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Frédéric Barbaresco, 
Thales Group, France 

Symplectic Foliation-Informed Neural Network (SFINN) and Lie 
Groups Machine Learning Based on Jean-Marie Souriau Lie Groups 

Thermodynamics & Koszul Information Geometry 

The symplectic model of statistical mechanics developed by Jean-Marie Souriau—termed 

the “Thermodynamics of Lie Groups”—extends the structures of information geometry 

to the realm of Lie groups. This framework enables the definition of Maximum Entropy 

Gibbs densities possessing the property of covariance under the action of the group 

operating on the system. Moreover, it generalises the Fisher-Rao-Fréchet metric to Lie 

groups, rendering it invariant under the group’s action. Crucially, Shannon’s axiomatic 

definition of entropy is supplanted by a purely geometric construction, wherein entropy 

emerges as a Casimir invariant function defined on the leaves of the foliation induced by 

coadjoint orbits through the moment map associated with the group action (the moment 

map being the geometric counterpart of Noether’s theorem). 

Souriau’s thermodynamics of Lie groups introduces a web-like geometric structure 

composed of two transverse foliations: a symplectic foliation generated by coadjoint 

orbits (corresponding to the level sets of entropy) and a transverse Riemannian foliation 

(corresponding to the level sets of energy). The dynamics on each foliation make it 

possible to distinguish between non-dissipative phenomena (with constant entropy) and 

dissipative phenomena (with constant energy). This dynamic behaviour is governed by a 

metriplectic flow that encapsulates the first law of thermodynamics through Poisson 

bracket (quantitative conservation of energy) and the second law through metric flow 

bracket (qualitative degradation of energy and generation of entropy). 

We shall explore the connections between TINNs (Thermodynamics-Informed Neural 

Networks), metriplectic flows, and the Lie groups thermodynamics. The overarching aim 

is for TINNs not merely to learn from data, but also to adhere to thermodynamic 

constraints, thereby enabling more accurate predictions and a deeper understanding of 

physical systems—particularly those characterised by dissipative phenomena. 

Souriau Lie Groups Thermodynamics is studied in the framework of two european action, 

European CaLISTA COST action and European CaLIGOLA MSCA action. 
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Baris Coskunuzer 
University of Texas Dallas, USA 

Topological Compound Fingerprinting in Computer-Aided  
Drug Discovery 

In this talk, I present a novel topology-based approach to virtual screening in computer-

aided drug discovery using multiparameter persistence. Traditional methods relying on 

SMILES strings, molecular fingerprints, or deep learning models like VAEs and GNNs face 

challenges in scalability and performance saturation. Our method generates 

multidimensional topological fingerprints by decomposing compounds into chemically 

informed substructures and extracting persistent homology features at multiple 

resolutions. We reformulate VS as a graph ranking problem and use few-shot learning 

techniques to effectively rank compounds by drug-likeness. Our approach achieves 

substantial performance gains over state-of-the-art methods on benchmark datasets. For 

more details, please refer to our paper: https://arxiv.org/abs/2211.03808 
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Xiaowen Dong 
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Bayesian Optimisation of Graph-based Functions 

The increasing availability of graph-structured data motivates a new type of optimisation 

problems over graph-based functions, i.e., searching for the graph or node that maximises 

the value of an underlying function. Such optimisation problems are challenging due to 

the discrete and high-dimensional search space, as well as the underlying function that is 

often black-box and expensive to evaluate. In this talk, I will provide several examples on 

how Bayesian optimisation can be used to optimise graph-based functions, with practical 

applications in computational, epidemiological, and social networks. More broadly, these 

examples demonstrate the promise in combining probabilistic and geometric reasoning 

in analysing complex functions. 
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Niu Huang, 
National Institute of Biological Sciences, China 
Tsinghua Institute of Multidisciplinary Biomedical Research, 
China 

Integrating HPC and AI: A New Paradigm for Predicting Protein-ligand 
Binding 

In the process of small molecule drug discovery, the prediction of protein-ligand 

interactions urgently demands enhancements in computational accuracy and efficiency, 

given its crucial role in identifying novel lead compounds for new targets. However, 

current artificial intelligence (AI) models are constrained by the scarcity of large, high-

quality protein-ligand complex structures and binding data, which consequently impairs 

their generalization ability, limiting their effectiveness in real-world applications. We 

have been actively exploring the potential of physics-based high performance computing 

(HPC). The remarkable computational power of HPC allows us to generate vast, top-tier 

datasets that are invaluable for both training and testing AI modes. When integrated with 

AI’s proficiency in pattern recognition and predictive modelling, this combination allows 

for the rapid and in-depth analysis of molecular structures, more accurate prediction of 

drug-target interactions. Our ongoing research and practice will highlight the profound 

synergy between HPC and AI in facilitating more accurate and efficient calculations of 

molecular interactions, illuminating viable strategies to surmount existing data 

limitations and improve the predictive capabilities of AI models. 
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Wei Huang, 
RIKEN, Japan 

Decoding Deep Graph Neural Networks: An Optimization and 
Generalization Perspective 

Graph Neural Networks (GNNs) have emerged as a powerful framework for modelling 

graph-structured data, yet challenges such as over-smoothing, trainability degradation in 

deep architectures, and understanding the role of structural information remain. In this 

talk, we will explore two complementary research directions addressing these challenges 

from both optimization and generalization perspectives. 

First, we will delve into the optimization dynamics of deep GNNs using a Graph Neural 

Tangent Kernel (GNTK) framework. This approach reveals an exponential decline in 

trainability as network depth increases—a phenomenon that standard residual 

connections can only partially mitigate. Based on these insights, we introduce the Critical 

DropEdge method, a connectivity-aware and graph-adaptive sampling strategy designed 

to fundamentally counteract this decay and enhance model performance. 

In the second part of the talk, the focus shifts to the feature learning capabilities of GNNs. 

We will demonstrate how graph convolution, by leveraging inherent structural 

information, significantly amplifies signal learning while suppressing noise 

memorization. Comparative analyses with multilayer perceptrons (MLPs) highlight that 

graph convolution offers superior generalization. 
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Patrice Koehl 
University of California, Davis, USA 

A Physicist’s View on Partial 3D Shape Comparison 

Scientists have access to a wide range of digital sensors that allow them to report at 

multiple time and length scales on the subjects of their studies.  Finding efficient 

algorithms to describe and compare the shapes included in those reports has become a 

central problem in data science.  Those algorithms have gained from developments in 

computational geometry and in machine learning.  In this talk I will present another 

source of support to further improve those algorithms.  Using techniques from statistical 

physics, I show that we can define a possibly partial correspondence between 3D shapes,  

with a cost associated with this correspondence that serves as a measure of the similarity 

of the shapes.  I will illustrate the effectiveness of this approach on synthetic data as well 

as on real anatomical data.  

 

This is joint work with Dr Henri Orland, IPHT, CEA, Saclay, France. 
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The University of Aberdeen, UK 

Foundations of Differential Calculus for Modules over Small Categories 

Let 𝑘𝑘 be a field and let C be a small category. A 𝑘𝑘-linear representation of C, or a 𝑘𝑘C-module, 

is a functor from C to the category of finite dimensional vector spaces over 𝑘𝑘. A motivating 

example for this work is the concept of a tame generalised persistence module, which can 

be reduced to the case where C is a finite poset. Unsurprisingly, it turns out that when the 

category C is more general than a linear order, then its representation type is generally 

infinite and in most cases wild. Hence the task of understanding such representations in 

terms of their indecomposable factors becomes difficult at best, and impossible in general. 

In a joint project with Jacek Brodzki and Henri Rihiimaki we proposed a new set of ideas 

designed to enable studying modules locally. Specifically, inspired by work in discrete 

calculus on graphs, we set the foundations for a calculus type analysis of 𝑘𝑘C-modules, 

under some restrictions on the category C. In this talk I will review the basics of the theory 

and describe some more recent advances. 

 

Back to Contents Page 

  



Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Page | 19  
 

Zheng Ma 
Shanghai Jiao Tong University, China 

TBA 

Back to Contents Page 

  



Applied Geometry for Data Sciences Part II   02–06 Jun 2025 

Page | 20  
 

Frank Nielsen 
Sony Computer Science Laboratories, Japan 

Computational Information Geometry on Bregman Manifolds and 
Submanifolds 

We review the construction of a Bregman manifold from a Legendre-type convex function 

[1]. By further using a representation function, we show that alpha-divergences are 

representational Bregman divergences on the positive orthant cone and curved 

representational Bregman divergences on the probability simplex [2]. We describe 

clustering [3], nearest-neighbour query data structures [4], and Voronoi diagrams [5] on 

Bregman manifolds and submanifolds with several applications in statistics and data 

science. Finally, we present work in progress pyBregMan: A Python library for algorithms 

and data-structures on BREGman MANifolds [6]. 
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Yaoyu Zhang, 
Shanghai Jiao Tong University, China 

Towards Understanding the Condensation Phenomenon of Deep 
Neural Networks 

Condensation (also known as quantization, weight clustering, or alignment) is a widely 

observed phenomenon where neurons in the same layer tend to align with one another 

during the nonlinear training of deep neural networks (DNNs). It is a key characteristic 

of the feature learning process of neural networks. However, due to the strong nonlinear 

nature of this phenomenon, establishing its theoretical understanding remains 

challenging. In this talk, I will present our systematic efforts to tackle this challenge in 

recent years. First, I will present results regarding the dynamical regime identification of 

condensation at the infinite width limit, where small initialization is crucial. Then, I will 

discuss the mechanism of condensation at the initial training stage and the global loss 

landscape structure underlying condensation in later training stages, highlighting the 

prevalence of condensed critical points and global minimizers. Finally, I will present 

results on the quantification of condensation and its generalization advantage, which 

includes a novel estimate of sample complexity in the best-possible scenario. These 

results underscore the effectiveness of the phenomenological approach to understanding 

DNNs, paving the way for a deeper understanding of deep learning in the near future. 
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