
Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Abstracts are updated as of 9 June 2025 

Abstracts 
 
Frédéric Barbaresco Thales Group, France........................................................................................... 2 

Tolga Birdal Imperial College London, UK ............................................................................................. 4 

Cristian Bodnar Silurian AI, UK ................................................................................................................. 5 

Baris Coskunuzer University of Texas Dallas, USA ............................................................................. 6 

Xiaowen Dong University of Oxford, UK ................................................................................................. 7 

Mustafa Hajij University of San Francisco, USA ................................................................................... 8 

Niu Huang National Institute of Biological Sciences, China  
Tsinghua Institute of Multidisciplinary Biomedical Research, China ........................................... 9 

Wei Huang RIKEN, Japan ........................................................................................................................... 10 

Stephan Huckemann  Georg-August-Universität Göttingen, Germany ...................................... 11 

Stephan Klaus Mathematisches Forschungsinstitut Oberwolfach, Germany .......................... 12 

Patrice Koehl University of California, Davis, USA ............................................................................ 13 

Ran Levi The University of Aberdeen, UK ............................................................................................. 14 

Zheng Ma Shanghai Jiao Tong University, China ............................................................................... 15 

Frank Nielsen Sony Computer Science Laboratories, Japan .......................................................... 16 

Anthea Monod Imperial College London, UK ...................................................................................... 17 

Hans Riess Georgia Institute of Technology, USA.............................................................................. 18 

Roman Sauer Karlsruhe Institute for Technology, Germany ......................................................... 19 

Jian Tang HEC Montréal, Canada ............................................................................................................ 20 

Ben Yang University of Oxford, UK Max Planck Institute of Molecular Cell Biology and 
Genetics, Germany......................................................................................................................................... 21 

Yaoyu Zhang Shanghai Jiao Tong University, China ......................................................................... 22 

Yipeng Zhang Nanyang Technological University, Singapore ...................................................... 23 

Difan Zou University of Hong Kong, Hong Kong SAR ....................................................................... 24 

 
  



Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Page | 2  
 

Frédéric Barbaresco 
Thales Group, France 

Symplectic Foliation-informed Neural Network (SFINN) and Lie 
Groups Machine Learning based on Jean-marie Souriau Lie Groups 

Thermodynamics & Koszul Information Geometry 

   The symplectic model of statistical mechanics developed by Jean-Marie Souriau, termed 

the “Thermodynamics of Lie Groups”, extends the structures of information geometry to 

the realm of Lie groups. This framework enables the definition of Maximum Entropy 

Gibbs densities possessing the property of covariance under the action of the group 

operating on the system. Moreover, it generalises the Fisher-Rao-Fréchet metric to Lie 

groups, rendering it invariant under the group’s action. Crucially, Shannon’s axiomatic 

definition of entropy is supplanted by a purely geometric construction, wherein entropy 

emerges as a Casimir invariant function defined on the leaves of the foliation induced by 

coadjoint orbits through the moment map associated with the group action (the moment 

map being the geometric counterpart of Noether’s theorem). 

Souriau’s thermodynamics of Lie groups introduces a web-like geometric structure 

composed of two transverse foliations: a symplectic foliation generated by coadjoint 

orbits (corresponding to the level sets of entropy) and a transverse Riemannian foliation 

(corresponding to the level sets of energy). The dynamics on each foliation make it 

possible to distinguish between non-dissipative phenomena (with constant entropy) and 

dissipative phenomena (with constant energy and entropy production). This dynamic 

behaviour is governed by a metriplectic flow that encapsulates the first law of 

thermodynamics through Poisson bracket (quantitative conservation of energy) and the 

second law through metric flow bracket (qualitative degradation of energy and 

generation of entropy). 

We shall explore the connections between TINNs (Thermodynamics-Informed Neural 

Networks), metriplectic flows, and the Lie groups thermodynamics. The overarching aim 

is for TINNs not merely to learn from data, but also to adhere to thermodynamic 

constraints, thereby enabling more accurate predictions and a deeper understanding of 

physical systems, particularly those characterised by dissipative phenomena. 
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Souriau Lie Groups Thermodynamics is studied in the framework of two European action, 

European CaLISTA COST action and European CaLIGOLA MSCA action. 
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Tolga Birdal 
Imperial College London, UK 

Topological Complexity Measures as Proxies for  
Generalization in Neural Networks 

Deep neural networks (DNNs) exhibit remarkable generalization abilities, yet the 

mechanisms behind these capabilities remain poorly understood, defying the established 

wisdom of statistical learning theory. Recent research has revealed a compelling link 

between the fractal structures formed during iterative training and the resulting 

generalization performance. In this talk, Dr. Birdal sheds new light on these connections 

by presenting a novel framework that ties complexity measures to the topological 

properties of the training process. 

The presentation begins by bounding the generalization error through the fractal 

dimension of training trajectories, practically computed using tools from persistent 

homology—introducing the 'persistent homology dimension' as a new, insightful proxy 

for generalization. Building on this, Dr. Birdal introduces more computationally efficient 

topological complexity measures that bypass the need for continuous training 

trajectories. These measures consistently show strong correlations with the 

generalization gap across diverse models, including transformers and graph networks. 

The findings hold transformative implications for both theory and practice, offering a 

new lens to study, understand and optimize the generalization power of modern AI 

systems. 

  

Relevant Publications: 

[1] https://arxiv.org/abs/2111.13171 [arxiv.org] (NeurIPS 2021) 

[2] https://arxiv.org/abs/2407.08723 [arxiv.org] (NeurIPS 2024) 
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Cristian Bodnar 
Silurian AI, UK 

Aurora: A Foundation Model for the Earth System 

Reliable forecasts of the Earth system are crucial for human progress and safety from 

natural disasters. Artificial intelligence offers substantial potential to improve prediction 

accuracy and computational efficiency in this field, however this remains underexplored 

in many domains. Here we introduce Aurora, a large-scale foundation model for the Earth 

system trained on over a million hours of diverse data. Aurora outperforms operational 

forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution 

weather forecasting at orders of magnitude smaller computational expense than 

dedicated existing systems. With the ability to fine-tune Aurora to diverse application 

domains at only modest computational cost, Aurora represents significant progress in 

making actionable Earth system predictions accessible to anyone. 

 

Back to Contents Page 
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Baris Coskunuzer 
University of Texas Dallas, USA 

Topological Compound Fingerprinting in  
Computer-Aided Drug Discovery 

In this talk, I present a novel topology-based approach to virtual screening in computer-

aided drug discovery using multiparameter persistence. Traditional methods relying on 

SMILES strings, molecular fingerprints, or deep learning models like VAEs and GNNs face 

challenges in scalability and performance saturation. Our method generates 

multidimensional topological fingerprints by decomposing compounds into chemically 

informed substructures and extracting persistent homology features at multiple 

resolutions. We reformulate VS as a graph ranking problem and use few-shot learning 

techniques to effectively rank compounds by drug-likeness. Our approach achieves 

substantial performance gains over state-of-the-art methods on benchmark datasets. For 

more details, please refer to our paper: https://arxiv.org/abs/2211.03808 
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Xiaowen Dong 
University of Oxford, UK 

Bayesian Optimisation of Graph-based Functions 

The increasing availability of graph-structured data motivates a new type of optimisation 

problems over graph-based functions, i.e., searching for the graph or node that maximises 

the value of an underlying function. Such optimisation problems are challenging due to 

the discrete and high-dimensional search space, as well as the underlying function that is 

often black-box and expensive to evaluate. In this talk, I will provide several examples on 

how Bayesian optimisation can be used to optimise graph-based functions, with practical 

applications in computational, epidemiological, and social networks. More broadly, these 

examples demonstrate the promise in combining probabilistic and geometric reasoning 

in analysing complex functions. 

 

Back to Contents Page 
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Mustafa Hajij 
University of San Francisco, USA 

Frontiers and Opportunities in Topological Deep Learning 

In recent years, deep learning has achieved remarkable success across various domains, 

particularly in tasks involving data structured as regular grids or sequences, such as 

images and text. However, scientific and real-world data frequently exhibit complex, non-

Euclidean structures—including point clouds, meshes, graphs, and higher-order 

topological spaces—that challenge the assumptions of traditional neural network 

architectures. Topological Deep Learning (TDL) is an emerging field that extends deep 

learning methods to handle these rich and intricate data types. By incorporating 

topological constructs such as simplicial complexes, cell complexes, and hypergraphs, 

TDL enables the modelling of higher-order relationships, global dependencies, and 

qualitative spatial properties that are otherwise inaccessible to standard approaches. 

This talk will explore the foundational ideas behind TDL, the computational and 

theoretical challenges it presents, and its broad potential to enhance learning in diverse 

areas—from physics-informed machine learning and neuroscience to social network 

analysis and beyond. 

 

Back to Contents Page 
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Niu Huang 
National Institute of Biological Sciences, China 
Tsinghua Institute of Multidisciplinary Biomedical Research, 
China 

Integrating HPC and AI:  
A New Paradigm for Predicting Protein-ligand Binding 

In the process of small molecule drug discovery, the prediction of protein-ligand 

interactions urgently demands enhancements in computational accuracy and efficiency, 

given its crucial role in identifying novel lead compounds for new targets. However, 

current artificial intelligence (AI) models are constrained by the scarcity of large, high-

quality protein-ligand complex structures and binding data, which consequently impairs 

their generalization ability, limiting their effectiveness in real-world applications. We 

have been actively exploring the potential of physics-based high performance computing 

(HPC). The remarkable computational power of HPC allows us to generate vast, top-tier 

datasets that are invaluable for both training and testing AI modes. When integrated with 

AI’s proficiency in pattern recognition and predictive modelling, this combination allows 

for the rapid and in-depth analysis of molecular structures, more accurate prediction of 

drug-target interactions. Our ongoing research and practice will highlight the profound 

synergy between HPC and AI in facilitating more accurate and efficient calculations of 

molecular interactions, illuminating viable strategies to surmount existing data 

limitations and improve the predictive capabilities of AI models. 

 

Back to Contents Page 
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Wei Huang 
RIKEN, Japan 

Decoding Deep Graph Neural Networks:  
An Optimization and Generalization Perspective 

Graph Neural Networks (GNNs) have emerged as a powerful framework for modelling 

graph-structured data, yet challenges such as over-smoothing, trainability degradation in 

deep architectures, and understanding the role of structural information remain. In this 

talk, we will explore two complementary research directions addressing these challenges 

from both optimization and generalization perspectives. 

First, we will delve into the optimization dynamics of deep GNNs using a Graph Neural 

Tangent Kernel (GNTK) framework. This approach reveals an exponential decline in 

trainability as network depth increases—a phenomenon that standard residual 

connections can only partially mitigate. Based on these insights, we introduce the Critical 

DropEdge method, a connectivity-aware and graph-adaptive sampling strategy designed 

to fundamentally counteract this decay and enhance model performance. 

In the second part of the talk, the focus shifts to the feature learning capabilities of GNNs. 

We will demonstrate how graph convolution, by leveraging inherent structural 

information, significantly amplifies signal learning while suppressing noise 

memorization. Comparative analyses with multilayer perceptrons (MLPs) highlight that 

graph convolution offers superior generalization. 

 

Back to Contents Page 
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Stephan Huckemann  
Georg-August-Universität Göttingen, Germany 

Dirty Limit Theorems and Applications 

Fréchet means are generalizations of the expected value to manifolds and stratified 

spaces. Their asymptotic rates, however, may deviate from those of their Euclidean kin. 

For instance, faster rates let the sample mean "stick" to the population mean, whereas 

slower rates let it appear to be "smearily" spread out. In this talk we illustrate some 

relationships between geometry and statistics via dirty (sticky, smeary) asymptotic rates 

of Fréchet means. We illustrate the relevance of these results for statistical testing for  

geometrical shape. 

 

Back to Contents Page 
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Stephan Klaus 
Mathematisches Forschungsinstitut Oberwolfach, Germany 

Nonlinear Regression with Real Algebraic Varieties and their Topology 

The standard approach in topological data analysis is by persistent homology using the 

Čech or Vietoris-Rips complex for a point data cloud. This approach has a problem of high 

computational cost. 

In our talk we consider another possible method: approximation of the point cloud by 

nonlinear regression with real algebraic varieties. In addition, we give an overview on 

some results concerning the topology of real algebraic varieties. 

 

Back to Contents Page 
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Patrice Koehl 
University of California, Davis, USA 

A Physicist’s View on Partial 3D Shape Comparison 

Scientists have access to a wide range of digital sensors that allow them to report at 

multiple time and length scales on the subjects of their studies.  Finding efficient 

algorithms to describe and compare the shapes included in those reports has become a 

central problem in data science.  Those algorithms have gained from developments in 

computational geometry and in machine learning.  In this talk I will present another 

source of support to further improve those algorithms.  Using techniques from statistical 

physics, I show that we can define a possibly partial correspondence between 3D shapes,  

with a cost associated with this correspondence that serves as a measure of the similarity 

of the shapes.  I will illustrate the effectiveness of this approach on synthetic data as well 

as on real anatomical data.  

 

This is joint work with Dr Henri Orland, IPHT, CEA, Saclay, France. 
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Ran Levi 
The University of Aberdeen, UK 

Foundations of Differential Calculus for Modules over Small Categories 

Let 𝑘𝑘 be a field and let C be a small category. A 𝑘𝑘-linear representation of C, or a 𝑘𝑘C-module, 

is a functor from C to the category of finite dimensional vector spaces over 𝑘𝑘. A motivating 

example for this work is the concept of a tame generalised persistence module, which can 

be reduced to the case where C is a finite poset. Unsurprisingly, it turns out that when the 

category C is more general than a linear order, then its representation type is generally 

infinite and in most cases wild. Hence the task of understanding such representations in 

terms of their indecomposable factors becomes difficult at best, and impossible in general. 

In a joint project with Jacek Brodzki and Henri Rihiimaki we proposed a new set of ideas 

designed to enable studying modules locally. Specifically, inspired by work in discrete 

calculus on graphs, we set the foundations for a calculus type analysis of 𝑘𝑘C-modules, 

under some restrictions on the category C. In this talk I will review the basics of the theory 

and describe some more recent advances. 

 

Back to Contents Page 
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Zheng Ma 
Shanghai Jiao Tong University, China 

Solving PDE Inverse Problems with Generative  
Models and Their Applications 

While deep learning has advanced PDE inverse problem solutions, current methods often 

depend on paired data or retraining when conditions change—limiting efficiency and 

flexibility. To overcome these challenges, we present an unsupervised inversion 

framework leveraging score-based generative diffusion models within a Bayesian 

inversion paradigm. Our approach recasts posterior estimation as a conditional 

generative process using reverse-time stochastic differential equations (SDEs). 

Furthermore, we introduce a diffusion posterior sampling algorithm based on ordinary 

differential equations (ODEs), ensuring accuracy through marginal probability 

consistency across forward Fokker-Planck dynamics. Experiments validate robust 

performance across diverse PDEs. 

 

Back to Contents Page 
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Frank Nielsen 
Sony Computer Science Laboratories, Japan 

Computational Information Geometry on Bregman  
Manifolds and Submanifolds 

We review the construction of a Bregman manifold from a Legendre-type convex function 

[1]. By further using a representation function, we show that alpha-divergences are 

representational Bregman divergences on the positive orthant cone and curved 

representational Bregman divergences on the probability simplex [2]. We describe 

clustering [3], nearest-neighbour query data structures [4], and Voronoi diagrams [5] on 

Bregman manifolds and submanifolds with several applications in statistics and data 

science. Finally, we present work in progress pyBregMan: A Python library for algorithms 

and data-structures on BREGman MANifolds [6]. 

 

References: 

 

[1] "On geodesic triangles with right angles in a dually flat space." Progress in Information 

Geometry: Theory and Applications. Cham: Springer International Publishing, 2021. 153-

190. 

[2] "The dual Voronoi diagrams with respect to representational Bregman divergences." 

2009 Sixth International Symposium on Voronoi Diagrams. IEEE, 2009. 

[3] "On clustering histograms with k-means by using mixed α-divergences." Entropy 16.6 

(2014): 3273-3301. 

[4] "Bregman vantage point trees for efficient nearest neighbor queries." 2009 IEEE 

International Conference on Multimedia and Expo. IEEE, 2009. 

[5] "Bregman voronoi diagrams." Discrete & Computational Geometry 44 (2010): 281-

307. 

[6] PyBregMan: https://franknielsen.github.io/pyBregMan/ 
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Anthea Monod 
Imperial College London, UK 

Algebraic Geometry Learns Machines and  
Machines Learn Algebraic Geometry 

In this talk I will overview some existing results and ongoing work at the intersection of 

algebraic geometry and machine learning.  I will present how a piecewise linear and 

combinatorial variant of algebraic geometry—-known as tropical geometry—-has been 

shown to be relevant in defining neural networks and talk about some recent and current 

work that our group is doing that adapts tropical geometry theory in numerical studies 

towards a better understanding of neural network behaviour during training.  While 

algebraic geometry holds much potential for better understanding machine learning, it 

turns out that machine learning is also a powerful tool that can help develop algebraic 

geometry theory.  I will also overview some recent and ongoing work by researchers in 

my group where we use neural networks for theorem discovery in algebraic geometry. 
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Hans Riess 
Georgia Institute of Technology, USA 

Categories and Sheaves for Optimization:  
From Multi-Stage to Distributed 

Optimization techniques are central to data science, from training neural networks to 

collaborative filtering to federated learning. In this talk, we argue category theory and 

sheaf theory enhance optimization techniques. We first show that multi-stage convex and 

non-convex optimization problems can be modelled with enriched category theory. 

Motivated by coordination problems over networks, we then discuss distributed 

optimization through the lens of homological programming and introduce sheaf 

Laplacians to help solve homological programs. To conclude the talk, we present recent 

advances in sheaf Laplacians and further promising directions. 
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Roman Sauer 
Karlsruhe Institute for Technology, Germany 

Expanders, Waists, and the Kazhdan Property 

The Kazhdan property, introduced by Kazhdan in the 60s, is a property of unitary 

representations of a group. Margulis used the Kazhdan property to provide the first 

explicit construction of expander graphs which found numerous applications in 

computer science. In this talk we discuss a Riemannian analog of expander graphs as well 

as higher-dimensional generalizations. This based on joint work with Uri Bader. 
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Jian Tang 
HEC Montréal, Canada 

Geometric Deep Learning for Protein Design 

Proteins are workhorses of living cells. Understanding the functions of proteins is critical 

to many applications such as biomedicine and synthetic biology. Thanks to recent 

biotechnology breakthroughs such as gene sequencing and Cro-EM, a large amount of 

protein data (such as protein sequences and structures) are generated, providing a huge 

opportunity for AI. As the functions of proteins are determined by their structures, in this 

talk, I will introduce our recent work on protein understanding based on protein 3D 

structures with geometric deep learning. I will introduce three different topics including 

protein representation learning, generative models for protein structure prediction, and 

generative models for protein design, and also how these techniques are used for real-

world applications in protein design. 
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Ben Yang 
University of Oxford, UK 
Max Planck Institute of Molecular Cell Biology and Genetics, 
Germany 

Large Isometry Invariant Topological Transform Shape Descriptor 

The Euler Characteristic Transform (ECT) is a powerful shape descriptor thanks to its 

invertibility. However, this also means ECT is sensitive to rigid motions, meaning it can 

distinguish between representations of the same shape. To address this, we introduce 

two new tools: SampEuler, a robust, isometry-invariant shape descriptor based on ECT, 

and EulerImage, a visualization and vectorization of SampEuler. We show that both 

methods capture sufficient geometric information of the input shape while reducing the 

effects of rigid motions. We demonstrate their effectiveness on both synthetic and real-

world datasets. We also highlight how EulerImage helps interpretations of the result. 

 

Back to Contents Page 
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Yaoyu Zhang 
Shanghai Jiao Tong University, China 

Towards Understanding the Condensation  
Phenomenon of Deep Neural Networks 

Condensation (also known as quantization, weight clustering, or alignment) is a widely 

observed phenomenon where neurons in the same layer tend to align with one another 

during the nonlinear training of deep neural networks (DNNs). It is a key characteristic 

of the feature learning process of neural networks. However, due to the strong nonlinear 

nature of this phenomenon, establishing its theoretical understanding remains 

challenging. In this talk, I will present our systematic efforts to tackle this challenge in 

recent years. First, I will present results regarding the dynamical regime identification of 

condensation at the infinite width limit, where small initialization is crucial. Then, I will 

discuss the mechanism of condensation at the initial training stage and the global loss 

landscape structure underlying condensation in later training stages, highlighting the 

prevalence of condensed critical points and global minimizers. Finally, I will present 

results on the quantification of condensation and its generalization advantage, which 

includes a novel estimate of sample complexity in the best-possible scenario. These 

results underscore the effectiveness of the phenomenological approach to understanding 

DNNs, paving the way for a deeper understanding of deep learning in the near future. 

 

Back to Contents Page 



Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Page | 23  
 

Yipeng Zhang 
Nanyang Technological University, Singapore 

Multi-Cover: A Mathematical Framework for  
Topological Data Analysis and Deep Learning 

Topological Data Analysis (TDA) has made significant contributions to molecular and 

materials science. Multi-Cover Persistence (MCP) and its associated Rhomboid Tiling (RT) 

structure, as a generalization of the alpha shape in TDA, provide a powerful framework 

for capturing the shape and higher-order geometric features of objects. Leveraging these 

concepts, we developed three innovative computational models: First, a featurization-

based machine learning model where the MCP framework extracts topological features 

from the persistent homology of molecular multi-covers to predict polymer properties 

with high accuracy. Second, the RT structure forms the basis for a hierarchical graph 

pooling model for molecular graph classification tasks. Third, building upon RT's multi-

scale hierarchical structure, we developed a topological deep learning model that utilizes 

RT's higher-order geometric relationships to design an advanced message-passing 

mechanism. This framework demonstrates particular effectiveness in protein complex 

quality assessment. All three models show excellent performance, highlighting the 

versatility of MCP and RT in advancing polymer informatics, geometric graph learning, 

and topological deep learning applications. 

 

Back to Contents Page 

  



Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Page | 24  
 

Difan Zou 
University of Hong Kong, Hong Kong SAR 

Towards Understanding the Representation  
Learning of Diffusion Models 

Diffusion models (DMs) excel in generative modeling, but their theoretical foundations 

and limitations remain underexplored. This talk addresses two key aspects: their feature 

learning dynamics and their ability to capture hidden inter-feature rules. First, I show 

that the denoising objective encourages DMs to learn balanced and comprehensive data 

representations, unlike classification models that prioritize easy-to-learn patterns. 

Theoretical analysis and experiments on synthetic and real-world datasets highlight this 

distinction. Next, I explore a critical limitation: DMs often fail to learn fine-grained hidden 

rules between dependent features, such as the relationship between the height of the sun 

and shadow length in images. Empirical evaluations on models like Stable Diffusion 

reveal consistent failures, supported by synthetic tasks and theoretical insights showing 

that denoising score matching (DSM) is incompatible with enforcing rule conformity. I 

discuss potential solutions, such as classifier-guided sampling, and their limitations. This 

talk provides a deeper understanding of DMs’ strengths and weaknesses, offering insights 

for building more robust and interpretable generative models. 
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