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HIGHER-ORDER GRAPHON THEORY: FLUCTUATIONS, INFERENCE, AND
DEGENERACIES

BHASWAR B. BHATTACHARYA

Classification AMS 2020: 05C80, 60F05, 05C60

Keywords: Inhomogeneous random graphs, network analysis, generalized
U -statistics, subgraph counts.

Exchangeable random graphs, which include some of the most widely studied
network models, play a central role in statistical network analysis. Graphons, which are
the central objects in graph limit theory, provide a natural way to sample exchangeable
random graphs. It is well known that network moments (motif/subgraph counts)
identify a graphon (up to an isomorphism), hence, understanding the sampling
distribution of subgraph counts in random graphs sampled from a graphon is pivotal for
nonparametric network inference. Although there are a few results regarding the
asymptotic normality of subgraph counts in graphon models, for many commonly
appearing graphons this distribution is degenerate. This degeneracy phenomenon was
overlooked until very recently and its consequences in network inference have
remained unexplored. Towards this, in joint works with Chatterjee and Janson [1] and
Chatterjee and Dan [2] we obtain the following results:

• We derive the joint asymptotic distribution of any finite collection of network
moments in random graphs sampled from a graphon, that includes both the
non-degenerate case (where the distribution is Gaussian) as well as the
degenerate case (where the distribution has both Gaussian or non-Gaussian
components). This provides the higher-order fluctuation theory for subgraph
counts in the graphon model.

• We develop a novel multiplier bootstrap for graphons that consistently
approximates the limiting distribution of the network moments (both in the
Gaussian and non-Gaussian regimes). Using this and a procedure for testing
degeneracy, we construct joint confidence sets for any finite collection of motif
densities. This provides a general framework for statistical inference based on
network moments in the graphon model.

We also discuss various structure theorems and open questions about degeneracies of the
limiting distribution and connections to quasirandom graphs.

REFERENCES

[1] B. B. Bhattacharya, A. Chatterjee, and S. Janson, Fluctuations of subgraph counts in graphon based
random graphs, Combinatorics, Probability, and Computing, Vol. 32 (3), 428–464, 2023.

[2] A. Chatterjee, S. Dan, B. B. Bhattacharya, Higher-order graphon theory: Fluctuations, degeneracies,
and inference, arXiv:2404.13822, 2024.
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AUTOREGRESSIVE NETWORKS WITH DEPENDENT EDGES

JINYUAN CHANG

Classification AMS 2020: 62F12; 62M10; 62A09

Keywords: conditional independence, dynamic networks, maximum likelihood
estimation, stylized features of network data, transitivity.

Dynamic network modeling with dependent edges is practically important but
challenging. In the absence of edge dependence, it becomes impossible to capture
several stylized features commonly observed in real-world network data, such as
transitivity, density dependence, and community structures. These features are crucial
for accurately modeling the dynamics of networks in fields like social interactions,
communication networks, and organizational behavior. However, including edge
dependence complicates the dynamic structure of network processes and makes
statistical analysis more challenging.

This talk introduces a novel autoregressive (AR) framework for modeling dynamic
networks with dependent edges. Following [4, 5], we specify the transition probabilities
of forming a new edge or dissolving an existing edge between each pair of nodes
explicitly depending on its history and allow those probabilities depending on the
histories of other edge processes. Similar to [3, 6, 7], we assume that the edges are
conditionally independent given their joint histories. This makes both statistical
inference and theoretical analysis more transparent. Consider a dynamic network
process defined on p nodes denoted by 1, . . . , p. Let Xt ≡

(
X t

i,j

)
p×p

be the adjacency
matrix at time t, where X t

i,j = 1 denotes the existence of an edge between nodes i and j
at time t, and 0 otherwise. For simplicity, we only consider undirected networks without
self-loops, i.e. X t

i,i ≡ 0 and X t
i,j = X t

j,i. The AR networks with dependent edges is
defined as follows.

Definition 1 (AR(m) networks). Conditionally on {Xs}s⩽t−1, the edges
{
X t

i,j

}
1⩽i<j⩽p

are
mutually independent with

αt−1
i,j ≡ P

(
X t

i,j = 1 | X t−1
i,j = 0,Xt−1\X t−1

i,j ,Xt−k for k ⩾ 2
)

= P
(
X t

i,j = 1 | X t−1
i,j = 0,Xt−1\X t−1

i,j ,Xt−2, . . . ,Xt−m

)
,

βt−1
i,j ≡ P

(
X t

i,j = 0 | X t−1
i,j = 1,Xt−1\X t−1

i,j ,Xt−k for k ⩾ 2
)

= P
(
X t

i,j = 0 | X t−1
i,j = 1,Xt−1\X t−1

i,j ,Xt−2, . . . ,Xt−m

)
,

where m ⩾ 1 is an integer.

An AR(m) network process defined above is a Markov chain with order m. Based on
Definition 1, we have

P
(
X t

i,j = 1 | Xt−1, . . . ,Xt−m

)
= αt−1

i,j +X t−1
i,j

(
1− αt−1

i,j − βt−1
i,j

)
≡ γt−1

i,j .
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Clearly edges X t
i,j, for different (i, j), are not independent with each other. We may

impose various forms for the conditional probabilities αt−1
i,j and βt−1

i,j to reflect different
stylized features of network data. For any θ = (θ1, . . . , θq)

⊤ ∈ Θ, write

αt−1
i,j (θ) = fi,j

(
Xt−1 \X t−1

i,j ,Xt−2, . . . ,Xt−m;θ
)
,

βt−1
i,j (θ) = gi,j

(
Xt−1 \X t−1

i,j ,Xt−2, . . . ,Xt−m;θ
)
,

γt−1
i,j (θ) =αt−1

i,j (θ) +X t−1
i,j {1− αt−1

i,j (θ)− βt−1
i,j (θ)} ,

where fi,j ’s and gi,j ’s are known functions. Let θ0 = (θ0,1, . . . , θ0,q)
⊤ ∈ Θ ⊂ Rq be a

q-dimensional unknown true parameter vector. Then αt−1
i,j = αt−1

i,j (θ0), βt−1
i,j = βt−1

i,j (θ0)

and γt−1
i,j = γt−1

i,j (θ0).
We use maximum likelihood estimation (MLE) to estimate the parameters of the

autoregressive networks with dependent edges. For any l ∈ [q], let

Sl =
{
(i, j) : 1 ≤ i < j ≤ p and γt−1

i,j (θ) involves θl for any t ∈ [n] \ [m]
}

and G =
{
l ∈ [q] : γt−1

i,j (θ) involves θl for all 1 ≤ i < j ≤ p and t ∈ [n] \ [m]
}

. Define the
following partial log-likelihood,

ℓ̂(l)n,p(θ) =
1

(n−m)|Sl|

n∑
t=m+1

∑
(i,j)∈Sl

log
[ {

γt−1
i,j (θ)

}Xt
i,j
{
1− γt−1

i,j (θ)
}1−Xt

i,j
]
.

Letting (θ̂
(l)
∗,1, . . . , θ̂

(l)
∗,q)⊤ = argmaxθ∈Θ ℓ̂

(l)
n,p(θ) for each l ∈ [q], we define the initial

estimator θ̃ = (θ̃
⊤
G , θ̃

⊤
Gc)⊤ for θ0 as

θ̃G =
(
θ̂
(l′)
∗,l

)
l∈G

and θ̃Gc =
(
θ̂
(l)
∗,l

)
l∈Gc

for some l′ ∈ G.
However, the above initial estimator θ̃ may suffer from slow convergence rates due

to the high dimensionality of θ. To overcome this, we improve the estimation for each
component θ0,l by projecting the score function onto certain direction. An improved
estimator for θ0,l is then obtained by solving the projected score function while letting
θ−l = θ̃−l. The projection mitigates the impact of θ̃−l in the improved estimation for
θ0,l. This strategy was initially proposed by [2, 1] for constructing the valid confidence
regions of some low-dimensional subvector of the whole parameters in high-dimensional
models with removing the impact of the high-dimensional nuisance parameter. We use
the transitivity model as an example to illustrate the effectiveness of both the initial
estimation and the improved estimation in simulations and real data analysis.

REFERENCES

[1] Chang, J., Shi, Z. and Zhang, J. (2023). Culling the herd of moments with penalized empirical
likelihood, Journal of Business & Economic Statistics, 41, 791–805.

[2] Chang, J., Chen, S. X., Tang, C. Y. and Wu, T. (2021). High-dimensional empirical likelihood
inference. Biometrika, 109, 127–147.

[3] Hanneke, S., Fu, W. and Xing, E. (2010). Discrete temporal models of social networks. Electronic
Journal of Statistics, 4, 585–605.

[4] Jiang, B., Leng, C., Yan, T., Yao, Q. and Yu, X. (2023a). A two-way heterogeneity model for dynamic
networks. arXiv:2305.12643.
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24, 1–69.
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LOW-DIMENSIONAL ADAPTATION OF DIFFUSION MODELS

YUXIN CHEN

Keywords: diffusion models, low-dimensional structure, acceleration

Motivated by the practical efficacy of diffusion models, the past few years have
witnessed a flurry of activity towards establishing convergence theory for diffusion
generative models, particularly the two mainstream algorithms: DDPM and DDIM. For a
fairly general family of target distributions Pdata (without assuming smoothness and
log-concavity), the state-of-the-art theory demonstrated that for both DDPM and DDIM,
it takes at most the order of (modulo some log factor)

d

ε
iterations(0.1)

to yield a sample whose distribution is ε-close in total variation (TV) distance to the
target distribution, provided that perfect score function estimates are available.

Nevertheless, even linear scaling in the ambient dimension d can still be prohibitively
expensive for many contemporary applications. Take the ImageNet dataset for instance:
each image might contain 150,528 pixels, while its intrinsic dimension is estimated to
be 43 or less. As a result, applying the state-of-the-art theory (0.1) could suggest an
iteration complexity that exceeds one million, even though practical implementations of
DDIM and DDPM often produce high-quality samples in just a few hundred (or even a
few ten) iterations. The discrepancy between theory and practice suggests that worst-
case bounds, such as (0.1), may be overly conservative. To reconcile this discrepancy,
it is crucial to bear in mind the intrinsic dimension of the target data distribution and
explore whether and how diffusion models can harness this potentially low-dimensional
structure.

Motivated by this, in this talk we would like to explore how diffusion models leverage
low-dimensional structure to speed up the sampling process. Focusing on two
mainstream samplers — the denoising diffusion implicit model (DDIM) and the
denoising diffusion probabilistic model (DDPM) — and assuming accurate score
estimates, we prove that their iteration complexities are no greater than the order of
k/ε (up to some log factor), where ε is the precision in total variation distance and k is
some intrinsic dimension of the target distribution. Our results are applicable to a broad
family of target distributions without requiring smoothness or log-concavity
assumptions. Further, we develop a lower bound that suggests the (near) necessity of
the coefficients introduced by Ho et al. 2020 and Song et al. 2020 in facilitating
low-dimensional adaptation. Our findings provide the first rigorous evidence for the
adaptivity of the DDIM-type samplers to unknown low-dimensional structure, and
improve over the state-of-the-art DDPM theory regarding total variation convergence.

DEPARTMENT OF STATISTICS AND DATA SCIENCE, THE WHARTON SCHOOL, UNIVERSITY OF PENNSYLVANIA,
USA

Email address: yuxinc@wharton.upenn.edu
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AGNOSTIC CHARACTERIZATION OF INTERFERENCE IN RANDOMIZED
EXPERIMENTS (EXTENDED ABSTRACT)

DAVID CHOI

Classification AMS 2020: 62D99

Keywords: causal inference, spillovers, social networks, interference

In randomized experiments, it may be possible for the participants to affect each other,
by mechanisms such as transmission of disease, sharing of information, peer influence, or
economic competition. Such phenomena (termed “interference between units”) violates
assumptions that are commonly used for statistical inference.

Mechanisms for interference often play fundamental roles in our understanding of
social outcomes. For this reason, the empirical characterization of interference (such as
its nature, prevalence, or strength) may be of scientific interest. For experiments with
binary-valued outcomes, we give a general approach for characterizing the prevalence of
interference, which can be used to explore questions such as

Q1. How many units are affected by any treatment (including their own)?
Q2. How many units are affected by the treatment of others? of distant others?
Q3. How many units are affected by the treatment of others, provided that their own

treatment satisfies some condition?

For each of these questions, our approach gives conservative point estimates and
one-sided confidence intervals, which both lower bound the true value. Under
reasonable experiment designs, the point estimate will be consistent for a lower bound
on the true value, while the one-sided interval will cover the true value at the desired
level. These consistency and coverage properties hold without any additional
assumptions or restrictions on the nature of the interference, requiring only a
randomized experiment whose design is known. As a result, our estimates remain valid
even if they use an observed social network that is only a crude proxy for the actual
social mechanisms.

A previous attempt to answer such questions relied on inversion of a test statistic, and
produced quite conservative (though valid) lower bounds. Our new approach is
significantly tighter, and may be more practical as a result. Our point estimates are
asymptotically equal to Hajek-normalized contrasts, such as comparisons of treated
versus untreated, or comparisons of different levels of indirect exposure, or comparisons
that combine measures of direct and indirect treatment. Under stronger assumptions,
such contrasts arise naturally as estimates of treatment effects. Our results indicate that
without assumptions on interference, these contrasts may be interpreted more weakly
as lower bounds on the number of units who are affected by the treatments. We also
find empirically that our interval estimates have efficiency (i.e., interval widths) which
is competitive with, and often better than, that of the expected average treatment effect
(EATE), an assumption-lean treatment effect.
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0.1. Idea of Method. Consider an experiment on N units, with X = (X1, . . . , XN)
denoting the binary-valued treatment of each unit, and Y = (Y1, . . . , YN) denoting their
binary outcomes. We allow for arbitrary interference, so that the outcome Yi of unit i
may potentially depend on all N treatments,

Yi = fi(X1, . . . , XN), i ∈ [N ](0.1)

where the potential outcome mappings {fi}Ni=1 may be arbitrary and unknown.
Suppose that we wish to estimate τ basic, the number of units who are affected by any

treatment, including their own treatment or the treatment of others. To define this
estimand, let I ⊂ [N ] denote the subset of units who are unaffected by treatment and
have constant outcome mappings,

I = {i : fi(X) is constant in X}

so that τ basic = N − |I|.
Our high-level approach to estimating τ basic is the following:

(1) Propose idealized estimators τ̂1 and τ̂2 which will have good statistical properties,
such as consistency and asymptotic normality, but require knowledge of I

(2) Show that ∆, the difference in average outcomes between treated and control
(which can be computed without knowledge of I) converges to a lower bound
for max(τ̂1, τ̂2), so that if τ1 and τ2 are both consistent for τ basic, then ∆ is an
asymptotic lower bound.

(3) Lower bound the boundary of the lower 1-sided confidence intervals induced
by τ̂1 and τ̂2 and their variance estimates, by minimizing the tighter of the two
boundaries over all hypotheses for the unknown subset I.

To define τ̂1 and τ̂2, let Si denote the indicator of whether unit i’s treatment and
outcome have the same binary value,

Si = 1{(Xi, Yi) = (1, 1) or (0, 0)},(0.2)

and let τ̂1 and τ̂2 denote sampling-based estimators of τ basic = N − |I|, in which the
unknown cardinality of I is unbiasedly estimated by a probability-weighted (i.e., Horvitz-
Thompson) sample:

τ̂1 = N −
∑
i∈I

1{Si = 1}
P (Si = 1)

and τ̂2 = N −
∑
i∈I

1{Si = 0}
P (Si = 0)

(0.3)

Because τ̂1 and τ̂2 involve only units in I whose outcomes are unaffected by treatment
and hence are constant, they often will exhibit simple statistical behavior, even if strong
interference exists between units who are not in I. For example, if treatment is assigned
by independent Bernoulli randomization, then τ̂1 and τ̂2 are sums of independent
variables. Similarly, if the dependencies between the unit treatments are bounded, then
τ̂1 and τ̂2 are sums of variables whose dependencies will be similarly bounded. For this
reason, under a variety of designs we may expect the values of τ̂1 and τ̂2, while
unknown due to I being unknown, to concentrate at their expectation (which equals
τ basic) and to be asymptotically normal.

Our motivation for constructing τ̂1 and τ̂2 is the following: under mild conditions on
the experiment design, the maximum of τ̂1 and τ̂2 is lower bounded by the magnitude of
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the propensity-weighted difference in outcomes between treated and control, given by

∆ =
N∑
i=1

(
Xi

P (Xi = 1)
− 1−Xi

P (Xi = 0)

)
Yi,

as stated by Theorem 0.1 below:

Theorem 0.1. Let the total weights of the treated and control converge to their expectations,
so that

N∑
i=1

Xi

P (Xi = 1)
= N +OP (N1/2) and

N∑
i=1

1−Xi

P (Xi = 0)
= N +OP (N1/2)(0.4)

Then it holds that

(0.5)

∣∣∣∣∣
N∑
i=1

(
Xi

P (Xi = 1)
− 1−Xi

P (Xi = 0)

)
Yi

∣∣∣∣∣ ≤ max(τ̂1, τ̂2) +OP (N1/2)

If τ̂Haj
1 and τ̂Haj

2 are asymptotically normal, with consistent variance estimators denoted
by V̂1 and V̂2, then by combining 1-sided confidence intervals it holds with probability
converging to at least 1− α that

τ basic ≥ max

{
τ̂Haj
1 − z1−α

2

√
V̂1, τ̂

Haj
2 − z1−α

2

√
V̂2

}
.(0.6)

As the right hand side of (0.6) requires knowledge of I, it cannot be computed.
To construct a computable one-sided confidence interval for τ basic, we will lower bound

(0.6) by minimizing over all possible hypotheses for the unknown I. Doing so results in
the confidence statement that with probability at least 1− α,

τ basic ≥ max
(

min
φ∈{0,1}N

τ̂Haj
1 (φ)− z1−α

2

√
V̂1(φ), min

φ∈{0,1}N
τ̂Haj
2 (φ)− z1−α

2

√
V̂2(φ)

)
,(0.7)

where τ̂Haj
k (φ) and V̂k(φ) denote τ̂Haj

k and V̂k evaluated under the hypothesis that I = {i :
φi = 1} for φ ∈ {0, 1}N . (See paper for further details, such as the form of the variance
estimators V̂1 and V̂2.)

0.2. Illustrative Example. In an experiment described in [Cai et al., 2015], rural
farmers in China were randomly assigned to information sessions where they would be
given the opportunity to purchase weather insurance. The sessions were randomized to
give either high or low levels of information about the insurance product. First round
sessions were held three days before second round sessions, so that first round
attendees would have opportunity for informal conversations with their second round
friends, in which they might share their opinions about the insurance product. Social
network information was elicited, with the farmers instructed to list 5 close friends with
whom they specifically discussed rice production or financial issues.

The goal of the experiment was to broadly demonstrate the importance of
information sharing, by measuring its effects in a randomized setting. One of the
conclusions of [Cai et al., 2015] was that the decision to purchase insurance was
affected not only by a farmer’s own treatment assignment, but also by that of their
friends; specifically, farmers assigned to a second round low-information session were
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more likely to purchase insurance if more of their listed friends in the first round were
assigned to a high-information session.

For this experiment, our point estimate is that at least 23% of second round farmers,
if assigned to a low information session, would be affected by information given to the
first round farmers (1-sided 95% CI: at least 9%). This point estimate of 23% is
asymptotically equal to a Hajek-normalized comparison of second round units who
received low information directly but had many first round friends with high
information, versus those in the second round who received low information directly
and had few or no first round friends with high information :

point estimate ≈
N∑
i=1

(
1

N̂1

1{Xi = 0,Wi = 1}
P (Xi = 0,Wi = 1)

− 1

N̂0

1{Xi = 0,Wi = 0}
P (Xi = 0,Wi = 0)

)
Yi

Here i ∈ [N ] enumerates the second round units, Xi = 0 if unit i was assigned to a low
information session, Wi = 1 if all of unit i’s first round friends received high information,
Yi denotes unit i’s decision of whether or not to purchase insurance, and N̂1 and N̂0

denote the Hajek normalization factors, where N̂a =
∑N

i=1(P (Xi = 0,Wi = a))−1 for
a = 0, 1.

For comparison, we consider an EATE-type treatment effect that considers the relative
effects of receiving (Xi,Wi) equal to (0, 1) versus (0, 0):

treatment effect =
1

N

N∑
i=1

(E[Yi|Xi = 0,Wi = 1]− E[Yi|Xi = 0,Wi = 0]) ,

where the expectation is taken over the randomization of treatment under the
experiment design. For this target parameter, the method of [Gao and Ding, 2023] gives
a Hajek-normalized point estimate of 23%, and 95% CI of [2%, 45%]. This confidence
interval requires an assumption of “approximate neighborhood interference”, in which
the interference between farmers in different villages is asymptotically negligible. Such
an assumption might be debatable, as farmers listed cross-village friendships. In
contrast, no assumptions on interference are required for our estimand. Thus for the
purposes of demonstrating the presence of social influence (as opposed to policy
recommendation), our estimand may be an appropriate target parameter, and has
tighter, less questionable CIs when compared to an analogous treatment effect.

REFERENCES

[Cai et al., 2015] Cai, J., De Janvry, A., and Sadoulet, E. (2015). Social networks and the decision to
insure. American Economic Journal: Applied Economics, 7(2):81–108.

[Gao and Ding, 2023] Gao, M. and Ding, P. (2023). Causal inference in network experiments: regression-
based analysis and design-based properties. arXiv preprint arXiv:2309.07476.
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HIGH-DIMENSIONAL NETWORK CAUSAL INFERENCE

YINGYING FAN

Classification AMS 2020: 62E20; 91D30

Keywords: Network interference, Nonparametric interference effects, Average direct
treatment effect on the treated, Confidence intervals, Neighborhood size confidence set

We propose a new method of high-dimensional network causal inference (HNCI) that
provides both valid confidence intervals for the average direct treatment effect on the
treated (ADET) and valid confidence sets for the neighborhood size affecting the
interference effect. Consider a sample of n units indexed by i ∈ [n] := {1, 2, . . . , n},
connected through an interference network G, where each unit is randomly assigned a
binary treatment Zi ∼ Bernoulli(pi) for some pi ∈ (0, 1). Let
z = (z1, z2, · · · , zn)T ∈ {0, 1}n denote the treatment assignments, which serves as a
realization of the random vector Z = (Z1, Z2, · · · , Zn)

T . For example, z could indicate
that a tax incentive is offered to a specific subset of businesses in a region. In the
network setting, the units are referred to as nodes in G, which are rarely independent of
each other. Hence, the effect of a tax incentive on a specific company may depend on
whether its collaborators or competitors also receive the tax incentive. For the n nodes
connected through G, the potential outcome of the ith node is defined as
Ỹi(z) = Ỹi(zi, z−i), where Ỹi(·) : {0, 1}n → R, and zi and z−i are the treatment
assignments for the ith node and the remaining nodes, respectively. In practice, we may
observe node covariates {Ci}i∈[n].

We exploit the following potential outcome model framework introduced in [1], where
the potential outcome of the ith node is defined as

(0.1) Ỹi(zi, z−i) = ziτi + f
(
γ0(G

z
i (k0))

)
+ ϵi.

Here, τi := E{Ỹi(1,0−i) − Ỹi(0,0−i)|Ci} is the average direct effect of the treatment on
the ith node, i ∈ [n], γ0(·) is a known mapping satisfying the nested matching property
that γ0(G

z
i (k)) = γ0(G

z
j (k)) implies γ0(G

z
i (k

′)) = γ0(G
z
j (k

′)) for all k′ ∈ [k], f(·) is an
unknown interference function, k0 is the smallest neighborhood size that satisfies (0.1),
and ϵi’s are independent errors with E(ϵi) = 0, Var(ϵi) = σ2

0.
We work under model (0.1) to estimate and infer the average direct treatment effect

on the treated (ADET)

(0.2) τ :=
1∑n

i=1 Zi

n∑
i=1

Ziτi,

which represents the average incremental response of treated units to their own
treatments. We are also interested in estimating the neighborhood size k0 with
statistical uncertainty guarantee.

For untreated nodes zi = 0, we have

(0.3) Ỹi(0, z−i) = f
(
γ0(G

z
i (k0))

)
+ ϵi.
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Thanks to the nested matching property, for each pre-specified neighborhood size k ≥ k0,
the set of untreated nodes can be partitioned into d(k) disjoint subsets, denoted as Sk =
{Sk,1, Sk,2, . . . , Sk,d(k)}, where each subset Sk,j contains nodes with the same interference
function value γ0(G

z
i (k)) for all i ∈ Sk,j. Define the vector of true interference function

values over the node partition Sk as

(0.4) β0
k = (β0

k,1, β
0
k,2, · · · , β0

k,d(k))
T .

Based on this property, the response vector yobs ∈ Rn0 of untreated nodes can be rewritten
in the form of a linear regression model

(0.5) yobs = Xkβ
0
k + ε0,

where Xk ∈ {0, 1}n0×d(k) is the design matrix with each row indicating the corresponding
unit’s membership in Sk, and ε0 is the error term. Since k can be larger than k0 and
the function f can be many-to-one, there exisits unknown homogeneity in the regression
coefficient vector β0

k, and the true interference function values {f(γ0(Gz
i (k))) : zi = 0, i =

1, · · · , n} can be estimated by estimating the regression coefficients β0
k in (0.5).

By considering this linear representation, we reformulate the original nonparametric
model into a linear regression model where the regression coefficients, corresponding to
the underlying true interference function values of nodes, exhibit a latent homogeneous
structure. This formulation enables us to leverage existing literature on homogeneity
pursuit [3] to conduct valid statistical inferences with theoretical guarantees for
estimating the unknown β0

k. This gives us the estimates of the set of interference
function values {f(γ0(Gz

i (k))) : zi = 0, i = 1, · · · , n} and the confidence interval for
these estimates.

By using the matching technique, the estimates of ADET can also be constructed and
the confidence interval can be calculated. We theoretically justify the inference for the
ADET through establishing asymptotic normality with estimable variances. By
employing the repro samples approach [4], we further provide the confidence set for
the interference of neighborhood size k0 with theoretical guarantees. The practical
utility of the newly suggested methods is demonstrated through simulations and real
data examples.
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We introduce a semiparametric latent space model for analyzing longitu-
dinal network data. The model consists of a static latent space component and
a time-varying node-specific baseline component. We develop a semipara-
metric efficient score equation for the latent space parameter by adjusting for
the baseline nuisance component. Estimation is accomplished through a one-
step update estimator and an appropriately penalized maximum likelihood
estimator. We derive oracle error bounds for the two estimators and address
identifiability concerns from a quotient manifold perspective. Our approach
is demonstrated using the New York Citi Bike Dataset.

1. Semiparametric Poisson Latent Space Model. We consider longitudinal pairwise
interaction counts of n subjects (nodes) over T discrete time points. Specifically, for a time
point t ∈ {1, . . . , T} and nodes i, j ∈ {1, . . . , n}, At,ij denotes the number of i-j interactions
at the time point t. We propose a Poisson-based latent space model

At,ij = At,ji ∼ Poisson{E(At,ij | z,α)}, independently with(1)

E(At,ij | z,α) = exp(αit + αjt + 〈zi, zj〉),

which naturally adopts the exponential link function exp(·) to model the event counts. For
any two nodes i and j, their interaction effect is modeled through the inner product of two
corresponding latent vectors 〈zi, zj〉= z⊤i zj , similarly to the inner product model of a single
network (Ma, Ma and Yuan, 2020). The latent vectors zi’s do not change with respect to the
time point t and represent the shared latent structures across T heterogeneous networks. For
example, zi’s can encode the time-invariant geographic information in multiple transporta-
tion networks. At a given time point t, when αit increases and all the other parameters are
fixed, edges connecting the node i tend to have higher numbers of counts at the time point
t, indicating higher baseline activity levels. Therefore, αit’s model the degree heterogeneity
across different nodes i ∈ {1, . . . , n} and time points t ∈ {1, . . . , T}, and are called base-
line degree heterogeneity parameters of nodes and time. In the hourly bike-sharing networks,
αit’s can represent distinct baseline activity levels across different stations and hours.

Model specification (1) may be expressed in vector-matrix notation as

E(At | Z,α) = exp(αt1
⊤
n + 1nα

⊤
t +ZZ⊤),(2)

*He, Sun, and Tian contribute equally to this work. Corresponding Author: Yang Feng.
MSC2020 subject classifications: Primary 62H12, 05C82; secondary 91D30, 62F12.
Keywords and phrases: network, counting process Poisson model, latent space model, low rank, semiparamet-

ric, heterogeneity.
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where αt = (α1t, . . . ,αnt)
⊤ ∈ Rn×1, Z = (z1, . . . , zn)

⊤ ∈ Rn×k, 1n = (1, . . . ,1)⊤ ∈ Rn×1,
and exp(·) is the elementwise exponential operation. Throughout this paper, we consider the
asymptotic regime in which the number of nodes n and the number of time periods T increase
to infinity while the dimension of the latent space k is fixed. Thus, αt1

⊤
n + 1nα

⊤
t + ZZ⊤ is

a low-rank matrix. To ensure identifiability, we assume that column means of Z are zero,
i.e., 1⊤nZ/n= 0. This centering assumption is analogous to the classical two-way analysis of
variance (ANOVA) modeling with interaction (Scheffe, 1999). Additionally, since ZZ⊤ =
ZQQ⊤Z⊤ for any Q ∈O(k), where O(k) = {Q ∈ Rk×k :QQ⊤ = Ik}, Z is identifiable up
to a common orthogonal transformation of its rows.

2. Generalized Semiparametric One-Step Estimator. In this section, we introduce our
generalized semiparametric one-step estimator of Z and provide theoretical guarantees. We
first introduce some notation. Model (1) leads to the following form for the log-likelihood
function

L(Z,α) = L(Zv,αv) =

T󰁛

t=1

󰁛

1󰃑i󰃑j󰃑n

{At,ij(αit + αjt + 〈zi, zj〉)− exp(αit + αjt + 〈zi, zj〉)}

(3)

where, for notational convenience in the differentiation of the likelihood, we use Zv and
αv to denote vectorizations of Z and α, respectively, i.e., Zv = (z⊤1 , . . . , z

⊤
n )

⊤ ∈ Rnk×1 and
αv = (α⊤

1 , . . . ,α
⊤
T )

⊤ ∈RnT×1. Then we let L̇Z(Z,α) and L̇α(Z,α) denote the partial deriva-
tives of L(Z,α) with respect to vectors Zv and αv , respectively.

With the above preparations, we construct our generalized semiparametric one-step esti-
mator as

Ẑv = Žv +
󰀋
Ieff (Ž, α̌)

󰀌+
Seff (Ž, α̌),(4)

where (Ž, α̌) denotes an initial estimate, and B+ represents the Moore-Penrose inverse of a
matrix B, which is uniquely defined and also named pseudo inverse (Ben-Israel and Greville,
2003).

2.1. Theory. Throughout the sequel, we use (Z󰂏,α󰂏) to denote the true value of (Z,α).
In other words, our observed data follow the model (1) with (Z,α) = (Z󰂏,α󰂏). Besides, we
denote Θt,ij = αit + αjt + 〈zi, zj〉. We define the estimation error from the i-th row of Ž as
disti(ži, z

󰂏
i ) = 󰀂ži − Q̌⊤z󰂏i 󰀂2, where

Q̌= argmin
Q∈O(k)

󰀂Ž −Z󰂏Q󰀂F,(5)

so that dist2(Ž,Z󰂏) =
󰁓n

i=1 dist
2
i (ži, z

󰂏
i ). The goal in this subsection is to establish an error

bound for the proposed one-step estimator (4) in terms of the distance defined above.

THEOREM 1. Let Ẑ be the generalized one-step estimator defined as in (4). Let ς =
max{󰂃,1/2}. For any constant s > 0, there exists a constant Cs > 0 such that when
n/ log2ς(T ) is sufficiently large,

Pr

󰀝
dist2(Ẑ,Z󰂏) >

1

T
×Csrn,T

󰀞
=O(n−s),

where rn,T =max
󰀋
1, T

n

󰀌
log4ς(nT ).
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SEMIPARAMETRIC ANALYSIS FOR LONGITUDINAL NETWORK DATA

3. Discussion. In this work, we propose a longitudinal latent space model tailored for re-
current interaction events. We develop two novel semiparametric estimation techniques, i.e.,
the generalized semiparametric one-step updating and the penalized maximum likelihood es-
timation, and show that the resulting estimators attain the oracle estimation error rate for the
shared latent structure. The first approach utilizes the semiparametric efficient score equa-
tion to construct a second-order updating estimator. We show that the estimator possesses a
geometric interpretation on the quotient manifold, which automatically overcomes the non-
uniqueness issue due to overparametrization. The second approach corresponds to a convex
relaxation of the low-rank static latent space component.

By separating the (primary) parameters of interest associated with the static latent space
from the dynamic nuisance parameters, a strategy commonly found in semiparametrically
efficient parameter estimation, we are able to delineate the oracle rates of convergence for
the primary and the nuisance parameters according to their dimensions. This strategy also
helps us to untangle the static and time-heterogeneous components inherent in the network
model and construct the oracle estimators.

There are a few other interesting future works. First, the ability to accurately estimate
latent structures could enable important downstream analysis such as prediction, hypothesis
testing, and change-point detection. For instance, it may be useful to ascertain a change point
in the structure of the latent space (Bhattacharjee, Banerjee and Michailidis, 2020; Enikeeva
and Klopp, 2021; Padilla, Yu and Priebe, 2022). The achievement of oracle estimation error
rates could facilitate the quantification of uncertainty in estimators, which in turn lays a strong
foundation for conducting reliable statistical inference.

Second, this paper focuses on the variance in estimation error rates as a function of n
and T , while treating the latent dimension k and network sparsity level as fixed. Extending
the current methodology and theory to the cases when k grows (Choi, Wolfe and Airoldi,
2012) as well as sparse networks (Qin and Rohe, 2013; Le, Levina and Vershynin, 2017) are
important topics.

Third, this work aims to unveil the fundamental relationship between the estimation er-
rors and the degree of baseline heterogeneity. We focus on the most challenging scenario
where the degree of baseline heterogeneity increases linearly with respect to n and T . It is
possible to impose additional structures to reduce baseline heterogeneity, such as assuming
{αi1, . . . ,αiT } to be piecewise constants. Nevertheless, as T increases, the intrinsic number
of parameters would eventually become large to keep up with the increasing data complexity.
The developed results would also provide us with techniques for investigating such scenar-
ios. Which structural assumptions are appropriate may vary across different applications and
require case-by-case analyses in future research.

Fourth, the proposed model has the potential for further extensions to capture more com-
plex network structures. Currently, heterogeneity across networks is only characterized at the
first-order baseline levels αit’s, while the second-order interaction terms are modeled by the
time-invariant components zi’s. We find that this model adequately describes the analyzed
dataset. But more generally, it may also be of interest to incorporate time-varying interaction
terms, which would further increase the model complexity and pose new theoretical chal-
lenges. Moreover, the proposed model adopts the Euclidean inner product to describe the
interactions between nodes, which can be limited to capturing homophilic network struc-
tures. Recently, researchers proposed to use indefinite inner products to capture heterophilic
structures (Rubin-Delanchy et al., 2022; Lei, 2021; MacDonald, Levina and Zhu, 2022).

Finally, it would be worthwhile to generalize our results to other models, including various
distributions for weighted edges, continuous time stamps, or additional covariates influencing
the network structure (Hoff, Raftery and Handcock, 2002; Vu et al., 2011; Perry and Wolfe,
2013; Hoff, 2015; Kim et al., 2018; Sit, Ying and Yu, 2021; Weng and Feng, 2021; Huang,
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Sun and Feng, 2023). We believe that the proposed semiparametric analysis framework can
function as a valuable building block for establishing sharp estimation error rates under those
models.
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LEARNING UNDER LATENT GROUP SPARSITY VIA DIFFUSION ON
NETWORKS

SUBHRO GHOSH
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Group or cluster structure on explanatory variables in machine learning problems is a
very general phenomenon, which has attracted broad interest from practitioners and
theoreticians alike. In this work, joint with Soumendu Mukherjee (Indian Statistical
Institute), we contribute an approach to sparse learning under such group structure, that
does not require prior information on the group identities. Our paradigm is motivated by
the Laplacian geometry of an underlying network with a related community structure,
and proceeds by directly incorporating this into a penalty that is effectively computed via
a heat-flow-based local network dynamics. The proposed penalty interpolates between
the lasso and the group lasso penalties, the runtime of the heat-flow dynamics being the
interpolating parameter. As such it can automatically default to lasso when the group
structure reflected in the Laplacian is weak. In fact, we demonstrate a data-driven
procedure to construct such a network based on the available data. Notably, we dispense
with computationally intensive pre-processing involving clustering of variables, spectral
or otherwise. Our technique is underpinned by rigorous theorems that guarantee its
effective performance and provide bounds on its sample complexity. In particular, in a
wide range of settings, it provably suffices to run the diffusion for time that is only
logarithmic in the problem dimensions. We explore in detail the interfaces of our
approach with key statistical physics models in network science, such as the Gaussian
Free Field and the Stochastic Block Model. We validate our approach by successful
applications to real-world data from a wide array of application domains, including
computer science, genetics, climatology and economics. Our work raises the possibility of
applying similar diffusion-based techniques to classical learning tasks, exploiting the
interplay between geometric, dynamical and stochastic structures underlying the data.
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1. LATENT VARIABLE MODEL

We describe a graph by its adjacency matrix X ∈ {0, 1}n×n.

Definition 1.1. Latent variable model. The graph is generated randomly as follows:
• each vertex i is characterized by a latent variable zi ∈ Z
• conditionally on z, the Xij are independent, with

P [Xij = 1|z] = E [Xij = 1|z] = f(zi, zj)

where f : Z × Z → [0, 1].

This model encompass the graphon model, random geometric graphs where f(zi, zj) =
g(d(zi, zj)) with d a distance on Z, the Robinson model where f decreases when moving
away from the diagonal, the stochastic block model, ranking models and so on.

An ideal objective is to recover the latent values z1, . . . , zn from the observation of X.
Yet, it is an ill-posed problem, due to the lack of identifiability: while it is a minor issue
in parametric models (estimation up to some “invariant” transformation), it is a much
more severe issue in non-parametric models. For simplicity, we focus on the case where

• f belongs to some non-parametric class, with smoothness or shape assumptions;
• the latent positions are zi = π∗(i) for π∗ a permutation of {1, . . . , n}.

The goal is to recover π∗ from X = π∗Fπ∗T + E, with Fij = f(i, j) unknown, π∗ an
unknown permutation matrix and Eij independent sub-Gaussian random variables.
What is the rate of estimation without computational constraints? What is the rate of
estimation with poly-time algorithms? Is there a gap between the two?

Statistical-computational gaps exist in latent variable model [2], for example both in
the geometric seriation model Fij = λ1|i−j|≤√n, with λ > 0, and in the Hölder graphon
model f : [0, 1]× [0, 1]→ [0, 1] with α-Hölder regularity, 0 < α < 1. We outline below two
settings where estimation can be performed in poly-time at the optimal statistical rate.

2. BI-LIPSCHITZ SHAPE CONSTRAINT

Definition 2.1. Bi-Lipschitz BL(α, β). Assume that F ∈ [0, 1]n×n is symmetric and

• Fik − Fjk ≥ α |i−j|
n

for k < i < j, and Fjk − Fik ≥ α |i−j|
n

for i < j < k;
• |Fik − Fjk| ≤ β |i−j|

n
.

The parameter α drives the signal strength. The parameter β is a smoothness
parameter.
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Example 2.2. Toeplitz matrix. The simple Toeplitz matrix Fij = 1 − α |i−j|
n

belongs to
BL(α, α).

We define the max-error loss as

`∞(π̂, π
∗) = min

π∗ admissible

1

n
max
i∈[n]
|π̂i − π∗i |

Theorem 2.3. [3] There exist some poly-time estimators π̂poly such that, for any F ∈
BL(α, β), any n ≥ Cα,β, and for some numerical constant c > 0, with probability at least
1− n−2

`∞(π̂
poly, π∗) ≤ c

α

√
log n

n
.

Furthermore, this rate is optimal for the Toeplitz matrix, up to a possible log factor.

This result proved in [3] ensures that the optimal statistical rate n−1/2 for estimating
Bi-Lipstchitz permuted matrices can be achieved by poly-time algorithms. Hence, there
is no statistical-computational gap in this case. The optimal algorithm essentially

(1) first estimates the neighborhood distance

D∗ij =

√
n
∑
k

(F π∗
ik − F π∗

jk )
2

at optimal rate |D̂ −D∗|∞ = O(n3/4);
(2) then perform a first partial ordering of points separated by O(n3/4) based on this

estimation;
(3) then refine this partial ordering by comparing partial sums, providing a reliable

partial ordering of points separated by O(n1/2).
Furthermore, Theorem 2.3 remains valid for weak local Bi-Lipschitz functions.

3. RECURSIVE TREES

Going beyond conditional i.i.d. graphs, we can consider recursive trees such as

Definition 3.1. Random Recursive Tree (RRT) Build a tree recursively by connecting
each new node to existing nodes uniformly at random

Definition 3.2. Preferential Attachement Tree (PA) Build a tree recursively by
connecting each new node to existing nodes with a probability proportional to their degree

Let us define a Jordan centroid σ̂J as a vertex such that, when removing it, it splits
the tree into components of size smaller than bn/2c. At least one, maximum two such
vertices exist. For a node u, we can define d̂(u) as the number of descendants of u in the
tree rooted at σ̂J . Then, we can order the nodes according to the number of descendant
d̂(u), ties being broken randomly. We call Jordan ordering this ordering σ̂J(u), which can
be computed in O(n log n) time.

Theorem 3.3. [1] For any α ≥ 1, in the RTT model

Rα(σ̂J) :=
∑
u∈V

|σ̂J(u)− σ(u)|
σ(u)α

≤ κ(α)n2−α + C log4 n
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with

κ(α) =
2

2− α
+

2e2

(2− α)2
+

2

(2− α)3
.

Furthermore, the rate n2−α is optimal for α ∈ [1, 2).

Most of the story is the same for the PA model, except that Descendant ordering is
optimal up to constant only for 1 ≤ α < 5/4.
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distributions, steady-state distributions

1. INTRODUCTION

We are interested in identification of and inference about properties of dynamical
systems from cross-sectional data, that is, from data obtained at a single timepoint from
a multivariate stationary process. In this report we present recent results for a particular
class of distributions that appear as steady-state distributions of a Markov process
solving a linear stochastic differential equation (SDE) driven by a Lévy process.

Definition 1.1. Let M be a p× p stable matrix and let (Zt)t≥0 denote a p-dimensional Lévy
process with E(log(1 + ∥Z1∥)) < ∞. The distribution of X is M -selfdecomposable if

(1.1) X =

∫ ∞

0

esMdZs.

Recall that a matrix M is stable if all eigenvalues of M have negative real part, which
guarantees that the integral in (1.1) is well-defined. Distributions defined by (1.1) for
some stable matrix M and Lévy process Z are called operator-selfdecomposable (OSD)
distributions. Our interest in these distributions follows from Theorem 4.1 in [5], which
implies that an M -selfdecomposable distribution is the unique steady-state distribution
of the stationary Markov process solving the linear SDE

(1.2) dXt = MXtdt+ dZt.

We are particularly interested in identification and estimation of the matrix M from
cross-sectional data. Our main result is Theorem 3.1, which shows that for OSD
distributions, M is generically identified from second and third order cumulants –
provided that Z1 has a non-degenerate third order cumulant (and thus is
non-Gaussian). For results on identification of and inference about M from second
order cumulants only (the covariance matrix), see [1] and [7].

One of the main reasons for our interest in identification and estimation of M is that
the SDE (1.2) entails a collection of interventional distributions, and thus has a causal
interpretation. This will not be discussed futher in this report, but see [2], [3] and [6].

Date: 13-August-2025.
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2. CUMULANTS

The k-th order cumulant tensor of X ∈ Rp is

cumk(X)i1,...,ik = cum(Xi1 , . . . , Xik).

With ×r denoting the r-mode product, the proposition below, shown in [3], characterizes
the cumulant tensors of an OSD distribution.

Proposition 2.1. If the Lévy process Zt has finite k-th moment, the k-th order cumulant
tensor K = cumk(X) of the OSD distribution given by (1.1) solves

(2.1) K ×1 M + . . .+K ×k M + Ck = 0

where Ck = cumk(Z1) is the k-th order cumulant tensor of Z1.

The equation (2.1) shows for k = 1 that

E(X) = −M−1E(Z1),

and for k = 2 we find the equation

(2.2) MΣ + ΣMT + C2 = 0

for the covariance matrix Σ = Var(X). The equation (2.2) is the well-known Lyapunov
equation, and (2.1) can therefore be viewed as a generalization of the Lyapunov equation
to higher order cumulants.

3. IDENTIFICATION

In the following, the cumulants C2 and C3 of Z1 are assumed to be diagonal (which is a
weak form of independence between the coordinates of Z1), and we identify C2 with its
diagonal as an element in Rp

+ and C3 with its diagonal as an element in (R\{0})p. Note
that when C3 ∈ (R\{0})p all diagonal entries are non-zero, which is a necessary non-
degeneracy condition for our identification result. It is a strong form of a non-Gaussianity
condition.

We will parametrize M in terms of a digraph G = ([p], E) with p nodes and edgeset E,
which will restrict the non-zero entries of M . In terms of G we define

RE
stab = {M ∈ Rp×p | Mij = 0 if (j, i) /∈ E, M is stable},

and we let
ΘG = RE

stab × Rp
+ × (R\{0})p

be the parameter set of θ = (M, C2, C3). Furthermore, we let

φG : ΘG → PDp × Sym3(Rp)

denote the parametrization of the second and third order cumulant tensors, (Σ, K) =
φG(M, C2, C3), in terms of M and the diagonal cumulants C2 and C3 of Z1. The map φG is
defined via the solutions of (2.1) for k = 2 and k = 3.

With these definitions we can state our main identification result, shown in [4].

Theorem 3.1. Suppose G is connected and has all self-loops then there exists a proper
algebraic set NG such that for θ ∈ ΘG\NG,

φ−1
G (φG(θ)) = {cθ | c > 0}.
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The interpretation of Theorem 3.1 is that the parameter θ = (M, C2, C3) is generically
identifiable, up to a global scaling factor c > 0, from the second and third order
cumulant tensors of the steady-state distribution. Here ”generic” means ”outside the
proper algebraic set NG”.

Based on empirical estimates Σ̂ and K̂ of the second and third order cumulant
tensors, we can estimate M (we well as the nuisance parameters C2 and C3) via
standard estimating equations. For θ = (M, C2, C3) ∈ ΘG\NG we obtain a consistent and
asymptotically normal estimator under appropriate moment conditions on the Lévy
process Zt. We refer to [4] for details on the estimation procedure.

4. DISCUSSION

Since φG(θ) = φG(cθ) for all c > 0, which follows directly from (2.1), it will at best be
possible to identify M up to a global scaling factor. Such a scaling factor determines how
quickly the Markov process solving (1.2) converges to its steady-state distribution, and
it makes sense that we cannot identify the scaling factor from cross-sectional data only.
The conclusion in Theorem 3.1 is therefore as good as it gets.

If G is not connected, the identification result holds for each connectivity component
of G separately – with independent scaling factors for each component – and it holds
that for all θ ∈ ΘG,

dim(φ−1
G (φG(θ))) ≥ ♯ connec. comp. in G.

We conjecture that

NG = {(M, C2, C3) ∈ ΘG | graph(M) not connec.},
but we have not been able to prove this or find a counterexample. In our proof in [4],
NG is defined more implicitly and it could potentially be larger than conjectured.
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LIMIT LAWS FOR GROMOV-WASSERSTEIN ALIGNMENT WITH APPLICATIONS TO
TESTING GRAPH ISOMORPHISMS

KENGO KATO

The Gromov-Wasserstein (GW) distance enables comparing metric measure spaces
based solely on their internal structure, making it invariant to isomorphic
transformations. This property is particularly useful for comparing datasets that
naturally admit isomorphic representations, such as unlabelled graphs or objects
embedded in space. However, apart from the recently derived empirical convergence
rates for the quadratic GW problem, a statistical theory for valid estimation and
inference remains largely obscure. Pushing the frontier of statistical GW further, this
work derives the first limit laws for the empirical GW distance across several settings of
interest: (i) discrete, (ii) semi-discrete, and (iii) general distributions under moment
constraints under the entropically regularized GW distance. The derivations rely on a
novel stability analysis of the GW functional in the marginal distributions. The limit
laws then follow by an adaptation of the functional delta method. As asymptotic
normality fails to hold in most cases, we establish the consistency of an efficient
estimation procedure for the limiting law in the discrete case, bypassing the need for
computationally intensive resampling methods. We apply these findings to testing
whether collections of unlabelled graphs are generated from distributions that are
isomorphic to each other.
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Many real-world systems—ranging from gene regulatory interactions in biology to
financial asset dependencies—can be represented by networks, whose edges correspond
to conditional relationships among variables. These relationships are succinctly
captured by the precision matrix of a multivariate distribution. Estimating the precision
matrix is thus fundamental to uncovering the underlying network structure. However,
this task can be challenging when the available data for the target domain are limited,
undermining accurate inference.

In this talk, I will present Trans-Glasso, a novel two-step transfer learning framework
for precision matrix estimation that leverages data from source studies to improve
estimates in the target study. First, Trans-Glasso identifies shared and unique features
across studies via a multi-task learning objective. Then, it refines these initial estimates
through differential network estimation to account for structural differences between
the target and source precision matrices. Assuming that most entries of the target
precision matrix are shared with at least one source matrix, we derive non-asymptotic
error bounds and show that Trans-Glasso achieves minimax optimality under certain
conditions.

Through extensive simulations, Trans-Glasso demonstrates improved performance
over standard methods, especially in small-sample settings. Applications to gene
regulatory networks across multiple brain tissues and protein networks in various
cancer subtypes confirm its practical effectiveness in biological contexts, where
understanding network structures can provide insights into disease mechanisms and
potential interventions. Beyond biology, these techniques are broadly applicable
wherever precision matrix estimation and network inference play a crucial role,
including neuroscience, finance, and social science.

This is a joint work with Boxin Zhao and Cong Ma [1].
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STATISTICAL ANALYSIS OF RECIPROCITY
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Reciprocity; Sparse networks.

Consider a directed network with n nodes, denoted by Gn = (V,E), where
V = {1, . . . , n} is the set of nodes and E ⊆ V × V represents the edge set. We focus on
simple graphs, so no self-loops are allowed, i.e., (j, j) /∈ E for any j ∈ V . Let
Aij ∈ {0, 1} denote the random variable indicating the presence of a directed link from
node i to node j. Assuming that dyads (Aij, Aji) and (Akl, Alk) are independent
whenever {i, j} ∩ {k, l} = ∅, the Bernoulli model with reciprocity (BR) specifies
multinomial probabilities for each dyad as follows (Krivitsky and Kolaczyk, 2015):

(0.1) BR model: pij(0, 0) ∝ 1, pij(1, 0) = pij(0, 1) ∝ exp(µn), pij(1, 1) ∝ exp(2µn + ρn),

where pij(a, b) = p(Aij = a,Aji = b). In this model, µn represents the baseline tendency
of nodes i and j to connect, while ρn captures reciprocity, the propensity for pairs of nodes
to form mutual links. BR model serves as a natural extension of the Erdős–Rényi model
(Erdős and Rényi, 1959, 1960) for undirected graphs, adapted to incorporate reciprocity
for the analysis of directed networks. This model raises a fundamental question:

Question 1: What is the effective sample size for the statistical inference of µn and ρn?
This question would be straightforward if µn and ρn were fixed, as it would fall under
standard maximum likelihood estimation. However, when µn and ρn depend on n–the
regime where the network is sparse–the inference of these parameters has been only
partially explored in Krivitsky and Kolaczyk (2015). That work assumes that the effective
sample sizes for µn and ρn are of the same order. Extending the analysis to allow different
sparsity levels for µn and ρn provides a more comprehensive solution to Question 1,
offering deeper insights into the effective sample sizes required for a broader range of
network structures. Related, Chen et al. (2021) examines the effective sample size in the
context of the Erdős–Rényi model under arbitrary sparsity, focusing on a single density
parameter similar in spirit to µn. The examination of the interplay between the two
parameters, µn and ρn , under differing sparsity regimes represents a new and more
nuanced perspective, offering insights beyond those provided by models with a single
density parameter.

More importantly, a complete answer to this question will pave the way for developing
new models. As an example, we extend the BR model to the following:

p1.5 model : pij(0, 0) ∝ 1, pij(1, 0) ∝ exp
(
µn +XT

i γ1 + Y T
j γ2

)
,

pij(0, 1) ∝ exp
(
µn +XT

j γ1 + Y T
i γ2

)
,

pij(1, 1) ∝ exp
(
2µn +

(
XT

i +XT
j

)
γ1 +

(
Y T
i + Y T

j

)
γ2 + ρn + V T

ij δ
)
,(0.2)
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with additional parameters γ1, γ2, and δ, where Xi ∈ Rd1 represents covariates related
to node i’s outgoingness, Yi ∈ Rd2 relates to its incomingness, and Vij ∈ Rd3 governs the
reciprocity between nodes i and j. The model in (0.2) allows for node-specific
heterogeneity via XT

i γ1 for outgoingness and Y T
j γ2 for incomingness, and V T

ij δ to model
heterogeneity in reciprocal relationships. Assuming that the parameters associated with
the covariates are fixed, we further pose the following question:
Question 2: What are the effective sample sizes for the statistical inference of γ1, γ2, and δ?

The model in (0.2) has a close relationship with the p1 model introduced by Holland
and Leinhardt (1981), where the p1 model employs node-specific fixed effects without
explicitly accounting for link-specific reciprocity. Our model in (0.2) parametrizes these
fixed effects through covariates, achieving a more parsimonious structure. Although it
may lack some of the flexibility of the p1 model, this approach offers certain advantages,
such as enabling link prediction for new nodes not used in model fitting. Additionally,
a key advantage of the model in (0.2) lies in its suitability for sparser networks. We
show that inference is feasible as long as the number of links diverges. In contrast, the
p1 model, with its large number of parameters, typically requires much denser networks
to ensure the existence and asymptotic normality of its estimators, though no formal
inference procedures are currently available for these estimators (see literature review
below). Additionally, the model in (0.2) shares features with the p2 model (Van Duijn
et al., 2004), which also includes random effects for outgoingness and incomingness. As
our model conceptually bridges the p1 and p2 models, we refer to it as the p1.5 model.

1. THE BR MODEL

We begin by examining the effective sample sizes for the BR model as specified in
(0.1). For the sake of theoretical analysis and notational convenience, it is beneficial to
work with the parameters (µn, τn), where τn = 2µn + ρn. The negative log-likelihood
function with respect to (µn, τn) can be expressed as:

ℓ(1)n (µn, τn) =
∑
i<j

log(kn,ij)− µn

∑
i<j

(Aij(1− Aji) + Aji(1− Aij))− τn
∑
i<j

AijAji,

where kn,ij = 1+2 exp(µn)+exp(τn) serves as the normalizing constant. It is important to
note that the likelihood functions defined in terms of (µn, ρn) and (µn, τn) are equivalent,
as are their corresponding maximum likelihood estimators. This leads us to the following
lemma:

Lemma 1.1. Suppose (µ̂n, τ̂n) = argmin(µn,τn)∈R2 ℓ
(1)
n (µn, τn). Then, it follows that

(µ̂n, τ̂n − 2µ̂n) = argmin(µn,ρn)∈R2 ℓ
(2)
n (µn, ρn), where ℓ

(2)
n (µn, ρn) denotes the negative log-

likelihood function parametrized by µn and ρn. The reverse direction also holds.

Given this equivalence, we focus on estimating µn and τn. Inspired by the role of
− log n in the Erdős–Rényi model for sparse networks, we define

µn = −a log n+ µ, τn = −b log n+ τ,

where µ ∈ [−Mµ,Mµ], τ ∈ [−Mτ ,Mτ ], and a, b > 0. The constant a preceding log n
directly reflects network sparsity, though similar asymptotic normality results may arise
from other scaling factors beyond log n. From ℓ

(1)
n (µn, τn), we interpret a as the sparsity

index for non-reciprocal links and b for reciprocal links.
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This transformation clarifies the dependence of sparsity on n while allowing for
intuitive statistical inference on the fixed parameters µ and τ . For further discussions on
this topic, we refer to Krivitsky and Kolaczyk (2015) and Chen et al. (2021). It is
important to note that the constants a, µ, b, and τ are not identifiable or estimable. To
address these challenges, we will later develop a straightforward inference procedure
for µn and τn.

Under the given scaling, we find that the expected number of non-reciprocal links is
E
(∑n

i,j=1Aij −
∑

i<j AijAji

)
≍ n2−a, while the expected number of reciprocated links

is E
(∑

i<j AijAji

)
≍ n2−b. Consequently, the total expected number of links is of order

n2−a if a ≤ b, or n2−b if a > b. This scaling choice highlights that the two quantities can
indeed differ in magnitude. Notably, Krivitsky and Kolaczyk (2015) examined a special
case of our framework when a = b = 1, leading to comparable expected numbers of non-
reciprocal and reciprocated links. For sparse networks, the sufficient statistics (

∑
i<j Aij+

Aji,
∑

i<j AijAji) in the BR model can be efficiently computed using a sparse adjacency
matrix. As a result, the time complexity for computing the maximum likelihood estimator
is O(n2−min{a,b}), which is lower than O(n2) when min{a, b} > 0.

We now derive the effective sample sizes for µ and τ , assuming that a and b are known.
We begin by expressing the negative log-likelihood function as follows:

ℓn(µ, τ) =
∑
i<j

log(kij)− µ
∑
i<j

(Aij(1− Aji) + Aji(1− Aij))− τ
∑
i<j

AijAji,(1.1)

where kij = 1 + 2n−a exp(µ) + n−b exp(τ) serves as the normalizing constant. Our
maximum likelihood estimator is defined as

(µ̂, τ̂) = argmin(µ,τ)∈Ω1

1(
n
2

)ℓn(µ, τ),
with Ω1 = [−Mµ,Mµ] × [−Mτ ,Mτ ]. To derive the asymptotic results, we make the
following assumptions:

Assumption 1.2. (Sparse network) Assume 0 < a, b < 2. The true values (µ0, τ0) lie within
the interior of Ω1.

The conditions a > 0 and b > 0 ensure that the resulting graph is sparse, while a < 2
and b < 2 are necessary to guarantee that the total numbers of reciprocal and
non-reciprocal links approach infinity. Without these conditions, consistent estimation
would not be achievable. We now present the following result regarding the maximum
likelihood estimator (MLE). All our results hold under Assumption 1.2, meaning they
apply to arbitrarily sparse networks.

Proposition 1.3. (Asymptotic normality of the MLE in BR model) Under Assumption 1.2,
as n approaches infinity, the MLE (µ̂, τ̂) is consistent and asymptotically normal, specifically:(√

n2−a(µ̂− µ0),
√
n2−b(τ̂ − τ0)

)T
⇝ N(0,Σ−1),

where

Σ =

(
exp(µ0) 0

0 exp(τ0)/2

)
.

Following the reasoning in Krivitsky and Kolaczyk (2015) and Chen et al. (2021), we
can interpret n2−a and n−b as the effective sample sizes for µ and τ , respectively. This
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interpretation is intuitive, as from equation (1.1), µ can be seen as the density parameter
for the configuration (1, 0) and (0, 1), while τ represents the density parameter for the
configuration (1, 1).

REFERENCES

Chen, M., Kato, K., and Leng, C. (2021). Analysis of networks via the sparse β-model.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(5):887–910.
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Multidimensional arrays, or tensors, are becoming increasingly prevalent in a wide
range of scientific applications. In this talk, I will present two case studies from
neuroscience, where tensor decomposition proves particularly useful.

The first study is a cross-area neuronal spike trains analysis, which we formulate as
the problem of regressing a multivariate point process on another multivariate point
process. We develop a new point process regression, and model the predictor effects
through the conditional intensities using a set of basis transferring functions in a
convolutional fashion. We organize the corresponding transferring coefficients in the
form of a three-way tensor, then impose the low-rank, sparsity, and subgroup structures
on this coefficient tensor. These structures help reduce the dimensionality, integrate
information across different individual processes, and facilitate the interpretation. We
develop a highly scalable optimization algorithm for parameter estimation. We derive
the large sample error bound for the recovered coefficient tensor, and establish the
subgroup identification consistency, while allowing the dimension of the multivariate
point process to diverge. We demonstrate the efficacy of our method through both
simulations and a cross-area neuronal spike trains analysis in a sensory cortex study.

The second study is a multimodal neuroimaging analysis for Alzheimer’s disease,
which we formulate as the problem of modeling the correlations of two sets of variables
conditioning on the third set of variables. We propose a generalized liquid association
analysis method, which offers a new and unique angle to the problem of studying
three-way associations. We extend the notion of liquid association of Li (2002) from the
univariate setting to the sparse, multivariate, and high-dimensional setting. We
establish a population dimension reduction model, transform the problem to sparse
Tucker decomposition of a three-way tensor, and develop a higher-order orthogonal
iteration algorithm for parameter estimation. We derive the non-asymptotic error bound
and asymptotic consistency of the proposed estimator, while allowing the variable
dimensions to be larger than and diverge with the sample size. We demonstrate the
efficacy of the method through both simulations and a multimodal neuroimaging
application for Alzheimer’s disease research.
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The standard method to fitting a prediction model to incomplete data that have missing

values in the predictor variables is to first complete the data by imputing (i.e., estimating)

the missing values. This approach may not be logical if the “missing” values are non-

existent instead of missing due to non-response. One example is the variable “age of

spouse” for people who are single. Another common example occurs in so-called “skip

questions”, where variable x1 = 1 if a person has a credit card and x1 = 0 otherwise, and

x2 is the credit card balance. Here, x2 would be reported as missing for people who do

not have credit cards.

This talk introduces a new approach to missing values that makes missing-value

imputation unnecessary. It accomplishes this by means of the GUIDE regression tree

algorithm [4, 5], which fits a binary decision tree model to the incomplete data. A

major strength of GUIDE is that it treats missing values as observed qualitative

information and sends them to the left or right subnode at each split according to the

values of the outcome (y) variable relative to those with non-missing values. In

particular, it allows for splits that send missing values and only missing values to one

subnode [6]. Other regression tree algorithms either impute the missing values before

splitting the node [2], or send observations with missing values randomly to the left or

right subnode [3]. The method is demonstrated on a dataset to predict death or

intubation in patients hospitalized for Covid-19 [1].
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Laplacian matrices are commonly employed in many real applications, encoding the
underlying latent structural information such as graphs and manifolds. The use of the
normalization terms naturally gives rise to random matrices with dependency. It is
well-known that dependency is a major bottleneck of new random matrix theory (RMT)
developments. To this end, in this paper, we formally introduce a class of generalized
(and regularized) Laplacian matrices, which contains the Laplacian matrix and the
random adjacency matrix as a specific case, and suggest the new framework of the
asymptotic theory of eigenvectors for latent embeddings with generalized Laplacian
matrices (ATE-GL). Our new theory is empowered by the tool of generalized quadratic
vector equation for dealing with RMT under dependency, and delicate high-order
asymptotic expansions of the empirical spiked eigenvectors and eigenvalues based on
local laws. The asymptotic normalities established for both spiked eigenvectors and
eigenvalues will enable us to conduct precise inference and uncertainty quantification
for applications involving the generalized Laplacian matrices with flexibility. We discuss
some applications of the suggested ATE-GL framework and showcase its validity
through some numerical examples. This is a joint work with Jianqing Fan, Yingying Fan,
Fan Yang and Diwen Yu.

Graphs and manifolds are commonly associated with sequence data such as texts. To
enable text modeling and token generation, one may first construct Word2Vec
embeddings of individual words and then build a graph of short sequences, where each
short sequence can be viewed as a node of the graph and also be viewed as a point in a
latent low-dimensional manifold. The link strengths between each pair of nodes can be
calculated using a certain similarity measure of the embedding vectors, giving rise to a
high-dimensional random matrix representing the graph data. For network applications,
an important question is how to uncover the latent structural information underlying
the graphs via low-dimensional manifold representations, often much lower than the
ambient embedding dimensionality of each node. The Laplacian matrices for network
data have been widely used to construct latent embeddings of graphs, where the nodes
of the graph are represented in a latent subspace spanned by the corresponding leading
eigenvectors of the Laplacian matrix. A natural question is how to characterize the
asymptotic distributions of the leading eigenvectors and eigenvalues of the Laplacian
matrix. The existing results in random matrix theory (RMT) have focused almost always
on the setting of independent entries modulo symmetry, which is a major bottleneck of
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new RMT developments. Due to the use of the normalization terms, the Laplacian
matrix is an example of a random matrix with dependency. To enable more flexible
latent embeddings of graphs, we will extend the concept of the Laplacian matrix to that
of the generalized (regularized) Laplacian matrix with index α ∈ [0,∞). A key question
we aim to address in this paper is how to characterize the asymptotic distributions of
the leading eigenvectors and eigenvalues of the generalized (regularized) Laplacian
matrices, a new class of high-dimensional random matrices with dependency
representing the network data.

The primary objective of this paper is to investigate the asymptotic behaviors of the
empirical spiked eigenvalues and eigenvectors of the generalized (regularized)
Laplacian matrix (with some commonly used regularization terms) for the
signal-plus-noise model when the signals are above a certain threshold. In particular,
we will derive both the law of large numbers (LLN) and central limit theorems (CLTs)
for the spiked sample eigenvalues and eigenvector components. Our results extend
significantly the previous works
[Fan, Fan, Han, and LvFan et al.2022a, Fan, Fan, Lv, and YangFan et al.2024] to the
context of the generalized Laplacian matrix framework. These prior studies established
the LLN and CLTs for spiked sample eigenvalues and eigenvector components of the
adjacency matrices of large networks, which can be viewed as a special case of our
results when α = 0. Our results also compensate for the results of a recent work
[Ke and WangKe and Wang2024], where entrywise large-deviation bounds for the
eigenvectors associated with the largest eigenvalues of the Laplacian matrix for the
DCMM model were established through the leave-one-out strategy. Additionally, in
[Tang and PriebeTang and Priebe2018], the CLTs for the components of eigenvectors
pertaining to the adjacency matrix and the Laplacian matrix of a random dot product
graph were established, under the assumption of a prior distribution on the mean
adjacency matrix.

Our results can be of independent theoretical interest due to the important role
played by Laplacian matrices in the spectral graph theory. On the other hand, they can
also serve as crucial ingredients for statistical inference concerning large networks and
more general models. For example, they may enhance the characterization of the
community membership probability matrix Π through spectral clustering methods for
community detection, a widely used and scalable tool in the literature, as demonstrated
in [Von LuxburgVon Luxburg2007, AbbeAbbe2017, JinJin2015,
Le, Levina, and VershyninLe et al.2016, Lei and RinaldoLei and Rinaldo2015,
Rohe, Chatterjee, and YuRohe et al.2011], or may enable hypothesis testing with
network data, a prevalent technique utilized in various contexts such as
[Arias-Castro and VerzelenArias-Castro and Verzelen2014,
Verzelen and Arias-CastroVerzelen and Arias-Castro2015,
Bickel and SarkarBickel and Sarkar2016, LeiLei2016,
Wang and BickelWang and Bickel2017, Fan, Fan, Han, and LvFan et al.2022b,
Fan, Fan, Lv, and YangFan et al.2024]. Due to the length constraint, we leave the
investigation of various important applications of our theoretical results obtained in this
paper to future work.
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Graph matrices are a type of matrix which is a powerful tool for analyzing problems
on random inputs. Graph matrices have been used extensively for sum of squares lower
bounds on average case problems [5, 11, 10, 19, 15, 18, 16, 24, 17, 21] and have also
recently been used to analyze power-sum decompositions of polynomials [3], to analyze
the ellipsoid fitting conjecture [20], [13], and to analyze a class of first-order iterative
algorithms including belief propagation and approximate message passing [14]. That
said, we only have a partial understanding of graph matrices. We currently know the
following about graph matrices:

(1) We have general norm bounds for graph matrices [2, 15, 22, 4, 17, 23, 24].
(2) The limiting distribution of the singular values as n → ∞ has been determined

for a family of graph matrices called multi-Z-shaped graph matrices [7, 8].
(3) A certain family of graph matrices behaves like Hermite polynomials of Gassian

random variables [14].

When the random input is G(n, 1
2
), graph matrices are defined as follows:

Definition 0.1 (Fourier characters over G(n, 1
2
)). Given a set of potential edges E, we

define χE(G) = (−1)|E\E(G)| =
∏

e∈E χ{e}(G) where χ{e}(G) = 1 if e ∈ E(G) and −1 if
e /∈ E(G).

Proposition 0.2. EG∼G(n, 1
2
)[χE(G)χE′(G)] = 1 if E ′ = E and 0 if E ′ ̸= E.

Definition 0.3 (Shapes). A shape α consists of a graph with vertices V (α) and edges E(α)
together with two distinguished tuples of vertices Uα and Vα which are subsets of V (α).

Definition 0.4 (Graph matrices). Given a shape α, we define the graph matrix Mα to be
the n!

(n−|Uα|)! ×
n!

(n−|Vα|)! matrix whose rows and columns are indexed by tuples of size |Uα| and
|Vα| with entries

Mα(A,B) =
∑

π:V (α)→V (G):π is injective,π(Uα)=A,π(Vα)=B

χπ(E(α))(G)

Definition 0.5. A vertex separator of a shape α is a set of vertices S ⊆ V (α) such that every
path from Uα to Vα (including paths of length 0) must contain a vertex in S.

Theorem 0.6 (AMP20). For all shapes α which have no isolated vertices outside of Uα and
Vα, with high probability, ||Mα|| is Õ(n

|V (α)|−sα
2 ) where sα is the minimum size of a vertex

separator of α and the Õ contains factors depending on the size of α and logarithmic factors.
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In my talk, I started by describing tensor networks (using the paper “Hand-waving and
Interpretive Dance: An Introductory Course on Tensor Networks” [6] as a guide). I then
described graph matrices, norm bounds on graph matrices, and the close connection
between tensor networks and graph matrices. In particular, tensor networks which are
flattened into matrices can be transformed into graph matrices by replacing the indices
with vertices and replacing the matrix/tensor entries with edges/hyperedges. Finally,
I illustrated the power of graph matrices by showing how they can be used to easily
rederive part of the analysis for tensor PCA, the faster tensor PCA algorithm in [12], and
the tensor decomposition algorithm in [9].
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In the era of big data, large-scale, multi-modal datasets are increasingly ubiquitous,
offering unprecedented opportunities for predictive modeling and scientific discovery.
However, these datasets often exhibit complex heterogeneity—such as covariate shift,
posterior drift, and missing modalities—that can hinder the accuracy of existing
prediction algorithms. To address these challenges, we propose a novel Representation
Retrieval (R2) framework, which integrates a representation learning module (the
representer) with a sparsity-induced machine learning model (the learner). Moreover,
we introduce the notion of “integrativeness” for representers, characterized by the
effective data sources used in learning representers, and propose a Selective Integration
Penalty (SIP) to explicitly improve the property. Theoretically, we demonstrate that the
R2 framework relaxes the conventional full-sharing assumption in multi-task learning,
allowing for partially shared structures, and that SIP can improve the convergence rate
of the excess risk bound. Extensive simulation studies validate the empirical
performance of our framework, and applications to two real-world datasets further
confirm its superiority over existing approaches.

Large-scale data integration has made transformative contributions across numerous
fields, including computer vision, natural language processing, biomedicine, genomics
and healthcare. For example, in biomedicine, integrating randomized clinical trials and
observational studies is of great interest, as it leverages the benefits of both data sources
[19, 10, 2]. In genomics, multi-modality and multi-batch assays enable the discovery of
cellular heterogeneity and development [5, 3]. In healthcare, multiple types of
time-series measurements, such as cardiovascular, physical activities, and sleep data are
integrated to improve real-time health and well-being monitoring [21, 13, 9]. However,
integration of large-scale data effectively remains challenging, particularly when data
are collected from diverse sources or populations, and across various collections of
variables and modalities.

In particular, integrating large-scale data is challenging primarily due to various types
of heterogeneity. First, the marginal distribution of the same covariate is often
heterogeneous across different sources or populations, a phenomenon called
“distribution heterogeneity”, or “covariate shift” in the literature [11]. Second, in the
context of supervised learning, the conditional distribution of responses given
covariates could be heterogeneous, which is named “posterior heterogeneity”, or
“posterior drift” [16]. Third, observed covariates or modalities are often not uniformly
measured: some covariates are observed across all data sources, while others are

Page 41



observed in only partial data sources. We refer to this as “observation heterogeneity” or
“block missing”, which is considered in existing works [20, 18, 1].

In the current literature, various problem setups related to integrative supervised
learning have been studied, while most of them only concern one or two types of the
aforementioned heterogeneity. In particular, distribution heterogeneity, posterior
heterogeneity, or both are considered in multi-task learning or transfer learning
[16, 6, 14, 15]. Observation heterogeneity has been studied in multi-source data
integration [20, 18, 17]. Recent work [1] has addressed all three types of heterogeneity
in the transfer learning problem; however, their distributional and linear model
assumption restrict their applicability for more general contexts. Sui et al. [12] propose
a deep learning-based method to handle all three types of heterogeneity, where one
modality is required to be observed among all data sources, which is restrictive in
practice. In this work, we target the integrative supervised learning problem and aim to
improve the predictive performance for all data sources. Our framework can
accommodate all three types of heterogeneity and allow for nonparametric modeling
for complex association between covariates and responses. Indeed, incorporating all
three types of heterogeneity within a unified framework would allow for the integration
of much broader datasets, thereby enhancing prediction performance by leveraging
substantially more information.

Contributions: Our method offers several significant contributions.
Methodologically, we introduce the Representation Retrieval (R2) framework, which
constructs a dictionary of representers—such as neural networks [7], kernels [4], or
smoothing function bases [8]—to capture the complex distribution across multiple data
sources. For each data source, a sparse learner built upon this dictionary selectively
retrieves the most informative representers for prediction. Notably, the R2 framework
flexibly accommodates partially shared structures among data sources via a
sparsity-inducing penalty.

Moreover, we introduce the concept of “integrativeness” of representers, defined as
the effective data sources utilized for learning representers. To directly encourage the
integrativeness of representers, we propose an innovative Selective Integration Penalty
(SIP). Theoretically, we derive an excess risk bound for the R2 framework, explicitly
controlled by the integrativeness of representers, thereby demonstrating that SIP
effectively enhances the model’s generalization performance. Computationally, we
develop an efficient alternating minimization algorithm to iteratively update both the
representer dictionary and the sparse learners. Extensive simulation studies and
real-world applications further support the superior performance of our proposed
method.
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As opaque black-box predictive models become more prevalent, the need to develop
interpretations for these models is of great interest. The concept of variable importance
and Shapley values are interpretability measures that applies to any predictive model and
assesses how much a variable or set of variables improves prediction performance. Such
approaches are also critical in network estimation when comparing different methods
or using model-agnostic approaches. When the number of variables is large, estimating
variable importance presents a significant computational challenge because re-training
neural networks or other black-box algorithms requires significant additional computation.
In this talk, we address this challenge for algorithms using gradient descent and gradient
boosting (e.g. neural networks, gradient-boosted decision trees). By using the ideas
of early stopping of gradient-based methods in combination with warm-start using the
dropout method, we develop a scalable method to estimate variable importance for any
algorithm that can be expressed as an iterative kernel update equation. Importantly, we
provide theoretical guarantees by using the theory for early stopping of kernel-based
methods for neural networks with sufficiently large (but not necessarily infinite) width
and gradient-boosting decision trees that use symmetric trees as a weaker learner. We also
demonstrate the efficacy of our methods through simulations and a real data example
which illustrates the computational benefit of early stopping rather than fully re-training
the model as well as the increased accuracy of our approach. This work is based on joint
work with PhD students Zexuan Sun. This work is also related to prior work using a
penalized apporach in (2).

0.1. Our Contributions. The main contributions of the talk are as follows:

• We propose a general scalable framework with supporting theoretical guarantees
to estimate VI efficiently for any iterative algorithm that can be expressed as an
iterative kernel update equation. Importantly we provide theoretical guarantees for
this method by leveraging theory for the early stopping of kernel-based methods.

• Utilizing the neural tangent kernel for neural networks with sufficiently large (but
not infinite) width we apply our general theoretical bound to feed-forward neural
networks. Further, we use a well-defined kernel to also adapt our bounds to
gradient boosted decision trees. Each of these theoretical results is of independent
interest. Moreover, if the VI estimator is constructed using neural network, the
asymptotically normality holds and we can build Wald-type confidence interval
accordingly.
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• As an interesting side product of our theoretical results, we find that under warm-
start initialization, the global convergence of Neural tangent kernel still holds and
the network behave approximately as linear model under mean square error loss .

• The theoretical bounds are supported in a simulation. We then demonstrate the
computational advantages over re-training and the the accuracy advantages over
dropout for estimating both variable importance.

1. OUR ALGORITHM

First we introduce our overall algorithm based on warm-start involving the full pre-
trained model and then applying the early stopping strategy.

Algorithm 1 Early stopping training for V II

1: Input Data {(Xi, Yi)}Ni=1, training size N1 = qN ; N2 = (1− q)N ; Kernel based model:
fθ(·); Drop features set I ⊆ {1, . . . , p}; Patience P ;

2: Train full model f c
N1

using training data {(Xi, Yi)}N1

i=1;
3: Replace feature j ∈ I with its empirical mean to get X(I)

i ;

4: Split
{
(X

(I)
i , Yi)

}N1

i=1
into a training set D1 of sample size qN1 and a validation set D2

of sample size (1− q)N1;
5: Initialize model with f c

N1
, for each epoch τ , train on D1, evaluate on D2;

6: If the loss evaluated on D2 at epoch T̂ has no improvement after P epochs, stop and
return fT̂ as the estimator for f0,−I;

7: Use remaining N2 instances to construct V̂ II and plug in estimate of τN,I

V̂II =
1

N2

N2∑
i=1

[
Yi − fT̂ (X

(I)
i )

]2
−
[
Yi − f c

N1
(Xi)

]2
ti,I =

(
Yi − fT̂

(
X

(I)
i

))2

−
(
Yi − f c

N1
(Xi)

)2
τ̂N,I =

1

N2

N2∑
i=1

(ti,I − t̄I)
2 /N2

8: Construct α-level Wald-type CI as V̂II ± zα
2
· τ̂N,I .

2. THEORETICAL BOUNDS

Our theoretical bounds provide a general result for early stopping based on the
algorithm above for any gradient-based approach.

Theorem 1 (General convergence bound under fixed design). Under suitable regularity
assumptions, consider our above algorithm with full model f c

N , and stop the update early at
iteration T̂op, with high probability, the following bound holds

∥fT̂op
− f0,−I∥2N ≤ O

(
1

N
1
2

)
.
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Using additional techniques we are able to provide a Wald-type confidence interval for
feed-forward neural networks with "large width."

Corollary 1. Applying to feed-forward network with ReLu activation and no bias can
accurately predict the reduced model, i.e.,

(2.1)
∥∥∥fT̂op

− f0,−I

∥∥∥
2
= Op

(
N−1/4

)
.

Then if VII ̸= 0, our variable importance estimator V̂II is asymptotically normal and has an
error rate Op

(
N−1/2

)
:

(2.2) V̂II − VII = ∆N,I +Op

(
N−1/2

)
where

(2.3) ∆N,I →d N
(
0, τ 2N,j

)
here the variance is τ 2N,j = Var

(
w(I)2 − w2

)
/N , where w and w(I) are the population version

of the residuals.

A key component of the proof is the use of the so-called neural tangent kernel first
introduced in (3). the Neural Tangent Kernel (NTK) provides a theoretical tool to study
the neural network in the RKHS regime. Denote a neural network by f(θ, x),

(2.4) ⟨∇θf (θ, x) ,∇θf (θ, x′)⟩ .

By defining this kernel and adapting techniques based on early stopping applied to kernel
ridge regression (1) allows us to prove the main result and corollary.

3. SIMULATION

Our simulation study reveals that as expected, early stopping after a small number
of iterations (1-5) achieves performance close to full re-training while accounting for
significant savings in computation.

(A) Neural Networks (B) GBDT

FIGURE 1. Distribution of computation time vs. normalized estimation error
relative to retrain for the VI of X1.
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This extended abstract is based on Fritz, Schweinberger, Bhadra, and Hunter (2024)
and Stewart and Schweinberger (2025).

1. NETWORK INTERFERENCE

In connected populations, the treatments and outcomes of units can affect the
outcomes of other units, which implies that the outcomes of units are interdependent.
To study causal and non-causal relationships among attributes under network
interference, a comprehensive regression framework for dependent predictors X,
outcomes Y , and connections Z is needed.

2. REGRESSION UNDER NETWORK INTERFERENCE

We introduce a comprehensive regression framework for dependent predictors X,
outcomes Y , and connections Z (Fritz et al., 2024). The regression framework can be
used for studying non-causal and causal relationships among attributes (X,Y) of
connected units and captures attribute-attribute, attribute-connection, and
connection-connection dependencies, while retaining the advantages of linear
regression, logistic regression, and other regression models by being interpretable and
widely applicable. Scalable statistical computing is based on convex optimization of
pseudo-likelihoods using minorization-maximization algorithms. An application to hate
speech on social media demonstrates the advantages of the regression framework.

3. THEORETICAL GUARANTEES

Theoretical guarantees for regression under network interference are non-trivial,
because the outcomes and connections (Y ,Z) | X = x are dependent. We provide
theoretical guarantees by generalizing results of Stewart and Schweinberger (2025) for
dependent connections Z to dependent outcomes and connections (Y ,Z) | X = x.

Lemma 1 of Stewart and Schweinberger (2025). Let g : Rp 7→ Rp (p ≥ 1) be a
homeomorphism and || · || be a vector norm with induced matrix norm ||| · |||. Consider any
θ⋆ ∈ Rp and any ϵ > 0, and define

δ(ϵ) := inf
θ∈ bdB(θ⋆, ϵ)

||g(θ)− g(θ⋆)||,

where B(c, ρ) := {a ∈ Rp : ||a − c|| < ρ} is a ball with center c ∈ Rp and radius
ρ > 0 and bdB(c, ρ) is the boundary of B(c, ρ). If g(θ) is continuously differentiable and
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I(θ) := ∇θ g(θ) is invertible for all θ ∈ B(θ⋆, ϵ), then
ϵ

supθ∈B(θ⋆, ϵ) |||I(θ)−1|||
≤ δ(ϵ). □

Lemma 1 helps “transport” concentration-of-measure between homeomorphic spaces,
facilitating rates of convergence. To demonstrate, consider regression models with
exponential-family densities of the form fθ⋆(t) ∝ e⟨θ

⋆, t⟩, where θ⋆ ∈ Rp and
µ(θ⋆) := Eθ⋆ T ∈ Rp are the data-generating natural and mean-value parameters of the
exponential family, and θ̂ and µ(θ̂) = T are the maximum likelihood estimators of θ⋆

and µ(θ⋆) = Eθ⋆ T , respectively. Since the natural and mean-value parameter spaces of
exponential families are homeomorphic, Lemma 1 implies that

P(θ̂ ∈ B(θ⋆, ϵ)) = P(T ∈ µ(B(θ⋆, ϵ))) because µ is a homeomorphism

≥ P(T ∈ B(µ(θ⋆), δ(ϵ))) by definition of δ(ϵ)

≥ 1− α(δ(ϵ)) by concentration of T

≥ 1− α

(
ϵ

supθ∈B(θ⋆, ϵ) |||I(θ)−1|||

)
by Lemma 1 applied to µ,

where α(.) is a non-increasing function that quantifies the strength of concentration of T
around µ(θ⋆) = Eθ⋆ T . In other words: If the probability mass of µ(θ̂) = T concentrates
around µ(θ⋆) = Eθ⋆ T , then the probability mass of θ̂ concentrates around θ⋆, paving
the way for convergence rates for θ̂ based on µ(θ̂) = T (compare Theorems 1 and
2 of Stewart and Schweinberger, 2025). While specific convergence rates depend on
additional properties of the data-generating model, the above argument suggests that
the convergence rate of maximum likelihood estimators θ̂ depends on

• the precision in a neighborhood of θ⋆ as quantified by supθ∈B(θ⋆, ϵ) |||I(θ)−1|||;
• the strength of concentration of T as quantified by α(.), which depends on the

tails of the distribution of T and the dependence induced by the model.
The above argument applies to all exponential families (e.g., generalized linear models,
graphical models, and Gaussian and non-Gaussian Markov random fields), and helps
establish theoretical guarantees for regression based on independent or dependent
observations, including regression under network interference (Fritz et al., 2024).
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Multilayer networks often exhibit various dependence structures between network
layers. Various inter-layer dependence modeling highlights the importance of
incorporating such dependencies for more accurate and efficient network analysis. For
example, [3] introduced the autoregressive stochastic block model (SBM) to capture
inter-layer dependence with a time series structure; [7] proposed the multilayer Ising
model to capture the full inter-layer dependence. However, it remains unclear how to
extend [3] to accommodate more general dependence structures, whereas the method
in [7] appears to have difficulty in estimating connection probabilities due to the
intractable computation cost of the partition function [5]. Moreover, very little has been
done in the literature to theoretically investigate the impact of dependence structures
on the community detection accuracy.

In this work, we introduce a novel multilayer probit network model that integrates the
classical multilayer SBM [4, 2] with the multivariate probit model [1]. It incorporates
diverse inter-layer dependence structures between layers into network modeling so as to
achieve better estimation of the homogeneous community structure.

Let G denote a multilayer network comprising M network layers on N common nodes,
where each network layer can be represented via its adjacency matrix A(b) = (A

(b)
ij )N×N ∈

{0, 1}N×N for b ∈ [M ]. Here, A(b)
ij = A

(b)
ji = 1 if an edge exists between nodes i and j in

the b-th layer, and A
(b)
ij = A

(b)
ji = 0 otherwise. We consider the following multilayer probit

network model,

A
(b)
ij = I

{
µ(b)
eiej

+ ε
(b)
ij > 0

}
, for any b ∈ [M ],(

ε
(1)
ij , · · · , ε

(M)
ij

)⊤ ∼ N
(
0,Σeiej

)
, for any i ̸= j,

where I(·) is the indicator function, ei ∈ [K] denotes the homogeneous community
membership of node i across M layers, µ(b) ∈ RK×K denotes the mean matrix for each
network layer, and Σkl ∈ RM×M is positive definite for any k, l ∈ [K]. Note that
P (A

(b)
ij = 1) = P (ε

(b)
ij > −µ

(b)
eiej) = Φ(µ

(b)
eiej), where Φ(·) is the cumulative distribution

function of N(0, 1).
Let µ = (µ

(b)
kl )k,l∈[K],b∈[M ] and µ(b) = (µ

(b)
kl )k,l∈[K] for each b ∈ [M ]. Further, let

Σ = (Σ
(bd)
kl )k,l∈[K],b,d∈[M ] and Σkl = (Σ

(bd)
kl )b,d∈[M ] for any k, l ∈ [K]. Define Θ = (µ,Σ)

with Θ
(bd)
kl = (µ

(b)
kl , µ

(d)
kl ,Σ

(bd)
kl ). Denote Z = (Zik)i∈[N ];k∈[K] as the homogeneous

community membership matrix, where Zik = 1 if ei = k, and Zik = 0 otherwise. Since
the full likelihood of the multilayer network is computationally inefficient, we consider
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a pairwise likelihood function as an alternative, which largely facilitates the
computation without compromising estimation accuracy [6]. Specifically, we replace
the full likelihood P

(
Aij; {µ(b)

kl }Mb=1,Σkl

)
with∏

1≤b<d≤M

P
(
A

(b)
ij , A

(d)
ij ;Θ

(bd)
kl

)
,

where

P
(
A

(b)
ij , A

(d)
ij ;Θ

(bd)
kl

)
= α1

(
Θ

(bd)
kl

)A
(b)
ij A

(d)
ij × α2

(
Θ

(bd)
kl

)A
(b)
ij (1−A

(d)
ij )

× α3

(
Θ

(bd)
kl

)(1−A
(b)
ij )A

(d)
ij × α4

(
Θ

(bd)
kl

)(1−A
(b)
ij )(1−A

(d)
ij )

.

The terms α1, α2, α3 and α4 are defined as
(0.1)
α1

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 1, A

(d)
ij = 1;Θ

(bd)
kl

)
= Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α2

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 1, A

(d)
ij = 0;Θ

(bd)
kl

)
= Φ

(
µ
(b)
kl

)
− Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α3

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 0, A

(d)
ij = 1;Θ

(bd)
kl

)
= Φ

(
µ
(d)
kl

)
− Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α4

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 0, A

(d)
ij = 0;Θ

(bd)
kl

)
= 1− Φ

(
µ
(b)
kl

)
− Φ

(
µ
(b)
kl

)
+ Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

where Φ(·) is the cumulative distribution function of N(0, 1), and Φ2(·, ·, σ) is the
cumulative distribution function of N2

(
( 0
0 ),

(
1 σ
σ 1

))
. The pairwise log-likelihood then

becomes

L(Θ,Z) =
∑
k,l

∑
i,j

∑
b<d

ZikZjl

{
A

(b)
ij A

(d)
ij logα1(Θ

(bd)
kl ) + A

(b)
ij (1− A

(d)
ij ) logα2(Θ

(bd)
kl )

+ (1− A
(b)
ij )A

(d)
ij logα3

(
Θ

(bd)
kl

)
+ (1− A

(b)
ij )(1− A

(d)
ij ) logα4(Θ

(bd)
kl )

}
= :

∑
k,l

Lkl(Θ,Z).

Denote Skl as the pre-specified, shape-constrained set for Σkl. Specifically, we focus on
two scenarios, the sparse covariance matrix scenario with

Skl =
{
X ∈ RM×M | X ≻ 0, diag(X) = 1M , Supp(X) = Tkl

}
,

and the sparse precision matrix scenario with

Skl =
{
X ∈ RM×M | X ≻ 0, diag(X) = 1M , Supp(X−1) = Tkl

}
.

In both cases, Tkl ⊆ [M ] × [M ] represents the set of positions, known a priori, with
|Tkl| = s∗kl. Two examples for each scenario are the multilayer Ising model [7] and the
autoregressive SBM [3]. Define the parameter space as

Ω =

{
ω = (µ,Σ,Z) | Z ∈ {0, 1}N×K , Z1K = 1N , clρN,M ≤ Φ(µ

(b)
kl ) ≤ cuρN,M ,

Σkl ∈ Skl, and sup
k,l

∥ ndiag(Σkl)∥max ≤ DN,M

}
,

where cl < 1 < cu are two constants and ρN,M controls the network sparsity level. Note
that the magnitudes of s∗kl and DN,M specify the inter-layer dependence structures and
the strength of dependence across different layers, respectively. Denote the true
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parameters as ω∗ = (Θ∗,Z∗) = (µ∗,Σ∗,Z∗) and assume ω∗ ∈ Ω. Lemma 0.1 shows that
the pairwise likelihood function in (0.2) is Fisher consistent in Ω.

Lemma 0.1. Let e(ω∗,ω) = 1
N2M2

∑
k,l E

(
Lkl(Θ

∗,Z∗) − Lkl (Θ,Z)
)
, then it holds true

that e(ω∗,ω) ≥ 0 for any ω ∈ Ω.

Lemma 0.1 shows that ω∗ is a maximizer of E(L(Θ,Z)), and thus justifies the use of
the pairwise likelihood function in estimating ω∗. Therefore, we estimate (Θ∗,Z∗) via
the constrained maximum pairwise log-likelihood estimate,

(Θ̂, Ẑ) = argmax
(Θ,Z)∈Ω

L (Θ,Z) .(0.2)

We also adopt an alternative updating algorithm to solve the constrained optimization
problem. Theoretically, we establish the asymptotic consistency of the proposed method
for both parameter estimation and community detection under mild conditions.

We demonstrate how the inter-layer dependence structures and strength affect the
accuracy of community detection in theory. In the autoregressive SBM, the proposed
method exhibits a smaller misclassification rate than [3] when ρN,M ≳ 1

log(NM)
and

M ≲ N . In the multilayer Ising model [7] with K ≲ log(NM), s∗kl ≍ M2,M ≍ N , the

required sparsity condition there is that ρN,M ≫
(

1
N

) 1
1+c for some constant c > 0, up to

some logarithmic terms. In contrast, the proposed method can achieve ρN,M ≫ 1
N

, up to
some logarithmic terms, which achieves a better sparsity condition. Moreover, through
extensive simulations and a real-world multilayer international trade network, we
demonstrate the superior numerical performance of the proposed method compared to
several popular competitors.
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Reinforcement learning (RL) deals with how intelligent agents leverage contextual
information and historical data to take actions in an uncertain environment in order to
maximize the cumulative reward [1]. It has achieved phenomenal success in diverse
fields, such as video games, robotics, autonomous driving, precision medicine, and
recommendation systems. In modern applications, such context format can be rich and
can often be formulated as a matrix or higher order tensor. This is evident in scenarios
such as monitoring brain activity in real-time during clinical research, tracking dynamic
user preferences in online recommender systems, and analyzing the evolving
relationships in social network analysis. Consider neuroscience, where dynamic
treatments may be tailored to a patient based on their neuroimaging. Here, the
neuroimaging data forms a tensor state, while the treatment, such as dynamic sleep
intervention, represents an action in the RL framework. Such high-dimensional
higher-order tensor contexts necessitate the incorporation of low-rank structures in RL
models.

Why inference in RL? While existing RL algorithms mainly focus on minimizing
regret or choosing the best action with respect to some oracle policy, less attention has
been paid to the statistical inference for RL models where the data are adaptively
collected. In real-world applications of RL, we are often not just interested in obtaining
the point estimate of the value function, but also a measure of the statistical uncertainty
associated with the estimate. This is especially relevant to fields such as personalized
medicine, mobile health and autonomous driving, where it is often risky to run a policy
without a statistically sound estimate of its quality. For example, online A/B testing has
been widely conducted by technological/pharmaceutical companies to compare a new
product with an old one. Recent studies [2] have used various bandit or RL methods to
form sequential online A/B testing procedures. In these online evaluation tasks, it is
important to quantify the uncertainty of the point estimate for constructing a valid
hypothesis testing. Moreover, the information obtained by conducting statistical
inference of parameters or value functions, can eventually help experimenters to yield a
better understanding in the used RL reward model, and this increase of knowledge can
potentially improve the design of the experiments [3].

Why are new tools needed? When data is collected in an adaptive manner, even
simple ordinary least squares can exhibit non-normal asymptotic behavior [3]. In this
case, the confidence intervals constructed from traditional estimators induce bias and
lead to wrong coverage. In extensive numerical studies, [4] empirically illustrate that
common statistical hypothesis tests lead to as much as double the false positive rate and
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false negative rate using adaptive data collected in the bandit setting. While the use of
adaptively collected data for inferential purposes has gained popularity in recent years,
existing inferential methods are primarily developed under simple settings. These
include adaptive linear regression [5], linear bandit [3], batch Markov decision process
[6], and linear stochastic approximation under Markov noise [7]. While these
contributions serve as crucial initial steps in statistical inference for adaptive data,
practical RL applications involving higher-order tensor contexts call for more
sophisticated inference tools.

In this talk, we discuss provable online inferential tools tailored for low-rank
reinforcement learning. We first introduce an efficient online low-rank stochastic
gradient descent (SGD) method and establishes its non-asymptotic rate of convergence.
Building upon this foundation, we propose a simple yet powerful online debiasing
approach for the sequential statistical inference of low-rank tensor learning. The entire
online procedure studied in this context, encompassing both estimation and inference,
eliminates the need for data splitting or storing historical data, making it suitable for
on-the-fly hypothesis testing. We then progress to low-rank contextual bandit by
incorporating online decision-making policies, where sequential decisions rely on
higher-order contextual information. By conducting hypothesis testing on entries of the
parameter tensor, one can assess the impact of a specific region of the tensor context on
the reward. The challenges of this inference arise from two sources of bias: the first due
to the low-rank structure of the parameter, and the second originating from the
decision-making policy, as the chosen action depends on all historical data. We discuss
an online double debiasing procedure for statistical inference within the low-rank
contextual bandit framework, and establish the validity of the resulting confidence
interval. Additionally, we identify an intriguing tradeoff between parameter inference and
regret minimization, prompting a formulation of this trade-off as a minimax
multi-objective optimization problem.
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MIAOYAN WANG

Keywords: Smooth tensors, Nonparametric Methods, Latent Permutation

Abstract. We consider the problem of structured tensor denoising in the presence of
unknown permutations. Such data problems arise commonly in recommendation
system, neuroimaging, community detection, and multiway comparison applications.
Here, we develop a general family of smooth tensor models up to arbitrary index
permutations; the model incorporates the popular tensor block models and Lipschitz
hypergraphon models as special cases. We show that a constrained least-squares
estimator in the block-wise polynomial family achieves the minimax error bound. A
phase transition phenomenon is revealed with respect to the smoothness threshold
needed for optimal recovery. In particular, we find that a polynomial of degree up to
(m − 2)(m + 1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher
degree exhibits no further benefits. This phenomenon reveals the intrinsic distinction
for smooth tensor estimation problems with and without unknown permutations.
Furthermore, we provide an efficient polynomial-time Borda count algorithm that
provably achieves optimal rate under monotonicity assumptions. The efficacy of our
procedure is demonstrated through both simulations and Chicago crime data analysis.

Model. Let Θ ∈ Rd×···×d be an order-m d-dimensional tensor, π : [d] → [d] be an index
permutation, and Θ(i1, . . . , im) the tensor entry indexed by (i1, . . . , im). We sometimes
also use shorthand notation Θ(ω) for tensor entries with indices ω = (i1, . . . , im). Suppose
we observe an order-m d-dimensional data tensor from the following model,

(0.1) Y = Θ ◦ π + E ,

where ◦ represents the function composition, π : [d] → [d] is an unknown latent
permutation, Θ ∈ Rd×···×d is an unknown signal tensor under certain smoothness (to be
specified in next paragraph), and E is a noise tensor consisting of zero-mean,
independent sub-Gaussian entries with variance bounded by σ2. The general model
allows continuous- and binary-valued tensors. For instance, in binary tensor problems,
the entries in Y are {0, 1}-labels from Bernoulli distribution, and the entrywise variance
of E depends on the mean. For ease of presentation, we assume σ = 1 throughout the
paper. We call (0.1) the Gaussian model if the E consists of i.i.d. N (0, 1) entries, and
call (0.1) the sub-Gaussian model if E consists of independently (but not necessarily
identically) distributed sub-Gaussian entries.

We now describe the smooth model on the signal Θ. Suppose that there exists a
multivariate function f : [0, 1]m → R underlying the signal tensor, such that

Θ(i1, . . . , im) = f

(
i1
d
, . . . ,

im
d

)
, for all (i1, . . . , im) ∈ [d]m.(0.2)
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For a multi-index κ = (κ1, . . . , κm) ∈ Nm and a vector x = (x1, . . . , xm)
T , we denote |κ| =∑

i∈[m] κi, κ! =
∏

i∈[m] κi!, xκ =
∏

i∈[m] x
κi
i , and the derivative operator ∇κ = ∂|κ|

∂x
κ1
1 ···∂xκm

m
.

The generative function f in (0.2) is assumed to be in the α-Hölder smooth family [5].

Definition 0.1 (α-Hölder smooth). Let α > 0 and L > 0 be two positive constants. A
function f : [0, 1]m → R is called α-Hölder smooth, denoted as f ∈ F(α,L), if∑

κ:|κ|=⌈α−1⌉

1

κ!
|∇κf(x)−∇κf(x0)| ≤ L∥x− x0∥α−⌈α−1⌉

∞(0.3)

holds for every x,x0 ∈ [0, 1]m.

The Hölder smooth function class is one of the most popular function classes
considered in the nonparametric regression literature [3, 2]. In addition to the function
class F(α,L), we also define the smooth tensor class based on discretization (0.2),

(0.4) P(α,L) =
{
Θ ∈ Rd×···×d : Θ is generated from (0.2) and f ∈ F(α,L)

}
.

Combining (0.1) and (0.2) yields our proposed permuted smooth tensor model. The
unknown parameters are the smooth tensor Θ ∈ P(α,L) and latent permutation
π ∈ Π(d, d). The model is visualized in Figure 1(a) for the case m = 2 (matrices).
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FIGURE 1. (a): Illustration of order-m d-dimensional permuted smooth
tensor models with m = 2. (b): Phase transition of mean squared error
(MSE) (on − logd scale) as a function of smoothness α and tensor order m.
Bold dots correspond to the critical smoothness level above which higher
smoothness exhibits no further benefits to tensor estimation.

Results Summary. We develop a suite of statistical theory, efficient algorithms, and
related applications for permuted smooth tensor models. Our contributions are
summarized below. First, we develop a general permuted α-smooth tensor model of
arbitrary smoothness level α > 0. We establish the statistically optimal error rate and its
dependence on model complexity. Specifically, we express the optimal rate as a function
of tensor order m, tensor dimension d, and the smoothness level α, given by

(0.5) Rate(d) := d−
2mα
m+2α ∨ d−(m−1) log d.

Our framework substantially generalizes earlier works which focus on only matrices
with m = 2 [2, 3] or Lipschitz function with α = 1 [1, 4]. The generalization enables us
to obtain results previously impossible: i) As tensor order m increases, we demonstrate
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the failure of pervious clustering-based algorithms [1, 2], and we develop a new
block-wise polynomial algorithm for tensors of order m ≥ 3; ii) As smoothness α
increases, we demonstrate that the error rate converges to a fast rate O(d−(m−1)),
thereby disproving the conjectured lower bound O(d−2m/(m+2)) posed by earlier
work [1]. The results showcase the accuracy gain of our new approach, as well as the
intrinsic distinction between matrices and higher-order tensors.

Second, we discover a phase transition phenomenon with respect to the smoothness
needed for optimal recovery in the model (0.1) and (0.2). Figure 1(b) plots the
dependence of estimation error in terms of smoothness level α for tensors of order m.
We characterize two distinct error behaviors determined by a critical smoothness
threshold. Specifically, the accuracy improves with α in the regime α ≤ m(m − 1)/2,
whereas the accuracy becomes a constant of α in the regime α > m(m − 1)/2. The
results imply a polynomial of degree (m − 2)(m + 1)/2 = [m(m − 1)/2 − 1] is sufficient
for accurate recovery of order-m tensors of arbitrary smoothness in the model (0.1)
and (0.2)., whereas higher degree brings no further benefits. The phenomenon is
distinctive from matrix problems [3, 2] and classical non-permuted smooth function
estimation [5], thereby highlighting the fundamental challenges in our new setting.
These statistical contributions, to our best knowledge, are new to the literature of
permuted smooth tensor problems.

Third, we propose two estimation algorithms with accuracy guarantees: the
least-squares estimation and Borda count estimation. The least-squares estimation,
although being computationally hard, reveals the fundamental model complexity in the
problem. The result serves as the benchmark and a useful guide to the algorithm
design. Furthermore, we develop an efficient polynomial-time Borda count algorithm
that provably achieves a minimax optimal rate under an extra Lipschitz monotonic
assumption. The algorithm handles a broad range of data types, including continuous
and binary observations.

Lastly, we illustrate the efficacy of our method through both simulations and data
applications. A range of practical settings are investigated in simulations, and we show
the outperformance of our method compared to alternative approaches. Application to
Chicago crime data is presented to showcase the usefulness of our method. We identify
the key global pattern and pinpoint local smooth structure in the denoised tensor. Our
method will help practitioners efficiently analyze tensor datasets in various areas.
Toward this end, the package and all data used are released at CRAN
link https://cloud.r-project.org/web/packages/SmoothTensor/index.html.

REFERENCES

[1] Balasubramanian, K. (2021). Nonparametric modeling of higher-order interactions
via hypergraphons. Journal of Machine Learning Research 22, 1–25.

[2] Gao, C., Y. Lu, and H. H. Zhou (2015). Rate-optimal graphon estimation. The Annals
of Statistics 43(6), 2624–2652.

[3] Klopp, O., A. B. Tsybakov, and N. Verzelen (2017). Oracle inequalities for network
models and sparse graphon estimation. The Annals of Statistics 45(1), 316–354.

[4] Li, Y., D. Shah, D. Song, and C. L. Yu (2019). Nearest neighbors for matrix
estimation interpreted as blind regression for latent variable model. IEEE Transactions
on Information Theory 66(3), 1760–1784.

Page 58

https://cloud.r-project.org/web/packages/SmoothTensor/index.html


[5] Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer Science
& Business Media.

UNIVERSITY OF WISCONSIN - MADISON

Email address: miaoyan.wang@wisc.edu

Page 59
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DONG XIA

Classification AMS 2020:

Keywords: linear contextual bandit, sparsity, ε-greedy, inference, regret

We Investigate regret minimization, statistical inference, and their interplay in
high-dimensional online decision-making based on the sparse linear contextual bandit
model. We integrate the ε-greedy bandit algorithm for decision-making with a hard
thresholding algorithm for estimating sparse bandit parameters and introduce an
inference framework based on a debiasing method using inverse propensity weighting.
Under a margin condition, our method achieves either O(

√
T ) regret or classical

O(
√
T )-consistent inference, indicating an unavoidable trade-off between exploration

and exploitation. If a diverse covariate condition holds, we demonstrate that a
pure-greedy bandit algorithm—i.e., exploration-free—combined with a debiased
estimator based on average weighting can simultaneously achieve optimal O(log T )
regret and O(

√
T )-consistent inference. We also show that a simple sample mean

estimator can provide valid inference for the optimal policy’s value. Numerical
simulations and experiments on Warfarin dosing data validate the effectiveness of our
methods.

To the best of our knowledge, this work is the first to investigate regret minimization,
statistical inference, and their interplay in high-dimensional online decision-making
based on the sparse-LCB model. Our contributions are summarized as follows:
General Inference Framework and Tradeoff with Regret. We propose a novel statistical
inference framework for adaptively collected high-dimensional data. Our approach
integrates the ε-greedy bandit algorithm with hard-thresholding (HT), resulting in a
biased estimator due to the adaptive data collection and implicit regularization
introduced by the HT algorithm. To mitigate this bias, we introduce an online debiasing
technique based on IPW that maintains low computational and storage complexity.
Under a margin condition with parameter ν, the debiased estimator is asymptotically
normal, enabling the construction of confidence intervals and hypothesis tests for both
individual arm parameters and their differences. Additionally, we identify a trade-off
between regret performance and the estimator’s asymptotic variance, which affects
inference efficiency by determining the width of confidence intervals and the p-values of
test statistics. Specifically, when the algorithm achieves a regret upper bound of
O(T 1−γ + T (γ−1)(1+ν)/2) with margin parameter ν, and some user-specified
γ ∈ [0, 1)—which characterizes the exploration probability, the estimator’s asymptotic
variance is O(T−(1−γ)). For example, when ν = 1, setting γ = 1

2
+ o(1) yields a regret

bound of O(T 1/2) and an estimator variance of O(T−1/2), which does not attain the
classic

√
T -consistency; setting γ = 0 yields a trivial regret bound of O(T ) and an
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asymptotically normal estimator which is
√
T -consistent. While IPW is effective for

debiasing, it unfortunately inflates the variance of the final estimator.
Simultaneous Optimal Inference and Regret. We demonstrate that optimal inference
efficiency and regret performance can be simultaneously achieved under an additional
covariate diversity assumption, commonly employed in high-dimensional bandit
literature ([Bastani et al.(2021)Bastani, Bayati, and Khosravi, Ren and Zhou(2024)]
and references therein). This assumption is motivated by the observation that when
covariates are sufficiently diverse, an exploration-free algorithm (i.e., setting the
exploration probability ε = 0 in the ε-greedy algorithm) can still adequately explore
each arm. This automatic exploration facilitates debiasing through a simple average
weighting (AW) approach, bypassing IPW and thereby avoiding variance inflation.
Specifically, our approach achieves an optimal O(log T ) regret upper bound, and the
resulting estimators of arm parameters are asymptotically normal with a variance of
O(T−1), thereby attaining the classic

√
T -consistency and optimal inference efficiency.

Additionally, we introduce an inference procedure for the optimal policy’s value, often
referred to as the Q-value, within this framework. We provide a straightforward method
to assess the maximum total reward achievable by the optimal policy.
Empirical Result. We evaluate the empirical performance of our algorithm and inference
framework through numerical simulations and a real-world data experiment.
Specifically, we apply this framework to the aforementioned Warfarin dosing problem.
Our approach identifies several significant variables that determine the appropriate
dosage, with findings that are consistent with existing medical literature while also
offering novel insights.
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COINTEGRATION BETWEEN TWO INTRINSICALLY STATIONARY SPATIAL
PROCESSES
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The concept of the intrinsic processes proposed by Matheron (1973) provides an
elegant mathematical framework for modeling nonstationary spatial phenomena. It can
be viewed as a direct analogue of taking differences of nonstationary time series in
order to achieving stationarity. But it is applicable to spatial data observed on irregular
grids. The goal of this paper is to establish the inference methods and the relevant
theory for identifying the cointegration between two simple intrinsic processes. We
apply the least squares estimation, similar to Engle and Granger (1987). However the
asymptotic property of the estimation is much more complex, depending on the
underlying processes as well as the manner in which the observations were taken. We
propose some bootstrap approximations for the asymptotic distribution of the
estimators. It turns out that the wild bootstrap procedure is adaptive automatically to
varying convergence rates under the different schemes of taking the observations.
Therefore it paves the way for constructing practically feasible confidence intervals for
cointegration coefficients. A new and easy-to-use statistical tests is constructed for
testing the cointegration. The proposed methods, as well as the associated asymptotic
results under various settings, are illustrated in simulation. The application to a real
data example is also reported.

1. INTRINSIC PROCESSES

Let X(s) be a real-valued spatial process defined on s ≡ (u, v) ∈ S, where S is a subset
of R2.

Definition 1.1. Let k ≥ 0 be an integer. A finite vector (λs1 , · · · , λsm) is called a k-increment
coefficient vector if

(1.1)
m∑
i=1

λsiu
k1
i v

k2
i = 0 for any integers k1, k2 ≥ 0, and k1 + k2 ≤ k,

where m ≥ 2 is an arbitrary integer, {si = (ui, vi), i = 1, · · · ,m} ⊂ S, and {λsi} are real
numbers. Furthermore, we call Y (s) ≡

∑
i λsiX(si + s), si + s ∈ S a k-increment process.

A k-increment coefficient vector is defined on a finite set of locations {si}. But it is also
a location-shift-invariant in the sense that for any s = (u, v), (1.1) implies

m∑
i=1

λsi(ui + u)k1(vi + v)k2 = 0 for any integers k1, k2 ≥ 0, and k1 + k2 ≤ k.
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Furthermore, for any given location set {si, i ∈ [m]}, its k-increment coefficient vectors
form a linear subspace of Rm. For example, all the 2-increment coefficient vectors
consists of the linear space spanned by the columns of matrix Im − S(S⊤S)−S⊤, where
Im denotes the m×m identity matrix, S is the m× 6 matrix with (1, ui, vi, u

2
i , uivi, v

2
i ) as

its m-th row. Thus the 2-increment process Y (s) filters out all the polynomial
components upto the order 2 of X(s). In general, a k-increment process filters out all
the polynomial components upto the order k. Note that a 0-increment coefficient vector
can be viewed a difference operator across space, and a 0-increment process can be
viewed as a differenced process. In this spirit, a k-increment coefficient vector can be
viewed as a (k + 1)-th difference operator over space, and a k-increment process Y (s) is
resulted from differencing X(s) the (k + 1) times.

Now we are ready to introduce the concept of intrinsic processes. Recall that X is
stationary (or, more precisely, weakly stationary), if E{X(s)2} <∞, and

(1.2) EX(s) ≡ µ, Cov{X(s+ h),X(s)} = K(h) for any s, s+ h ∈ S,
where K(·) is the covariance function of the process.

Definition 1.2. X(·) is called an intrinsic process of order k, denoted by X ∈ IP(k), if all
its k-increment processes are stationary.

Among intrinsic processes the IP(0) processes, which is also called intrinsic stationarity,
play an important role in catering for the nonstarionary spatial features. For intrinsically
stationary X(s), it holds that

E{X(s+ h)−X(s)} = ψ(h) and Var{X(s+ h)− X(s)} = 2ν(h),

where function ν(·) is called semi-variogram. With additional condition ψ(·) ≡ 0, the
spatial prediction under the framework of the ordinary kriging only depends on the
semivariogram. For stationary X(·), it holds that

ν(s) = K(0)−K(s),

where K(·) is given in (1.2). Note that an I(1) time series is an IP(0) process defined on
the one-dimensional integer grid.

2. COINTEGRATION MODEL

Let X(·) and Y (·) be two IP(0) processes defined in S. We call that X and Y are
cointegrated if a linear combination of X and Y is stationary, i.e.

(2.1) Y (s) = α + βX(s) + ε(s),

where β ̸= 0, α are constants, and ε(s), s ∈ S, is stationary with mean zero.
Based on the observation {Y (si), X(si)}, i = 1, · · · , n, we adopt the OLS method to

estimate α and β:

(2.2) α̂ = Ȳ − β̂X̄ and β̂ =
n∑

i=1

{Y (si)− Ȳ }{X(si)− X̄}
/ n∑

i=1

{X(si)− X̄}2,

where Ȳ = n−1
∑

i Y (si) and X̄ = n−1
∑

iX(si). Then it also holds that

(2.3) α̂−α = ε̄−X̄(β̂−β) and β̂−β =
n∑

i=1

{ε(si)− ε̄}{X(si)−X̄}
/ n∑

i=1

{X(si)−X̄}2,
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where ε̄ = n−1
∑

i ε(si). Then the residuals are defined as

(2.4) ε̂(si) = Y (si)− α̂− β̂X(si), i ∈ [n].

The cointegration is declared if this residual sequence behave like a stationary spatial
process. To test this, we need to understand the behviour of the OLS estimators β̂ and α̂,
which is much more complex that that of nonstationary time series.

3. ASYMPTOTIC PROPERTIES OF OLS ESTIMATORS β̂ AND α̂

Unlike the cointegration of the regularly sampled time series, there is no uniform
asymptotic theory for the cointegration over space. We establish below a generic (and
less explicit) limiting theorem for the estimators β̂ and α̂ defined in (2.2). Nevertheless
it shows that α̂ always enjoys the standard root-n convergence rate. However the
convergence rates of β̂ varies substantially, depending on how the observations were
taken over the space. Indeed ‘increasing domain’ and ‘fixed domain’ samplings lead to
different convergence rates for β̂. Furthermore the increasing speed in ‘increasing
domain’ sampling also affects the convergence rate.

We always assume that the observations are taken at the n locations s1, · · · , sn ∈ S ≡
Sn. Let d2n =

∑n
i=1 E{X(si)

2}, Hn(t) =
√
nX([nt])/dn and Gn(t) =

1√
n

∑
sj≤[nt] ε(sj).

Theorem 3.1. (1) If EX(s) = 0 for all s, and there exist two processes H(·), G(·) on
[0, 1] such that(

Hn(t), Gn(s),
1

dn

n∑
i=1

{X(si)ε(si)− EX(si)ε(si)}
)

=⇒ (H(t), G(s),

∫ 1

0

H(t−) dG(t)),

then

dn(β̂ − β)
D−→

∫ 1

0
H(t−)dG(t)−G(1)

∫ 1

0
H(t) dt∫ 1

0
H2(t)dt− (

∫ 1

0
H(t) dt)2

≡ η,

√
n(α̂− α)

D−→ G(1)−
(∫ 1

0

H(t) dt
)
η.

(2) Let Sn =
( 1

d2n

n∑
i=1

X2(si),
1

dn

n∑
i=1

(X(si)− X̄)ε(si)
)
. If EX(s) ̸= 0, and

(
Sn, Hn(1), Gn(1)

)
D−→ (c0, V,H(1), G(1))

for some constant c0 > 0 and random variable V , then

dn(β̂ − β)
D−→ V/c0, and

√
n(α̂− α)

D−→ G(1)−H(1)V/c0.

Note. blue dn =
(∑n

i=1 E{X(si)}2
)1/2 depends on X(·) only.

Page 64



4. WILD BOOTSTRAP ADAPTIVE TO UNKNOWN CONVERGENCE RATES OF β

Assumption: X(·) and ε(·) are independent.

Wild Bootstrap Algorithm:
Step 1. Compute residuals ε̃(si) = Y (si) − α̂ − β̂X(si), and

ε̂(si) = ε̃(si)− n−1
∑

1≤j≤n ε̃(sj), i ∈ [n].

Step 2. Set Ŷ w(si) = α̂ + β̂X(si) + δiε̂(si), i ∈ [n], where δi are i.i.d. with mean 0 and
variance σ2

n = 1 + 2n−1
∑

1≤i<j≤nCorr{ε(si), ε(sj)}.

Step 3. Let
α̂w = Ȳ w − β̂wX̄, β̂w =

∑n
i=1{Y w(si)− Ȳ w}{X(si)− X̄}∑n

i=1{X(si)− X̄}2
.

Then as n→ ∞,

L{dn(β̂w − β̂)} ≍ L{dn(β̂ − β)}, L{
√
n(α̂w − α̂)} ≍ L{

√
n(α̂− α)}.

Repeat Steps 2-3 above M times, leading to (α̂w
i , β̂

w
i ), i ∈ [M ].

Hence an approximate (1 − π) confidence interval for β can be taken as
(2β̂ − β̂w

1−π/2, 2β̂ − β̂w
π/2), where β̂w

π denotes the [πM ]-th smallest value among

β̂w
1 , · · · , β̂w

M .
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Tensor decomposition is a foundational tool in modern data analysis, enabling the
extraction of structured, low-dimensional representations from high-dimensional, multi-
way data. In this talk, we revisit two of the most widely used tensor decomposition
frameworks, Tucker decomposition and Canonical Polyadic (CP) decomposition, through
the lens of statistical optimality and computational guarantees. Our focus is on both the
fundamental limits and practical algorithms for reliable use of tensor methods in noisy,
high-dimensional settings.

We begin with Tucker decomposition, which models a low-rank tensor through
multilinear projections along each mode [1]. This approach is particularly suited for
applications in computational imaging and social sciences, where data are high-order
and often corrupted by noise. We analyze the Tucker model in the presence of additive
Gaussian noise, where the underlying signal tensor exhibits low multilinear rank. Our
results characterize the three-phase behavior of statistical estimation under varying
signal-to-noise ratios (SNR): (i) in the strong SNR regime, the Higher-Order Orthogonal
Iteration (HOOI) algorithm achieves minimax-optimal rates for estimating the singular
subspaces and the tensor itself; (ii) in the weak SNR regime, no consistent estimator
exists; and (iii) in the moderate SNR regime, a statistical-computational gap
emerges—consistent estimation is possible in theory but computationally intractable
under standard complexity assumptions.

We further explore inference procedures in Tucker decomposition [2]. Building on
recent developments, we establish asymptotic distributions for singular subspace
estimators derived from alternating minimization, allowing for the construction of
confidence regions. Importantly, unlike matrix-based settings where debiasing is often
necessary, our results show that no debiasing is required for valid inference in tensor
models—underlining a key distinction introduced by the multilinear structure and the
tensor-specific computational landscape.

Next, we turn to CP decomposition, where a tensor is represented as a sum of
rank-one components [3]. Despite its wide empirical use, the theoretical understanding
of CP decomposition, especially under noise, non-orthogonality, and higher-rank
scenarios, has remained limited. We address this gap by analyzing the Alternating Least
Squares (ALS) algorithm in a signal-plus-noise model. We show that ALS, when
properly initialized, achieves non-asymptotic, minimax-optimal error bounds for tensors
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of arbitrary order, dimension, and rank. We propose a robust initialization
method—Tucker-based Approximation with Simultaneous Diagonalization
(TASD)—which compresses the tensor and stabilizes subsequent optimization. When
used with ALS, the resulting estimator (TASD-ALS) is both statistically consistent and
computationally efficient, achieving optimal estimation rates in practice.

Additionally, we provide a rigorous convergence analysis of ALS. We prove that in
the rank-one setting, ALS achieves optimal error bounds in just one or two iterations.
For general rank, we uncover a two-phase convergence pattern: an initial quadratic
phase followed by a linear refinement, with rates determined by coherence properties of
the underlying components. These findings give the first formal justification of the fast
empirical convergence observed for ALS in structured tensor settings.

In summary, this talk bridges a significant gap between statistical theory and
algorithmic practice in tensor decomposition. Our results provide sharp insights into the
limits of estimation and inference, while offering provably effective algorithms that
scale to modern high-dimensional, multi-modal data.
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Existing network analyses have primarily focused on pairwise interactions, where each
edge in the network consists of two nodes. However, higher-order interactions, which
involve multiple nodes simultaneously, are ubiquitous across many real-world scenarios.
For example, in academic collaborations, researchers often co-author papers in teams
of three or more. Existing studies have demonstrated the importance of higher-order
interactions in contexts such as neural systems [3], genetic networks [2], and the spread
of epidemics [1].

High-order interactions among a set of nodes can be naturally represented using
hypergraphs, a generalization of traditional graphs where an edge, known as a
hyperedge, is a set that includes all interacting nodes. In our work, we model the
observed hypergraph as a collection of independent realizations from a random set
distribution P, where each hyperedge corresponds to a node subset.

Let V = [n] denote the set of n nodes, and D = {e1, e2, . . . , em} the set of m hyperedges.
Each hyperedge can be represented as a subset of V , that is, es ⊂ [n] for s ∈ [m]. We
assume that es for s ∈ [m] follows

es
i.i.d.∼ prL,

where L is a kernel matrix and prL is as defined as

(0.1) prL(E = e) =
det (Le)

det(L+ I)
.

The distribution in (0.1) is referred to as a determinantal point process (DPP) and the
matrix L is referred to as a kernel matrix. Modeling hyperedges using determinantal
point processes has several benefits. First, it naturally accommodates non-uniform
hyperedges and multi-hyperedges, which greatly extends model flexibility. Second, as
the normalizing constant can be easily derived, prL defines a tractable distribution over
all possible hyperedges, facilitating estimation, inference, and sampling. Third, the
kernel matrices L enhances model interpretability.

We model L as the sum of a symmetric matrix and a skew symmetric matrix, and
estimate model parameters using projected gradient ascent over the log-likelihood,
subject to constraints. In theory, we establish that under mild regularity conditions, the
maximum likelihood estimator (MLE) is consistent and asymptotically normal. The
proofs are nontrivial considering the special manifold of the parameter space which
arises from the model configuration.

1
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2

We demonstrate the effectiveness and flexibility of the proposed non-symmetric DPP
(NDPP) hypergraph model in simulations and real data analysis. Simulation results
show that NDPP achieves accurate parameter estimation, with estimation errors
decreasing as the number of hyperedges increases, validating our theoretical results.
Compared to the symmetric DPP model, NDPP shows superior performance when
hyperedges are generated under its own model, and comparable performance under the
DPP model. In real data analyses across four hypergraphs, including
contact-high-school, email-Eu, NDC-substances, and tags-math-sx, NDPP consistently
outperforms DPP in hyperedge prediction tasks (AUC and MPR) in cases where node
similarity is more plausible, while performing comparably in settings favoring node
diversity. These results show NDPP’s flexibility in modeling both similarity and diversity
among nodes in non-uniform hypergraphs.

This is a joint work with Yichao Chen (University of Michigan) and Ji Zhu (University
of Michigan).
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Network-linked data, which refers to a group of units that are observed connected by
a network and have a set of available attributes, has attracted much attention in the past
few decades (Michell and West, 1996; Lee et al., 2010; Li et al., 2019, 2023; Huang et al.,
2021). Yet its extension, time-varying network-link data, has received less investigation.

Existing methods for time-varying network-link data usually assume that units’
attributes evolve over time, whereas the network remains unchanged as time increases.
(Zhu et al., 2017; Wu, 2019; Zhu and Pan, 2020; Zhu et al., 2022; Chen et al., 2023;
Zhu et al., 2023; Li et al., 2023). Zhu et al. (2017) firstly proposed a network vector
autoregressive model (NAR) to incorporate network structure. Specifically, they assume
that

Yit = µ+X⊤
i γ + η0n

−1
i

N∑
j=1

aijYj(t−1) + η1Yi(t−1) + ϵit,(0.1)

where Yt = (Y1t, . . . , YNt)
⊤ is the high-dimensional response vector with N being the

number of nodes in network G, the node-specific covariate vector Xi is independent
and identically distributed random, A = (aij)

N
i,j=1 ∈ {0, 1}N×N is the adjacent matrix of

G with aij = 1 if there exists an edge between nodes i and j and aij = 0 otherwise,
ni =

∑n
j=1 aij is the degree of node i, and (µ,γ, η0, η1) are parameters to be estimated.

Since Zhu et al. (2017), many extensions of NAR model have been studied. For example,
Wu (2019) extends model (0.1) to a time-varying setting by allowing (µ,γ, η0, η1) to
change with t. Zhu et al. (2022) further extends to the functional varying coefficient
setting. Another extension route is to assume that there exists some group structure
among N nodes to capture the heterogeneity of nodes (Zhu and Pan, 2020; Chen et al.,
2023; Zhu et al., 2023), which means that parameters are the same within each group
but different across different groups. Li et al. (2023) studied a grouped time-varying NAR
model by assuming the time-varying functional coefficients share some group structure.

However, all aforementioned methods have the following drawbacks. The first one is
that network G does not change over time. In real world, edges among nodes usually
change frequently and drastically as time increases (Matias and Miele, 2017; Liu et al.,
2018). The second one is that they assume that A is deterministic. In practice, it is well
known that network data are collected with errors (Le and Li, 2022). It is common to
assume that network data are generated by some parametric model, such as the Erdős
Rényi model (Erdős et al., 1960) and the stochastic block model (Holland et al., 1983).
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The third one is that the heterogeneity captured by group structure is not sufficient.
Nodes within the same group should still behave differently, which corresponds to the
degree-corrected stochastic block model (Karrer and Newman, 2011). Besides, as
argued by Li et al. (2019) and Le and Li (2022), the parametric form of autoregressive
neighborhood average in model (0.1) may be inappropriate to model the network effect
to network-linked data, and thus leads to unsatisfactory performance. The last one is
the assumption that Xit’s are identically and independently distributed across
1 ≤ i ≤ N and 1 ≤ t ≤ T may be inappropriate for real data.

In this paper, we propose a novel dynamic network autoregressive model to tackle the
above problems for time-varying network-linked data. Specifically, we consider that
networks are also evolving as time changes. Then, the dynamic networks are modeled
with a tensor CANDECOMP/PARAFAC(CP) decomposition method (Kolda and Bader,
2009), where node and time features of networks are captured by some embedding
vectors in low-dimensional Euclidean space. By assuming node-embedding vectors
concentrate around some centers, we allow heterogeneity for nodes within the same
group. Next, we reformulate the NAR model (0.1) with the help of node and
time-embedding vectors. Nodes with similar embedding vectors will have similar
contributions to the response variable Yit. Moreover, we consider a flexible framework
for the effect of covariate vector Xit, where both within-group and global
homogeneities are allowed. We also allow non-random covariate vector Xit.

The main contribution of the proposed model is the development of a novel
framework to model time-varying network-linked data, which mainly integrates a
tensor decomposition method and the NAR model (0.1). Instead of considering a
deterministic network without changing over time, we model dynamic networks via
tensor decomposition. To the best of our knowledge, this is the first attempt to consider
dynamic networks for network-linked data. More importantly, we propose a new
dynamic network autoregressive model, which incorporates node-embedding and
time-embedding vectors as dynamic network impact factors. It is more natural than the
neighborhood average effect in literature. Node-embedding and time-embedding
vectors and the group structure are estimated using the tensor power update algorithm
(Zhang et al., 2023). To solve the resultant optimization task for the dynamic network
autoregressive model, we employ a group lasso-type penalty and develop an efficient
alternative update algorithm. Further, we establish the asymptotic consistencies for the
proposed method whether the global effect of covariate vector exists or not. The
superior numerical performance of the proposed method is supported by extensive
simulated examples and a real application on time-varying network-linked fund data.

REFERENCES

Chen, E. Y., Fan, J., and Zhu, X. (2023). Community network auto-regression for high-
dimensional time series. Journal of Econometrics, 235(2):1239–1256.
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HIGHER-ORDER ACCURATE TWO-SAMPLE NETWORK INFERENCE AND
NETWORK HASHING: A SCIENTIFIC REPORT

YUAN ZHANG

1. INTRODUCTION AND PROBLEM STATEMENT

Two-sample hypothesis testing for network comparison is a fundamental statistical
problem with applications in neuroscience, genomics, and social network analysis. The
central challenge involves determining whether two collections of network observations
arise from the same distribution or represent distinct populations with different structural
characteristics.

Traditional network comparison methods face several limitations: dependence on
strong distributional assumptions, lack of finite-sample guarantees, inability to handle
heterogeneous network properties, and computational inefficiency for large-scale
applications. The paper addresses these challenges through a unified framework that
handles repeated network observations, accommodates unknown node correspondence,
achieves higher-order finite-sample accuracy, and provides fast computation with
theoretical guarantees.

2. METHODOLOGY AND THEORETICAL CONTRIBUTIONS

2.1. Core Framework. The proposed method introduces a comprehensive statistical
toolbox with the following key features:

Unified Test Statistic: The methodology establishes a test statistic based on network
structural features that maintains consistent performance across different data
configurations, adapting seamlessly to scenarios with or without node matching
information.

Higher-Order Finite-Sample Accuracy: Unlike traditional approaches focusing on
asymptotic properties, this method achieves higher-order accuracy in finite samples
through carefully designed bias correction and variance estimation techniques.

Adaptive Design: The method automatically adapts to different network
characteristics without requiring users to pre-specify sparsity or scale parameters,
enhancing practical usability across diverse applications.

2.2. Network Hashing Framework. A significant innovation is the development of a
network hashing framework for large-scale network databases:

Hash Algorithm: The algorithm compresses network structural information into fixed-
length hash codes while preserving distance relationships between networks, enabling
efficient similarity-based retrieval.

Fast Querying: The framework enables rapid similarity queries in large-scale
databases, transforming query complexity from linear to near-constant time with
important implications for network data mining and pattern recognition.
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2.3. Theoretical Guarantees. The paper provides rigorous theoretical analysis with
several key results:

Power Optimality: The method achieves power optimality under the minimax
framework, attaining the highest possible detection probability given error rate
constraints.

Finite-Sample Theory: Comprehensive analysis includes exact distributions of test
statistics, non-asymptotic error rate bounds, and precise characterization of power
functions.

Minimax Optimality: The proposed tests achieve minimax optimal rates for network
comparison problems, establishing fundamental limits for this class of inference
problems.

3. EXPERIMENTAL VALIDATION

3.1. Simulation Studies. Extensive simulations validate the methodology across diverse
network models including random graphs, small-world networks, scale-free networks,
and stochastic block models. Performance benchmarking reveals significant advantages
in both accuracy and computational speed compared to existing methods. The finite-
sample theoretical guarantees are confirmed through simulation studies across realistic
sample size regimes.

3.2. Real Data Applications. The method demonstrates practical utility through two
real-world applications:

Brain Network Analysis: Application to brain connectivity data successfully identifies
differences in network connection patterns between populations, showcasing potential
in neuroscience research.

Social Network Analysis: Analysis of social network data validates utility in social
science research, providing tools for understanding network evolution and structural
characteristics.

Both applications reveal previously unidentified network structures, demonstrating the
method’s capability to uncover subtle but meaningful differences.

3.3. Computational Performance. Experimental results show substantial
improvements in computational efficiency and scalability. The hashing framework
enables efficient memory utilization, making the approach practical for large network
databases that might otherwise exceed memory constraints.

4. INNOVATIONS AND IMPACT

4.1. Key Innovations. Theoretical Advances: The unified framework handles
scenarios with and without node correspondence, achieving finite-sample higher-order
accuracy and establishing minimax optimality.

Methodological Contributions: Adaptive algorithm design reduces parameter tuning
burden while the network hashing mechanism provides novel solutions for large-scale
network data management.

Practical Benefits: Significant computational improvements, memory efficiency, and
user-friendly implementation facilitate adoption across research communities.
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4.2. Applications and Future Directions. The research has broad applications in
biomedical research (brain networks, gene regulatory networks), social sciences
(network evolution analysis), and engineering (communication networks,
recommendation systems). Future extensions include dynamic network analysis,
multilayer network handling, and integration with machine learning approaches.

5. CONCLUSIONS

The work by Shao et al. represents a comprehensive solution to fundamental
challenges in network comparison through two-sample hypothesis testing. Key
contributions include:

• Establishment of unified testing frameworks with finite-sample higher-order
accuracy

• Proof of minimax optimality and comprehensive theoretical guarantees
• Development of innovative network hashing for large-scale applications
• Substantial improvements in computational efficiency while maintaining

statistical optimality
• Demonstration of practical utility across diverse real-world applications

The comprehensive nature of this work—combining rigorous theory, practical
methodology, and extensive validation—establishes it as a significant contribution to
network statistics with lasting impact on both theoretical understanding and practical
applications. As network data becomes increasingly prevalent across scientific
disciplines, this research provides powerful analytical tools that will likely inspire
subsequent developments in network statistical methodology.
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FROM SCORE ESTIMATION TO SAMPLING

HARRISON ZHOU

Recent impressive advances in the algorithmic generation of high-fidelity images,
audio, and video can be largely attributed to the success of score-based diffusion
models. A crucial step in their implementation is score matching, which involves
estimating the score function of the forward diffusion process from training data. In this
work, we establish the rate-optimal estimation of the score function for smooth,
compactly supported densities and explore its applications to estimation of density,
transport, and optimal transport.
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NONPARAMETRIC INFERENCE ON NETWORK EFFECTS WITH DEPENDENT
EDGES: OPTIMALITY, TWO-SAMPLE, MULTIPLE STRATA

WEN ZHOU

Testing network effects in weighted directed networks is a foundational problem in
econometrics, sociology, and psychology. Yet, the prevalent edge dependency poses a
significant methodological challenge. Most existing methods are model-based and come
with stringent assumptions, limiting their applicability. In response, we introduce a
novel, fully nonparametric framework that requires only minimal regularity
assumptions. While inspired by recent developments in U-statistic literature, our
approach notably broadens their scopes. Specifically, we identified and carefully
addressed the challenge of indeterminate degeneracy in the test statistics – a problem
that aforementioned tools do not handle. We established Berry-Esseen type bounds for
the accuracy of type-I error rate control. With original analysis, we also proved the
minimax power optimality of our test. Simulations underscore the superiority of our
method in computation speed, accuracy, and numerical robustness compared to
competing methods.

NEW YORK UNIVERSITY, USA
Email address: w.zhou@nyu.edu

Page 77



HYPERBOLIC NETWORK LATENT SPACE MODEL WITH LEARNABLE CURVATURE

JI ZHU

Network data is ubiquitous in various scientific disciplines, including sociology,
economics, and neuroscience. Latent space models are often employed in network data
analysis, but the geometric effect of latent space curvature remains a significant,
unresolved issue. In this work, we propose a hyperbolic network latent space model
with a learnable curvature parameter. We theoretically justify that learning the optimal
curvature is essential to minimizing the embedding error across all hyperbolic
embedding methods beyond network latent space models. A maximum-likelihood
estimation strategy, employing manifold gradient optimization, is developed, and we
establish the consistency and convergence rates for the maximum-likelihood estimators,
both of which are technically challenging due to the non-linearity and non-convexity of
the hyperbolic distance metric. We further demonstrate the geometric effect of latent
space curvature and the superior performance of the proposed model through extensive
simulation studies and an application using a Facebook friendship network.
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