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HIGHER-ORDER GRAPHON THEORY: FLUCTUATIONS, INFERENCE, AND
DEGENERACIES

BHASWAR B. BHATTACHARYA

Classification AMS 2020: 05C80, 60F05, 05C60

Keywords: Inhomogeneous random graphs, network analysis, generalized
U -statistics, subgraph counts.

Exchangeable random graphs, which include some of the most widely studied
network models, play a central role in statistical network analysis. Graphons, which are
the central objects in graph limit theory, provide a natural way to sample exchangeable
random graphs. It is well known that network moments (motif/subgraph counts)
identify a graphon (up to an isomorphism), hence, understanding the sampling
distribution of subgraph counts in random graphs sampled from a graphon is pivotal for
nonparametric network inference. Although there are a few results regarding the
asymptotic normality of subgraph counts in graphon models, for many commonly
appearing graphons this distribution is degenerate. This degeneracy phenomenon was
overlooked until very recently and its consequences in network inference have
remained unexplored. Towards this, in joint works with Chatterjee and Janson [1] and
Chatterjee and Dan [2] we obtain the following results:

• We derive the joint asymptotic distribution of any finite collection of network
moments in random graphs sampled from a graphon, that includes both the
non-degenerate case (where the distribution is Gaussian) as well as the
degenerate case (where the distribution has both Gaussian or non-Gaussian
components). This provides the higher-order fluctuation theory for subgraph
counts in the graphon model.

• We develop a novel multiplier bootstrap for graphons that consistently
approximates the limiting distribution of the network moments (both in the
Gaussian and non-Gaussian regimes). Using this and a procedure for testing
degeneracy, we construct joint confidence sets for any finite collection of motif
densities. This provides a general framework for statistical inference based on
network moments in the graphon model.

We also discuss various structure theorems and open questions about degeneracies of the
limiting distribution and connections to quasirandom graphs.

REFERENCES
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LOW-DIMENSIONAL ADAPTATION OF DIFFUSION MODELS

YUXIN CHEN

Keywords: diffusion models, low-dimensional structure, acceleration

Motivated by the practical efficacy of diffusion models, the past few years have
witnessed a flurry of activity towards establishing convergence theory for diffusion
generative models, particularly the two mainstream algorithms: DDPM and DDIM. For a
fairly general family of target distributions Pdata (without assuming smoothness and
log-concavity), the state-of-the-art theory demonstrated that for both DDPM and DDIM,
it takes at most the order of (modulo some log factor)

d

ε
iterations(0.1)

to yield a sample whose distribution is ε-close in total variation (TV) distance to the
target distribution, provided that perfect score function estimates are available.

Nevertheless, even linear scaling in the ambient dimension d can still be prohibitively
expensive for many contemporary applications. Take the ImageNet dataset for instance:
each image might contain 150,528 pixels, while its intrinsic dimension is estimated to
be 43 or less. As a result, applying the state-of-the-art theory (0.1) could suggest an
iteration complexity that exceeds one million, even though practical implementations of
DDIM and DDPM often produce high-quality samples in just a few hundred (or even a
few ten) iterations. The discrepancy between theory and practice suggests that worst-
case bounds, such as (0.1), may be overly conservative. To reconcile this discrepancy,
it is crucial to bear in mind the intrinsic dimension of the target data distribution and
explore whether and how diffusion models can harness this potentially low-dimensional
structure.

Motivated by this, in this talk we would like to explore how diffusion models leverage
low-dimensional structure to speed up the sampling process. Focusing on two
mainstream samplers — the denoising diffusion implicit model (DDIM) and the
denoising diffusion probabilistic model (DDPM) — and assuming accurate score
estimates, we prove that their iteration complexities are no greater than the order of
k/ε (up to some log factor), where ε is the precision in total variation distance and k is
some intrinsic dimension of the target distribution. Our results are applicable to a broad
family of target distributions without requiring smoothness or log-concavity
assumptions. Further, we develop a lower bound that suggests the (near) necessity of
the coefficients introduced by Ho et al. 2020 and Song et al. 2020 in facilitating
low-dimensional adaptation. Our findings provide the first rigorous evidence for the
adaptivity of the DDIM-type samplers to unknown low-dimensional structure, and
improve over the state-of-the-art DDPM theory regarding total variation convergence.

DEPARTMENT OF STATISTICS AND DATA SCIENCE, THE WHARTON SCHOOL, UNIVERSITY OF PENNSYLVANIA,
USA

Email address: yuxinc@wharton.upenn.edu
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AGNOSTIC CHARACTERIZATION OF INTERFERENCE IN RANDOMIZED
EXPERIMENTS (EXTENDED ABSTRACT)

DAVID CHOI

Classification AMS 2020: 62D99

Keywords: causal inference, spillovers, social networks, interference

In randomized experiments, it may be possible for the participants to affect each other,
by mechanisms such as transmission of disease, sharing of information, peer influence, or
economic competition. Such phenomena (termed “interference between units”) violates
assumptions that are commonly used for statistical inference.

Mechanisms for interference often play fundamental roles in our understanding of
social outcomes. For this reason, the empirical characterization of interference (such as
its nature, prevalence, or strength) may be of scientific interest. For experiments with
binary-valued outcomes, we give a general approach for characterizing the prevalence of
interference, which can be used to explore questions such as

Q1. How many units are affected by any treatment (including their own)?
Q2. How many units are affected by the treatment of others? of distant others?
Q3. How many units are affected by the treatment of others, provided that their own

treatment satisfies some condition?

For each of these questions, our approach gives conservative point estimates and
one-sided confidence intervals, which both lower bound the true value. Under
reasonable experiment designs, the point estimate will be consistent for a lower bound
on the true value, while the one-sided interval will cover the true value at the desired
level. These consistency and coverage properties hold without any additional
assumptions or restrictions on the nature of the interference, requiring only a
randomized experiment whose design is known. As a result, our estimates remain valid
even if they use an observed social network that is only a crude proxy for the actual
social mechanisms.

A previous attempt to answer such questions relied on inversion of a test statistic, and
produced quite conservative (though valid) lower bounds. Our new approach is
significantly tighter, and may be more practical as a result. Our point estimates are
asymptotically equal to Hajek-normalized contrasts, such as comparisons of treated
versus untreated, or comparisons of different levels of indirect exposure, or comparisons
that combine measures of direct and indirect treatment. Under stronger assumptions,
such contrasts arise naturally as estimates of treatment effects. Our results indicate that
without assumptions on interference, these contrasts may be interpreted more weakly
as lower bounds on the number of units who are affected by the treatments. We also
find empirically that our interval estimates have efficiency (i.e., interval widths) which
is competitive with, and often better than, that of the expected average treatment effect
(EATE), an assumption-lean treatment effect.
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0.1. Idea of Method. Consider an experiment on N units, with X = (X1, . . . , XN)
denoting the binary-valued treatment of each unit, and Y = (Y1, . . . , YN) denoting their
binary outcomes. We allow for arbitrary interference, so that the outcome Yi of unit i
may potentially depend on all N treatments,

Yi = fi(X1, . . . , XN), i ∈ [N ](0.1)

where the potential outcome mappings {fi}Ni=1 may be arbitrary and unknown.
Suppose that we wish to estimate τ basic, the number of units who are affected by any

treatment, including their own treatment or the treatment of others. To define this
estimand, let I ⊂ [N ] denote the subset of units who are unaffected by treatment and
have constant outcome mappings,

I = {i : fi(X) is constant in X}

so that τ basic = N − |I|.
Our high-level approach to estimating τ basic is the following:

(1) Propose idealized estimators τ̂1 and τ̂2 which will have good statistical properties,
such as consistency and asymptotic normality, but require knowledge of I

(2) Show that ∆, the difference in average outcomes between treated and control
(which can be computed without knowledge of I) converges to a lower bound
for max(τ̂1, τ̂2), so that if τ1 and τ2 are both consistent for τ basic, then ∆ is an
asymptotic lower bound.

(3) Lower bound the boundary of the lower 1-sided confidence intervals induced
by τ̂1 and τ̂2 and their variance estimates, by minimizing the tighter of the two
boundaries over all hypotheses for the unknown subset I.

To define τ̂1 and τ̂2, let Si denote the indicator of whether unit i’s treatment and
outcome have the same binary value,

Si = 1{(Xi, Yi) = (1, 1) or (0, 0)},(0.2)

and let τ̂1 and τ̂2 denote sampling-based estimators of τ basic = N − |I|, in which the
unknown cardinality of I is unbiasedly estimated by a probability-weighted (i.e., Horvitz-
Thompson) sample:

τ̂1 = N −
∑
i∈I

1{Si = 1}
P (Si = 1)

and τ̂2 = N −
∑
i∈I

1{Si = 0}
P (Si = 0)

(0.3)

Because τ̂1 and τ̂2 involve only units in I whose outcomes are unaffected by treatment
and hence are constant, they often will exhibit simple statistical behavior, even if strong
interference exists between units who are not in I. For example, if treatment is assigned
by independent Bernoulli randomization, then τ̂1 and τ̂2 are sums of independent
variables. Similarly, if the dependencies between the unit treatments are bounded, then
τ̂1 and τ̂2 are sums of variables whose dependencies will be similarly bounded. For this
reason, under a variety of designs we may expect the values of τ̂1 and τ̂2, while
unknown due to I being unknown, to concentrate at their expectation (which equals
τ basic) and to be asymptotically normal.

Our motivation for constructing τ̂1 and τ̂2 is the following: under mild conditions on
the experiment design, the maximum of τ̂1 and τ̂2 is lower bounded by the magnitude of
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the propensity-weighted difference in outcomes between treated and control, given by

∆ =
N∑
i=1

(
Xi

P (Xi = 1)
− 1−Xi

P (Xi = 0)

)
Yi,

as stated by Theorem 0.1 below:

Theorem 0.1. Let the total weights of the treated and control converge to their expectations,
so that

N∑
i=1

Xi

P (Xi = 1)
= N +OP (N1/2) and

N∑
i=1

1−Xi

P (Xi = 0)
= N +OP (N1/2)(0.4)

Then it holds that

(0.5)

∣∣∣∣∣
N∑
i=1

(
Xi

P (Xi = 1)
− 1−Xi

P (Xi = 0)

)
Yi

∣∣∣∣∣ ≤ max(τ̂1, τ̂2) +OP (N1/2)

If τ̂Haj
1 and τ̂Haj

2 are asymptotically normal, with consistent variance estimators denoted
by V̂1 and V̂2, then by combining 1-sided confidence intervals it holds with probability
converging to at least 1− α that

τ basic ≥ max

{
τ̂Haj
1 − z1−α

2

√
V̂1, τ̂

Haj
2 − z1−α

2

√
V̂2

}
.(0.6)

As the right hand side of (0.6) requires knowledge of I, it cannot be computed.
To construct a computable one-sided confidence interval for τ basic, we will lower bound

(0.6) by minimizing over all possible hypotheses for the unknown I. Doing so results in
the confidence statement that with probability at least 1− α,

τ basic ≥ max
(

min
φ∈{0,1}N

τ̂Haj
1 (φ)− z1−α

2

√
V̂1(φ), min

φ∈{0,1}N
τ̂Haj
2 (φ)− z1−α

2

√
V̂2(φ)

)
,(0.7)

where τ̂Haj
k (φ) and V̂k(φ) denote τ̂Haj

k and V̂k evaluated under the hypothesis that I = {i :
φi = 1} for φ ∈ {0, 1}N . (See paper for further details, such as the form of the variance
estimators V̂1 and V̂2.)

0.2. Illustrative Example. In an experiment described in [Cai et al., 2015], rural
farmers in China were randomly assigned to information sessions where they would be
given the opportunity to purchase weather insurance. The sessions were randomized to
give either high or low levels of information about the insurance product. First round
sessions were held three days before second round sessions, so that first round
attendees would have opportunity for informal conversations with their second round
friends, in which they might share their opinions about the insurance product. Social
network information was elicited, with the farmers instructed to list 5 close friends with
whom they specifically discussed rice production or financial issues.

The goal of the experiment was to broadly demonstrate the importance of
information sharing, by measuring its effects in a randomized setting. One of the
conclusions of [Cai et al., 2015] was that the decision to purchase insurance was
affected not only by a farmer’s own treatment assignment, but also by that of their
friends; specifically, farmers assigned to a second round low-information session were
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more likely to purchase insurance if more of their listed friends in the first round were
assigned to a high-information session.

For this experiment, our point estimate is that at least 23% of second round farmers,
if assigned to a low information session, would be affected by information given to the
first round farmers (1-sided 95% CI: at least 9%). This point estimate of 23% is
asymptotically equal to a Hajek-normalized comparison of second round units who
received low information directly but had many first round friends with high
information, versus those in the second round who received low information directly
and had few or no first round friends with high information :

point estimate ≈
N∑
i=1

(
1

N̂1

1{Xi = 0,Wi = 1}
P (Xi = 0,Wi = 1)

− 1

N̂0

1{Xi = 0,Wi = 0}
P (Xi = 0,Wi = 0)

)
Yi

Here i ∈ [N ] enumerates the second round units, Xi = 0 if unit i was assigned to a low
information session, Wi = 1 if all of unit i’s first round friends received high information,
Yi denotes unit i’s decision of whether or not to purchase insurance, and N̂1 and N̂0

denote the Hajek normalization factors, where N̂a =
∑N

i=1(P (Xi = 0,Wi = a))−1 for
a = 0, 1.

For comparison, we consider an EATE-type treatment effect that considers the relative
effects of receiving (Xi,Wi) equal to (0, 1) versus (0, 0):

treatment effect =
1

N

N∑
i=1

(E[Yi|Xi = 0,Wi = 1]− E[Yi|Xi = 0,Wi = 0]) ,

where the expectation is taken over the randomization of treatment under the
experiment design. For this target parameter, the method of [Gao and Ding, 2023] gives
a Hajek-normalized point estimate of 23%, and 95% CI of [2%, 45%]. This confidence
interval requires an assumption of “approximate neighborhood interference”, in which
the interference between farmers in different villages is asymptotically negligible. Such
an assumption might be debatable, as farmers listed cross-village friendships. In
contrast, no assumptions on interference are required for our estimand. Thus for the
purposes of demonstrating the presence of social influence (as opposed to policy
recommendation), our estimand may be an appropriate target parameter, and has
tighter, less questionable CIs when compared to an analogous treatment effect.

REFERENCES
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HIGH-DIMENSIONAL NETWORK CAUSAL INFERENCE

YINGYING FAN

Classification AMS 2020: 62E20; 91D30

Keywords: Network interference, Nonparametric interference effects, Average direct
treatment effect on the treated, Confidence intervals, Neighborhood size confidence set

We propose a new method of high-dimensional network causal inference (HNCI) that
provides both valid confidence intervals for the average direct treatment effect on the
treated (ADET) and valid confidence sets for the neighborhood size affecting the
interference effect. Consider a sample of n units indexed by i ∈ [n] := {1, 2, . . . , n},
connected through an interference network G, where each unit is randomly assigned a
binary treatment Zi ∼ Bernoulli(pi) for some pi ∈ (0, 1). Let
z = (z1, z2, · · · , zn)T ∈ {0, 1}n denote the treatment assignments, which serves as a
realization of the random vector Z = (Z1, Z2, · · · , Zn)

T . For example, z could indicate
that a tax incentive is offered to a specific subset of businesses in a region. In the
network setting, the units are referred to as nodes in G, which are rarely independent of
each other. Hence, the effect of a tax incentive on a specific company may depend on
whether its collaborators or competitors also receive the tax incentive. For the n nodes
connected through G, the potential outcome of the ith node is defined as
Ỹi(z) = Ỹi(zi, z−i), where Ỹi(·) : {0, 1}n → R, and zi and z−i are the treatment
assignments for the ith node and the remaining nodes, respectively. In practice, we may
observe node covariates {Ci}i∈[n].

We exploit the following potential outcome model framework introduced in [1], where
the potential outcome of the ith node is defined as

(0.1) Ỹi(zi, z−i) = ziτi + f
(
γ0(G

z
i (k0))

)
+ ϵi.

Here, τi := E{Ỹi(1,0−i) − Ỹi(0,0−i)|Ci} is the average direct effect of the treatment on
the ith node, i ∈ [n], γ0(·) is a known mapping satisfying the nested matching property
that γ0(G

z
i (k)) = γ0(G

z
j (k)) implies γ0(G

z
i (k

′)) = γ0(G
z
j (k

′)) for all k′ ∈ [k], f(·) is an
unknown interference function, k0 is the smallest neighborhood size that satisfies (0.1),
and ϵi’s are independent errors with E(ϵi) = 0, Var(ϵi) = σ2

0.
We work under model (0.1) to estimate and infer the average direct treatment effect

on the treated (ADET)

(0.2) τ :=
1∑n

i=1 Zi

n∑
i=1

Ziτi,

which represents the average incremental response of treated units to their own
treatments. We are also interested in estimating the neighborhood size k0 with
statistical uncertainty guarantee.

For untreated nodes zi = 0, we have

(0.3) Ỹi(0, z−i) = f
(
γ0(G

z
i (k0))

)
+ ϵi.
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Thanks to the nested matching property, for each pre-specified neighborhood size k ≥ k0,
the set of untreated nodes can be partitioned into d(k) disjoint subsets, denoted as Sk =
{Sk,1, Sk,2, . . . , Sk,d(k)}, where each subset Sk,j contains nodes with the same interference
function value γ0(G

z
i (k)) for all i ∈ Sk,j. Define the vector of true interference function

values over the node partition Sk as

(0.4) β0
k = (β0

k,1, β
0
k,2, · · · , β0

k,d(k))
T .

Based on this property, the response vector yobs ∈ Rn0 of untreated nodes can be rewritten
in the form of a linear regression model

(0.5) yobs = Xkβ
0
k + ε0,

where Xk ∈ {0, 1}n0×d(k) is the design matrix with each row indicating the corresponding
unit’s membership in Sk, and ε0 is the error term. Since k can be larger than k0 and
the function f can be many-to-one, there exisits unknown homogeneity in the regression
coefficient vector β0

k, and the true interference function values {f(γ0(Gz
i (k))) : zi = 0, i =

1, · · · , n} can be estimated by estimating the regression coefficients β0
k in (0.5).

By considering this linear representation, we reformulate the original nonparametric
model into a linear regression model where the regression coefficients, corresponding to
the underlying true interference function values of nodes, exhibit a latent homogeneous
structure. This formulation enables us to leverage existing literature on homogeneity
pursuit [3] to conduct valid statistical inferences with theoretical guarantees for
estimating the unknown β0

k. This gives us the estimates of the set of interference
function values {f(γ0(Gz

i (k))) : zi = 0, i = 1, · · · , n} and the confidence interval for
these estimates.

By using the matching technique, the estimates of ADET can also be constructed and
the confidence interval can be calculated. We theoretically justify the inference for the
ADET through establishing asymptotic normality with estimable variances. By
employing the repro samples approach [4], we further provide the confidence set for
the interference of neighborhood size k0 with theoretical guarantees. The practical
utility of the newly suggested methods is demonstrated through simulations and real
data examples.
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LEARNING LATENT FEATURES FROM NETWORK DATA

CHRISTOPHE GIRAUD

Classification AMS 2020: 62F07

Keywords: seriation, latent model, recursive trees, Jordan ordering

1. LATENT VARIABLE MODEL

We describe a graph by its adjacency matrix X ∈ {0, 1}n×n.

Definition 1.1. Latent variable model. The graph is generated randomly as follows:
• each vertex i is characterized by a latent variable zi ∈ Z
• conditionally on z, the Xij are independent, with

P [Xij = 1|z] = E [Xij = 1|z] = f(zi, zj)

where f : Z × Z → [0, 1].

This model encompass the graphon model, random geometric graphs where f(zi, zj) =
g(d(zi, zj)) with d a distance on Z, the Robinson model where f decreases when moving
away from the diagonal, the stochastic block model, ranking models and so on.

An ideal objective is to recover the latent values z1, . . . , zn from the observation of X.
Yet, it is an ill-posed problem, due to the lack of identifiability: while it is a minor issue
in parametric models (estimation up to some “invariant” transformation), it is a much
more severe issue in non-parametric models. For simplicity, we focus on the case where

• f belongs to some non-parametric class, with smoothness or shape assumptions;
• the latent positions are zi = π∗(i) for π∗ a permutation of {1, . . . , n}.

The goal is to recover π∗ from X = π∗Fπ∗T + E, with Fij = f(i, j) unknown, π∗ an
unknown permutation matrix and Eij independent sub-Gaussian random variables.
What is the rate of estimation without computational constraints? What is the rate of
estimation with poly-time algorithms? Is there a gap between the two?

Statistical-computational gaps exist in latent variable model [2], for example both in
the geometric seriation model Fij = λ1|i−j|≤√n, with λ > 0, and in the Hölder graphon
model f : [0, 1]× [0, 1]→ [0, 1] with α-Hölder regularity, 0 < α < 1. We outline below two
settings where estimation can be performed in poly-time at the optimal statistical rate.

2. BI-LIPSCHITZ SHAPE CONSTRAINT

Definition 2.1. Bi-Lipschitz BL(α, β). Assume that F ∈ [0, 1]n×n is symmetric and

• Fik − Fjk ≥ α |i−j|
n

for k < i < j, and Fjk − Fik ≥ α |i−j|
n

for i < j < k;
• |Fik − Fjk| ≤ β |i−j|

n
.

The parameter α drives the signal strength. The parameter β is a smoothness
parameter.
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Example 2.2. Toeplitz matrix. The simple Toeplitz matrix Fij = 1 − α |i−j|
n

belongs to
BL(α, α).

We define the max-error loss as

`∞(π̂, π
∗) = min

π∗ admissible

1

n
max
i∈[n]
|π̂i − π∗i |

Theorem 2.3. [3] There exist some poly-time estimators π̂poly such that, for any F ∈
BL(α, β), any n ≥ Cα,β, and for some numerical constant c > 0, with probability at least
1− n−2

`∞(π̂
poly, π∗) ≤ c

α

√
log n

n
.

Furthermore, this rate is optimal for the Toeplitz matrix, up to a possible log factor.

This result proved in [3] ensures that the optimal statistical rate n−1/2 for estimating
Bi-Lipstchitz permuted matrices can be achieved by poly-time algorithms. Hence, there
is no statistical-computational gap in this case. The optimal algorithm essentially

(1) first estimates the neighborhood distance

D∗ij =

√
n
∑
k

(F π∗
ik − F π∗

jk )
2

at optimal rate |D̂ −D∗|∞ = O(n3/4);
(2) then perform a first partial ordering of points separated by O(n3/4) based on this

estimation;
(3) then refine this partial ordering by comparing partial sums, providing a reliable

partial ordering of points separated by O(n1/2).
Furthermore, Theorem 2.3 remains valid for weak local Bi-Lipschitz functions.

3. RECURSIVE TREES

Going beyond conditional i.i.d. graphs, we can consider recursive trees such as

Definition 3.1. Random Recursive Tree (RRT) Build a tree recursively by connecting
each new node to existing nodes uniformly at random

Definition 3.2. Preferential Attachement Tree (PA) Build a tree recursively by
connecting each new node to existing nodes with a probability proportional to their degree

Let us define a Jordan centroid σ̂J as a vertex such that, when removing it, it splits
the tree into components of size smaller than bn/2c. At least one, maximum two such
vertices exist. For a node u, we can define d̂(u) as the number of descendants of u in the
tree rooted at σ̂J . Then, we can order the nodes according to the number of descendant
d̂(u), ties being broken randomly. We call Jordan ordering this ordering σ̂J(u), which can
be computed in O(n log n) time.

Theorem 3.3. [1] For any α ≥ 1, in the RTT model

Rα(σ̂J) :=
∑
u∈V

|σ̂J(u)− σ(u)|
σ(u)α

≤ κ(α)n2−α + C log4 n
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with

κ(α) =
2

2− α
+

2e2

(2− α)2
+

2

(2− α)3
.

Furthermore, the rate n2−α is optimal for α ∈ [1, 2).

Most of the story is the same for the PA model, except that Descendant ordering is
optimal up to constant only for 1 ≤ α < 5/4.
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Consider a directed network with n nodes, denoted by Gn = (V,E), where
V = {1, . . . , n} is the set of nodes and E ⊆ V × V represents the edge set. We focus on
simple graphs, so no self-loops are allowed, i.e., (j, j) /∈ E for any j ∈ V . Let
Aij ∈ {0, 1} denote the random variable indicating the presence of a directed link from
node i to node j. Assuming that dyads (Aij, Aji) and (Akl, Alk) are independent
whenever {i, j} ∩ {k, l} = ∅, the Bernoulli model with reciprocity (BR) specifies
multinomial probabilities for each dyad as follows (Krivitsky and Kolaczyk, 2015):

(0.1) BR model: pij(0, 0) ∝ 1, pij(1, 0) = pij(0, 1) ∝ exp(µn), pij(1, 1) ∝ exp(2µn + ρn),

where pij(a, b) = p(Aij = a,Aji = b). In this model, µn represents the baseline tendency
of nodes i and j to connect, while ρn captures reciprocity, the propensity for pairs of nodes
to form mutual links. BR model serves as a natural extension of the Erdős–Rényi model
(Erdős and Rényi, 1959, 1960) for undirected graphs, adapted to incorporate reciprocity
for the analysis of directed networks. This model raises a fundamental question:

Question 1: What is the effective sample size for the statistical inference of µn and ρn?
This question would be straightforward if µn and ρn were fixed, as it would fall under
standard maximum likelihood estimation. However, when µn and ρn depend on n–the
regime where the network is sparse–the inference of these parameters has been only
partially explored in Krivitsky and Kolaczyk (2015). That work assumes that the effective
sample sizes for µn and ρn are of the same order. Extending the analysis to allow different
sparsity levels for µn and ρn provides a more comprehensive solution to Question 1,
offering deeper insights into the effective sample sizes required for a broader range of
network structures. Related, Chen et al. (2021) examines the effective sample size in the
context of the Erdős–Rényi model under arbitrary sparsity, focusing on a single density
parameter similar in spirit to µn. The examination of the interplay between the two
parameters, µn and ρn , under differing sparsity regimes represents a new and more
nuanced perspective, offering insights beyond those provided by models with a single
density parameter.

More importantly, a complete answer to this question will pave the way for developing
new models. As an example, we extend the BR model to the following:

p1.5 model : pij(0, 0) ∝ 1, pij(1, 0) ∝ exp
(
µn +XT

i γ1 + Y T
j γ2

)
,

pij(0, 1) ∝ exp
(
µn +XT

j γ1 + Y T
i γ2

)
,

pij(1, 1) ∝ exp
(
2µn +

(
XT

i +XT
j

)
γ1 +

(
Y T
i + Y T

j

)
γ2 + ρn + V T

ij δ
)
,(0.2)
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with additional parameters γ1, γ2, and δ, where Xi ∈ Rd1 represents covariates related
to node i’s outgoingness, Yi ∈ Rd2 relates to its incomingness, and Vij ∈ Rd3 governs the
reciprocity between nodes i and j. The model in (0.2) allows for node-specific
heterogeneity via XT

i γ1 for outgoingness and Y T
j γ2 for incomingness, and V T

ij δ to model
heterogeneity in reciprocal relationships. Assuming that the parameters associated with
the covariates are fixed, we further pose the following question:
Question 2: What are the effective sample sizes for the statistical inference of γ1, γ2, and δ?

The model in (0.2) has a close relationship with the p1 model introduced by Holland
and Leinhardt (1981), where the p1 model employs node-specific fixed effects without
explicitly accounting for link-specific reciprocity. Our model in (0.2) parametrizes these
fixed effects through covariates, achieving a more parsimonious structure. Although it
may lack some of the flexibility of the p1 model, this approach offers certain advantages,
such as enabling link prediction for new nodes not used in model fitting. Additionally,
a key advantage of the model in (0.2) lies in its suitability for sparser networks. We
show that inference is feasible as long as the number of links diverges. In contrast, the
p1 model, with its large number of parameters, typically requires much denser networks
to ensure the existence and asymptotic normality of its estimators, though no formal
inference procedures are currently available for these estimators (see literature review
below). Additionally, the model in (0.2) shares features with the p2 model (Van Duijn
et al., 2004), which also includes random effects for outgoingness and incomingness. As
our model conceptually bridges the p1 and p2 models, we refer to it as the p1.5 model.

1. THE BR MODEL

We begin by examining the effective sample sizes for the BR model as specified in
(0.1). For the sake of theoretical analysis and notational convenience, it is beneficial to
work with the parameters (µn, τn), where τn = 2µn + ρn. The negative log-likelihood
function with respect to (µn, τn) can be expressed as:

ℓ(1)n (µn, τn) =
∑
i<j

log(kn,ij)− µn

∑
i<j

(Aij(1− Aji) + Aji(1− Aij))− τn
∑
i<j

AijAji,

where kn,ij = 1+2 exp(µn)+exp(τn) serves as the normalizing constant. It is important to
note that the likelihood functions defined in terms of (µn, ρn) and (µn, τn) are equivalent,
as are their corresponding maximum likelihood estimators. This leads us to the following
lemma:

Lemma 1.1. Suppose (µ̂n, τ̂n) = argmin(µn,τn)∈R2 ℓ
(1)
n (µn, τn). Then, it follows that

(µ̂n, τ̂n − 2µ̂n) = argmin(µn,ρn)∈R2 ℓ
(2)
n (µn, ρn), where ℓ

(2)
n (µn, ρn) denotes the negative log-

likelihood function parametrized by µn and ρn. The reverse direction also holds.

Given this equivalence, we focus on estimating µn and τn. Inspired by the role of
− log n in the Erdős–Rényi model for sparse networks, we define

µn = −a log n+ µ, τn = −b log n+ τ,

where µ ∈ [−Mµ,Mµ], τ ∈ [−Mτ ,Mτ ], and a, b > 0. The constant a preceding log n
directly reflects network sparsity, though similar asymptotic normality results may arise
from other scaling factors beyond log n. From ℓ

(1)
n (µn, τn), we interpret a as the sparsity

index for non-reciprocal links and b for reciprocal links.
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This transformation clarifies the dependence of sparsity on n while allowing for
intuitive statistical inference on the fixed parameters µ and τ . For further discussions on
this topic, we refer to Krivitsky and Kolaczyk (2015) and Chen et al. (2021). It is
important to note that the constants a, µ, b, and τ are not identifiable or estimable. To
address these challenges, we will later develop a straightforward inference procedure
for µn and τn.

Under the given scaling, we find that the expected number of non-reciprocal links is
E
(∑n

i,j=1Aij −
∑

i<j AijAji

)
≍ n2−a, while the expected number of reciprocated links

is E
(∑

i<j AijAji

)
≍ n2−b. Consequently, the total expected number of links is of order

n2−a if a ≤ b, or n2−b if a > b. This scaling choice highlights that the two quantities can
indeed differ in magnitude. Notably, Krivitsky and Kolaczyk (2015) examined a special
case of our framework when a = b = 1, leading to comparable expected numbers of non-
reciprocal and reciprocated links. For sparse networks, the sufficient statistics (

∑
i<j Aij+

Aji,
∑

i<j AijAji) in the BR model can be efficiently computed using a sparse adjacency
matrix. As a result, the time complexity for computing the maximum likelihood estimator
is O(n2−min{a,b}), which is lower than O(n2) when min{a, b} > 0.

We now derive the effective sample sizes for µ and τ , assuming that a and b are known.
We begin by expressing the negative log-likelihood function as follows:

ℓn(µ, τ) =
∑
i<j

log(kij)− µ
∑
i<j

(Aij(1− Aji) + Aji(1− Aij))− τ
∑
i<j

AijAji,(1.1)

where kij = 1 + 2n−a exp(µ) + n−b exp(τ) serves as the normalizing constant. Our
maximum likelihood estimator is defined as

(µ̂, τ̂) = argmin(µ,τ)∈Ω1

1(
n
2

)ℓn(µ, τ),
with Ω1 = [−Mµ,Mµ] × [−Mτ ,Mτ ]. To derive the asymptotic results, we make the
following assumptions:

Assumption 1.2. (Sparse network) Assume 0 < a, b < 2. The true values (µ0, τ0) lie within
the interior of Ω1.

The conditions a > 0 and b > 0 ensure that the resulting graph is sparse, while a < 2
and b < 2 are necessary to guarantee that the total numbers of reciprocal and
non-reciprocal links approach infinity. Without these conditions, consistent estimation
would not be achievable. We now present the following result regarding the maximum
likelihood estimator (MLE). All our results hold under Assumption 1.2, meaning they
apply to arbitrarily sparse networks.

Proposition 1.3. (Asymptotic normality of the MLE in BR model) Under Assumption 1.2,
as n approaches infinity, the MLE (µ̂, τ̂) is consistent and asymptotically normal, specifically:(√

n2−a(µ̂− µ0),
√
n2−b(τ̂ − τ0)

)T
⇝ N(0,Σ−1),

where

Σ =

(
exp(µ0) 0

0 exp(τ0)/2

)
.

Following the reasoning in Krivitsky and Kolaczyk (2015) and Chen et al. (2021), we
can interpret n2−a and n−b as the effective sample sizes for µ and τ , respectively. This
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interpretation is intuitive, as from equation (1.1), µ can be seen as the density parameter
for the configuration (1, 0) and (0, 1), while τ represents the density parameter for the
configuration (1, 1).
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Erdős, P. and Rényi, A. (1959). On random graph. Publicationes Mathematicate, 6:290–
297.
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The standard method to fitting a prediction model to incomplete data that have missing

values in the predictor variables is to first complete the data by imputing (i.e., estimating)

the missing values. This approach may not be logical if the “missing” values are non-

existent instead of missing due to non-response. One example is the variable “age of

spouse” for people who are single. Another common example occurs in so-called “skip

questions”, where variable x1 = 1 if a person has a credit card and x1 = 0 otherwise, and

x2 is the credit card balance. Here, x2 would be reported as missing for people who do

not have credit cards.

This talk introduces a new approach to missing values that makes missing-value

imputation unnecessary. It accomplishes this by means of the GUIDE regression tree

algorithm [4, 5], which fits a binary decision tree model to the incomplete data. A

major strength of GUIDE is that it treats missing values as observed qualitative

information and sends them to the left or right subnode at each split according to the

values of the outcome (y) variable relative to those with non-missing values. In

particular, it allows for splits that send missing values and only missing values to one

subnode [6]. Other regression tree algorithms either impute the missing values before

splitting the node [2], or send observations with missing values randomly to the left or

right subnode [3]. The method is demonstrated on a dataset to predict death or

intubation in patients hospitalized for Covid-19 [1].
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Laplacian matrices are commonly employed in many real applications, encoding the
underlying latent structural information such as graphs and manifolds. The use of the
normalization terms naturally gives rise to random matrices with dependency. It is
well-known that dependency is a major bottleneck of new random matrix theory (RMT)
developments. To this end, in this paper, we formally introduce a class of generalized
(and regularized) Laplacian matrices, which contains the Laplacian matrix and the
random adjacency matrix as a specific case, and suggest the new framework of the
asymptotic theory of eigenvectors for latent embeddings with generalized Laplacian
matrices (ATE-GL). Our new theory is empowered by the tool of generalized quadratic
vector equation for dealing with RMT under dependency, and delicate high-order
asymptotic expansions of the empirical spiked eigenvectors and eigenvalues based on
local laws. The asymptotic normalities established for both spiked eigenvectors and
eigenvalues will enable us to conduct precise inference and uncertainty quantification
for applications involving the generalized Laplacian matrices with flexibility. We discuss
some applications of the suggested ATE-GL framework and showcase its validity
through some numerical examples. This is a joint work with Jianqing Fan, Yingying Fan,
Fan Yang and Diwen Yu.

Graphs and manifolds are commonly associated with sequence data such as texts. To
enable text modeling and token generation, one may first construct Word2Vec
embeddings of individual words and then build a graph of short sequences, where each
short sequence can be viewed as a node of the graph and also be viewed as a point in a
latent low-dimensional manifold. The link strengths between each pair of nodes can be
calculated using a certain similarity measure of the embedding vectors, giving rise to a
high-dimensional random matrix representing the graph data. For network applications,
an important question is how to uncover the latent structural information underlying
the graphs via low-dimensional manifold representations, often much lower than the
ambient embedding dimensionality of each node. The Laplacian matrices for network
data have been widely used to construct latent embeddings of graphs, where the nodes
of the graph are represented in a latent subspace spanned by the corresponding leading
eigenvectors of the Laplacian matrix. A natural question is how to characterize the
asymptotic distributions of the leading eigenvectors and eigenvalues of the Laplacian
matrix. The existing results in random matrix theory (RMT) have focused almost always
on the setting of independent entries modulo symmetry, which is a major bottleneck of
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new RMT developments. Due to the use of the normalization terms, the Laplacian
matrix is an example of a random matrix with dependency. To enable more flexible
latent embeddings of graphs, we will extend the concept of the Laplacian matrix to that
of the generalized (regularized) Laplacian matrix with index α ∈ [0,∞). A key question
we aim to address in this paper is how to characterize the asymptotic distributions of
the leading eigenvectors and eigenvalues of the generalized (regularized) Laplacian
matrices, a new class of high-dimensional random matrices with dependency
representing the network data.

The primary objective of this paper is to investigate the asymptotic behaviors of the
empirical spiked eigenvalues and eigenvectors of the generalized (regularized)
Laplacian matrix (with some commonly used regularization terms) for the
signal-plus-noise model when the signals are above a certain threshold. In particular,
we will derive both the law of large numbers (LLN) and central limit theorems (CLTs)
for the spiked sample eigenvalues and eigenvector components. Our results extend
significantly the previous works
[Fan, Fan, Han, and LvFan et al.2022a, Fan, Fan, Lv, and YangFan et al.2024] to the
context of the generalized Laplacian matrix framework. These prior studies established
the LLN and CLTs for spiked sample eigenvalues and eigenvector components of the
adjacency matrices of large networks, which can be viewed as a special case of our
results when α = 0. Our results also compensate for the results of a recent work
[Ke and WangKe and Wang2024], where entrywise large-deviation bounds for the
eigenvectors associated with the largest eigenvalues of the Laplacian matrix for the
DCMM model were established through the leave-one-out strategy. Additionally, in
[Tang and PriebeTang and Priebe2018], the CLTs for the components of eigenvectors
pertaining to the adjacency matrix and the Laplacian matrix of a random dot product
graph were established, under the assumption of a prior distribution on the mean
adjacency matrix.

Our results can be of independent theoretical interest due to the important role
played by Laplacian matrices in the spectral graph theory. On the other hand, they can
also serve as crucial ingredients for statistical inference concerning large networks and
more general models. For example, they may enhance the characterization of the
community membership probability matrix Π through spectral clustering methods for
community detection, a widely used and scalable tool in the literature, as demonstrated
in [Von LuxburgVon Luxburg2007, AbbeAbbe2017, JinJin2015,
Le, Levina, and VershyninLe et al.2016, Lei and RinaldoLei and Rinaldo2015,
Rohe, Chatterjee, and YuRohe et al.2011], or may enable hypothesis testing with
network data, a prevalent technique utilized in various contexts such as
[Arias-Castro and VerzelenArias-Castro and Verzelen2014,
Verzelen and Arias-CastroVerzelen and Arias-Castro2015,
Bickel and SarkarBickel and Sarkar2016, LeiLei2016,
Wang and BickelWang and Bickel2017, Fan, Fan, Han, and LvFan et al.2022b,
Fan, Fan, Lv, and YangFan et al.2024]. Due to the length constraint, we leave the
investigation of various important applications of our theoretical results obtained in this
paper to future work.
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Graph matrices are a type of matrix which is a powerful tool for analyzing problems
on random inputs. Graph matrices have been used extensively for sum of squares lower
bounds on average case problems [5, 11, 10, 19, 15, 18, 16, 24, 17, 21] and have also
recently been used to analyze power-sum decompositions of polynomials [3], to analyze
the ellipsoid fitting conjecture [20], [13], and to analyze a class of first-order iterative
algorithms including belief propagation and approximate message passing [14]. That
said, we only have a partial understanding of graph matrices. We currently know the
following about graph matrices:

(1) We have general norm bounds for graph matrices [2, 15, 22, 4, 17, 23, 24].
(2) The limiting distribution of the singular values as n → ∞ has been determined

for a family of graph matrices called multi-Z-shaped graph matrices [7, 8].
(3) A certain family of graph matrices behaves like Hermite polynomials of Gassian

random variables [14].

When the random input is G(n, 1
2
), graph matrices are defined as follows:

Definition 0.1 (Fourier characters over G(n, 1
2
)). Given a set of potential edges E, we

define χE(G) = (−1)|E\E(G)| =
∏

e∈E χ{e}(G) where χ{e}(G) = 1 if e ∈ E(G) and −1 if
e /∈ E(G).

Proposition 0.2. EG∼G(n, 1
2
)[χE(G)χE′(G)] = 1 if E ′ = E and 0 if E ′ ̸= E.

Definition 0.3 (Shapes). A shape α consists of a graph with vertices V (α) and edges E(α)
together with two distinguished tuples of vertices Uα and Vα which are subsets of V (α).

Definition 0.4 (Graph matrices). Given a shape α, we define the graph matrix Mα to be
the n!

(n−|Uα|)! ×
n!

(n−|Vα|)! matrix whose rows and columns are indexed by tuples of size |Uα| and
|Vα| with entries

Mα(A,B) =
∑

π:V (α)→V (G):π is injective,π(Uα)=A,π(Vα)=B

χπ(E(α))(G)

Definition 0.5. A vertex separator of a shape α is a set of vertices S ⊆ V (α) such that every
path from Uα to Vα (including paths of length 0) must contain a vertex in S.

Theorem 0.6 (AMP20). For all shapes α which have no isolated vertices outside of Uα and
Vα, with high probability, ||Mα|| is Õ(n

|V (α)|−sα
2 ) where sα is the minimum size of a vertex

separator of α and the Õ contains factors depending on the size of α and logarithmic factors.
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In my talk, I started by describing tensor networks (using the paper “Hand-waving and
Interpretive Dance: An Introductory Course on Tensor Networks” [6] as a guide). I then
described graph matrices, norm bounds on graph matrices, and the close connection
between tensor networks and graph matrices. In particular, tensor networks which are
flattened into matrices can be transformed into graph matrices by replacing the indices
with vertices and replacing the matrix/tensor entries with edges/hyperedges. Finally,
I illustrated the power of graph matrices by showing how they can be used to easily
rederive part of the analysis for tensor PCA, the faster tensor PCA algorithm in [12], and
the tensor decomposition algorithm in [9].
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This extended abstract is based on Fritz, Schweinberger, Bhadra, and Hunter (2024)
and Stewart and Schweinberger (2025).

1. NETWORK INTERFERENCE

In connected populations, the treatments and outcomes of units can affect the
outcomes of other units, which implies that the outcomes of units are interdependent.
To study causal and non-causal relationships among attributes under network
interference, a comprehensive regression framework for dependent predictors X,
outcomes Y , and connections Z is needed.

2. REGRESSION UNDER NETWORK INTERFERENCE

We introduce a comprehensive regression framework for dependent predictors X,
outcomes Y , and connections Z (Fritz et al., 2024). The regression framework can be
used for studying non-causal and causal relationships among attributes (X,Y) of
connected units and captures attribute-attribute, attribute-connection, and
connection-connection dependencies, while retaining the advantages of linear
regression, logistic regression, and other regression models by being interpretable and
widely applicable. Scalable statistical computing is based on convex optimization of
pseudo-likelihoods using minorization-maximization algorithms. An application to hate
speech on social media demonstrates the advantages of the regression framework.

3. THEORETICAL GUARANTEES

Theoretical guarantees for regression under network interference are non-trivial,
because the outcomes and connections (Y ,Z) | X = x are dependent. We provide
theoretical guarantees by generalizing results of Stewart and Schweinberger (2025) for
dependent connections Z to dependent outcomes and connections (Y ,Z) | X = x.

Lemma 1 of Stewart and Schweinberger (2025). Let g : Rp 7→ Rp (p ≥ 1) be a
homeomorphism and || · || be a vector norm with induced matrix norm ||| · |||. Consider any
θ⋆ ∈ Rp and any ϵ > 0, and define

δ(ϵ) := inf
θ∈ bdB(θ⋆, ϵ)

||g(θ)− g(θ⋆)||,

where B(c, ρ) := {a ∈ Rp : ||a − c|| < ρ} is a ball with center c ∈ Rp and radius
ρ > 0 and bdB(c, ρ) is the boundary of B(c, ρ). If g(θ) is continuously differentiable and
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I(θ) := ∇θ g(θ) is invertible for all θ ∈ B(θ⋆, ϵ), then
ϵ

supθ∈B(θ⋆, ϵ) |||I(θ)−1|||
≤ δ(ϵ). □

Lemma 1 helps “transport” concentration-of-measure between homeomorphic spaces,
facilitating rates of convergence. To demonstrate, consider regression models with
exponential-family densities of the form fθ⋆(t) ∝ e⟨θ

⋆, t⟩, where θ⋆ ∈ Rp and
µ(θ⋆) := Eθ⋆ T ∈ Rp are the data-generating natural and mean-value parameters of the
exponential family, and θ̂ and µ(θ̂) = T are the maximum likelihood estimators of θ⋆

and µ(θ⋆) = Eθ⋆ T , respectively. Since the natural and mean-value parameter spaces of
exponential families are homeomorphic, Lemma 1 implies that

P(θ̂ ∈ B(θ⋆, ϵ)) = P(T ∈ µ(B(θ⋆, ϵ))) because µ is a homeomorphism

≥ P(T ∈ B(µ(θ⋆), δ(ϵ))) by definition of δ(ϵ)

≥ 1− α(δ(ϵ)) by concentration of T

≥ 1− α

(
ϵ

supθ∈B(θ⋆, ϵ) |||I(θ)−1|||

)
by Lemma 1 applied to µ,

where α(.) is a non-increasing function that quantifies the strength of concentration of T
around µ(θ⋆) = Eθ⋆ T . In other words: If the probability mass of µ(θ̂) = T concentrates
around µ(θ⋆) = Eθ⋆ T , then the probability mass of θ̂ concentrates around θ⋆, paving
the way for convergence rates for θ̂ based on µ(θ̂) = T (compare Theorems 1 and
2 of Stewart and Schweinberger, 2025). While specific convergence rates depend on
additional properties of the data-generating model, the above argument suggests that
the convergence rate of maximum likelihood estimators θ̂ depends on

• the precision in a neighborhood of θ⋆ as quantified by supθ∈B(θ⋆, ϵ) |||I(θ)−1|||;
• the strength of concentration of T as quantified by α(.), which depends on the

tails of the distribution of T and the dependence induced by the model.
The above argument applies to all exponential families (e.g., generalized linear models,
graphical models, and Gaussian and non-Gaussian Markov random fields), and helps
establish theoretical guarantees for regression based on independent or dependent
observations, including regression under network interference (Fritz et al., 2024).
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Multilayer networks often exhibit various dependence structures between network
layers. Various inter-layer dependence modeling highlights the importance of
incorporating such dependencies for more accurate and efficient network analysis. For
example, [3] introduced the autoregressive stochastic block model (SBM) to capture
inter-layer dependence with a time series structure; [7] proposed the multilayer Ising
model to capture the full inter-layer dependence. However, it remains unclear how to
extend [3] to accommodate more general dependence structures, whereas the method
in [7] appears to have difficulty in estimating connection probabilities due to the
intractable computation cost of the partition function [5]. Moreover, very little has been
done in the literature to theoretically investigate the impact of dependence structures
on the community detection accuracy.

In this work, we introduce a novel multilayer probit network model that integrates the
classical multilayer SBM [4, 2] with the multivariate probit model [1]. It incorporates
diverse inter-layer dependence structures between layers into network modeling so as to
achieve better estimation of the homogeneous community structure.

Let G denote a multilayer network comprising M network layers on N common nodes,
where each network layer can be represented via its adjacency matrix A(b) = (A

(b)
ij )N×N ∈

{0, 1}N×N for b ∈ [M ]. Here, A(b)
ij = A

(b)
ji = 1 if an edge exists between nodes i and j in

the b-th layer, and A
(b)
ij = A

(b)
ji = 0 otherwise. We consider the following multilayer probit

network model,

A
(b)
ij = I

{
µ(b)
eiej

+ ε
(b)
ij > 0

}
, for any b ∈ [M ],(

ε
(1)
ij , · · · , ε

(M)
ij

)⊤ ∼ N
(
0,Σeiej

)
, for any i ̸= j,

where I(·) is the indicator function, ei ∈ [K] denotes the homogeneous community
membership of node i across M layers, µ(b) ∈ RK×K denotes the mean matrix for each
network layer, and Σkl ∈ RM×M is positive definite for any k, l ∈ [K]. Note that
P (A

(b)
ij = 1) = P (ε

(b)
ij > −µ

(b)
eiej) = Φ(µ

(b)
eiej), where Φ(·) is the cumulative distribution

function of N(0, 1).
Let µ = (µ

(b)
kl )k,l∈[K],b∈[M ] and µ(b) = (µ

(b)
kl )k,l∈[K] for each b ∈ [M ]. Further, let

Σ = (Σ
(bd)
kl )k,l∈[K],b,d∈[M ] and Σkl = (Σ

(bd)
kl )b,d∈[M ] for any k, l ∈ [K]. Define Θ = (µ,Σ)

with Θ
(bd)
kl = (µ

(b)
kl , µ

(d)
kl ,Σ

(bd)
kl ). Denote Z = (Zik)i∈[N ];k∈[K] as the homogeneous

community membership matrix, where Zik = 1 if ei = k, and Zik = 0 otherwise. Since
the full likelihood of the multilayer network is computationally inefficient, we consider
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a pairwise likelihood function as an alternative, which largely facilitates the
computation without compromising estimation accuracy [6]. Specifically, we replace
the full likelihood P

(
Aij; {µ(b)

kl }Mb=1,Σkl

)
with∏

1≤b<d≤M

P
(
A

(b)
ij , A

(d)
ij ;Θ

(bd)
kl

)
,

where

P
(
A

(b)
ij , A

(d)
ij ;Θ

(bd)
kl

)
= α1

(
Θ

(bd)
kl

)A
(b)
ij A

(d)
ij × α2

(
Θ

(bd)
kl

)A
(b)
ij (1−A

(d)
ij )

× α3

(
Θ

(bd)
kl

)(1−A
(b)
ij )A

(d)
ij × α4

(
Θ

(bd)
kl

)(1−A
(b)
ij )(1−A

(d)
ij )

.

The terms α1, α2, α3 and α4 are defined as
(0.1)
α1

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 1, A

(d)
ij = 1;Θ

(bd)
kl

)
= Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α2

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 1, A

(d)
ij = 0;Θ

(bd)
kl

)
= Φ

(
µ
(b)
kl

)
− Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α3

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 0, A

(d)
ij = 1;Θ

(bd)
kl

)
= Φ

(
µ
(d)
kl

)
− Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

α4

(
Θ

(bd)
kl

)
= P

(
A

(b)
ij = 0, A

(d)
ij = 0;Θ

(bd)
kl

)
= 1− Φ

(
µ
(b)
kl

)
− Φ

(
µ
(b)
kl

)
+ Φ2

(
µ
(b)
kl , µ

(d)
kl ,Σ

(bd)
kl

)
,

where Φ(·) is the cumulative distribution function of N(0, 1), and Φ2(·, ·, σ) is the
cumulative distribution function of N2

(
( 0
0 ),

(
1 σ
σ 1

))
. The pairwise log-likelihood then

becomes

L(Θ,Z) =
∑
k,l

∑
i,j

∑
b<d

ZikZjl

{
A

(b)
ij A

(d)
ij logα1(Θ

(bd)
kl ) + A

(b)
ij (1− A

(d)
ij ) logα2(Θ

(bd)
kl )

+ (1− A
(b)
ij )A

(d)
ij logα3

(
Θ

(bd)
kl

)
+ (1− A

(b)
ij )(1− A

(d)
ij ) logα4(Θ

(bd)
kl )

}
= :

∑
k,l

Lkl(Θ,Z).

Denote Skl as the pre-specified, shape-constrained set for Σkl. Specifically, we focus on
two scenarios, the sparse covariance matrix scenario with

Skl =
{
X ∈ RM×M | X ≻ 0, diag(X) = 1M , Supp(X) = Tkl

}
,

and the sparse precision matrix scenario with

Skl =
{
X ∈ RM×M | X ≻ 0, diag(X) = 1M , Supp(X−1) = Tkl

}
.

In both cases, Tkl ⊆ [M ] × [M ] represents the set of positions, known a priori, with
|Tkl| = s∗kl. Two examples for each scenario are the multilayer Ising model [7] and the
autoregressive SBM [3]. Define the parameter space as

Ω =

{
ω = (µ,Σ,Z) | Z ∈ {0, 1}N×K , Z1K = 1N , clρN,M ≤ Φ(µ

(b)
kl ) ≤ cuρN,M ,

Σkl ∈ Skl, and sup
k,l

∥ ndiag(Σkl)∥max ≤ DN,M

}
,

where cl < 1 < cu are two constants and ρN,M controls the network sparsity level. Note
that the magnitudes of s∗kl and DN,M specify the inter-layer dependence structures and
the strength of dependence across different layers, respectively. Denote the true
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parameters as ω∗ = (Θ∗,Z∗) = (µ∗,Σ∗,Z∗) and assume ω∗ ∈ Ω. Lemma 0.1 shows that
the pairwise likelihood function in (0.2) is Fisher consistent in Ω.

Lemma 0.1. Let e(ω∗,ω) = 1
N2M2

∑
k,l E

(
Lkl(Θ

∗,Z∗) − Lkl (Θ,Z)
)
, then it holds true

that e(ω∗,ω) ≥ 0 for any ω ∈ Ω.

Lemma 0.1 shows that ω∗ is a maximizer of E(L(Θ,Z)), and thus justifies the use of
the pairwise likelihood function in estimating ω∗. Therefore, we estimate (Θ∗,Z∗) via
the constrained maximum pairwise log-likelihood estimate,

(Θ̂, Ẑ) = argmax
(Θ,Z)∈Ω

L (Θ,Z) .(0.2)

We also adopt an alternative updating algorithm to solve the constrained optimization
problem. Theoretically, we establish the asymptotic consistency of the proposed method
for both parameter estimation and community detection under mild conditions.

We demonstrate how the inter-layer dependence structures and strength affect the
accuracy of community detection in theory. In the autoregressive SBM, the proposed
method exhibits a smaller misclassification rate than [3] when ρN,M ≳ 1

log(NM)
and

M ≲ N . In the multilayer Ising model [7] with K ≲ log(NM), s∗kl ≍ M2,M ≍ N , the

required sparsity condition there is that ρN,M ≫
(

1
N

) 1
1+c for some constant c > 0, up to

some logarithmic terms. In contrast, the proposed method can achieve ρN,M ≫ 1
N

, up to
some logarithmic terms, which achieves a better sparsity condition. Moreover, through
extensive simulations and a real-world multilayer international trade network, we
demonstrate the superior numerical performance of the proposed method compared to
several popular competitors.
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Reinforcement learning (RL) deals with how intelligent agents leverage contextual
information and historical data to take actions in an uncertain environment in order to
maximize the cumulative reward [1]. It has achieved phenomenal success in diverse
fields, such as video games, robotics, autonomous driving, precision medicine, and
recommendation systems. In modern applications, such context format can be rich and
can often be formulated as a matrix or higher order tensor. This is evident in scenarios
such as monitoring brain activity in real-time during clinical research, tracking dynamic
user preferences in online recommender systems, and analyzing the evolving
relationships in social network analysis. Consider neuroscience, where dynamic
treatments may be tailored to a patient based on their neuroimaging. Here, the
neuroimaging data forms a tensor state, while the treatment, such as dynamic sleep
intervention, represents an action in the RL framework. Such high-dimensional
higher-order tensor contexts necessitate the incorporation of low-rank structures in RL
models.

Why inference in RL? While existing RL algorithms mainly focus on minimizing
regret or choosing the best action with respect to some oracle policy, less attention has
been paid to the statistical inference for RL models where the data are adaptively
collected. In real-world applications of RL, we are often not just interested in obtaining
the point estimate of the value function, but also a measure of the statistical uncertainty
associated with the estimate. This is especially relevant to fields such as personalized
medicine, mobile health and autonomous driving, where it is often risky to run a policy
without a statistically sound estimate of its quality. For example, online A/B testing has
been widely conducted by technological/pharmaceutical companies to compare a new
product with an old one. Recent studies [2] have used various bandit or RL methods to
form sequential online A/B testing procedures. In these online evaluation tasks, it is
important to quantify the uncertainty of the point estimate for constructing a valid
hypothesis testing. Moreover, the information obtained by conducting statistical
inference of parameters or value functions, can eventually help experimenters to yield a
better understanding in the used RL reward model, and this increase of knowledge can
potentially improve the design of the experiments [3].

Why are new tools needed? When data is collected in an adaptive manner, even
simple ordinary least squares can exhibit non-normal asymptotic behavior [3]. In this
case, the confidence intervals constructed from traditional estimators induce bias and
lead to wrong coverage. In extensive numerical studies, [4] empirically illustrate that
common statistical hypothesis tests lead to as much as double the false positive rate and

Page 31



false negative rate using adaptive data collected in the bandit setting. While the use of
adaptively collected data for inferential purposes has gained popularity in recent years,
existing inferential methods are primarily developed under simple settings. These
include adaptive linear regression [5], linear bandit [3], batch Markov decision process
[6], and linear stochastic approximation under Markov noise [7]. While these
contributions serve as crucial initial steps in statistical inference for adaptive data,
practical RL applications involving higher-order tensor contexts call for more
sophisticated inference tools.

In this talk, we discuss provable online inferential tools tailored for low-rank
reinforcement learning. We first introduce an efficient online low-rank stochastic
gradient descent (SGD) method and establishes its non-asymptotic rate of convergence.
Building upon this foundation, we propose a simple yet powerful online debiasing
approach for the sequential statistical inference of low-rank tensor learning. The entire
online procedure studied in this context, encompassing both estimation and inference,
eliminates the need for data splitting or storing historical data, making it suitable for
on-the-fly hypothesis testing. We then progress to low-rank contextual bandit by
incorporating online decision-making policies, where sequential decisions rely on
higher-order contextual information. By conducting hypothesis testing on entries of the
parameter tensor, one can assess the impact of a specific region of the tensor context on
the reward. The challenges of this inference arise from two sources of bias: the first due
to the low-rank structure of the parameter, and the second originating from the
decision-making policy, as the chosen action depends on all historical data. We discuss
an online double debiasing procedure for statistical inference within the low-rank
contextual bandit framework, and establish the validity of the resulting confidence
interval. Additionally, we identify an intriguing tradeoff between parameter inference and
regret minimization, prompting a formulation of this trade-off as a minimax
multi-objective optimization problem.
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Abstract. We consider the problem of structured tensor denoising in the presence of
unknown permutations. Such data problems arise commonly in recommendation
system, neuroimaging, community detection, and multiway comparison applications.
Here, we develop a general family of smooth tensor models up to arbitrary index
permutations; the model incorporates the popular tensor block models and Lipschitz
hypergraphon models as special cases. We show that a constrained least-squares
estimator in the block-wise polynomial family achieves the minimax error bound. A
phase transition phenomenon is revealed with respect to the smoothness threshold
needed for optimal recovery. In particular, we find that a polynomial of degree up to
(m − 2)(m + 1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher
degree exhibits no further benefits. This phenomenon reveals the intrinsic distinction
for smooth tensor estimation problems with and without unknown permutations.
Furthermore, we provide an efficient polynomial-time Borda count algorithm that
provably achieves optimal rate under monotonicity assumptions. The efficacy of our
procedure is demonstrated through both simulations and Chicago crime data analysis.

Model. Let Θ ∈ Rd×···×d be an order-m d-dimensional tensor, π : [d] → [d] be an index
permutation, and Θ(i1, . . . , im) the tensor entry indexed by (i1, . . . , im). We sometimes
also use shorthand notation Θ(ω) for tensor entries with indices ω = (i1, . . . , im). Suppose
we observe an order-m d-dimensional data tensor from the following model,

(0.1) Y = Θ ◦ π + E ,

where ◦ represents the function composition, π : [d] → [d] is an unknown latent
permutation, Θ ∈ Rd×···×d is an unknown signal tensor under certain smoothness (to be
specified in next paragraph), and E is a noise tensor consisting of zero-mean,
independent sub-Gaussian entries with variance bounded by σ2. The general model
allows continuous- and binary-valued tensors. For instance, in binary tensor problems,
the entries in Y are {0, 1}-labels from Bernoulli distribution, and the entrywise variance
of E depends on the mean. For ease of presentation, we assume σ = 1 throughout the
paper. We call (0.1) the Gaussian model if the E consists of i.i.d. N (0, 1) entries, and
call (0.1) the sub-Gaussian model if E consists of independently (but not necessarily
identically) distributed sub-Gaussian entries.

We now describe the smooth model on the signal Θ. Suppose that there exists a
multivariate function f : [0, 1]m → R underlying the signal tensor, such that

Θ(i1, . . . , im) = f

(
i1
d
, . . . ,

im
d

)
, for all (i1, . . . , im) ∈ [d]m.(0.2)
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For a multi-index κ = (κ1, . . . , κm) ∈ Nm and a vector x = (x1, . . . , xm)
T , we denote |κ| =∑

i∈[m] κi, κ! =
∏

i∈[m] κi!, xκ =
∏

i∈[m] x
κi
i , and the derivative operator ∇κ = ∂|κ|

∂x
κ1
1 ···∂xκm

m
.

The generative function f in (0.2) is assumed to be in the α-Hölder smooth family [5].

Definition 0.1 (α-Hölder smooth). Let α > 0 and L > 0 be two positive constants. A
function f : [0, 1]m → R is called α-Hölder smooth, denoted as f ∈ F(α,L), if∑

κ:|κ|=⌈α−1⌉

1

κ!
|∇κf(x)−∇κf(x0)| ≤ L∥x− x0∥α−⌈α−1⌉

∞(0.3)

holds for every x,x0 ∈ [0, 1]m.

The Hölder smooth function class is one of the most popular function classes
considered in the nonparametric regression literature [3, 2]. In addition to the function
class F(α,L), we also define the smooth tensor class based on discretization (0.2),

(0.4) P(α,L) =
{
Θ ∈ Rd×···×d : Θ is generated from (0.2) and f ∈ F(α,L)

}
.

Combining (0.1) and (0.2) yields our proposed permuted smooth tensor model. The
unknown parameters are the smooth tensor Θ ∈ P(α,L) and latent permutation
π ∈ Π(d, d). The model is visualized in Figure 1(a) for the case m = 2 (matrices).
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FIGURE 1. (a): Illustration of order-m d-dimensional permuted smooth
tensor models with m = 2. (b): Phase transition of mean squared error
(MSE) (on − logd scale) as a function of smoothness α and tensor order m.
Bold dots correspond to the critical smoothness level above which higher
smoothness exhibits no further benefits to tensor estimation.

Results Summary. We develop a suite of statistical theory, efficient algorithms, and
related applications for permuted smooth tensor models. Our contributions are
summarized below. First, we develop a general permuted α-smooth tensor model of
arbitrary smoothness level α > 0. We establish the statistically optimal error rate and its
dependence on model complexity. Specifically, we express the optimal rate as a function
of tensor order m, tensor dimension d, and the smoothness level α, given by

(0.5) Rate(d) := d−
2mα
m+2α ∨ d−(m−1) log d.

Our framework substantially generalizes earlier works which focus on only matrices
with m = 2 [2, 3] or Lipschitz function with α = 1 [1, 4]. The generalization enables us
to obtain results previously impossible: i) As tensor order m increases, we demonstrate
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the failure of pervious clustering-based algorithms [1, 2], and we develop a new
block-wise polynomial algorithm for tensors of order m ≥ 3; ii) As smoothness α
increases, we demonstrate that the error rate converges to a fast rate O(d−(m−1)),
thereby disproving the conjectured lower bound O(d−2m/(m+2)) posed by earlier
work [1]. The results showcase the accuracy gain of our new approach, as well as the
intrinsic distinction between matrices and higher-order tensors.

Second, we discover a phase transition phenomenon with respect to the smoothness
needed for optimal recovery in the model (0.1) and (0.2). Figure 1(b) plots the
dependence of estimation error in terms of smoothness level α for tensors of order m.
We characterize two distinct error behaviors determined by a critical smoothness
threshold. Specifically, the accuracy improves with α in the regime α ≤ m(m − 1)/2,
whereas the accuracy becomes a constant of α in the regime α > m(m − 1)/2. The
results imply a polynomial of degree (m − 2)(m + 1)/2 = [m(m − 1)/2 − 1] is sufficient
for accurate recovery of order-m tensors of arbitrary smoothness in the model (0.1)
and (0.2)., whereas higher degree brings no further benefits. The phenomenon is
distinctive from matrix problems [3, 2] and classical non-permuted smooth function
estimation [5], thereby highlighting the fundamental challenges in our new setting.
These statistical contributions, to our best knowledge, are new to the literature of
permuted smooth tensor problems.

Third, we propose two estimation algorithms with accuracy guarantees: the
least-squares estimation and Borda count estimation. The least-squares estimation,
although being computationally hard, reveals the fundamental model complexity in the
problem. The result serves as the benchmark and a useful guide to the algorithm
design. Furthermore, we develop an efficient polynomial-time Borda count algorithm
that provably achieves a minimax optimal rate under an extra Lipschitz monotonic
assumption. The algorithm handles a broad range of data types, including continuous
and binary observations.

Lastly, we illustrate the efficacy of our method through both simulations and data
applications. A range of practical settings are investigated in simulations, and we show
the outperformance of our method compared to alternative approaches. Application to
Chicago crime data is presented to showcase the usefulness of our method. We identify
the key global pattern and pinpoint local smooth structure in the denoised tensor. Our
method will help practitioners efficiently analyze tensor datasets in various areas.
Toward this end, the package and all data used are released at CRAN
link https://cloud.r-project.org/web/packages/SmoothTensor/index.html.
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DONG XIA
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We Investigate regret minimization, statistical inference, and their interplay in
high-dimensional online decision-making based on the sparse linear contextual bandit
model. We integrate the ε-greedy bandit algorithm for decision-making with a hard
thresholding algorithm for estimating sparse bandit parameters and introduce an
inference framework based on a debiasing method using inverse propensity weighting.
Under a margin condition, our method achieves either O(

√
T ) regret or classical

O(
√
T )-consistent inference, indicating an unavoidable trade-off between exploration

and exploitation. If a diverse covariate condition holds, we demonstrate that a
pure-greedy bandit algorithm—i.e., exploration-free—combined with a debiased
estimator based on average weighting can simultaneously achieve optimal O(log T )
regret and O(

√
T )-consistent inference. We also show that a simple sample mean

estimator can provide valid inference for the optimal policy’s value. Numerical
simulations and experiments on Warfarin dosing data validate the effectiveness of our
methods.

To the best of our knowledge, this work is the first to investigate regret minimization,
statistical inference, and their interplay in high-dimensional online decision-making
based on the sparse-LCB model. Our contributions are summarized as follows:
General Inference Framework and Tradeoff with Regret. We propose a novel statistical
inference framework for adaptively collected high-dimensional data. Our approach
integrates the ε-greedy bandit algorithm with hard-thresholding (HT), resulting in a
biased estimator due to the adaptive data collection and implicit regularization
introduced by the HT algorithm. To mitigate this bias, we introduce an online debiasing
technique based on IPW that maintains low computational and storage complexity.
Under a margin condition with parameter ν, the debiased estimator is asymptotically
normal, enabling the construction of confidence intervals and hypothesis tests for both
individual arm parameters and their differences. Additionally, we identify a trade-off
between regret performance and the estimator’s asymptotic variance, which affects
inference efficiency by determining the width of confidence intervals and the p-values of
test statistics. Specifically, when the algorithm achieves a regret upper bound of
O(T 1−γ + T (γ−1)(1+ν)/2) with margin parameter ν, and some user-specified
γ ∈ [0, 1)—which characterizes the exploration probability, the estimator’s asymptotic
variance is O(T−(1−γ)). For example, when ν = 1, setting γ = 1

2
+ o(1) yields a regret

bound of O(T 1/2) and an estimator variance of O(T−1/2), which does not attain the
classic

√
T -consistency; setting γ = 0 yields a trivial regret bound of O(T ) and an
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asymptotically normal estimator which is
√
T -consistent. While IPW is effective for

debiasing, it unfortunately inflates the variance of the final estimator.
Simultaneous Optimal Inference and Regret. We demonstrate that optimal inference
efficiency and regret performance can be simultaneously achieved under an additional
covariate diversity assumption, commonly employed in high-dimensional bandit
literature ([Bastani et al.(2021)Bastani, Bayati, and Khosravi, Ren and Zhou(2024)]
and references therein). This assumption is motivated by the observation that when
covariates are sufficiently diverse, an exploration-free algorithm (i.e., setting the
exploration probability ε = 0 in the ε-greedy algorithm) can still adequately explore
each arm. This automatic exploration facilitates debiasing through a simple average
weighting (AW) approach, bypassing IPW and thereby avoiding variance inflation.
Specifically, our approach achieves an optimal O(log T ) regret upper bound, and the
resulting estimators of arm parameters are asymptotically normal with a variance of
O(T−1), thereby attaining the classic

√
T -consistency and optimal inference efficiency.

Additionally, we introduce an inference procedure for the optimal policy’s value, often
referred to as the Q-value, within this framework. We provide a straightforward method
to assess the maximum total reward achievable by the optimal policy.
Empirical Result. We evaluate the empirical performance of our algorithm and inference
framework through numerical simulations and a real-world data experiment.
Specifically, we apply this framework to the aforementioned Warfarin dosing problem.
Our approach identifies several significant variables that determine the appropriate
dosage, with findings that are consistent with existing medical literature while also
offering novel insights.
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REVISIT TENSOR DECOMPOSITION: STATISTICAL OPTIMALITY AND
COMPUTATIONAL GUARANTEES
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Tensor decomposition is a foundational tool in modern data analysis, enabling the
extraction of structured, low-dimensional representations from high-dimensional, multi-
way data. In this talk, we revisit two of the most widely used tensor decomposition
frameworks, Tucker decomposition and Canonical Polyadic (CP) decomposition, through
the lens of statistical optimality and computational guarantees. Our focus is on both the
fundamental limits and practical algorithms for reliable use of tensor methods in noisy,
high-dimensional settings.

We begin with Tucker decomposition, which models a low-rank tensor through
multilinear projections along each mode [1]. This approach is particularly suited for
applications in computational imaging and social sciences, where data are high-order
and often corrupted by noise. We analyze the Tucker model in the presence of additive
Gaussian noise, where the underlying signal tensor exhibits low multilinear rank. Our
results characterize the three-phase behavior of statistical estimation under varying
signal-to-noise ratios (SNR): (i) in the strong SNR regime, the Higher-Order Orthogonal
Iteration (HOOI) algorithm achieves minimax-optimal rates for estimating the singular
subspaces and the tensor itself; (ii) in the weak SNR regime, no consistent estimator
exists; and (iii) in the moderate SNR regime, a statistical-computational gap
emerges—consistent estimation is possible in theory but computationally intractable
under standard complexity assumptions.

We further explore inference procedures in Tucker decomposition [2]. Building on
recent developments, we establish asymptotic distributions for singular subspace
estimators derived from alternating minimization, allowing for the construction of
confidence regions. Importantly, unlike matrix-based settings where debiasing is often
necessary, our results show that no debiasing is required for valid inference in tensor
models—underlining a key distinction introduced by the multilinear structure and the
tensor-specific computational landscape.

Next, we turn to CP decomposition, where a tensor is represented as a sum of
rank-one components [3]. Despite its wide empirical use, the theoretical understanding
of CP decomposition, especially under noise, non-orthogonality, and higher-rank
scenarios, has remained limited. We address this gap by analyzing the Alternating Least
Squares (ALS) algorithm in a signal-plus-noise model. We show that ALS, when
properly initialized, achieves non-asymptotic, minimax-optimal error bounds for tensors
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of arbitrary order, dimension, and rank. We propose a robust initialization
method—Tucker-based Approximation with Simultaneous Diagonalization
(TASD)—which compresses the tensor and stabilizes subsequent optimization. When
used with ALS, the resulting estimator (TASD-ALS) is both statistically consistent and
computationally efficient, achieving optimal estimation rates in practice.

Additionally, we provide a rigorous convergence analysis of ALS. We prove that in
the rank-one setting, ALS achieves optimal error bounds in just one or two iterations.
For general rank, we uncover a two-phase convergence pattern: an initial quadratic
phase followed by a linear refinement, with rates determined by coherence properties of
the underlying components. These findings give the first formal justification of the fast
empirical convergence observed for ALS in structured tensor settings.

In summary, this talk bridges a significant gap between statistical theory and
algorithmic practice in tensor decomposition. Our results provide sharp insights into the
limits of estimation and inference, while offering provably effective algorithms that
scale to modern high-dimensional, multi-modal data.
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Network-linked data, which refers to a group of units that are observed connected by
a network and have a set of available attributes, has attracted much attention in the past
few decades (Michell and West, 1996; Lee et al., 2010; Li et al., 2019, 2023; Huang et al.,
2021). Yet its extension, time-varying network-link data, has received less investigation.

Existing methods for time-varying network-link data usually assume that units’
attributes evolve over time, whereas the network remains unchanged as time increases.
(Zhu et al., 2017; Wu, 2019; Zhu and Pan, 2020; Zhu et al., 2022; Chen et al., 2023;
Zhu et al., 2023; Li et al., 2023). Zhu et al. (2017) firstly proposed a network vector
autoregressive model (NAR) to incorporate network structure. Specifically, they assume
that

Yit = µ+X⊤
i γ + η0n

−1
i

N∑
j=1

aijYj(t−1) + η1Yi(t−1) + ϵit,(0.1)

where Yt = (Y1t, . . . , YNt)
⊤ is the high-dimensional response vector with N being the

number of nodes in network G, the node-specific covariate vector Xi is independent
and identically distributed random, A = (aij)

N
i,j=1 ∈ {0, 1}N×N is the adjacent matrix of

G with aij = 1 if there exists an edge between nodes i and j and aij = 0 otherwise,
ni =

∑n
j=1 aij is the degree of node i, and (µ,γ, η0, η1) are parameters to be estimated.

Since Zhu et al. (2017), many extensions of NAR model have been studied. For example,
Wu (2019) extends model (0.1) to a time-varying setting by allowing (µ,γ, η0, η1) to
change with t. Zhu et al. (2022) further extends to the functional varying coefficient
setting. Another extension route is to assume that there exists some group structure
among N nodes to capture the heterogeneity of nodes (Zhu and Pan, 2020; Chen et al.,
2023; Zhu et al., 2023), which means that parameters are the same within each group
but different across different groups. Li et al. (2023) studied a grouped time-varying NAR
model by assuming the time-varying functional coefficients share some group structure.

However, all aforementioned methods have the following drawbacks. The first one is
that network G does not change over time. In real world, edges among nodes usually
change frequently and drastically as time increases (Matias and Miele, 2017; Liu et al.,
2018). The second one is that they assume that A is deterministic. In practice, it is well
known that network data are collected with errors (Le and Li, 2022). It is common to
assume that network data are generated by some parametric model, such as the Erdős
Rényi model (Erdős et al., 1960) and the stochastic block model (Holland et al., 1983).
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The third one is that the heterogeneity captured by group structure is not sufficient.
Nodes within the same group should still behave differently, which corresponds to the
degree-corrected stochastic block model (Karrer and Newman, 2011). Besides, as
argued by Li et al. (2019) and Le and Li (2022), the parametric form of autoregressive
neighborhood average in model (0.1) may be inappropriate to model the network effect
to network-linked data, and thus leads to unsatisfactory performance. The last one is
the assumption that Xit’s are identically and independently distributed across
1 ≤ i ≤ N and 1 ≤ t ≤ T may be inappropriate for real data.

In this paper, we propose a novel dynamic network autoregressive model to tackle the
above problems for time-varying network-linked data. Specifically, we consider that
networks are also evolving as time changes. Then, the dynamic networks are modeled
with a tensor CANDECOMP/PARAFAC(CP) decomposition method (Kolda and Bader,
2009), where node and time features of networks are captured by some embedding
vectors in low-dimensional Euclidean space. By assuming node-embedding vectors
concentrate around some centers, we allow heterogeneity for nodes within the same
group. Next, we reformulate the NAR model (0.1) with the help of node and
time-embedding vectors. Nodes with similar embedding vectors will have similar
contributions to the response variable Yit. Moreover, we consider a flexible framework
for the effect of covariate vector Xit, where both within-group and global
homogeneities are allowed. We also allow non-random covariate vector Xit.

The main contribution of the proposed model is the development of a novel
framework to model time-varying network-linked data, which mainly integrates a
tensor decomposition method and the NAR model (0.1). Instead of considering a
deterministic network without changing over time, we model dynamic networks via
tensor decomposition. To the best of our knowledge, this is the first attempt to consider
dynamic networks for network-linked data. More importantly, we propose a new
dynamic network autoregressive model, which incorporates node-embedding and
time-embedding vectors as dynamic network impact factors. It is more natural than the
neighborhood average effect in literature. Node-embedding and time-embedding
vectors and the group structure are estimated using the tensor power update algorithm
(Zhang et al., 2023). To solve the resultant optimization task for the dynamic network
autoregressive model, we employ a group lasso-type penalty and develop an efficient
alternative update algorithm. Further, we establish the asymptotic consistencies for the
proposed method whether the global effect of covariate vector exists or not. The
superior numerical performance of the proposed method is supported by extensive
simulated examples and a real application on time-varying network-linked fund data.
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