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TESTING FOR UNIQUENESS OF DESCRIPTORS

BENJAMIN ELTZNER

Classification AMS 2020: 62F12; 62F05; 62F40; 62H11; 62J02

Keywords: Non-unique descriptors; M-estimators; hypothesis test; model selection

1. INTRODUCTION

The Central Limit Theorem (CLT), which states that for data in a real vector space the
mean of a random sample converges to the population mean if the population
distribution has finite variance, is a staple of statistics. It is the essential underpinning
for the wide applicability of confidence sets and hypothesis tests like the t-test.
Therefore, the field of asymptotic statistics has developed which aims at generalizing
the CLT and related results to more general descriptors than the mean on a vector
space. One crucial assumption in nearly all the generalized CLTs is that the population
descriptor is unique.

However, already in simple systems, like the intrinsic mean on a circle, the assumption
of a unique population descriptor is not generic. This problem has long been known and
it has recently gathered some attention [3], [5], [1]. In this report, we give an abridged
overview of the paper [3]. We present the hypothesis test developed in this paper to
determine with confidence whether the population descriptor is unique or whether non-
uniqueness cannot be ruled out. Then we show two examples from our research, where
the test can be applied to check the viability of the model.

2. HYPOTHESIS TEST

When designing a hypothesis test to distinguish unique from non-unique population
descriptors, it is important to consider which properties the test should ideally have. We
posit the following three desirable properties

(1) The test should work for an arbitrary number of minima.
(2) The test should require no knowledge of minima positions.
(3) The “worst error” would be assuming a unique population descriptor, when in

reality there are two or more; this should be the error of first kind.
Especially the final point has important implications, namely the null hypothesis of our

test is going to be that the investigated descriptor is non-unique, so if the test rejects, one
can go ahead with standard methods. For the population descriptor set E we write:

H0 : |E| ≥ 2 H1 : |E| = 1 .

Remark 2.1. Note that H1 is not a single point, but all of the descriptor space. The
parameter space of H0 is much larger than that of H1, but H0 typically contains only a null
set of probability distributions. Thus, in terms of the set of probability distributions, H0 is
typically much “smaller” than H1, as usual for hypothesis tests.
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We use the framework of M-estimators, which are minimizers of a loss function, to
formulate our test. From a given data sample, we draw many (e.g. B = 10 000) bootstrap
samples and calculate a bootstrap estimator for every bootstrap sample: µ∗1

n,n, . . . , µ
∗B
n,n.

Bootstrap descriptors µ∗j form clusters around local minima of the sample loss function
due to CLT. One of the clusters contains the sample descriptor µ̂n. The test rejects if
less than αB

2
bootstrap descriptors µ∗j are in another cluster than µ̂n. The factor 1/2 is

explained by asymptotic theory in [3].
The hypothesis test requires a reliable clustering method which can at least distinguish

the cluster containing µ̂n from all other clusters. Since a distinction of other clusters
is not needed, we propose the significant simplification to consider only the distances
dj := d(µ̂n, µ

∗j) of bootstrap descriptors from the sample descriptor. As illustrated in
Figure 1, the cluster containing µ̂n will be the first mode in the distribution of dj but in
dimension larger than 1 it starts with a rising slope. All other modes will correspond to
different clusters, some of them possibly lumped together by only taking the distance.

(A) Typical distance histogram in 1d (B) Distance histogram in 2d or higher

FIGURE 1. In dimensions higher than 1, the cluster containing µ̂n starts
with a rising slope due to the spherical volume element.

The problem now boils down to finding the onset of the second mode and counting
all points from there. We use the multiscale method by [2] to identify rising and falling
slopes. Since the first falling slope marks the end of the cluster containing µ̂n, we identify
the onset of the next rising slope after the first falling slope as d+. Then we simple count
all dj > d+, which yields the following test

Hypothesis Test 2.2.
Null hypothesis and alternative:

H0 : |E| ≥ 2, H1 : |E| = 1.
Test statistic:

T := 2
B
|{dj : dj > d+}|.

Recall: d+ is the onset of the rising slope after the first falling slope.
Rejection regions and p-values:

Reject if T < α, p-value p = min {1, T}.

In [3], it is shown that the test has exactly size α if the population has two global
descriptors and is conservative if it has more. It is also shown that the power of the test
asymptotically goes to 1 under the alternative for n → ∞ and B → ∞.
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3. APPLICATIONS

As first application, we consider the growth of actin fibers in blood platelets after
spreading on a substrate [6]. We use the Filament Sensor [4] to detect fibers in
fluorescence microscopy images of the platelets taken in 10-second intervals, see
Figure 2, and consider total fiber length over time. To these time series we then fit an
exponential saturation model detailed in [6], [3].

FIGURE 2. An overview of the image filtering, binarization and filament
detection of the Filament Sensor on a microscopy image of a platelet.

For most platelets, our test rejects the null hypothesis of non-uniqueness. In Figure 3,
we show two examples of platelets where alternate solutions exist and in one case the
null is not rejected. However, in both cases, one of the growth curves has a too early
onset of growth, since the time coordinate is chosen such that time t = 0 marks the time
when the platelet sets down on the substrate and starts spreading. In [6] we constrained
the parameter space of the model to avoid an onset of growth before t = 0, which leads
to unique fits for all platelets.

(A) Test does not reject, p = 0.227 (B) Test rejects, p = 0.044,
but not with multiple testing correction!

FIGURE 3. Time series and fits for two different platelets.

As a second application, we consider parameter estimation from ENDOR spectra [7].
Two local minima of the loss function emerged in the parameter fitting, leading to
different parameters but very similar fitted spectra, see Figure 4. From structural
chemistry one can determine that only the parameters shown in blue here correspond to
a viable conformation. In this case, our hypothesis test also clearly rejects the null
hypothesis of non-uniqueness, so the blue parameters are also statistically preferred.
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(A) Estimated parameter bounds

(B) Fit for blue parameters

(C) Fit for orange
parameters

FIGURE 4. Estimated parameters with confidence bands for two local
minima of the loss function and the corresponding fitted spectra.

Conclusion. We have developed an unprecedented hypothesis test for uniqueness of
descriptors with statistical size and power guarantees, which is highly model agnostic in
the sense that only weak assumptions are made on the model and the population. In two
applications, we have shown that non-uniqueness can especially arise if the parameters
space of a model is too broad and can give rise to fitting results which contradict basic
known facts about the system under investigation. We propose using our test in complex
models, where it can indicate that the model is not suitably restrained, in the simplest
case by using a too broad parameter space.
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HUBER MEANS ON RIEMANNIAN MANIFOLDS

SUNGKYU JUNG

The work presented here was jointly investigated with Jongmin Lee, Pusan National
University, who was another participant of the workshop.

Classification AMS 2020: 62R20, 62R30.

Keywords: Central limit theorem, Covariance estimation, Hypothesis testing,
Riemannian center of mass, Robust statistics, Statistics on manifolds

Determining the mean of a dataset has been a core problem in statistics for a long time,
forming the foundation for various statistical inferences and computations. Traditional
approaches to mean estimation typically employ the L2 loss function, as exemplified by
the Fréchet mean, which extends to data residing in spaces beyond Euclidean vector
spaces. However, these methods are often highly sensitive to outliers, particularly when
applied to manifold-valued data, which have become increasingly prevalent in modern
scientific research.

In this work, we introduce the Huber means on Riemannian manifolds. The Huber
mean, defined as the minimizers of the expected Huber loss, offers a robust alternative to
the Frèchet mean by combining elements of L2 and L1 losses. This dual nature makes the
Huber mean highly resistant to outliers while maintaining efficiency under heavy-tailed
distributions. The Huber mean serves as a natural generalization of Huber’s M -estimator
[2] to the manifold setting, and can be viewed as a robust extension of the Fréchet mean.

The Huber loss function, introduced by [2], combines elements of both L2 and L1

losses. For a cutoff constant c > 0, the Huber loss function is defined for x ≥ 0 as
follows:

ρc(x) =

{
x2 if x ≤ c,

2c(x− c
2
) if x > c.

When c ≃ 0, the Huber loss closely resembles 2c times the L1 loss, since c ≃ 0 implies
ρc(x) = 2cx − c2 ≃ 2cx. As c → ∞, the Huber loss converges pointwise to the L2 loss.
We extend the definitions of (pseudo) Huber losses with c = 0 and c = ∞ by setting
ρ0(x) = ρ̃0(x) := L1(x) = x and ρ∞(x) = ρ̃∞(x) := L2(x) = x2 for a comprehensive study.

The population (or sample) Huber mean is defined as any minimizer of the expected
Huber loss for PX (or Pn, respectively):

Definition 0.1. Given a prespecified constant c ∈ [0,∞], the population Huber mean set
with respect to PX is

E(c) := argminm∈MF c(m), F c(m) :=

∫
ρc{d(X,m)}dP.

For given n deterministic observations (x1, x2, ..., xn) ∈ Mn, the sample Huber mean set is

E(c)
n := argminm∈MF c

n(m), F c
n(m) :=

1

n

n∑
i=1

ρc{d(xi,m)}.
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To ensure the existence of Huber means, we impose an integrability condition:
(A1) For some m ∈ M , F c(m) =

∫
ρc{d(X,m)}dP < ∞.

Theorem 0.2 (Existence of the population Huber means). For a given c ∈ [0,∞], assume
that PX satisfies Assumption (A1). Then, the population Huber mean exists, i.e., E(c) ̸= ϕ.

The geometric median, minimizing the sum of absolute deviations, may not be unique
in Euclidean spaces, and similarly, Huber means are not necessarily unique. The Fréchet
mean can also lack uniqueness on manifolds with nonzero curvature. This raises the key
question: under what conditions is the Huber mean unique?

Ideally, uniqueness would follow from the convexity of F c on M , but no non-constant
continuous function can be convex on a compact, boundaryless manifold [6]. To address
this, we ensure the Huber mean lies in a strongly convex subset of M and establish the
strict convexity of F c there.

(A2) For the prespecified c ∈ [0,∞], there exists p0 ∈ M such that supp(PX) ⊆ Br0(p0),
where supp(PX) denotes the support of PX , and

(0.1) r0 =

{
1
2
min{ π

2
√
∆
, rinj(M)} if 0 ≤ c < π√

∆
,

1
2
min{ π√

∆
, rinj(M)} if π√

∆
≤ c ≤ ∞,

where ∆ < ∞ denotes for the supremum of the sectional curvatures of M , and rinj(M)
its injectivity radius.

Theorem 0.3 (Uniqueness of population Huber means). For a prespecified constant c ∈
[0,∞], suppose that PX satisfies Assumptions (A1) and (A2). If PX does not degenerate to
any single geodesic, the the population Huber mean with respect to PX is unique.

The sample Huber mean set E
(c)
n for c ∈ [0,∞] is strongly consistent with E(c), as

stated next (see [4] for the choice of terminology). Given n random observations
X1, X2, ..., Xn

i.i.d.∼ PX , the sample Huber mean set E(c)
n is a random closed set.

Theorem 0.4 (Strong consistency). For a given c ∈ [0,∞], if PX satisfies Assumption (A1),
then with probability 1,

lim
n→∞

sup
m∈E(c)

n

d(m,E(c)) = 0,

where d(m,E(c)) := infp∈E(c) d(m, p).

We next establish a central limit theorem for Huber means. Throughout, we assume
that for a prespecified c ∈ (0,∞], the population Huber mean mc

0 for c with respect to PX

is unique, and so is the sample Huber mean mc
n with probability 1 for every sample size n.

In a local coordinate chart (ϕmc
0
, U) centered at mc

0 (i.e., ϕmc
0
(mc

0) = 0 ∈ Rk), let Σc(x) :=

Var[gradρc{d(X,ϕ−1
mc

0
(x)}] and Hc(x) = E[Hρc{d(X,ϕ−1

mc
0
(x))}], where grad and H refer to

the Euclidean gradient and the Euclidean Hessian, respectively. We write Σc := Σc(0)
and Hc := Hc(0), and assume a set of regularity conditions, typically appeared in related
works such as [1, 3, 5]. It is generally challenging to verify the asymptotic normality
of an estimator on manifolds, due to their nonlinearity. To overcome the difficulty, a
“linearization” of manifolds by utilizing local coordinate charts is used to state a central
limit theorem for mc

n.
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Theorem 0.5 (Central limit theorem). For a given c ∈ (0,∞], suppose that PX satisfies
Assumptions (A1), (A3), and (A4). Then,
(a) mc

n → mc
0 almost surely as n → ∞, and

(b)
√
nϕmc

0
(mc

n) → Nk(0, H
−1
c ΣcH

−1
c ) in distribution as n → ∞.

We next evaluate the breakdown point of the sample Huber mean, demonstrating its
high robustness. The breakdown point of the sample Huber mean at X is given by
ϵ∗(mc

n,X) = min1≤k≤n{ k
n
: supYk

d(mc
n(X),mc

n(Yk)) = ∞}, where the supremum is taken
over all possible Yk. The higher the breakdown point is, the more resistant the Huber
mean is to outliers.

Theorem 0.6 (Breakdown point). Let X = (x1, x2, ..., xn) be a collection of observations
on M . If M is unbounded and all isometric transformations on M are transitive, then for
any c ∈ [0,∞), ϵ∗(mc

n,X) = [n+1
2
]/n, where [·] denotes the floor function.

The Huber mean possesses a breakdown point of 0.5, which is the highest possible
breakdown point among all isometric-equivariant estimators.
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THE INFLUENCE OF THE CUT LOCUS
ON THE CLT FOR FRÉCHET MEANS

HUILING LE

Classification AMS 2020: Primary 60F05; Secondary 62R30

Keywords: Central limit theorem; Cut locus; Fréchet mean; Intrinsic; Parallel transport;
Riemannian manifold.

This talk presents the result of the recent paper [3] (joint work with Thomas Hotz
and Andrew Wood): a general result on the CLT for sample Fréchet means on compact
Riemannian manifolds when the support of a distribution meets the cut locus of its
Fréchet mean. We (i) clarify when non-standard behaviour of the Fréchet mean in
compact Riemannian manifolds occurs; and (ii) to characterise the non-standard
behaviour when it does occur. In particular, whether or not a non-standard term arises
in the CLT depends on whether the co-dimension of the cut locus of the Fréchet mean is
one or greater than one: in the former case a non-standard term appears but not in the
latter case.

This result generalises the result of Bhattacharya and Lin [1], where the authors
considered the case where the cut locus of the Fréchet mean is at least 2, and the result
of Hotz and Huckemann [2], where the authors considered the intrinsic Fréchet mean
on the circle.
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PROBING THE SHAPE OF METRIC AND NETWORKED DATA THROUGH
OBSERVABLES

WASHINGTON MIO AND ECE KARACAM

Classification AMS 2020: 62R20, 62R30

Keywords: statistics on metric spaces, principal observable analysis, metric space
covariance

We discuss a method for analyzing datasets in compact metric spaces through a
technique referred to as principal observable analysis, which may be viewed as a metric
counterpart to principal component analysis in Euclidean space. The underlying metric
space is denoted (X, dX) and data is modeled as a Borel probability measure µ on X,
which may represent a (theoretical) population model or empirical data. Thus, the
objects of interest are metric measure spaces given by triples (X, dX , µ). This framework
also includes networked data by viewing the set of nodes of a network as a metric space
equipped with the shortest path distance.

PCA in d-dimensional Euclidean space Rd (or more generally, in Hilbert spaces) is
based on maximizing the variance of orthogonal projections of µ to subspaces of Rd. It
is well known that these projections can be constructed iteratively from projections to
1-dimensional subspaces. As such, one possible approach to metric versions of PCA is to
replace 1-D linear projections with mappings f : X → R for which we have some control
on the metric distortions across all scales, as is the case for orthogonal projections. This
motivates us to define an observable as a 1-Lipschitz mapping f : X → R; that is, a map
that satisfies

(0.1) |f(x)− f(y)| ≤ dX(x, y),

for any x, y ∈ X. The underlying philosophy is that, in the aggregate, such observables
retain substantial information about the shape of (X, dX , µ).

We say that an observable f is µ-centered if
∫
X
f(x) dµ(x) = 0 and denote the space

of all µ-centered observables by Oc
µ(X). The observable covariance operator Σµ : O

c
µ(X)×

Oc
µ(X) → R is defined by

(0.2) Σµ(f, g) :=

∫
X

f(x)g(x)dµ(x).

Σµ(f, g) measures the correlation between the µ-centered observables f and g.
A first principal observable (PO1) for (X, d, µ), denoted ϕ1, is a µ-centered observable

f that maximizes the variance σ2(f) = Σµ(f, f). In other words,

(0.3) ϕ1 := arg max
f∈Oc

µ(X)

Σµ(f, f) .

Inductively, assuming that ϕ1, . . . , ϕn−1 have been constructed, define an nth principal
observable ϕn as a µ-centered metric observable that maximizes the variance among those
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µ-orthogonal to the subspace spanned by ϕ1, . . . , ϕn−1. More precisely,

(0.4) ϕn := arg max
f∈Oc

µ(X)

Σµ(f, f) ,

subject to the constraints
∫
X
f(x)ϕi(x)dµ(x) = 0, for 1 ≤ i ≤ n − 1. The existence

of observables follows from general compactness arguments based on the Arzelà-Ascoli
Theorem.

REMARKS.

(1) Principal observable analysis provides a dimension reduction and vectorization
method for metric data. For a fixed integer n > 0, the first n principal observables
define a map ϕ : X → Rn given by x 7→ (ϕ1(x), . . . , ϕn(x)). Note, however, that
the natural metric in Rn to analyze the reduced data is not the Euclidean metric;
rather, it is the ℓ∞-metric for the map ϕ to be 1-Lipschitz, our guiding principle
for the construction of observables.

(2) Unlike PCA, the variance of the reduced data is not additive over the various
principal components. In a Hilbert space this holds because principal components
are not just uncorrelated but also orthogonal with respect to the underlying inner
product, a structure that is not present in metric spaces.

(3) Principal observables also yield basis functions for the representation of functions
g : X → R. Unlike PCA, the number of basis functions is not limited by the
dimension of X. For example, for the unit interval I = [0, 1], there are infinitely
many non-trivial principal observables for the uniform distribution µ on I.

We address the stability of the observable covariance operator in a general setting
where both the underlying compact metric space and the probability distribution can
vary. Note that for two different distributions µ and ν, even if defined on the same space
X, their spaces of centered distributions are distinct so that their observable covariance
operators Σµ and Σν are not defined on the same domain. This leads us to analyze the
stability of covariance in a Gromov-Hausdorff framework. To this end, for p ≥ 1, we
equip Oc

µ(X) with the metric induced by the Lp-norm denoted ∥ · ∥p,µ that turns Oc
µ(X)

into a bounded, but generally non-complete, metric space. We then equip Oc
µ(X)×Oc

µ(X)
with the product metric

(0.5) dp,µ((f1, g1), (f2, g2)) := max{∥f1 − f2∥p,µ, ∥g1 − g2∥p,µ}.

We state our stability result for covariance in terms of the (functional) Gromov-Hausdorff
distance (cf. [1]), denoted dGH and calculated with respect to the metric dp,µ.

Theorem 0.1 (Stability Theorem). Let X = (X, dX , µ) and Y = (Y, dY , ν) be metric
measure spaces such that µ and ν have finite p-moments, p ≥ 1. Then,

dGH(Σµ,Σν) ≤ 2max{1, DX +DY }dGW,p(µ, ν),

where dGW,p denotes the Gromov-Wasserstein p-distance, and DX and DY are the diameters
of (X, dX) and (Y, dY ), respectively.

Here, we use Sturm’s version of the Gromov-Wasserstein p-distance [3], which is based
on both metric and probabilistic couplings, as opposed to the original definition due to
Mémoli which is based on expected distortions of probabilistic couplings [2].
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Consistency of the observable covariance operator follows as a corollary of the Stability
Theorem. If (xi)

∞
i=1 are independent samples from µ, and µn is the empirical measure

µn =
∑n

i=1 δxi
/n, then limn→∞ dGH(Σµ,Σµn) = 0 almost surely. It is also possible to get

estimates for the convergence rate using results from [4].
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ADVANCES IN GEOMETRIC STATISTICS WITH FLAG SPACES

XAVIER PENNEC
(JOINT WORK TOM SZWAGIER, DIMBIHERY RABENORO)

Classification AMS 2020: 62R30, 60D05, 62H25, 14M15, 58C99, 62H11

Keywords: Flags, subspaces, manifolds, PCA, CLT

Generalizing PCA to manifolds: Barycentric Subspaces Analysis. Statistically
reduction of the dimension is a key issue in numerous problems. When data belong to a
manifold, we first need to define families of parametric subspace in manifolds which
could play the role of principal subspaces. Geodesic shooting along the main
eigenvectors of the covariance matrix at the Fréchet mean point generates a Geodesic
Subspace (GS) in tangent PCA. The point and tangent vectors defining that GS that can
also be optimized to best fit the data such as proposed in Principal Geodesic Analysis
(PGA) and Geodesic PCA (GPCA). To restore the full symmetry between the parameters,
we proposed in [1] to use the Exponential Barycentric subspace (EBS) defined as the
locus of weighted means of k + 1 reference points (with positive or negative weights).
The EBS is locally a stratified spaces of maximal dimension k comprised of critical
points of the weighted variance satisfying the barycentric equation

∑
i λilogx(xi) = 0. Its

metric completion is called the affine span Aff(x0, . . . xk). Such spaces generalise the
notion of Geodesic Subspaces which can be shown to be the limit when reference points
coalesce towards a local 1-jet.

Barycentric subspaces and affine spans can naturally be nested by defining an
ordering of the reference points. This allows the construction of forward or backward
nested sequence of subspaces. However, these methods optimized for one subspace at a
time and cannot optimize the explained (or unexplained) variance simultaneously for
all the subspaces of the flag. In order to obtain a global criterion, PCA in Euclidean
spaces was rephrased in [1] as an optimization on the flags of linear subspaces of the
accumulated unexplained variance criterion. This generalizes nicely to flags of affine
spans in Riemannian manifolds and gives a particularly appealing generalization of PCA
on manifolds, called Barycentric Subspaces Analysis (BSA).

The curse of isotropy: From PCA to Principal Subspaces analysis. Considering PCA
as an optimization of flags spaces gives an interesting geometric point of view, even in
Euclidean spaces. Indeed, one usually consider the succession of unidimensional
eigenmodes for the interpretation of the data in PCA, but more general flags with higher
dimensional subspaces naturally arise with the geometric point of view. They
correspond to covariance matrix with repeated eigenvalues, in which case eigenspaces
are stable but eigenvectors may be freely rotated within each eigenspace. This raises an
an important issue about the interpretation of PCA modes, called the curse of isotropy
[2]: principal components associated with equal eigenvalues show large intersample
variability and are arbitrary combinations of potentially more interpretable components.
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Most users overlook the problem because empirical eigenvalues are almost surely
distinct in practice due to sampling errors with a finite number of samples. In [2], we
propose to identify datasets that are likely to suffer from the curse of isotropy by
introducing a generative Gaussian model with repeated eigenvalues and comparing it to
traditional models via the principle of parsimony. This yields an explicit criterion to
detect the curse of isotropy in practice. We notably argue that in a dataset with 1000
samples, all the eigenvalue pairs with a relative eigengap lower than 21% should be
assumed equal. This demonstrates that the curse of isotropy cannot be overlooked. In
this context, we propose to transition from fuzzy principal components to more
interpretable principal subspaces. The final methodology, coined principal subspace
analysis is extremely simple and shows promising results on a variety of datasets from
different fields.

A geometric formulation of CLT for flags. Estimating principal subspaces rather than
eigenvectors raises the question of the uncertainty of the estimated flag: with a
statistical point of view, one thus looks for confidence regions for principal subspaces.
The previous works of Anderson and Tyler were limited to confidence regions on
individual eigenvectors or on one single eigenspace at a time. In [3], we develop an
asymptotic method to infer the collection of all principal subspaces together, i.e. the full
flag of eigenspaces of this covariance matrix. Our approach is based on the Riemannian
homogeneous geometry of the flag manifold. However, even if flags generalize
Grassmmann and Steifel manifolds, they are generally not symmetric, and the
Riemannian logarithm is not known in closed form. To get around this problem, we
develop and approach based on the embedding of the flag manifold in the product of
Grassmannians, where we can show a central limit theorem and a χ2 distribution of the
Mahalanobis distance.
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OBJECT CORRESPONDENCE FOR SHAPE STATISTICS

STEPHEN M. PIZER, JS MARRON, MOHSEN TAHERI AND JARED VICORY

                                                                       Abstract
We describe a representation targeted for anatomic objects that is designed to enable 
strong locational correspondence within object populations and thus to provide 
powerful object statistics. The method generates fitted coordinate frames on the 
boundary and in the interior of objects and produces alignment-free geometric features 
from them. It accomplishes this by understanding an object as the diffeomorphic 
deformation of an ellipsoid and using a skeletal representation (which has swept 
curvilinear cross-sections) fitted throughout the deformation to produce a model of the 
target object, where the object is provided initially in the form of a boundary mesh. We 
call this object representation the evolutionary s-rep. Via classification performance on 
hippocampi shape between individuals with a disorder vs. others, we compare our 
method to two state-of-the-art methods for producing object representations that are 
intended to capture geometric correspondence across a population of objects and to 
yield geometric features useful for statistics, and we show notably improved 
classification by this new representation on clinical data as to infants hippocampal 
shape’s ability to diagnose autism. The geometric features that are derived from each of 
the representations, especially via fitted coordinate frames, is discussed. Finally, we 
briefly discuss an s-rep variation in which object cross-sections are ellipses, and we 
show how, unlike all known object representations, it guarantees object means that 
avoid self-intersections.

1. OVERVIEW

If one wants to do statistics, such as classification or computations of means, on object 
shape, such as the ones shown in Fig. 1, it is important that the features used reflect as 
much as possible agreement on the localization of geometric properties held in common 
across the population. This characteristic is called correspondence. We compare two 
categories of object representations used for producing such object correspondences, 
given smooth-boundaried, protrusion-free object samples in the training and test sets, 
all specified by a relatively dense boundary mesh. Of the 3D object representations that 
have been claimed to be promising for statistics, the two most promising categories are 
the ones we study:

(1) Diffeomorphisms over 3D space derived after alignment via an LDDMM
algorithm from the object mesh vertices [Durrleman 2014] or from the binary
images describing the objects [Zhang 2019]; these are represented respectively
by momentum images or initial velocity images, i.e., 3D arrays of vectors, with
the 3D space covered by the array containing the objects (see Fig. 5).

(2) The skeletal representation called evolutionary s-reps described in this paper
and with more history and details in [Pizer 2022]; in 3D these are represented
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by a 2D skeletal grid in which at each grid-point a collection of directions and
lengths from the skeleton to the boundary are provided (Fig. 2). From these,
fitted-frame-based curvatures and inter-grid-point lengths are derived that
prevent the need for pre-alignment. Though the methods can apply to objects of
a wide variety of topologies and geometries, here we restrict ourselves to ones
of spherical topology for which a swept sequence of possibly cross-sectional
curved surfaces do not intersect within the object [Damon 2021] and which
have no protrusions or indentations (see Fig. 1).

FIGURE 1. Target objects used in this study: A hippocampus (left) and a
smoothed mandible (middle), both of which have no protrusions. Also
shown on the right is the mandible, which has protrusions.

Our method of achieving statistical correspondence over a population of objects is
achieved by using a representation seen to richly reflect object geometric properties
throughout the whole closure of the interior of the object, to fit this to members of the
object population, to provide corresponding local 3D coordinate systems within these
regions so as to avoid preliminary alignment of objects, and to build the statistical
approach of interest based on features derived from the coordinate systems. The
statistical strength of our method and the common ones of boundary point distributions
and of LDDMM-derived 3D arrays of vectors are each measured by classification
performance on infants’ hippocampi discriminated into autistic and control classes. Past
experiments have shown that the simple pre-aligned boundary point distribution model
(PDM) provides inferior statistical effectiveness than the two derived representations
listed earlier, which are designed to capture a richer set of geometric properties than
boundary locations alone. The pre-alignment required by both the LDDMM and PDM
approaches propagates its error into the determination of correspondence. Also, they
both ignore geometry related to the object interior, in particular (see Fig. 2, left), a) the
curvature information of that 2D object and b) the bulge seen in its middle. Both the
curvature and width features can be understood by fitting the boundary with a skeletal
axis equipped with spoke vectors from the axis to the boundary (Fig. 2, 2nd and 4th from
left, in 2D and 3D respectively). Moreover, we will show how the skeleton and its
spokes can be used to avoid pre-alignment and to capture interior geometric features.
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FIGURE 2. From left to right: 1) 2D object with curvature and a bulge,
showing as dashed its skeletal (interior) axis. 2) “Spoke” vectors from the
skeleton to the boundary capturing object width. Together the axis and the
spokes form an s-rep [Pizer 2022]. 3) A 3D object, a hippocampus. 4) The
“s-rep” for the hippocampus. 5) The s-rep for an ellipsoid, the base object
for deformation into the target object. Both 3D s-reps show the object’s
skeleton as the top side of a folded surface with spherical topology. The
s-reps’ spines (skeletons of the skeletons) are shown in bold, and their fold
curves are shown in yellow. Curves called “veins” proceed from the spine
to both halves of the fold.

The s-reps approach is built on the intuition that object width and curvature of the 
object interior as they vary across the object are especially indicative of object shape 
and the way in which it corresponds across a population. In our recent work the  
s-rep computation, for any training or test object, can be understood as a sequence 
of diffeomorphic stages ending at the target object’s s-rep and starting with an s-rep 
for the closure of the interior of the most basic form of this shape representation, 
namely an ellipsoid common over the population. The s-rep of the ellipsoid is its Blum 
medial skeleton, which is analytically known.

To reflect important geometric properties, the mapping from the ellipsoid s-rep to the 
target object s-rep must have spoke vectors that remain straight and the so-called radial 
distances (fractions of the distance along spokes) map onto the same radial distances 
in the target object’s s-rep. The vertices (local maxima of Gaussian curvature) of the 
ellipsoid, which correspond to the vertices of the skeleton, must map onto ones of the 
target object, and the crests of the ellipsoid, which correspond to the fold curves of 
the skeleton, must map onto crests of the target object. This has led us to our new 
“evolutionary” method producing an ellipsoid-based diffeomorphism, which maintains 
these properties all the way through the stages of the diffeomorphism.

The means of novelly deriving fitted coordinate frames in the closure of a target object’s 
interior depends on the s-rep because they are computed by differential geometry [E. 
Cartan, 1907] on the onions skins formed as the level sets of radial distance (Fig, 3). 
These frames throughout the object allow alignment-independent geometric features to 
be derived there to represent curvatures and vectors specifying inter-point relationships, 
both in the coordinates of the local frame. Section 2 shows how these frames and the 
geometric features are computed, so as to be in correspondence across the population.

Section 3 overviews the evolutionary method of fitting an s-rep to each of the objects 
in a sample set. Section 4 gives the results of our methods’ comparison experiment on 
three object modeling approaches after overviewing the classification method and data 
we used for that comparison, the geometric features derived from the various methods,
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and how we measured classification performance. Section 5 describes how non-self-
intersecting object means can be produced from a form of s-rep whose cross-sections are
planar ellipses. Section 6 summarizes our method and discusses the lessons on producing
correspondence that were learned in this work and available generalizations to a wider
class of anatomic objects.

FIGURE 3. Top left: The onion skins for a hippocampus. Top middle: fitted
frames on two points of an ellipsoid boundary. Top right: Rotation of a
fitted frame in its own local coordinate system. Bottom: Fitted frames.
Left: on the skeleton. Middle: on the onion skin halfway between the
skeleton and the boundary. Right: on the boundary.

2. CORRESPONDENCE AND GEOMETRIC FEATURES VIA S-REPS

Our s-rep based intra-object coordinates (Fig. 4) lead to a correspondence that is
insensitive to uniform widening 1) across the s-rep spokes, 2) along the long axis of the
object, and 3) across the skeleton from one fold side to the other. The first of these
coordinates, denoted τ2 ∈ [0,1], being 0.0 at skeleton and 1.0 at boundary, is Damon’s
[Damon 2008a] radial distance, the fraction of the distance along the spoke from the
skeleton to the boundary. The second coordinate, denoted θ, is cyclic along the spine of
the s-rep, passing along the top side of the spine and back along the bottom side of the
spine. The third coordinate, denoted τ1 ∈ [0,1], captures distance from the spine along
the veins as a fraction of their length, together with a flag indicating which side of the
spine the vein is. All of these coordinates being fractions, they already are not sensitive
to uniform scaling respectively in the three aforementioned directions.

Every position in the closure of an object interior has a unique value of (θ, τ1, τ2), and
importantly, if the s-rep fitting is adequately reflective of the object geometry, the tuple
provides the inter-object correspondences.

FIGURE 4. Object coordinates for ellipsoid and hippocampus.
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In the studies for this paper the fitted frames are calculated along each spoke for τ2
(radial distance) values of 0.0 (the skeleton), ±0.25, ±0.5, ±0.75, and ±1.0 (the boundary
position of the spoke), where the negative values refer to spokes on the bottom side. The
normal to the onion skin there and the pure θ direction in the tangent plane to the onion
skin are computed using small shifts of the relevant spokes, with the shifted spokes
computed using the spoke interpolation described in [Liu 2021].

The geometric features that we will use to characterize any object are all derived
from its s-rep. There are three types of features: local frame curvatures of the onion
skin in the ∆θ and ∆τ1 directions at any onion skin point, local vectors describing
positional shifts between onion skin points, and, at each skeleton point (with the
topside and bottomside skeleton points taken as being different) the spoke vector and
the frame curvature between the two ends of each spoke (τ2=0 and 1.0). Each feature
at an onion skin point uses the coordinate system provided by the frame at that point.
The spoke-related features use the coordinate system provided by the frame at the
skeletal end of the spoke. The onion skin points used are along the respective spokes.

The hippocampi used in this experiment are spatially sampled with 61 interior skeletal
points, of which 6 are along the spine ends’ extensions, and 24 skeletal fold points. The
features there, each Euclideanized and mean centered to allow Euclidean statistics to be
applied [Jung, PNS], form a tuple of size 8,076.

To produce the competing representations of LDDMM (Large-Deformation
Diffeomorphic Metric Mapping) features on a boundary mesh, the publicly available
program called Deformetrica [Durrleman 2014] used the same boundary point arrays
input to our method to deform the mean of the input object points to the corresponding
target object points. The alternative works on binary images derived from the mesh.
Both yield an energy-minimizing diffeomorphism over all of 3-space that carries the
locations in the source object to their corresponding locations in the target object. Its
momentum result, or a corresponding representation of initial velocities, is represented
over an object-containing 3D Cartesian grid (see Fig. 5), with each vector Euclideanized
and mean centered.

FIGURE 5. Left: Mean hippocampus in the grid of vectors. Right: Target
hippocampus in the grid of vectors.
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3. FITTING AN S-REP TO AN OBJECT BOUNDARY VIA A NOVEL EVOLUTIONARY METHOD

The Pizer/Vicory evolutionary method for fitting an s-rep to a target object operates
on the principle that the input boundary mesh representing each object in the population
can be smoothly mapped to a common ellipsoid and that the s-rep analytically derived
from that ellipsoid can be diffeomorphically mapped back to the target object. For the
method to apply to any object of spherical topology, producing no singularities, we use
the conformalized mean curvature flow method (CMCF) [Kazhdan 2012] for a forward
flow. Very early in the CMCF mapping stages, whatever protrusions and indentations
that were on the target object disappear. Soon thereafter, the curvatures of the object
straighten out. See Fig. 6, where the mandible resolves into what we call a “bent hotdog”,
followed by its straightening and shortening into an ellipsoid.

FIGURE 6. Various stages of CMCF applied to a mandible. Far left: the
mandible. Left of center: the bent hotdog. Right of center: the largely
straightened hotdog. Far right: the resulting ellipsoid.

The CMCF is applied in stages from the target object. It yields a sphere in the limit,
but it nears an ellipsoid on the way, which can be diffeomorphically mapped to the mean
of the training objects’ ellipsoids in an approach respecting the s-rep properties [Damon
2021]. At each stage of CMCF the boundary mesh computed is tested for nearness to an
ellipsoid. When it is near enough, a final stage fits the flow-applied points to that proper
ellipsoid.

The evolutionary method (Fig. 7) reverses the forward flow in stages and in doing
so, transforms the ellipsoid’s s-rep to that of the target object, all the while respecting
geometric correspondences of the boundaries, spokes, vertices, crests, and s-rep folds.

We thus have an s-rep for each target in the population, from which the geometric
features can be computed. Also from these stage-based transformations, a new
diffeomorphism composing the inter-stage diffeomorphisms can be computed. Fig. 8
shows examples of the s-reps from the evolutionary method, both for simulated objects
formed as a bent ellipsoid and for two of the hippocampus samples.

FIGURE 7. The s-rep fitting method on a bent ellipsoid. Right to left is
forward (CMCF) flow. Left to right is the backward (s-rep fitting) flow,
from the ellipsoid to the target bent ellipsoid.
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FIGURE 8. S-rep fitting results from the Pizer/Vicory evolutionary method.

4. TESTING VIA CLASSIFICATION PERFORMANCE

4.1. Materials. The objects with which we compare the classification performance of
our three methods are hippocampi of 6-month olds (see Fig. 2) in two classes: those
that developed autism symptoms in later years and those that did not. There are 34
cases in which autism developed and 143 in which it did not. For all the representations,
we have chosen to have a number of starting features from each sample: 8,076 and
1296, respectively, to be much larger than the number of training samples: 177. By
PCA each instance in these sets are reduced in dimension to 1 less than the number of
data samples. The challenging classification problem is to predict from a hippocampus
whether the young patient will later develop autism. The best of our previous methods on
single hippocampi for doing this classification have yielded areas under the ROC (AUCs)
of 0.6.

Two forms of the LDDMM method were evaluated. The first uses objects represented as
boundary meshes and yields a momentum grid. Using a program due to Zhang [2019],
the second uses objects represented as binary images and yields a grid of initial velocity
vectors. However, to avoid a statistically invalid evaluation where the full data is used
in forming the geometric features, for the LDDMM methods the mean was computed
over a random quarter of both classes of the data and the evaluation was produced by
the random holdout method on the remaining ¾ of the data. This process was repeated
6 times, and the resulting AUC and AUPR measures (see Table 1) were averaged over
the repetitions. We checked and verified that the results were not materially affected
by this form of averaging by repeating the experiment with the standard approach in
the literature, in which the mean is computed from the whole data set and the random
holdouts are applied to the whole data set.

4.2. Methods of Comparison. Each representation’s data set is analyzed using a
classification method to yield an Area Under an ROC Curve (AUC) as well as an Area
Under the Precision, Recall Curve (AUPR). The AUC is a commonly used measure; the
AUPR was chosen due to its lower sensitivity to the imbalance between the number of
cases of each class. The method of random holdouts was applied using the classification
method entitled Distance Weighted Discrimination (DWD) [Marron 2007]. For each
holdout, the non-held-out cases are used to produce a separation direction in feature
space, upon which all of the training cases are projected, forming two histograms, one
for each class. Using those histograms, the public software for the method called
SMOTE [Chawla 2002] was used to form an AUC and an AUPR for the collection of
holdouts [Liu 2021]. The AUCs over 1000 holdouts produce the overall AUC and AUPR
for that object representation method.
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4.3. Results. Table 1 gives the AUC and AUPR values for each of the four object
representations. While it is not possible to attach statistical significance levels to these
values, due to the high correlation of the various random holdouts, the results indicate
that the superior method for producing a representation aimed for statistical analysis is
our evolutionary s-rep fitting method proposed in this paper. Of course, this result is on
only one anatomic structure with respect to only one mental disorder, but it
nevertheless suggests the superiority of representing the object interior using fitted
frames, as well as the superiority of fitting s-reps to object boundary meshes by
deformation of their interior closure from an ellipses in a way recognizing maintenance
of s-rep relevant properties throughout the deformation.

Representation AUC AUPR

Evolutionary s-reps 0.73 0.38
Mesh diffeomorphism momenta 0.53 0.23
Binary diffeomorphism initial velocities 0.58 0.27

TABLE 1. AUCs and AUPRs for the Pizer/Vicory s-reps and diffeomorphism
momenta and initial velocities, respectively. For both measures, a larger
value shows better classification performance.

4.4. Means Guaranteed Not to Self-Intersect. Like all object representations that we
know of, including our evolutionary s-reps, means of objects, each of which has no self-
intersections can yield a mean that has self-intersections. A variant of s-reps due to Taheri
[2024] in which the cross-sections consist of planar ellipsoids has yielded an approach
through which the mean can be guaranteed to have no self-intersections.

5. CONCLUSIONS

This paper described a novel means of generating fitted frames in the closure of an
object’s interior and then generating alignment-independent geometric curvature and
positional spacing primitives from those frames. This appears intellectually to be a
notable advance, since in a number of human anatomic objects and disease categories
[Pizer 2022, Liu 2023, Taheri 2023] it has shown its strength for generating statistically
useful shape features, not only locally but across inter-object and intra-object locations.
The method is based on s-reps fitted to mesh-represented object boundaries in the
population in a way designed to produce interior correspondence across the instances,
at least according to geometric features. This novel form of s-rep fitting operates by
evolution through each of a succession of stages by warping an ellipsoid into the object
such that the s-rep geometry relative to the warping object is maintained. The results of
our evaluation confirm this behavior via its superior performance in classification based
on shape, albeit in only one population of anatomic objects. In particular, it suggests
that an object representation that highly recognizes the shape properties of the object
interior, not just globally within the object but locally as well, can produce better
statistics than one that is based on the limited properties of the object boundary alone.
The method given here need not be restricted to objects with spherical topology. For
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example, extension to objects with toroidal topology might be developed. Also, in the
object interior location’s correspondences produced by the s-rep-based coordinates
other than geometric features, such as biological or image intensity ones can be
provided; they can be used with the geometric features to produce even better
correspondences. The details of the s-rep fitting method and of the comparison
experiment are provided in the companion paper [Vicory 2024]. The software
underlying the method [Vicory 2018, 2023] will very shortly be made available at the
Slicer/SALT website: https://salt.slicer.org.
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Symmetric positive definite matrices are familiar in statistics as covariance matrices.
They also appear as data objects, particularly in brain imaging, such as in Diffusion
Tensor Imaging [1, 3] and Tensor Based Morphometry [9, 11]. Many geometric
frameworks have been developed for analysis of such data objects, including the
log-Euclidean framework [2], affine-invariant framework [5], log- Cholesky framework
[10], and Procrustes framework [4].

While these geometric frameworks account for the positive-definiteness constraint of
these data objects, it is not clear which, if any, is most “natural” for describing
deformations of symmetric positive definite matrices. We begin with the premise that a
natural representation of such matrices is by their eigenvalue-eigenvector
decomposition, because changes in that coordinate system can be directly interpreted as
scaling and rotation in space.

Let Sym+(p) be the space of p×p symmetric positive definite matrices, and let Sym+(p)
be its closure, the space of p × p symmetric positive semi-definite matrices. Under the
parametrization given by the eigenvalue-eigenvector decomposition, Sym+(p) takes the
form of a Whitney-stratified manifold with 2p strata, where strata are distinguished by
the multiplicity of the eigenvalues. Half of these strata lie on the boundary of Sym+(p),
corresponding to matrices of rank less than p, while the other half lie on the interior of
Sym+(p), corresponding to matrices of full rank equal to p. The dimension of the interior
strata can be computed explicitly.

This geometry can be used to define a scaling-rotation (SR) distance on Sym+(p),
introduced by [8], measuring scaling of eigenvalues and rotation of eigenvectors. When
restricted to the top stratum, corresponding to the set of symmetric positive definite
matrices whose eigenvalues are all distinct, this distance is shown to be a Riemannian
metric and turns this set into a complete Riemannian manifold. The geodesics
according to this geometry are scaling-rotation curves that smoothly transform one
symmetric positive definite matrix to another by scaling its eigenvalues and rotating its
eigenvector. The shortest geodesic is called the minimal scaling-rotation curve.

When extended to the full space Sym+(p), the SR distance is no longer a metric but
only a semi-metric, because the triangle inequality does not hold. This is because paths
traversing through lower strata may be shorter than those remaining in higher strata.
An implication of this result is that Fréchet means cannot be directly computed, as they
require properly defined metrics.

For a set of random points on Sym+(p), we formally define the SR mean set to be the
set of Fréchet means in Sym+(p) with respect to the SR distance. Since computing such

Page 26



means requires a difficult optimization, we also define an extension of the Fréchet mean
set called partial SR (PSR) mean set, lying in the space of eigen-decompositions as a
proxy for the SR mean set. The PSR mean set corresponds to a set of elements of
Sym+(p) whose eigendecompositions minimize the average squared scaling-rotation
distance to the original points. It is easier to compute and its projection to Sym+(p)
often coincides with SR mean set. In the eigenvalue-eigenvector parametrization, the
set of partial scaling-rotation means may have up to 2p−1p! elements. However, if the
support of the distribution of random points is small enough (smaller than the regular
convexity radius of the quotient space induced by the sign changes and permutation of
the eigenvalues), then the corresponding eigenvalue-eigenvector composition on
Sym+(p) is unique. Following the techniques in [6, 7], we also establish strong
consistency of the sample PSR means as estimators of the population PSR mean set, and
a central limit theorem.

In an application to multivariate tensor-based morphometry, we demonstrate that a
two-group test using the proposed PSR means can have greater power than the two-
group test using the usual affine-invariant geometric framework for symmetric positive-
definite matrices.

REFERENCES

[1] Alexander, D.C. Multiple-fiber reconstruction algorithms for diffusion MRI. Ann. N.Y. Acad. Sci., 1064,
113–133, 2005.

[2] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in a novel
vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and
Applications, 29, 328-347, 2006.

[3] Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F. and Connelly, A. A rigorous framework for
diffusion tensor calculus. Magn. Reson. Med., 53, 221–225, 2005.

[4] I. L. Dryden, Alexey Koloydenko, and Diwei Zhou. Non-Euclidean statistics for covariance matrices,
with applications to diffusion tensor imaging. Annals of Applied Statistics, 3, 1102-1123, 2009.

[5] P. Thomas Fletcher, Conglin Lu, Stephen M. Pizer, and Sarang Joshi. Principal geodesic analysis for
the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005, 2004.

[6] Huckemann, S. Inference on 3D Procrustes means: Tree bole growth, rank deficient diffusion tensors
and perturbation models. Scand. J. Stat., 38, 424–446, 2011a.

[7] Huckemann, S. Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by
leaf growth. Ann. Statist., 39, 1098–1124, 2011b.

[8] Jung, S., Schwartzman, A. and Groisser, D. Scaling-rotation distance and interpolation of symmetric
positive-definite matrices. SIAM J. Matrix Anal. Appl., 36, 1180–1201, 2015.

[9] Lepore, F., Brun, C., Chou, Y.-Y., Chiang, M.-C., Dutton, R., Hayashi, K., Luders, E., Lopez, O.,
Aizenstein, H., Toga, A.W., Becker, J. and Thompson, P. Generalized tensor-based morphometry of
HIV/AIDS using multivariate statistics on deformation tensors. IEEE Trans. Med. Imag., 27, 129–141,
2008.

[10] Zhouchen Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky
decomposition. SIAM Journal on Matrix Analysis and Applications, 40, 1353-1370, 2019.

[11] Paquette, N., Shi, J., Wang, Y., Lao, Y., Ceschin, R., Nelson, M., Panigrahy, A. and Lepore, N.
Ventricular shape and relative position abnormalities in preterm neonates. NeuroImage Clin., 15,
483–493, 2017.
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The Brownian motion model of trait evolution is widely used in biology to model the
evolution of phenotypic traits. While such traits are often specific and low-dimensional,
modelling the evolution of the entire morphology requires high-dimensional, correlated
shape processes. If the number of morphological features used to represent the shapes is
increased to represent full continuous shapes, the models become infinite-dimensional.

FIGURE 1. Outline of two butterflies connected with a bridge, here a Kunita
flow applied to the landmarks of one butterfly and conditioned on hitting
the landmarks of the other butterfly at a fixed time. The correlation
between nearby points can be observed.

We presented an axiomatic approach to shape stochastics, that asks for shape stochastic
processes that

• apply to multiple representations of shapes, e.g. landmarks, curves, surfaces and
images,

• are independent of specific discretization,
• preserve shape structure,
• model correlation between points,
• is invariant to acting similarity groups, e.g. rigid body transformations.

A consequence of these properties is that such shape processes often cannot be
modelled linearly, thus leading to non-linear and state dependent processes. This is the
case because close points on the shape must be correlated to preserve the shape
structure, and this correlation between points will change if initially far away points are
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brought closer during the evolution of the process. Figure 1 illustrates the correlation
between nearby points on the shape. The axiomatic approach to shape stochastics is
further detailed in [5].

One class of shape processes that satisfies these properties are Kunita flows [3, 4]. We
outlined the use of Kunita flows to model shape evolution, and how they can be used to
condition shape evolution on phenotypic traits. This applies also to branching processes
that models the evolution governed by a phylogenetic tree.

With shape observations, we can condition on the observed shapes at the leaves of the
tree, and then use the resulting likelihood to infer parameters of the process, e.g. the
correlation structure of the Kunita flow. The conditioning on the full shape observation
is explored in [2]. For finite dimensional observations, e.g. finite numbers of landmarks
on the shape, we perform the statistical inference using the backwards filtering, forwards
guiding approach of van der Meulen and Schauer [6]. We outlined the application of this
algorithm for inference of the parameters of the Kunita flow from landmark data, and its
implementation in the software package Hyperiax [1]
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In my talk, I provided a gentle introduction to the study of moduli spaces of metrics
on Riemannian manifolds and more singular spaces and, in the flat and Ricci flat case,
related upon their connection to certain locally symmetric spaces and orbifolds of
potential interest in applications. In particular, I presented in detail the following
results:

Theorem 0.1. In each dimension 4k + 3, k ≥ 1, there exist infinite sequences of closed
smooth simply connected manifolds of pairwise distinct homotopy type for which the moduli
space of Riemannian metrics with nonnegative sectional curvature has infinitely many path
components.

For further details, see [1]. Moreover, in this regard we also have (compare [2]):

Theorem 0.2. In every dimension 4k + 1, k ≥ 2, there are infinite sequences of closed
manifolds with pairwise nonisomorphic integral cohomology for which the moduli space of
metrics of nonnegative sectional curvature has infinitely many path components.

The following theorem from [3] is so far the only result about the higher homotopy
(and cohomology) groups of the moduli spaces of Ricci nonnegative metrics on closed
manifolds:

Theorem 0.3. Let M be a simply connected closed smooth manifold which admits a metric
with nonnegative Ricci curvature and T be a torus of dimension k ≥ 4, k 6= 8, 9, 10. Then the
moduli space of nonnegatively Ricci curved metrics on M×T has non-trivial higher rational
cohomology groups and non-trivial higher rational homotopy groups.

In particular, this also allows to infer:

Corollary 0.4. In every dimension n ≥ 4, n 6= 5 there exist closed smooth manifolds Mn for
which the third rational cohomology group and the third rational homotopy group of the
moduli space of metrics with nonnegative sectional curvature on Mn are non-trivial.

In his Ph.D. thesis [4], the present author’s former student David Degen used these
facts as a starting point to prove, among others, the following results:

Theorem 0.5. The moduli space of Ricci flat metrics on the K3 manifold K is simply
connected and its second Betti number is positive.

Theorem 0.6. The moduli space of Ricci flat metrics, including orbifold metrics, on the K3
manifold K is simply connected and its fourth Betti number is at least 1.
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Crossing the K3 manifold with flat tori and simply connected round spheres,
respectively, this also yields:

Corollary 0.7. In every dimension n ≥ 4 there exist closed smooth manifolds Mn for which
the second rational homotopy group of the moduli space of Ricci flat metrics on Mn is non-
trivial.

Corollary 0.8. In every dimension n ≥ 4, n 6= 5 there exist simply connected closed smooth
manifolds Mn for which the second rational homotopy group of the moduli space of
nonnegatively Ricci curved metrics on Mn is non-trivial.

To conclude (see [5]), let us also embark upon the moduli spaces of flat metrics on
Bieberbach manifolds, giving rise to certain distinguished subsets of the spaces of positive
definite symmetric matrices, which, hence, do also bear, but hitherto unexplored, close
relations to non-Euclidean statistics:

Theorem 0.9. If Γ is a Bieberbach group on Euclidean n-space Rn, its moduli space of flat
metrics on Γ\Rn is homeomorphic to a locally symmetric space or orbifold of noncompact
type.
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Artificial intelligence (AI) represents one of the most transformative advancements in
human history. Deep learning (DL), a subfield of machine learning (ML), has
revolutionized AI by enabling machines to learn complex patterns through
multi-layered neural networks. This has positioned DL as a crucial area of study within
computer science, statistics, and mathematics, all of which are fundamental to AI, ML,
and DL. While calculus, linear algebra, probability, and optimization form the core
mathematical foundations of ML and DL, advanced mathematical areas such as
geometry, topology, algebra, and combinatorics also play significant roles and hold the
future of AI, ML, and DL. Concepts like the Wasserstein metric and geometric measure
theory are integral to numerous ML and DL algorithms. Notably, the intersection of DL
and algebraic topology has led to the emergence of topological deep learning (TDL), a
field that offers innovative methods for analyzing complex datasets, particularly
high-dimensional, nonlinear structures that are challenging for traditional physical and
statistical approaches. The term ”Topological Deep Learning” was first introduced in
2017 to describe the integration of topological features into deep neural network input
pipelines [1] and has since evolved to encompass a broader range of methodologies that
apply topological concepts to deep learning [2].

TDL combines the expressive power of deep neural networks with the mathematical
rigor of topology. Traditional ML methods often struggle to capture the geometric and
structural properties of data, a limitation that TDL addresses by leveraging topological
features and representations. TDL methods are broadly categorized as observational or
interventional [3]. Observational methods focus on understanding deep learning
models through their topological properties, while interventional methods incorporate
topological structures to enable architectures to effectively handle data with inherent
topological properties.

A key component of TDL is persistent homology [4, 5], a technique from algebraic
topology [6] that connects abstract topology and geometry. Persistent homology
performs multiscale analysis by quantifying topological invariants, such as loops, voids,
and higher-dimensional structures, within datasets. Integrating persistent homology
into deep learning frameworks allows for the extraction of meaningful topological
signatures, improving tasks such as classification, regression, clustering, and anomaly
detection. TDL also explores the direct incorporation of topological structures into
neural networks, activation functions, and loss functions. Examples such as topological
transformers [7] and simplicial neural networks [3] highlight the versatility of this
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approach[8]. It is worth noting that AlphaFold 2, recognized with the 2024 Nobel Prize
in Chemistry, employed transformers to predict protein structures.

TDL offers several advantages, including increased interpretability compared to
traditional ”black-box” deep learning models. By extracting intuitive topological
signatures, TDL provides insights into data structures and model predictions [1].
Furthermore, TDL demonstrates robustness to noise and excels at handling
high-dimensional data by focusing on inherent data topologies, revealing patterns often
obscured by noise or irrelevant features. TDL models also exhibit strong generalization
capabilities [9, 10] due to their emphasis on fundamental geometric and topological
properties. Applications of TDL span various fields, including biology, chemistry,
neuroscience, social networks, and computer vision [2, 11], with examples including
advancements in disease diagnosis, drug design, chip design, and graph analysis. Its
efficacy is demonstrated by its success in the D3R Grand Challenges for computer-aided
drug design [9, 12], its discovery of SARS-CoV-2 evolution mechanisms [13, 14], and its
accurate predictions of emerging dominant SARS-CoV-2 variants [15, 10].

Despite its potential, TDL is a relatively nascent field with significant opportunities
and challenges. Integrating domain-specific knowledge into TDL models can further
enhance performance and interpretability. Future research may focus on effectively
incorporating prior knowledge while advancing topological theories beyond homology.
Exploring new topological formulations such as Laplacians and Dirac operators, and
expanding topological domains to cell complexes, path complexes, hypergraphs, knots,
links, and tangles, will further strengthen the field [16]. TDL will also be benefited from
other mathematical fields, such as differential geometry [17] and geometric topology
[18]. This comprehensive approach will ensure TDL’s continued relevance and
effectiveness in addressing complex real-world problems and driving innovation in
data-driven research.

In conclusion, TDL represents a trending paradigm that merges with the
computational power of deep learning with the mathematical richness of topology,
including algebraic topology, differential topology, and geometric topology. Its
robustness, interpretability, and versatility make it a valuable tool for analyzing complex
datasets across diverse domains. Just as partial differential equations (PDEs)
significantly shaped applied mathematics for decades, TDL has the potential to inspire
future generations of mathematicians and computer science researchers, paving the way
for new solutions in AI, mathematics, and beyond.
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We give an introduction to the new research field GLMY theory that may become
the topological component of future topological statistics, presented in a way through
the views of the topological approaches beyond simplicial complex to data and complex
networks.

Topological dada analysis (TDA) is a research area born in 2009 by a landmark paper
of Gunnar Carlsson [7], after the poineering works [1, 11, 23]. TDA was popularlized
since then, with leading to the birth of the new area of topological deep learning (TDL)
from the first exploration [6] in 2017. The commonly used methodolgy in TDA is the
persistent homology (PH) of the simplicial complex modeling on point cloud data using
Vietoris-Rips complex construction together with the persistence from the Euclidean
distance giving rise to multiscaled topological feature of data. Such an approach
achieves great success in data analytics, and also becomes a popular tool in topological
machine learning (TML) and topological deep learning. Mathematically, this is a
simplicial complex approach, where the classical Čech nerve theorem guarantees the
theory to effectively detect the geometric shape of data.

The most challenge in network science is to uderstand the mechanism of high-order
interactions in complex systems, which has been intensively studied with achieving
fruitful results [2, 4, 10, 15, 16]. Simplicial complex becomes an important tool for
networks beyond pairewise interactions, which can overcome some of the problems
encountered by other lower dimensional representations. However, simplicial
complexes are still quite limited by the requirement on the existence of all subfaces.
Hypergraph becomes a choice of many researchers as a more general modeling on
unconstrained description of high-order interactions. From the topological view, a
hypergraph can be considered as “a simplicial complex with some missing faces”, which
gives rise a mathematical question whether simplicial homology theory can be extended
to hypergraphs. Developed from the path homology theory of digraphs [14] introduced
by Shing-Tung Yau et al in 2012—the foundational work of GLMY theory, this question
received an affirmative answer in [5] with introducing the notion of embedded
homology on hypergraphs as a natural extension of simplicial homology. The embedded
homology of hypergraph performs effetively on protein-ligand binding affinity
prodiction in drug design [19, 20].

The notion of hypergraph has been extended as super-hypergraph introduced in [13],
where a super-hypergraph could be viewed as a multiset version of hypergraph. In this
work, we developed the embedded homology theory of super-hypergraphs that can
unifies various aspects of topological approaches for data science, by being applicable
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both to point cloud data and to graph data, including networks beyond pairwise
interactions.

IdopNetwork [9] is a statistical modeling introduced by Rongling Wu et al in 2019,
which gives an informative dynamic ominidirectional and personalized network
reconstruction. The intergration of IdopNetwork and the path homology of digraphs
(GLMY homology) achieved various successful applications in biology and
medicine [8, 12, 18, 22].

Hypergraphes are still limited that could not decsribe some phenomena of
interactions between different hyperedges in biology and social sciences. In [21], we
introduced the notion of interaction complex (IntComplex) as a mathematical modeling
for describing the phenomena of interactions between hyper-edges using binary trees,
and applied the embedded homology of super-hypergraphs for establising a topological
theoy on interaction complexes, which gives an updated developemnt of GLMY theory.
Then, in the work [17], we developed a generalized statistical mechanics model to
reconstruct bidirectional, signed, and weighted hypernetworks that characterize how
constituent agents are influenced by their own strategies, the strategies of co-existing
agents, and strategies of interactions between other agents, as well as how directed
pairwise interactions are influenced by individual agents, and then integrated this new
stastical mechanics modeling with GLMY theory on IntComplex to dissect the
topological architecture of hypernetworks in terms of nodes, links and hyperlinks,
which provides a generic tool for unveiling hidden patterns in complex systems across a
wide spectrum of physical and biological scenarios.
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