdan–Lusztig param-
eterization of anti-tempered irreducible representations with non-zero IG-invariant vectors,
agree with the characters visible in Arthur’s endoscopic parameterization.

Assumption 5.1.6 is a consequence of [Wal19b] for the case of odd orthogonal G. Indeed,
it was shown that the Kazhdan–Lusztig parameterization satisfies the endoscopic identities
that pin Arthur’s characters. We expect a similar correspondence to hold in the symplectic
case.
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5.2. Deformations for extended finite Hecke algebras. This current section is self
contained and is dedicated to general deformation procedures for extended finite Hecke
algebras, that culminate in proposition 5.2.5.

We now take a group W = W1⋊Ω with the length function ℓ :W → N0 as in Definition
5.1.3, with W assumed to be finite.

For brevity we write H = HW .
The key ingredient to prove the well-definedness of deformations of modules is the exis-

tence of an algebraic family of isomorphisms ηa : C[W ] → Ha indexed by a in some Zariski
open subset of C containing

√
q and 1, with η1 = Id. The explicit form of these maps is in

general quite complicated, and their existence is highly non-trivial. We turn to Lusztig’s
J-algebra which provides a convenient formalism for producing such maps. This formalism
contains enough information to extract the abstract properties we need, but it should be
noted that these rely on deep properties of the J-algebra established by Lusztig in [Lus85;
Lus87].

Definition 5.2.1. Let J denote Lusztig’s asymptotic Hecke algebra for W over A. This is
a free A-module with basis {tw : w ∈ W}. We refer to [Gec00, §2.2] for the definition of
the multiplicative structure of J.

Let φ : H → J denote the injective homomorphism from the Hecke algebra to the asymp-
totic Hecke algebra as defined in [Gec00, §2.2] due to Lusztig.

We write Ha,Ja, φa for H⊗A Ca,J⊗A Ca, φ⊗A Ca.

Proposition 5.2.2. The map φ1 : C[W ] → J1 is an isomorphism and J1 ⊗C A ∼= J as
algebras.

Proof. The first part follows from [Gec00, Example 2.6]. The second part follows from the
fact that the structure constants of J lie in C (in fact in Z). �

The upshot of the proposition is that an isomorphism ψ = φ1 ⊗C A between A[W ] and
J is obtained. We see the diagram

(34)

A[W ] J

H

ψ

φ .

We would like to invert the vertical arrow to get a map from A[W ] → H. However the
vertical map is not in general an isomorphism. If we think of φ as an algebraic family
of homomophisms indexed over C×, this corresponds to the fact that there are a ∈ C×

for which φa is not an isomorphism. The next proposition identifies a Zariski basic open
subset which avoids such points.

Lemma 5.2.3. Let

g(q) =
∑

w∈W
ql(w)
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be the Poincaré polynomial for W and f(v) = g(v2). Then φa is an isomorphism whenever
f(a) 6= 0.

Proof. By [Gec00, Corollary 2.5], it suffices to show that Ha is semisimple whenever f(a) 6=
0. When Ω is trivial, this is a consequence of [GU89]. The proof in the general case is
identical. Then only point of care is to ensure that the generic degrees are polynomials (c.f.
[GU89, 6.(iii)]) which follows immediately from the analysis of Schur elements in [Gec00,
Section 4.8] (see [GP00, Section 8.1.8] for the relation between Schur elements and generic
degrees). �

Let φf : Hf → Jf denote the localisation of φ at f ∈ A.

Corollary 5.2.4. The homomorphism φf is an isomorphism.

Proof. Since φ is injective, so is φf . To check surjectivity, it suffices to do so at every
maximal ideal m of Af . Let a be the point in C× with f(a) 6= 0 corresponding to m. Since
(Af)m is a local ring, by Nakayama’s lemma (φf)m is surjective if φf ⊗Af Af/m = φa is
surjective. Lemma 5.2.3 implies φa is surjective and this completes the proof. �

Thus we see that on the open set U = C×\{a : f(a) = 0}, we have an algebraic collection
of isomorphisms

ηa : C[W ] → Ha a ∈ U

arising from specializitions of

η : Af [W ] → Hf , η := φ−1
f ◦ ψf .

The next proposition proves the well-definedness of deformations.

Proposition 5.2.5. (1) We have
√
q ∈ U , and the isomorphism

η√q : C[W ] → H√
q

of complex algebras is well-defined.
(2) Let M be an A-free H-module. Let M√

q→1 denote the W -representation obtained
by pulling back the module structure of M√

q along the isomorphism η√q.
Then, an isomorphism of W -representations

M1
∼= M√

q→1

holds.

Proof. The first statement is a consequence of the polynomial in Lemma 5.2.3 having
positive coefficients.

Let ρf : Hf → EndAf (Mf) be the homomorphism induced from theHf -module structure
of Mf and set

χMf
(w) := tr(ρf (η(Tw)) ∈ Af .

Similarly, for a ∈ U we define ρa : Ha → EndC(Ma) and

χMa(w) := tr(ρa(ηa(Tw))) ∈ C.
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Since (Hf)a ∼= Ha and (Mf)a ∼= Ma we have

(35) χMa(w) = θa(χMf
(w)).

Since U is C× minus finitely many points, it is path connected so there is a continuous
γ : [0, 1] → U such that γ(0) = 1, γ(1) =

√
q (in fact the straight line path will work). By

(35), χMγ(t)
defines a continuous (in fact rational with denominator a power of f) family

of characters of W and hence it must be constant. Since η1 = Id, we have that χM1 is the
character for M1 and so the result follows. �

5.3. Proof of Theorem 4.4.1. Let IG < K < G be a compact subgroup and ζ a complex
character of G, which is trivial on IG.

We also pick an anti-tempered representation

δ = δ(1,O∨, ǫ) ∈ Π1,O∨

with δ ∈ Rep0(G), as in the satement of Theorem 4.4.1.
By Theorem 5.1.2, it is enough to prove that an equality

dimHomŴK

(
ζ̂K ,Σ(O∨, ǫ)

)
= dimHomHK

(ζ, δIG)

holds.
Let H := HWK < HW̃G be the sub-algebra described in Proposition 5.1.4.
By Proposition 5.2.5, it is now enough to find A-free H-modules Σ, ζ, for which the

identities

(36) Σ√
q
∼= δIG , ζ√

q
∼= ζ

would hold as HK-modules, while

(37) Σ1
∼= resW̃G

WK
Σ(O∨, ǫ), ζ1

∼= ζ

are holding as WK-representations.

Indeed, let M(δ) be the HW̃G-module supplied by Proposition 5.1.5. Then, according to

Assumption 5.1.6, Σ := resH
W̃G

H M(δ) produces the desired module.
The homomorphism ζ : H → A is then produced by the formula

Tw 7→ ζ(w)v2ℓ(w), w ∈ WK .

6. Decomposition of Springer representations

The goal of this section is to prove Theorem 4.4.3.
We take note (Definition 6.1.5) of two sequences Es

0, . . . , E
s
n, s ∈ {±1}, of irreducible

Wn-representations, and declare a Wn-representation to be weakly s-spherical, whenever it
admits one of {Es

i }ni=0 as a sub-representation.
Lemma 6.1.6 then reduces Theorem 4.4.3 to the following proposition.
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Proposition 6.0.1. Let λ ∈ PsG
0 (NG) a partition (of good parity), and ǫ ∈ Â(O∨

λ )0 a
character.

Then, an inclusion ǫ ∈ A†(O∨
λ ) holds, if and only if, the Springer representation Σ(O∨

λ , ǫ)
is weakly sG-spherical.

Singling out the irreducible constituents of Springer representations Σ(O∨, ǫ), beyond
the top degree case of σ(O∨, ǫ), is in general a problem of high complexity.

The analogous problem for Sn-representations, when the group is viewed as a Weyl group
of type An−1, amounts to computations of the ubiquitous Kostka numbers.

In our case ofWn (Lie types B and C), the multiplicities in question are governed by the
so-called double Kostka polynomials. These are generalisations of the Kosta polynomials
introduced by Shoji in [Sho01] and studied notably in [AH08; La24; LS17; Wal19a].

For the problem at hand we will utilise recent deep results on special values of double
Kostka polynomials obtained by Waldspurger for type C, and later generalised to types B
(and D) by La.

These results are summarised in Theorems 6.2.1 and 6.2.3. They provide an explicit
algorithmic calculus, that may be used to determine weak s-sphericity of Σ(O∨, ǫ).

Such methods are exploited in the final subsection to establish Proposition 6.0.1.

6.1. First reduction.

6.1.1. Representation theory of Sn and Wn. We write Sn for the symmetric group on n
letters.

For a partition λ ∈ P(n), we write Vλ ∈ Irr(Sn) for the Specht module that is determined
by λ.

Proposition 6.1.1. (Pieri’s formula) Let 0 ≤ k ≤ n and λ ∈ P(n− k) be given.
Then, a decomposition

indSnSn−k×SkVλ ⊠ V(k) =
⊕

µ

Vµ

holds, so that the sum ranges over all partitions µ ∈ P(n), whose Young diagram can be
obtained from that of λ by adding k boxes, no two in the same column.

Irreducible representations of the group of signed permutations Wn are parameterized
by (ordered) pairs of partitions α, β ∈ P with |α|+ |β| = n.

It will be useful to adopt the direct notation (α, β) ∈ Irr(Wn).
Let us now recall the construction of those representations out of the Specht represen-

tations for Sn.
Let χk denote the character of (Z/2)n that is trivial on the first n− k components, and

non-trivial on the remaining k components. The centralizer of χk in Sn is the naturally
embedded subgroup Sn−k × Sk.

Let (Vα ⊠ Vβ) ⊗ χ|β| denote the representation of the group (S|α| × S|β|) ⋉ (Z/2)n ∼=
W|α|×W|β|, obtained by extending the S|α|×S|β|-representation Vα⊠Vβ by χ|β| on (Z/2)n.
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The induced representation

(α, β) := indWn

W|α|×W|β|
(Vα ⊠ Vβ)⊗ χ|β|

is then irreducible.
Indeed, every isomorphism class of an irreducibleWn-representation is obtained uniquely

in this manner.
As general notation, for complex finite-dimensional representations π1, π2 of a finite

group, we write
〈π1, π2〉 := dimC Hom(π1, π2) .

Proposition 6.1.2. 2 [GK78, Theorem III.2] If (α1, β1) ∈ Irr(Wi), (α2, β2) ∈ Irr(Wn−i)
and (α, β) ∈ Irr(Wn), then, viewing Wi×Wn−i as a subgroup of Wn via Wi×Wn−i ∼= Wn,i,
we have

〈indWn

Wi×Wn−i
((α1, β1))⊠ (α2, β2)) , (α, β)〉(38)

=〈indS|α|

S|α1|
×S|α2|

(Vα1 ⊠ Vα2), Vα〉 · 〈ind
S|β|

S|β1|
×S|β2|

(Vβ1 ⊠ Vβ2), Vβ〉 ,
when |α1|+ |α2| = |α| and |β1|+ |β2| = |β|.
6.1.2. Weakly s-spherical Weyl group representations.

Definition 6.1.3. For an integer 0 ≤ i ≤ n and a sign s ∈ {±1}, we denote

(39) Es
i =

{
((n− i, i), ∅) if s = 1

((n− i), (i)) if s = −1
∈ Irr(Wn) .

Note, that E1
0 = E−1

0 = ((n), ∅) is the trivial 1-dimensional Wn-representation, while
E−1
n = (∅, (n)) corresponds to the character sgn± of Section 4.3.2.

Proposition 6.1.4. Let π be a complex Wn-representation.
Then,

(1) There is an index 0 ≤ i1 ≤ n with πWn,i1 6= 0, if and only if, there is an index
0 ≤ i2 ≤ n with

〈π, E1
i2〉 6= 0 .

(2) For any 0 ≤ i ≤ n, an equality

dimHomWn,i
(sgn±

⊠ triv, π) = 〈π, E−1
i 〉

holds.

Proof. (1) Let us write Hi = indWn

Wn,i
triv. By Frobenius reciprocity,

dim πWn,i = 〈triv, resWn

Wn,i
π〉 = 〈Hi, π〉.

Recalling that Wn,i
∼= Wi ×Wn−i, we see that

2Our conventions differ from those in [GK78] by a flip. Namely, our representation (α, β) is denoted by
{β, α} in [GK78].
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Hi = indWn

Wi×Wn−i
((i), ∅)⊠ ((n− i), ∅)

=
⊕

α∈P(n)

〈indSnSi×Sn−i(V(i) ⊠ V(n−i)), Vα〉(α, ∅), (Proposition 6.1.2)

=
⊕

j≤min(i,n−i)
((n− j, j), ∅) =

⊕

j≤min(i,n−i)
E1
j , (Proposition 6.1.1).

(2) The statement follows similarly, when noting that

indWn

Wn,i
sgn±

⊠ triv = indWn

Wn,i
(∅, (i))⊠ ((n− i), ∅) = ((n− i), (i)) = E−1

i

holds, by Proposition 6.1.2.
�

Definition 6.1.5. For n ≥ 0 and s ∈ {±1} call a Wn-representation π weakly s-spherical,
whenever an index 0 ≤ i ≤ n exists, so that 〈π, Es

i 〉 6= 0.

Lemma 6.1.6. Let n,m ≥ 0. Then a representation π of Wn is weakly s-spherical, if and
only if, ind

Wn+m

Wn×Smπ ⊠ triv is weakly s-spherical.

Proof. It suffices to prove the case when π is irreducible so suppose π = (α, β). We have

(40) ind
Wn+m

Wn×Sm(α, β)⊠ triv = ind
Wn+m

Wn×Wm
indWn×Wm

Wn×Sm (α, β)⊠ triv.

Now a direct computation shows that

indWn

Sn
triv =

⊕

i

((i), (n− i)).

Thus equation 40 is equal to

(41)

m⊕

i=0

ind
Wn+m

Wn×Wm
(α, β)⊠ ((i), (m− i)).

By Proposition 6.1.2 and Pieri’s formula, for every constituent (γ, δ) of equation 41, γ and
δ have at least as many parts as α and β respectively. Let us now consider the cases s = 1
and s = −1 separately.

If s = 1, (α, β) is not weakly s-spherical, if and only if, l(α) ≥ 3 or l(β) ≥ 1. Thus
if (α, β) is not weakly s-spherical then neither is any constitutent (γ, δ) of equation 41.
Conversely, if (α, β) is weakly s-spherical, it is of the form ((n − j, j), ∅) for some j, and
so by Proposition 6.1.2 and Pieri’s formula, equation 41 contains ((n+m− j, j), ∅). Thus
equation 41 has a weakly s-spherical constituent.

If s = −1, (α, β) is not weakly s-spherical, if and only if, l(α) ≥ 2 or l(β) ≥ 2. Thus
if (α, β) is not weakly s-spherical then neither is any constitutent (γ, δ) of equation 41.
Conversely, if (α, β) is weakly s-spherical, it is of the form ((n − j), (j)) for some j, and
so by Proposition 6.1.2 and Pieri’s formula, equation 41 contains ((n+m− j), (j)). Thus
equation 41 has a weakly s-spherical constituent. �

Lemma 6.1.7. Theorem 4.4.1 follows from Proposition 6.0.1.
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Proof. Let λ ∈ PsG(NG) be a partition, and ǫ ∈ A(O∨
λ )0 a character.

By Proposition 6.1.4, we see that Theorem 4.4.1 would follow, once we show that the
inclusion ǫ ∈ A†(O∨

λ ) is equivalent to the representation Σ(O∨
λ , ǫ) being weakly sG-spherical.

Thus, we are left with the reduction to the case of λ of good parity (i.e. in PsG
0 (NG)).

Let λ = λgp ∪ λbp ∪ λbp be the unique decomposition, so that λgp ∈ PsG
0 and λbp ∈ P−sG

0 .

We write λbp = (λbp1 , . . . , λ
bp
l ).

Consider the groups

L1 = GNG−2|λbp|, L2 =

l∏

i=1

GLλbpi
(F ), L = L1 × L2 ,

so that L naturally embeds as a Levi subgroup of G, while the Weyl group of L is given as

WL =WL1 ×
l∏

i=1

Sλbpi
.

Following Propositions 2.2.2 and 2.2.3, the character groups Â(O∨
λ ) and Â(O∨

λgp) are nat-
urally identified, and under the identification A†(O∨

λ ) matches A†(O∨
λgp).

Viewing ǫ as a character of both component groups, we have the identity

indWG

WL1
×WL2

Σ(O∨
λgp , ǫ)⊠ triv = Σ(O∨

λ , ǫ)

of [Ree01, Proposition 3.3.3].
By doing the induction in stages, amalgamating one Sλbpi

factor into the WL1 term at a

time, and applying Lemma 6.1.6 at each stage, we see that Σ(O∨
λ , ǫ) is weakly sG-spherical,

if and only if, Σ(O∨
λgp , ǫ) is weakly sG-spherical. �

6.2. Algorithmic Green theory. Green theory concerns the decomposition of Springer
representations Σ(O∨

λ , ǫ) into irreducible representations.
We would like to recall some of the details of the algorithmic approach to this task that

was presented in [Wal19a] and [La24].

6.2.1. Combinatorics of the Springer correspondence. Let λ ∈ PsG
0 (NG) be a fixed partition

of good parity.

Let ǫ ∈ Â(O∨
λ )0 be a fixed character, for which σ(O∨

λ , ǫ) is an irreducibleWG-representation.
Identifying WG

∼= WnG , we may write

σ(O∨
λ , ǫ)

∼= (αλ,ǫ, βλ,ǫ) ,

for partitions αλ,ǫ, βλ,ǫ ∈ P with |αλ,ǫ|+ |βλ,ǫ| = nG.
Let us now write

λ = (λ1 ≥ λ2 ≥ . . . ≥ λℓ(λ) > 0) ,

while harmlessly contrasting the ascending notation of Section 2.2.1.
Through the identification of Proposition 2.2.2 we view ǫ as a boolean function on S(λ).
The character ǫ now gives rise to the following function

ǫ : {1, . . . , ℓ(λ)} → {±1} , ǫ(i) = (−1)ǫ(λi)+i−1 ,
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Let us decompose the index set as

{1 . . . , ℓ(λ)} = {e11 < . . . < e1t} ⊔ {e−1
1 < . . . < e−1

t′ } ,

so that ǫ(euj ) = u, for u ∈ {±1} and all possible indices j.

Let γλ,ǫ1 , . . . , γλ,ǫℓ(λ) ≥ 0 be the unique integers, for which

αλ,ǫ =
(
γλ,ǫ
e11

≥ . . . ≥ γλ,ǫ
e1t

)
, βλ,ǫ =

(
γλ,ǫ
e−1
1

≥ . . . ≥ γλ,ǫ
e−1
t′

)

holds.
Indeed, such a parameterization of (αλ,ǫ, βλ,ǫ) is possible and is explicit in the standard

algorithms for the combinatorial form of the Springer correspondence, as presented for
example in [Car85, Section 13.3]. We explicate it further in Section 6.3.1.

6.2.2. Shoji–Waldspurger–La tableaux. The following is a restatement, using modified no-
tation, of the construction outlined in [Wal19a, Section 1.4] and [La24, Section 1.2].

Our use of tableaux is an iterative implementation of the recursive form of the algorithm
that appears in the cited references.

For an integer ℓ ≥ 1, we say that T = (di,j) is an ℓ-tableau, when indices r1 ≥ . . . ≥ rc ≥ 1
are given so that (i, j) 7→ di,j is a bijection between the sets

{(i, j) : 1 ≤ i ≤ c, 1 ≤ j ≤ ri} → {1, . . . , ℓ} .

For pairs of integers we assume a lexicographic order, so that (i, 1) < (i, 2) < . . . <
(i+ 1, 1).

For λ, ǫ as before and each choice ∆, τ of positive integers, we construct the setR(λ, ǫ,∆, τ)
of ℓ(λ)-tableaux.

The entries of each T = (di,j) ∈ R(λ, ǫ,∆, τ) are produced algorithmically. Assuming
di′,j′ has been defined for all (i′, j′) < (i, j), we define di,j as follows:

For i ≥ 1 and j ≥ 2, we write u = −ǫ(di,j−1), and set

di,j = min{euk : 1 ≤ k, s.t. di,j−1 < euk 6= di′,j′, for any (i′, j′) < (i, j)} ,

if exists (ri = j − 1 is set, if not).
For i ≥ 1 and j = 1 a choice is made. For each sign u ∈ {±1} we write

ku = min{euk : 1 ≤ k, s.t. euk 6= di′,j′, for any (i′, j′) < (i, 1)} ,

when exists. Then, define di,1 = ku, for any sign u, for which either the inequality

(42) γλ,ǫku ≥ −u
(
∆− τ

i−1∑

m=1

ǫ(dm,1)

)

is satisfied, or k−u does not exist.
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6.2.3. Distinguished constituents. For each ℓ(λ)-tableau T = (di,j) ∈ R(λ, ǫ,∆, τ), we write
the tuple of integers (sT1 , . . . , s

T
c ) given by

sTi =

ri∑

j=1

γλ,ǫdi,j , i = 1, . . . , c .

The partitions

αT =
⋃

1≤i≤c, ǫ(di,1)=1

(sTi ) , βT =
⋃

1≤i≤c, ǫ(di,1)=−1

(sTi ) ,

are constructed, so that |αT |+ |βT | = nG still holds.
For each choice of ∆, τ , we denote by

P (λ, ǫ,∆, τ) = {(αT , βT ) : T ∈ R(λ, ǫ,∆, τ)} ⊆ Irr(WnG)

the set of representations that are produced in this manner.

Theorem 6.2.1. Let λ ∈ PsG
0 (NG) be a good parity partition.

Let ǫ ∈ Â(O∨
λ )0 be a character for which σ(O∨

λ , ǫ) is an irreducible representation
(Springer-type). Let ∆, τ be a choice of positive integers.

Then, for each (α, β) ∈ P (λ, ǫ,∆, τ), we have

〈(α, β) , Σ(O∨
λ , ǫ)〉 = 1 .

Proof. Follows from [Wal19a, Proposition 4.2] and [Wal19a, Proposition 3.1(iii)] in the
case of sG = −1. The analogous results for sG = 1 are stated in [La24, Propositions 3.9,
3.10]. �

Remark 6.2.2. Our set P (λ, ǫ,∆, τ) is denoted as P∆,0,τ(αλ,ǫ, βλ,ǫ, <) in [Wal19a] and
[La24], where < is the specific order on the parts of (αλ,ǫ, βλ,ǫ) that is obtained through the
Springer correspondence.

6.2.4. On maximality. The analysis in [Wal19a] and [La24] gave another characterization of
the irreducible constituents of Springer representations that occur in the setting of Theorem
6.2.1. In particular, it provided sufficient conditions under which the vanishing of the
multiplicity 〈(α, β) , Σ(O∨

λ , ǫ)〉 may be determined by an inclusion (α, β) ∈ P (λ, ǫ,∆, τ).
To that aim we would like to define certain families of partial orders on the set Irr(Wn).
Let us extend the domain of partitions to the set P ⊆ P, so that each λ ∈ P is given by

an infinite sequence
λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . .)

of integers.
The subset P of partitions is then naturally viewed as sequences with a constant tail of

0’s.
We say that λ ≤ µ holds, for λ = (λi)

∞
i=1, µ = (µi)

∞
i=1 ∈ P, whenever

k∑

i=1

λi ≤
k∑

i=1

µi
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holds, for all 1 ≤ k.
Restricting the resulting partial order to P(N) ⊆ P, we see the familiar dominance order

on partitions.
For λ, µ ∈ P , the operation λ ∪ µ ∈ P is similarly defined as in the case of partitions.
For λ = (λi)

∞
i=1 ∈ P and a choice of non-negative integers ∆, τ , we define

R∆,s(λ) = (∆ + λi − τ(i− 1))∞i=1 ∈ P .

For a pair α, β ∈ P, we write

Λ∆,τ (α, β) := R∆,τ (α) ∪ R0,τ (β) ∈ P .

Now, we impose a partial order ≤∆,τ on Irr(Wn) by setting

(α1, β1) ≤∆,τ (α2, β2) ⇔ Λ∆,τ(α1, β1) ≤ Λ∆,τ(α2, β2)

on each pair of bi-partitions (α1, β1), (α2, β2) ∈ Irr(Wn).

Theorem 6.2.3. For λ, ǫ,∆, τ as in Theorem 6.2.1, the set P (λ, ǫ,∆, τ) equals the set of
maximal elements in

{σ ∈ Irr(Wn) : 〈σ , Σ(O∨
λ , ǫ)〉 6= 0}

with respect to the order ≤∆,τ .

Proof. This is [Wal19a, Proposition 3.1(ii)] combined with [Wal19a, Lemme 1.6] and the
analogous treatment of [La24]. �

6.3. Combinatorics of the canonical character subgroup. Let λ ∈ PsG
0 (NG) (a par-

tition of good parity) and ǫ ∈ Â(O∨
λ )0 be fixed, along with all additional notation defined

in the previous section.
For any a ∈ S(λ), we let 1 ≤ i(a) ≤ ℓ(λ) be the minimal index with λi(a) = a.
We write

Xλ = {i(a)}a∈S(λ) ⊆ {1, . . . , ℓ(λ)}
for the resulting set of indices.

We also denote
Xλ,ǫ = {i ∈ Xλ : ǫ(λi) = 1− ǫ(λi−1)} ,

where (−1)ǫ(λ0) = 1 is assumed.
Let us write

Xλ = X1
λ ⊔X−1

λ ,

with X1
λ denoting the even indices and X−1

λ the odd ones.
Let us denote the subsets

S̃(λ)max = {θmax}θ∈S†(λ) , S̃(λ)min = {θmin}θ∈S†(λ) ⊆ S(λ) .

We define S(λ)max as S̃(λ)max with the possible exclusion of λ1 6∈ S(λ)max, in the case
of sG = 1 and λ1 ∈ S0(λ).

Similarly, S(λ)min is defined as S̃(λ)min with the possible exclusion λℓ(λ) 6∈ S(λ)min in the
case of sG = −1 and λℓ(λ) = θmax ∈ S0(λ).
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Lemma 6.3.1. (1) An equality

XsG
λ = {i ∈ Xλ : λi ∈ S(λ)max}

holds.
(2) The inclusion ǫ ∈ A†(O∨

λ ) holds, if and only if, we have Xλ,ǫ ⊆ XsG
λ .

Proof. Most of the statement follows directly from the definition of S†(λ), of P †(λ)0 (Sec-
tion 2.2.3) and its identification with A†(O∨

λ ) (Proposition 2.2.3).
One issue that remains to be clarified for the proof of (2) is the behavior of the index

1 6∈ X1
λ in the case of sG = 1.

Indeed, in that case Lemma 2.2.11 implies that ǫ(λ1) = 0, whenever ǫ ∈ A†(O∨
λ )0.

Consequently, the exclusion 1 6∈ Xλ,ǫ becomes part of the defining condition for ǫ ∈ A†(O∨
λ ).
�

6.3.1. Zero parts. We would like to strengthen the sufficient condition for an inclusion
ǫ ∈ A†(O∨

λ ) that was given in Lemma 6.3.1(2).
To that aim, we need to explicate some ingredients that provide the translation of the

labelling σ(O∨
λ , ǫ) ∈ Irr(WnG) into the bi-partition parameterization.

In particular, we are now interested in characterizing occurrences of γλ,ǫi = 0 in the

sequence {γλ,ǫi }ℓ(λ)i=1 produced in Section 6.2.1.
We recall that λ ∈ PsG

0 (NG) is a partition of good parity.
We define the relative defect

Dǫ(i) =
∑

λi>a∈S(λ)max

ǫ(a)−
∑

λi>a∈S(λ)min

ǫ(a) ,

for all 0 ≤ i ≤ ℓ(λ), assuming λ0 > λ1.
Our terminology differs slightly from the notion of defect for ǫ as appears in various

sources. In particular, the value of Dǫ(0) measures the difference between the defect of the
symbol associated with the trivial local system and the defect of the symbol associated to
ǫ.

Thus by [Lus84a, §12-13], the non-vanishing of σ(O∨
λ , ǫ) (Springer-type) is equivalent to

Dǫ(0) = 0.
We recall the formulas that produce those integers, following [Car85, Section 13.3].
We first denote

γ̃λi =

{
⌈λi/2⌉ i even,
⌊λi/2⌋ i odd,

for all 1 ≤ i ≤ ℓ(λ). In these terms, we have

(43) γλ,ǫi =

{
γ̃λi − 2sGǫ(i)Dǫ(i) + (−1)iǫ(λi)mG λi 6∈ S(λ)min

γ̃λi − 2sGǫ(i)Dǫ(i) + (−1)iǫ(λi)m
′
G λi ∈ S(λ)min

,

where

(mG, m
′
G) =

{
(−2, 0) sG = 1
(1,−1) sG = −1

.
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Lemma 6.3.2. Suppose that 1 ≤ i ≤ ℓ(λ) is an index, for which Dǫ(i) ∈ {1, 0,−1} and

γλ,ǫi = 0 hold. Then,

(1) We have λi ∈ {1, 2, 3, 4, 5, 6, 7}.
(2) When λi = 2 and 2 6∈ S(λ)min, i is odd.
(3) When λi = 3, i is even.
(4) When λi = 4, we have one of:

(a) Dǫ(i) = 1 and ǫ(4) = 0.
(b) 4 6∈ S(λ)min and i is odd.

(5) When λi = 5, we have one of:
(a) Dǫ(i) = 1 and ǫ(5) = 0.
(b) 1, 3 ∈ S0(λ) and ǫ(1) = 1, ǫ(3) = 0, ǫ(5) = 1.

(6) When λi = 6, we have one of
(a) Dǫ(i) = 1 and i is odd.
(b) 2, 4 ∈ S0(λ), 6 ∈ S(λ)min and ǫ(2) = 1, ǫ(4) = 0, ǫ(6) = 1.

(7) When λi = 7, we have Dǫ(i) = 1 and 7 6∈ S(λ)min.

Proof. (1) In case of sG = −1, according to (43) we have |γλ,ǫi − γ̃λi | ≤ 3. Thus, γλ,ǫi = 0
can be reached only when λi ∈ {2, 4, 6}.
In case of sG = 1, according to (43) we have |γλ,ǫi − γ̃λi | ∈ {0, 2, 4}.
For λi = 9, with odd i and γ̃λi = 4, we would obtain

γλ,ǫi ≥ 4− 2ǫ(i)Dǫ(i) ≥ 2 .

(2) Evident from the formula, since Dǫ(2) = 0.
(3) Follows from the same argument as in (1).

(4) When λi = 4 and Dǫ(4) = 0, we have γλ,ǫi ≥ 1.
If Dǫ(4) = −1 holds, it necessarily implies 2 ∈ S(λ)min, ǫ(4) = 0 and ǫ(i) = 1.

The statement follows.
Otherwise, Dǫ(4) = 1 implies ǫ(4) = 0.

(5) When λi = 5, in similarity to a previous argument we must have an odd i and
γ̃λi = 2.

If Dǫ(i) = 0, the formula implies that γλ,ǫi ≥ γ̃λi , which is a contradiction.
If Dǫ(i) = 1, we see ǫ(i) = 1. In turn, that shows that ǫ(5) = 0 (i being odd)

holds.
Otherwise, Dǫ(i) = −1 and ǫ(i) = −1 are implied. Thus, ǫ(5) = 1. In particular,

we must be in the 5 ∈ S(λ)min case of (43).
Now, Dǫ(i) = −1 and λi = 5 ∈ S(λ)min can happen, only when θ ∈ S†(λ) exists,

so that θmin = 1, θmax = 3, ǫ(1) = 1 and ǫ(3) = 0.
(6) For λi = 6, must have ǫ(6) = 1. Now, either Dǫ(i) = 1 and ǫ(i) = −1 hold, in

which case i must be odd, or Dǫ(i) = −1 and ǫ(i) = 1 hold.
The latter case implies that i is even. It also implies that we are in the 6 ∈ S(λ)min

case of the formula.
Now, Dǫ(i) = −1 and λi = 6 ∈ S(λ)min can happen, only when θ ∈ S†(λ) exists,

so that θmin = 2, θmax = 4, ǫ(2) = 1 and ǫ(4) = 0.
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(7) Suppose that λi = 7, with even i and γ̃λi = 4.

We must have 7 6∈ S(λ)min for the formula to reach γλ,ǫi − γ̃λi = 4.
The possibility of Dǫ(i) 6= 1 would force ǫ(i) = −1 and ǫ(7) = 1, causing a

contradiction.
�

Proposition 6.3.3. Let ǫ ∈ Â(O∨
λ )0 be a Springer-type character, and i ∈ Xλ be an index

with γλ,ǫi = 0.
Suppose that for all i > a ∈ Xλ,ǫ, we have a ∈ XsG

λ .
Then, ǫ ∈ A†(O∨

λ ) holds.

Proof. By the assumption we know that Dǫ(0)−Dǫ(i− 1) ∈ {0, 1}.
Since ǫ is of Springer-type, we have Dǫ(0) = 0, and so Dǫ(i− 1) ∈ {0,−1}.
In case λi ∈ S(λ)max, we can further deduce that Dǫ(i − 1) = 0. Thus, in all cases we

have Dǫ(i) ∈ {1, 0,−1}. This fact situates us in the scope of Lemma 6.3.2.
In particular, we have 1 ≤ λi ≤ 7.
When λi ∈ {1, 2}, we have λi = λℓ(λ). If in addition λi ∈ S0(λ), the value of ǫ(λi) is

determined uniquely by Dǫ(i− 1), so that the inclusion ǫ ∈ A†(O∨
λ ) holds.

When λi = 1 6∈ S0(λ), the value of ǫ(1) is inconsequential to the inclusion.
When λi = 2 6∈ S0(λ), we may have 2 ∈ S(λ)max and then ǫ(2) is similarly inconsequen-

tial. Otherwise, when 2 6∈ S(λ)max, we must also have 2 6∈ S(λ)min and by Lemma 6.3.2(2),
i is odd. Hence, i ∈ XsG

λ contradicts Lemma 6.3.1(1).
The case of λi = 3 follows similarly: Either {1, 3} ∩ S0(λ) is empty, or it is a singleton

set {µ}, in which case ǫ(µ) is favorably determined by the value of Dǫ(i−1). When µ = 1,
we have 3 6∈ S(λ)max. Yet, by Lemma 6.3.2(3), i ∈ XsG

λ gives a similar contradiction.
The last option could be (1, 3) = (θmin, θmax), for θ ∈ S†(λ). Here, Dǫ(i−1) = Dǫ(0) = 0

implies ǫ(1) = ǫ(3), and ǫ ∈ A†(O∨
λ ).

Cases (4a) and (5a) of Lemma 6.3.2 are impossible, since these would imply

Dǫ(i− 1) = Dǫ(i) = 1 .

Suppose now that i ∈ S0(λ) ∩ S(λ)min.
This assumption directly rules out cases (4b) and (7) of the lemma. Cases (5b) and (6b)

are ruled out, since those suggest Dǫ(i− 1) = −2.
Finally, the case of Lemma 6.3.2(6a) has λi = 6 with an odd i. Here we note that

i ∈ XsG
λ holds, and that S0(λ)∩S(λ)min, S(λ)max are disjoint sets. Hence, Lemma 6.3.1(1)

rules out this case.
We are left with the situation of i 6∈ S0(λ) ∩ S(λ)min.
Here, the case of λi = 4 is treated identically to the prior case of λi = 3.
We now also have Dǫ(i) < 1, which takes cases (6a) and (7) of the lemma out of our

scope.
Thus, we are left with (5b) or (6b). In these cases we see that λi ∈ S(λ)max. That

implies Dǫ(i− 1) = 0 on one hand, but also Dǫ(i− 1) = −1 follows from the description of
those cases.

�
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6.4. Proof of Proposition 6.0.1. We fix the integers

(∆G, τG) =

{
(nG + 1, 1) sG = 1
(nG + 1, 2nG + 1) sG = −1

,

which will provide us with a useful partial order ≤∆G,τG in each of the cases.
We first reduce the property of weak s-sphericity into an algorithmic study as in the

previous section.

Lemma 6.4.1. Let λ ∈ PsG
0 (NG) be a good parity partition, and ǫ ∈ Â(O∨

λ )0 a character.
The representation Σ(O∨

λ , ǫ) is weakly sG-spherical, if and only if, an index 0 ≤ i ≤ nG
exists, so that

EsG
i ∈ P (λ, ǫ,∆G, τG)

holds.

Proof. One direction follows immediately from Theorem 6.2.1.
Conversely, let us assume that EsG

j appears as a sub-representation of Σ(O∨
λ , ǫ).

Writing EsG
j = (α, β), it follows from Theorem 6.2.3 that (α′, β ′) ∈ P (λ, ǫ,∆G, τG) exists,

for which an inequality

(µi)
∞
i=1 = Λ∆G,τG(α, β) ≤ Λ∆G,τG(α

′, β ′) = (µ′
i)
∞
i=1

holds.
Let us also write α′ = (α′

1 ≥ α′
2 ≥ . . .) and β ′ = (β ′

1 ≥ β ′
2 ≥ . . .).

In case sG = 1, we have (α, β) = ((nG− j, j), ∅). Since ∆G− τG ≥ nG holds in that case,
we clearly have

µ1 = ∆G + nG − j, µ2 = ∆G + j − τG, µ
′
1 = ∆G + α′

1, µ
′
2 = ∆G + α′

2 − τG .

The inequality µ1+µ2 ≤ µ′
1+µ

′
2 then forces nG ≤ α′

1+α
′
2. The last inequality evidently

implies that (α′, β ′) = E1
j′, for an index j′.

In case sG = −1, we have (α, β) = ((nG − j), (j)). Since nG < ∆G and ∆G − τG + a < 0
holds for any 0 ≤ a < nG in that case, we clearly have

µ1 = ∆G + nG − j, µ2 = j, µ′
1 = ∆G + α′

1, µ
′
2 = β ′

1 .

Same as in the previous case, we obtain nG ≤ α′
1+β

′
1, which implies that (α′, β ′) = E−1

j′ ,
for an index j′.

�

Let λ ∈ PsG
0 (NG) and ǫ ∈ Â(O∨

λ )0 now be fixed, along with all additional notation
defined in Section 6.2.

Proposition 6.4.2. For any ℓ(λ)-tableau T = (di,j) ∈ R(λ, ǫ,∆G, τG), we have

{1, . . . , ℓ(λ)} \ {d1,1, d1,2, . . . , d1,r1} = Xλ,ǫ .

Proof. By definition of ǫ it is easily verified that a description

Xλ,ǫ = {1 ≤ i ≤ ℓ(λ) : ǫ(i) = ǫ(i− 1)}
holds, where ǫ(0) = −1 is assumed.
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Since ∆G > nG, equation (42) forces ǫ(d1,1) = 1.
In particular, d1,1 is defined to be the minimial index in {1, . . . , ℓ(λ)} \Xλ,ǫ. Similarly,

d1,2 is defined to be the minimal index in {1, . . . , ℓ(λ)} \Xλ,ǫ that is larger than d1,1, and
so on.

�

Proposition 6.4.3. An index 0 ≤ i ≤ nG exists, so that

EsG
i ∈ P (λ, ǫ,∆G, τG) ,

if and only if, an inclusion ǫ ∈ A†(O∨
λ ) holds.

Proof. Let us denote the set of indices Xλ,ǫ = {i1 < . . . < if}.
Thus, (−1)ǫ(λij ) = (−1)j holds, for all 1 ≤ j ≤ f . In other words, we have

ǫ(ij) = (−1)j+ij−1 ,

for all 1 ≤ j ≤ f .
By Lemma 6.3.1, we see that the inclusion ǫ ∈ A†(O∨

λ ) becomes equivalent to the validity
of

(44) ǫ(ij) = sG(−1)j−1 ,

for all 1 ≤ j ≤ f .
One consequence of Theorem 6.2.3 is that an ℓ(λ)-tableau T = (di,j) ∈ R(λ, ǫ,∆G, τG)

exists, with c ≥ 1 rows.
By Proposition 6.4.2, we know that

{1, . . . , ℓ(λ)} \ {d1,1, . . . , d1,r1} = {i1, . . . , if} .
Because of ∆G > nG, equation (42) implies ǫ(d1,1) = 1.
Also, sG(∆G− τG) ≥ nG implies by same reasoning that when c > 1, ǫ(d2,1) = sG holds,

unless ǫ(ij) = −sG is valid for all j.
Suppose first that ǫ ∈ A†(O∨

λ ). Then, from (44) and the algorithm that produces T , we
see that c ≤ 2 and the bi-partition (αT , βT ) is of the form EsG

i .
Conversely, suppose that (αT , βT ) is of the form EsG

i .
Let 1 ≤ j0 ≤ f be the minimal index for which ǫ(ij0) = sG(−1)j0 holds, if exists.
When j0 does not exist, (44) is valid and ǫ ∈ A†(O∨

λ ). Otherwise, for all ij0 > a ∈ Xλ,ǫ,
we have a ∈ XsG

λ .

If γ := γλ,ǫij0
= 0 holds, from Proposition 6.3.3 we still have ǫ ∈ A†(O∨

λ ).

Thus, we are left to treat the case of γ > 0.
By construction of T , we have d2,j = ij , for all 1 ≤ j < j0, and ij0 = dc′,1, for an index

2 < c′.
It follows that sTc′ ≥ γ contributes a non-zero part to αT , when ǫ(ij0) = 1, or to βT , when

ǫ(ij0) = −1.
Suppose first that sG = 1.
Then, |βT | = 0 and ǫ(ij0) = 1 must hold. Also, ǫ(d1,1) = ǫ(d2,1) = 1. This implies

γλ,ǫd1,1 ≥ γλ,ǫd2,1 ≥ γλ,ǫdc′,1 = γ > 0 ,
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exhibiting three non-zero parts sT1 , s
T
2 , s

T
c′ for αT . This is a contradiction.

Now suppose that sG = −1.
We have either ǫ(ij0) = 1, and consequently γλ,ǫd1,1 ≥ γλ,ǫdc′,1 > 0 holds, or ǫ(ij0) = −1,

which similarly implies γλ,ǫd2,1 ≥ γλ,ǫdc′,1 > 0.

In both cases, one of αT , βT will have two non-zero parts, which is a contradiction.
�

Proposition 6.0.1 now follows from Lemma 6.4.1 and Proposition 6.4.3.
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