
SCIENTIFIC REPORTS 

Frontiers of Functional Data Analysis:  
Challenges and Opportunities in the Era of AI 

19 Aug 2024–13 Sep 2024 

Organizing Committee 

Alexander Aue 
University of California at Davis 

Ying Chen 
National University of Singapore 

Zhenhua Lin 
National University of Singapore 

Qiwei Yao 
London School of Economics 



CONTENTS PAGE 
Page 

Karthik Bharath 
University of Nottingham, UK 

Rolling-Without-Slipping Models for Manifold-Valued 
Functional Data 3 

Giles Hooker 
University of Pennsylvania, USA 

Functional Data Analysis as Nonparametric ODEs 7 

Hannah Lai 
National University of Singapore, Singapore 

Neural Tangent Kernel in Implied Volatility Forecasting: 
A Nonlinear Functional Autoregression Approach 11 

Jialiang Li 
National University of Singapore, Singapore 

Robust Model Averaging Prediction 14 

Hans-Georg Müller 
University of California, Davis, USA 

Modeling Distribution-Valued Random Trajectories With 
Optimal Transports 15 

Byeong Uk Park 
Seoul National University, S.Korea 

High-Dimensional Hilbert-Schmidt Linear Regression for 
Hilbert Manifold Variables 19 

Eftychia Solea 
Queen Mary University of London, UK 

Robust Inverse Regression for Multivariate Elliptical 
Functional Data 21 

Jane-Ling Wang 
University of California, Davis, USA 

FDA in the age of AI 23 

Jin-Ting Zhang 
National University of Singapore, Singapore 

Two-Sample Tests for Equal Distributions in Separable 
Metric Spaces: A Unified Semimetric-Based Approach 24 



ROLLED MODELS FOR MANIFOLD-VALUED FUNCTIONAL DATA

KARTHIK BHARATH

Classification AMS 2020: 62R30; 62M20; 62H12

Keywords: Fréchet mean; Gaussian process; Parallel transport

1. INTRODUCTION

Imagine that a curve γ on the unit sphere S2 drawn in wet ink is rolled along a plane
without slipping or twisting so as to trace out a curve γ↓ in the tangent space of the
initial point γ(0), identified with R2. The geometric operation engenders a local isometry
between the two curves so that they determine each other uniquely upto isometries, and
the operation may be extended to arbitrary d-dimensional connected complete manifolds
M . Mathematically, in the intrinsic picture, the Euclidean curve γ↓ : [0, 1] → Tγ(0)M
on the tangent space of the starting point γ(0) is known as the unrolling of γ, and is
determined by the initial value differential equation

γ̇↓(t) = P γ
0←tγ̇(t), γ↓(0) = 0,

where γ̇(t) = d
dtγ(t) ∈ Tγ(t)M , and P γ

0←t : Tγ(t)M → Tγ(0)M is the parallel transport map
along the curve γ, a linear isometry. Choice of coordinates in a tangent space is arbitrary,
a frame is hence needed to represent a tangent vector in standard coordinates of Rd.
Given an orthonormal frame U : Tγ(0)M → Rd, Uγ↓(t) is then a curve in Rd. In fact, γ↓

may be defined on the tangent space TbM of an arbitrary point b ∈ M outside the cut
locus of γ(0) by modifying the differential equation as

(1) γ̇↓(t) = P c
0←1P

γ
0←tγ̇(t), γ↓(0) = exp−1b (γ(0)),

where exp−1 is the inverse of Riemannian exponential map exp : TM → M , and c is the
geodesic between b and γ(0). Absence of slipping is characterised by use of the parallel
transport along γ; twisting is relevant when S2 is viewed as an embedded submanifold
of R3, where the parallel transport in the above equation is replaced by a curve in SE(3),
the isometry group of R3 [1].

Operationally, from (1), for a fixed point b ∈ M equipped with a frame U for its
tangent space, we can define four maps to: (i) unroll a curve γ in M to obtain a curve γ↓

in Rd; (ii) peform the reverse operation of rolling an Rd-valued curve γ↓ to obtain γ on
M ; (iii) use the exponential map at γ(t), to wrap a curve z in Rd with respect to γ in M
by parallel transporting along curves c and γ the deviation Uz − γ↓ from the mean; (iv)
unwrap a curve x on M with respect γ on M by reversing the wrapping operation. Under
some conditions, the wrapping and unwrapping maps are also inverses of each other.
Rolling/unrolling operations have been used in statistics for curve-fitting using splines,
first on S2 [2] and more recently on general manifolds [3].

The goal of this work is to use the four maps to: define generative statistical models
for functional data assuming values in M by pushing forward under the rolling and

Page 3



wrapping maps a parametric stochastic process model {Pθ, θ ∈ Θ} for random curves in
Rd; given discretely observed M -valued data {xi(tj)} on a common time grid, estimate
θ using unrolling and unwrapping maps. In particular, we will focus on the case where
{Pθ, θ ∈ Θ} corresponds to Gaussian measures parametrized by a mean and positive
definite covariance function. Figure 1 provides an illustration.

FIGURE 1. Realisation from a Gaussian process in Rd is mapped to a random
curve on M . Red is the mean of the Gaussian procecess, with respect to which
the rolling is performed, and blue is the realization from the Gaussian prcoess
that deviates from the mean curve. The line segment connecting points between
the blue and red curves at arbitrary t, and the corresponding angle denoted β,
indicate distances and angles preserved by the (un)rolling.

2. THEORETICAL RESULTS

2.1. Fréchet mean and rolled mean. For a random curve x : [0, 1]→M the population
Fréchet mean curve is defined as the Fréchet mean of x, defined pointwise in t as the
minimizer of s 7→ E{ρ2(x(t), s)}, where ρ is the intrinsic distance on M ; its sample
version is defined by taking expectation with respect to the empirical measure on a
sample of curves. The Fréchet mean curve coincides with the rolling of the mean of the
Rd-valued process, not necessarily Gaussian, under some conditions.

Theorem 2.1. For every t, the rolled mean is the Fréchet mean of x(t) if any of the following
conditions are true:

(i) Every point in M has an empty cut locus;
(ii) M is a symmetric manifold, the distribution of x(t) has even symmetry about γ(t),

and has a unique Fréchet mean that lies outside the cut locus of γ(t).

Condition (ii) concerns the interplay between notions of symmetry of a manifold and
that of a probability measure on it. A function g : M → R on a symmetric manifold
M is said to be symmetric if g(p) = g(σp(p)) for every p ∈ M , where σp : M → M is a
geodesic-reversing isometry. A distribution ν on M is said to possess even symmetry about
p ∈ M if ν = (expp)#λ, the pushforward under the exponential map at p of a mean-zero
distribution λ on TpM with Lebesgue density f , when TpM is identified with Rd, satisfies
f(v) = f(−v) for every v ∈ TpM .
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2.2. Rolled Gaussian process on M . Consider a Gaussian process t 7→ z(t) ∈ Rd with
mean function t 7→ m(t) ∈ Rd and covariance kernel (s, t) 7→ k(s, t) ∈ Sym>0(d), where
Sym>0(d) is the cone of positive definite matrices within the vector space of d × d real
symmetric matrices. The wrapping map may be used, with respect to the rolled mean, to
transform z to a stochastic process on M , which we refer to as a rolled Gaussian process.

Definition 2.2. Let z ∼ GP (m, k), and choose b ∈M and frame U of TbM . With m̃b = Um

as a curve in TbM , let γ := m̃↑b be the rolling of m̃. The process x = y↑γb obtained by wrapping
of yb := Uz with respect to γ is a rolled Gaussian process, denoted x ∼ RGP(m, k; b, U).

The point b and a frame U for TbM are arbitrary, but inconsequential for modelling.

Proposition 2.3. Starting from point b ∈ M with frame U for TbM , let
x ∼ RGP(m,K; b, U). If one starts instead from b′ ∈ M with basis U ′ for Tb′M , then there
exists unique m′ and K ′ such that the rolled Gaussian process x′ ∼ RGP(m′, K ′; b′, U ′) is
equal in distribution to x.

For practical purposes, it is convenient to consider a parametric model for the
Gaussian process z with respect to a particular basis. Let {φs : [0, 1] → R} be a B-spline
basis [4]. Let the mean m(t) = Mwφ(t), and assume a separable covariance
K(t, t′) = φ(t)>Vwφ(t′)Uw, where φ(t) = {φ1(t), . . . , φk(t)} ∈ Rk is a vector and
Mw ∈ Rd×k, Uw ∈ Sym>0(d) and Vw ∈ Sym>0(k) are matrices that parameterise the
model. The convenience of this particular choice is that the curve z can be written

(2) z(t) =
k∑
s=1

wsφs(t),

where W = (w1, . . . , wk) ∼MN (Mw, Uw, Vw), the matrix normal distribution with mean
matrix, Mw, row covariance, Uw, and column covariance, Vw.

2.3. Estimation. If Z ∈ Rd×r is obtained by observing z in (2) at times t1, . . . , tr then
Z ∼ MN

(
MwΦ, Uw,Φ

>VwΦ
)
, where Φ = {φ(t1), . . . , φ(tr)} ∈ Rk×r; the distribution of

X, the corresponding discretisation of the rolled Gaussian process x is denoted as X ∼
RMN (Mw, Uw, Vw; b, U), and represents the model for the discretely observed sample of
curves {xi(tj)}.

Exploiting the relationship between the rolled mean and the Fréchet mean curves in
Theorem 2.1, the estimator M̂w of the mean parameter Mw is defined as follows. Let
H(Γ̂) ∈ Rd×r be the unrolling of the discretised sample Fréchet mean curve onto TbM

followed by a transformation to standard coordinates using the frame U . Define M̂w =
H(Γ̂)Φ−, where Φ− is the right inverse of Φ.

Theorem 2.4. Let x ∼ RGP(m, k; b, U). Assume that the Fréchet mean curve of x exists
and is unique, and suppose that the sample Fréchet mean curve converges in probability to
it, as n → ∞, in the C1 topology. Then, under any of the conditions in Theorem 2.1, as
n→∞, M̂w converges in probability to Mw.

The C1 topology for convergence is needed to ensure that the sequence of parallel
transport maps along the sample Fréchet mean curve converge to their limit along the
the population Fréchet mean curve. Estimators of covariances Uw and Vw are defined
using M̂w [5], but it is unclear if they are consistent.
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3. ROBOTICS APPLICATION WITH CURVES ON SO(3)

The data are time-indexed orientations of the end-effector of a Franka robot arm as it
was guided n = 60 times to perform a task to deposit the contents of a dustpan into a bin
at r = 100 time points. 3D orientations are represented by elements of the rotation group
SO(3), which under the unsigned unit quaternion representation, can be identified with
S3 modulo the antipodal map. Fixing the sign of each data point then identifies SO(3)
with a hemisphere of S3.

FIGURE 2. Left: Unwrapped SO(3) curves (blue), and unrolled fitted mean (red);
Right: simulations from the fitted Gaussian process model;

Left panel of Figure 2 shows the unwrapped curves (blue) in R3 and the unrolled mean,
H(Γ̂) (red) based on M̂w. The curves have a common starting point at t = 0, shown near
the top-left in this plot; variability seems to increase with t, especially following a kink
point that corresponds to the dustpan being turned to empty its contents. As a visual
appraisal of the fitted model, right panel of Figure 2 shows n = 60 realisations from
RMN (M̂w, Ûw, V̂w; b, U), using the same unwrapping coordinates and projection as in
left panel of Figure 2. These simulated curves are smoother than the real data, which is
a consequence of the basis used, but they have similar heteroscedastic variation.
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AN UNDERSTANDING OF PRINCIPAL DIFFERENTIAL ANALYSIS

GILES HOOKER AND EDWARD GUNNING

Classification AMS 2020: 62G08, 62H12, 62H25, 62M09

Keywords: principal differential analysis, Gaussian process, dimension reduction,
ordinary differential equation

1. INTRODUCTION

Classically, functional data analysis focusses on the study of data comprised of
univariate functions measured on some continuous domain: X1(t), . . . , Xn(t), although
this conception has been frequently extended into a more general class of object data
[3]. One of the distinguishing features of this framework is access to derivatives
DkX(t); presenting both questions about selecting between derivatives as covariates
[1, 2] as well as relationships between derivatives.

Principal Differential Analysis (PDA) was proposed in [4] as a means of modeling these
relationships. In the classical PDA formulation, an m-th order ODE of the form:

(1.1) DmX(t) = β0(t)X(t) + β1(t)DX(t) + · · ·+ βm−1(t)D
m−1X(t) + η(t)

is proposed as a model for data. This takes the form of a concurrent linear model
described in [5] in which Dm(X) is a response that depends on lower-order derivatives
through time-varying functions β(t). However, (1.1) also takes the form of a
time-varying linear ordinary differential equation (ODE), and PDA leverages this
framework in a number of ways.

In particular, PDA is proposed as providing two quantities:
(1) Data reduction: solutions to (1.1) can be expressed as

(1.2) X(t) = Φ(t, 0)x0 +

∫
Φ(t, s)η(s)ds

in which Φ(s, t) is an (m − 1) × (m − 1) transition matrix at each (s, t) and x0 is
the vector (X(0), DX(0), . . . , Dm−1X(0)). Here we regard Φ(t, 0) as providing a
basis expansion in which to represent X(t), providing a data-reduction method
akin to functional principal components analysis.

(2) Representation of behaviour. For time-invariant ODE’s in which the β(t) are
constant with η(t) = 0. Solutions to (1.1) can be expressed in terms of

(1.3) X(t) =
m−1∑

k=1

cke
bkt (cos(dkt) + i sin(dkt))

in which (bk, ck, dk) are obtained from the eigen decomposition of a matrix
representation of the dynamics. Under this framework, the instantaneous
behaviour of X(t) can be interpreted by considering the decomposition in (1.3)
at the current values of β.
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AN UNDERSTANDING OF PRINCIPAL DIFFERENTIAL ANALYSIS

We revisit the PDA model, re-interpreting it as a description of a data-generating
process in which η(t) is a random error process specific to each observations. This view
yields a number of a consequences, most specifically a bias in the classical PDA
estimates which we correct with an iterative procedure.

2. CONSEQUENCES OF A GENERATIVE MODEL

This presentation regards (1.1) as a generating model, we assume that η(t) ∼ (0,Σ) is
a mean zero random error process with covariance Σ(s, t). We first observe that this
framework augments the dimension reduction approach in [4] with a second term
derived from (1.2):

cov(x̃(s), x̃(t)) = Φ(s, 0)Σ0Φ(t, 0)
⊤ +

∫ s

0

∫ t

0

Φ(s, u)Σ(u, v)Φ(t, v)⊤dvdu

yielding a new decomposition. We illustrate this below based on simulating data from
simple harmonic motion forced by Gaussian process noise:

D2X(t) = −X(t) + η(t)

illustrated below in which the left hand plot provides simulation estimates of variation
associated with initial conditions x0 and the right-hand plot variance associated with the
random process η(·).

(c) Zero-input basis functions (d) Zero-state basis functions

0 π 2π 0 π 2π
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Zero-state Basis Function 3

Zero-state Basis Function 4

A second consequence involves biases in the estimated β̂(t). The original PDA
formulation minimizes the integrated sum of squared errors from (1.1):

∑∫ (
DmXi(t)− β0Xi(t)− . . .− βm−1(t)D

m−1Xi(t)
)2

dt

which can be solved by a linear regression at each time point t. Writing Z(t) as the matrix
containing rows (X(t), DX(t), . . . , Dm−1X(t)) we obtain an estimate

(2.1) β̂(t) = (Z(t)TZ(T ))−1Z(t)TDm−1X(t)
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AN UNDERSTANDING OF PRINCIPAL DIFFERENTIAL ANALYSIS

although [4] represented each βj(t) via a basis expansion allowing the use of smoothing
penalties.

In classical linear regression (2.1) substituting Dm−1X(t) = Z(t)β(t) + η(t) results in
unbiassed estimates. Here, however, we observe from (1.2) that
EZ(t)η(t) =

∫ t

s=0
Φ(s, t)m−1,·Σ(s, t)ds and an approximation to bias in β̂:

Eβ̂(t) = β(t) + E(Z(t)TZ(T ))−1EZ(t)

∫ t

s=0

Φ(s, t)m−1,·Σ(s, t)ds.

Within the bias term, both Φ(s, t) and Σ require estimates for β(t), resulting in the
following iterative

(1) Initialize Begin with ordinary least squares (OLS) estimates for the parameters
β0(t), . . . , βm−1(t) by minimizing the ISSE and obtain residuals η̂(t) and
covariance

Σ̂(s, t) =
1

n−m

∑
η̂i(s)η̂i(t)

along with the transition matrices Φ(s, t).
(2) Iterative Correction: Apply the bias-reduction formula iteratively:

(2.2) β̂
(k+1)
j (t) = β̂

(k)
j (t)− E(Z(t)TZ(T ))−1EZ(t)

∫ t

s=0

Φ(s, t)m−1,·Σ(s, t)ds

After each iteration, the residuals η̂
(k)
i (t) are updated along with Σ̂ and Φ until

convergence.

We illustrate this with the same simple harmonic motion example below in which we
first provide an estimate of the bias for the coefficient of X(t) and estimates after three
steps of bias reduction
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β
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)

Simulated

Truth

Bias(b)

0.000

0.025

0.050

0.075

0.100

0 π 2π
t

E[
β̂
0
(t
)]
−
β
0
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)
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3. CONCLUSION

This work reframes PDA as a statistical model that accounts for both deterministic
ODE dynamics and stochastic disturbances. This has consequences for both the
estimation of functional coefficients and presenting a variance decomposition from the
resulting model. We will further illustrate the application of these methods to provide
linear approximations to non-linear ODE’s and some consequences for approaches to
registration.
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AN UNDERSTANDING OF PRINCIPAL DIFFERENTIAL ANALYSIS
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NEURAL TANGENT KERNEL IN IMPLIED VOLATILITY FORECASTING: A
NONLINEAR FUNCTIONAL AUTOREGRESSION APPROACH

HANNAH L. H. LAI

Classification AMS 2020: 46T99, 68T01

Keywords: Nonlinear Functional Autoregression; Neural Tangent Kernel; Implied
Volatility Forecasting.

We denote by H = L2(I) the Hilbert space consisting of all square-integrable surfaces
defined on a compact set I ⊂ Rq and equipped with the inner product
⟨f, g⟩H =

∫
I f(u)g(u) du, for any f, g ∈ L2(I). Define the squared L2 norm of a function

by ∥f∥H = ⟨f, f⟩H.
Let {Yi}ni=1 be a series of n random surfaces that take values on HY = L2(IY ).

Associated with each Yi, there is a regressor surface Xi ∈ HX = L2(IX). We consider
functions with finite second moment, i.e., E[||Yi||2HY

] < ∞ and E[∥Xi∥2HX
] < ∞. For

simplicity, we assume that Yi and Xi are centered functions, i.e.,
µX(v) = E[Xi(v)] = 0, ∀v ∈ IX and µY (u) = E[Yi(u)] = 0, ∀u ∈ IY . Let PX and PY

denote the distributions of X and Y , and PY |X : HX × HY → R the conditional
distribution of Y given X. If L2(PX) represents the class of all measurable functions of
X with E[f 2(X)] < ∞ under PX , then L2(PY ) is similarly defined for Y . Our goal is to
capture the potential nonlinear dependence between Yi and Xi through a function
g : HX → HY

(0.1) Yi = g(Xi) + ϵi,

where ϵi is a noise function with E[ϵi(u)] = 0, ∀u ∈ IY and E[∥ϵi∥2HY
] < ∞. In our study,

Xi is a vector of lagged surfaces Yi−1, Yi−2, . . . or their linear combination. Hence, the
model (0.1) is a nonlinear functional autoregression model (NFAR).

We project Yi onto a set of orthonormal basis functions φ = (φ1, φ2 . . .)
T with φj ∈ HY

Yi =
∞∑
j=1

yijφj, with yij = ⟨Yi, φj⟩HY
,(0.2)

with yi = (yi1, yi2, ...)
T ∈ Hy ⊆ R∞ the projection coefficients of Yi onto the basis

functions φ, satisfying E[yijyrv] = 0 for j ̸= v, j, v ∈ N+ and any i, r ∈ {1, . . . , n}.
Similarly, we project Xi onto a sequence of orthogonal basis functions ψ = (ψ1,, ψ2, ...)

T

with ψj ∈ HX

Xi =
∞∑
j=1

xijψj, with xij = ⟨Xi, ψj⟩HX
,(0.3)

with xi = (xi1, xi2, ...)
T ∈ Hx ⊆ R∞ the projection coefficients of Xi onto the basis

functions ψ, satisfying E[xijxrv] = 0 for j ̸= v, j, v ∈ N+ and any i, r ∈ {1, . . . , n}.
Transitioning from functions to vectors, we define f : Hx → Hy

(0.4) yi = f(xi) + ϵi,
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where ϵi is a noise vector with E[ϵij] = 0 and E[∥ϵi∥2] < ∞. Although vectors offer a
more compact representation of functions, they still exist within an infinite-dimensional
framework unless additional restrictions are assumed to hold. This inherent complexity
makes the empirical estimation of Equation (0.4) challenging when working with finite
sample sizes. To address this issue, we employ classical sieve methods leading to finite-
dimensional vector spaces. 1

To elucidate the nonlinear relation between Xi and Yi in Equation (0.1), we introduce
another Hilbert space of functions generated by a positive-definite kernelK : HX×HX →
R defined on the inner product of HX through a function ρ : R3 → R+, such that

(0.5) K(Xi, Xj) = ρ(⟨Xi, Xi⟩HX
, ⟨Xi, Xj⟩HX

, ⟨Xj, Xj⟩HX
),

for any Xi, Xj ∈ HX . The function-on-function regression problem in Equation (0.1)
can be reformulated as a functional kernel regression, in which the task is to find B0 ∈
B(HY ,MX) such that

(0.6) B0 = argmin
B∈B(HY ,MX)

E[∥Yi −B∗K(., Xi)∥2HY
].

The solution for the kernel functional regression can be found in [2]. We define a new
kernel k : Hx ×Hx → R such that for any xi,xj ∈ Hx

(0.7) k(xi,xj) = ρ(⟨xi,xj⟩, ⟨xi,xj⟩, ⟨xj,xj⟩).

Lemma 0.1 (Isomorphism between Reproducing Kernel Hilbert Spaces). Under
Equations (0.3) and (0.7), it holds that

k(xi,xj) = ⟨k(.,xi), k(.,xj)⟩
= ⟨K(., Xi), K(., Xj)⟩MX

= K(Xi, Xj).
(0.8)

Then the RKHS MX nested on HX is isometrically isomorphic to the RKHS Mx nested on
Hx.

Theorem 0.2 (Vector-to-vector regression). Given the decomposition of Yi in Equation
(0.2) and Xi in Equations (0.3), under some technical Assumptions and Lemma 0.1, for
a positive definite kernel k defined by Equation (0.7), if there is a covariance matrix Σxx

of k(.,x) that is diagonal, then the function-to-function regression model in Equation (0.6)
may be represented equivalently by

(0.9) β0 = argmin
β∈B(Hy ,Mx)

E[∥yi − β∗k(.,xi)∥2],

with solution β0 = Σ†
xxΣxy. This leads to

E[yi|xi] = β∗
0k(.,xi)

= ΣyxΣ
†
xxk(.,xi)

= E[{(Σ†
xxk(.,xi))(x)}y].

(0.10)

1Sieve methods involve truncating the regression for the full set of projection coefficients while striving
to minimize any loss of information.
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In our work, we utilize the Neural Tangent Kernel (NTK) of [1], a flexible kernel class
that uses neural networks to capture complex nonlinear dependencies in data
effectively. The NTK describes how neural networks behave under first-order gradient
descent training and is calculated as the inner product of the network’s weight
gradients. Our empirical analysis includes over 6 million European calls and put options
from the S&P 500 Index, covering January 2009 to December 2021. The results confirm
the superior forecasting accuracy of the fNTK across different time horizons. When
applied to short delta-neutral straddle trading, the fNTK achieves a Sharpe ratio ranging
from 1.30 to 1.83 on a weekly to monthly basis, translating to 90% to 675% relative
improvement in portfolio returns compared to forecasts based on functional Random
Walk model.
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ROBUST MODEL AVERAGING PREDICTION

JIALIANG LI

Classification AMS 2020:
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Model averaging is an attractive ensemble technique to construct fast and accurate
prediction. Despite of having been widely practiced in cross-sectional data analysis, its
application to longitudinal data is rather limited so far. We consider model averaging
for longitudinal response when the number of covariates is ultrahigh. To this end, we
propose a novel two-stage procedure in which variable screening is first conducted and
then followed by model averaging. In both stages, a robust rank-based estimation
function is introduced to cope with potential outliers and heavy-tailed error
distributions, while the longitudinal correlation is modeled by a modified Cholesky
decomposition method and properly incorporated to achieve efficiency. Asymptotic
properties of our proposed methods are rigorously established, including screening
consistency and convergence of the model averaging estimates. Extensive simulation
studies demonstrate that our method outperforms existing competitors, resulting in
significant improvements in screening and prediction performance. Finally, we apply
our proposed framework to analyze a human microbiome dataset, showing the
capability of our procedure in resolving robust prediction using massive metabolites.

DEPARTMENT OF STATISTICS & DATA SCIENCE, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE

Email address: jialiang@nus.edu.sg

Page 14



Functional Principal Component Analysis For Distribution-Valued

Processes

Hang Zhou and Hans-Georg Müller

Keywords: Distributional Data Analysis, Functional Data Analysis, Longitudinal Data

Analysis, Sparse Designs, Stochastic Process, Wasserstein Metric

Functional data are samples of realizations of square integrable scalar or vector-valued

functions that have been extensively studied (Hsing & Eubank 2015, Wang et al. 2016). The

restriction to the realm of Euclidean space-valued functions that also encompasses Hilbert-

space valued functional data, i.e., function-valued stochastic processes (Chen et al. 2017),

is an essential feature of functional data, but proves too restrictive as new complex non-

Euclidean data types are emerging. A previous very general model for the case of a metric-

space valued process for which one observes a sample of realizations (Dubey & Müller 2020)

includes distribution-valued processes as a special case. The general framework developed

in this previous approach utilizes a notion of metric covariance and includes a certain kind

of functional principal component analysis for general metric space-valued processes by

using Fréchet integrals (Petersen & Müller 2016) and is limited to the case of fully observed

metric space-valued functional data, where it is assumed that Xi(t) is known for all t in

the time domain and cannot be extended to the case of sparsely sampled processes. We

present models and analysis tools for a specific yet important class of random object-valued

stochastic processes: those where the time-indexed objects are univariate distributions.

Distribution-valued stochastic processes are encountered in various complex applications.

We start with an i.i.d. sample of realizations of such processes. The statistical modeling of

distribution-valued processes is an essential yet still missing tool for the emerging field of

distributional data analysis (Petersen et al. 2022), while various modeling approaches for

distributional regression and distributional time series have been studied recently (Kokoszka

et al. 2019, Ghodrati & Panaretos 2022, Chen et al. 2023, Zhu & Müller 2023).

We aim for intrinsic modeling of distributions rather than extrinsic approaches. An issue

that is of additional practical relevance and theoretical interest is that available observations

typically are not available continuously in time but only at discrete time points. These

considerations motivate a comprehensive intrinsic model for distribution-valued processes

where the processes may be fully or only partially observed. Throughout we work with the

2-Wasserstein metric dW,2 and optimal transports, which move distributions along geodesics.

The challenge of intrinsic modeling is that the Wasserstein space of distributions does not

have a linear or vector space structure. This challenge can be addressed by making use of

rudimentary algebraic operations on the space of optimal transports (Zhu & Müller 2023).

From the outset we aim to deal with centered processes. Since no subtraction exists in the

Wasserstein space, the centering of distribution-valued processes is achieved by substituting

transport processes for distributional processes: For each time argument the distributions

that constitute the values of a distributional process at a fixed time t are replaced by
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transports from the barycenter (Fréchet mean) of the process at t to the distribution that

corresponds to the value of the process at time t. These transports are well defined if one

adopts the Wasserstein metric. Their Fréchet mean is the identity transport, i.e., these

transports are centered.

For our study of stochastic transport processes we introduce representations

T (t) = g(Z(t))� T0,

where Z(t) is a R-valued random process, g is a bijective function that maps R to (−1, 1)

and T0 is a single random transport that is a summary characteristic for each realization

of the transport process. Here � is a multiplication operation by which a transport is

multiplied with a scalar (Zhu & Müller 2023). By construction, g(Z(t)) � T0 lies on the

extended geodesic that passes through T0. We develop a predictor for each individual Ti(t)

based on observations obtained at discrete time points and establish asymptotic convergence

rates for the components of the model for both densely and sparsely sampled distributional

processes. These are novel even for classical real-valued functional data.

Let W be the set of finite second moment probability measures on the closed interval

S ⊂ R,

W =

{
µ ∈ P(S) :

∫
S
|x|2dµ(x) <∞

}
, (1)

where P(S) is the set of all probability measures on S. The p-Wasserstein distance dW,p(·, ·)
between two measures µ, ν ∈ W is

dW,p(µ, ν) := inf

{(∫
S2
|x1 − x2|pdΓ(x1, x2)

)1/p

: Γ ∈ Γ(µ, ν)

}
for p > 0, (2)

where Γ(µ, ν) is the set of joint probability measures on S2 with µ and ν as marginal mea-

sures. The Wasserstein space (W, dW,p) is a separable and complete metric space (Ambrosio

et al. 2008, Villani et al. 2009). Here we assume S = [0, 1] without loss of generality to

simply the notation. Given two probability measures µ, ν ∈ W, the optimal transport from

µ to ν is the map T : S → S that minimizes the transport cost,

arg inf
T∈T

{(∫
S
|T (u)− u|pdµ(u)

)1/p

, such that T#µ = ν

}
, (3)

where T = {T : S 7→ S|T (0) = 0, T (1) = 1, T is non-decreasing} is the transport space

and T#µ is the push-forward measure of µ, defined as (T#µ)(A) = µ{x ∈ S | T (x) ∈ A}
for all A in the Borel algebra of S. This optimization problem, also known as the Monge

problem, is a relaxation of the Kantorovich problem (2). If µ is absolutely continuous

with respect to the Lebesgue measure, then problems (2) and (3) are equivalent and have

a unique solution T (u) = F−1ν ◦ Fµ(u) for p = 2, where Fµ and F−1ν are the cumulative

distribution and quantile functions of µ and ν, respectively (Gangbo & McCann 1996).
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For a distribution-valued process X(t) with random distributions on domain S where

t ∈ D for a closed interval in R, the cross-sectional Fréchet mean of X(t) at each t is

µ⊕,2(t) = argminω∈WEd2W,2(X(t), ω).

We then define the (optimal) transport process T (·), where T (t) represents the optimal

transport from µ⊕,2(t) to X(t), µ⊕,2(t) serves as the mean, and the transport T (t) from

µ⊕,2(t) to X(t) quantifies the difference between X(t) and µ⊕,2(t) for each t ∈ D under the

Wasserstein metric. It is thus advantageous to use the transport space T .

A scalar multiplication operation in the transport space (Zhu & Müller 2023),

α� T (u) :=


u+ α{T (u)− u}, 0 < α ≤ 1

u, α = 0

u+ α
{
u− T−1(u)

}
, −1 ≤ α < 0

induces a geodesic on T from UnifS to T , denoted by u�T for all u ∈ [−1, 1]. We introduce

a binary relation ∼ on T , defined as T1 ∼ T2 if and only if there exists a ∈ [0, 1] such that

T1 = a� T2 or T2 = a� T1 and demonstrate that ∼ is an equivalence relation on T .

In analogy to the decomposition of Euclidean-valued functional data into a mean func-

tion and a stochastic part, we assume that the centered transport processes T (t) can be

decomposed into a scalar random function U(t) that serves as a scalar multiplier in the

transport space and a characteristic overall transport T0,

T (t) = U(t)� T0, for all t ∈ D, (4)

where T0 is a random element in T associated with each realization of the transport process.

The scalar multiplier function is a stochastic process that takes values in (−1, 1) and is

derived from an unconstrained process Z through a transformation g as follows,

U(t) = g(Z(t)), Z(t) ∈ R, E[Z(t)] = 0, g : R 7→ (−1, 1), g is bijective, for all t ∈ D. (5)

The mean zero stochastic process Z(t) in conjunction with the bijective map g : R 7→ (−1, 1)

further characterizes the transport process T , where T (t) resides in {T : T ∈ [T0]∼} ∪ {T :

T ∈ [T−10 ]∼}, which includes the geodesic from T−10 to T0.

For some situations it is appropriate and advantageous to further assume that the

process Z is a Gaussian process, a property that can be harnessed to obtain methods

for the important case where the distribution-valued trajectories are only observed on a

discrete grid of time points that might be sparse. that the stochastic transport process (4)

is well-defined.

Further details can be found in the preprint: Zhou, H. and Müller, H.G., 2023. Opti-

mal transport representations and functional principal components for distribution-valued

processes. arXiv preprint arXiv:2310.20088.
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Keywords: non-Euclidean data, high-dimensional regression, Hilbert-Schmidt operators,
spectral decomposition, penalization.

We present a unified framework for high-dimensional linear regression with
non-Euclidean data where both the response variable and covariates take values in
general Riemannian Hilbert manifolds. In our modeling, the response and covariates
are allowed to orginate from distinct spaces and are interconnected by Hilbert-Schmidt
operators. The methodology is developed under a general penalization scheme
incorporating various non-convex penalty functions, thereby accommodating scenarios
where the number of covariates grows exponentially with the sample size. Leveraging
modern statistical theory for data residing on Hilbert manifolds, we establish the oracle
property and derive error bounds for the proposed estimators. The practical validity of
the proposed method is demonstrated via numerical simulation and real data
applications.

Specifically, let Y and Xj for 1 ≤ j ≤ p be random variables taking values in
Riemannian Hilbert manifolds MY and Mj respectively. Let Dj := dim(Mj) be the
dimensions of Mj. We allow the case where dim(MY ) = ∞. Let LogY

y and Logj
xj

be
Riemannian logarithmic maps at y and xj in MY and Mj, respectively. Also, let µY and
µj, respectively, denote the Fréchet means of Y and Xj. We consider the following
Hilbert-Schmidt linear model:

(0.1) LogY
µY

Y =

p∑
j=1

Bj(Logj
µj
Xj) + ε,

where Bj are Hilbert-Schmidt operators and ε is a random error. We assume a
high-dimensional setting where p diverges as the sample size n grows. In this setting,
we impose a sparsity condition on the Hilbet-Schmidt operators Bj, meaning that the
number of nonzero operators is relatively small. Our primary goal is to estimate the
operators Bj and recover the index set S := {1 ≤ j ≤ p : Bj ̸= 0}.

The estimation procedure is based on the spectral decomposition for Xj. Let µ̂Y and
µ̂j be the empirical Fréchet means corresponding to µY and µj, respectively. Then, the
empirical covariance operators are given by Ĉj := n−1

∑n
i=1 Logj

µ̂j
Xij ⊗ Logj

µ̂j
Xij. Each Ĉj

admits a spectral decomposition Ĉj =
∑Dj

k=1 ω̂jk(êjk ⊗ êjk) with eigenvalues ω̂jk and the
corresponding orthonormal basis {êjk : 1 ≤ k ≤ Dj}. From the spectral decomposition
we get the estimated kth scores ξ̂i,jk of Logj

µ̂j
Xij. We introduce (truncation) parameters

Kj that diverge to infinity as the sample size increases for infinite-dimensional Mj, and
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are equal to Dj for finite-dimensional Mj. Then, under the model (0.1) it holds that

LogY
µ̂Y

Yi ≈
p∑

j=1

Kj∑
k=1

ξ̂i,jk ·B∗
j(êjk) + PY

µY ,µ̂Y
(εi)

where B∗
j := PY

µY ,µ̂Y
◦Bj ◦ Pj

µ̂j ,µj
and PY

µY ,µ̂Y
(Pj

µ̂j ,µj
) is the parallel transport that maps

the tangent space TµY
MY (Tµ̂j

Mj) of MY (Mj) at µY (µ̂j) to the tangent space Tµ̂Y
MY

(Tµj
Mj) at µ̂Y (µj).

We actually estimate B∗
j instead of Bj. Let β∗

jk := ω̂
1/2
jk B∗

j(êjk). We consider a general
class of penalty functions ρλ, which encompasses the LASSO, SCAD and MCP penalty
functions. With λj :=

√
Kj · λ for a universal penalty parameter λ > 0, we formulate a

penalized objective function Ln defined by

Ln(β) :=
1

2n

n∑
i=1

∥∥∥LogY
µ̂Y

Yi −
p∑

j=1

Kj∑
k=1

ξ̂i,jkω̂
−1/2
jk · βjk

∥∥∥2

+

p∑
j=1

ρλj
(∥βj∥),

where βj = (βj1, . . . , βjKj
)⊤ ∈ (Tµ̂Y

MY )
Kj and β = (β⊤

1 , . . . ,β
⊤
p )

⊤. We solve the
following constrained minimization problem:

(0.2) β̂∗ := argmin
{
Ln(β) : β ∈ (Tµ̂Y

MY )
K+ with

p∑
j=1

√
Kj∥βj∥ ≤ R

}
for some regularization parameter R ≥ 0. The Hilbert-Schmidt operators B∗

j are then
estimated by

B̂∗
j :=

Kj∑
k=1

ω̂
−1/2
jk · (êjk ⊗ β̂∗

jk).

We study the statistical properties of the estimators β̂∗ and the corresponding B̂∗
j . We

first derive the rates of convergence of the eigenvalues ω̂jk and the corresponding
orthonormal bases êjk to their population counterparts that are uniform over the
diverging number of covariates. For this, we elicit some concentration inequalities for
the empirical Fréchet means µ̂j using empirical process theory. Built on these results,
we derive the estimation error bounds of a stationary solution β̂∗ of the constrained
minimization problem (0.2) in various convergence modes. We also show that β̂∗

exhibits the oracle property with selection consistency. From these results for β̂∗ we
establish the error bounds and the oracle property of the estimated Hilbert-Schmidt
operators B̂∗

j .
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Functional data have received significant attention as they frequently appear in
modern applications, such as functional magnetic resonance imaging (fMRI) and
natural language processing. The infinite-dimensional nature of functional data makes
it necessary to use dimension reduction techniques. Most existing techniques, however,
rely on the covariance operator, which can be affected by heavy-tailed data and unusual
observations. Therefore, in this paper, we consider a robust functional sliced inverse
regression (R-FSIR) for multivariate elliptical functional data. For that reason, we define
the elliptical distribution for a vector of random functions, extending the existing
definition of [1] to the multivariate setting. We introduce a new statistical linear
operator, called the conditional spatial sign Kendall’s tau covariance operator, which can
be seen as an extension of the multivariate Kendall’s tau to both the conditional and
functional settings, and is capable to handle heavy-tailed functional data and outliers.
We show that the conditional spatial sign Kendall’s tau covariance operator has the
same eigenfunctions with the conditional covariance operator, and hence we can
formulate the generalized eigenvalue problem based on this new operator to achieve
estimation robustness. We derive the convergence rates of the proposed estimators for
both completely and partially observed data. In practice, we can only observe the
functions at discrete time points, and the new theoretical results support practical
estimation procedure. Finally, we demonstrate the finite sample performance of our
estimator using simulation examples and a real dataset based on fMRI. We observe that
R-FSIR and FSIR have comparable performance for the Gaussian distribution with no
outliers. However, R-FSIR outperforms FSIR for heavy-tailed data. Specifically, the
efficiency of R-FSIR remains reasonably high, whereas the efficiency of FSIR decreases
considerably. This is especially evident when outliers are added to the data.
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Deep learning, aka deep neural networks, has enjoyed tremendous success in
applications for all kinds of data. However, its application to functional data is limited
and the theoretical foundation for why it works is still lacking. This talk explores the
application of deep neural networks (DNN) to two types of data: functional data and
censored survival data.

• Functional Data: The infinite dimensionality of functional data means standard
learning algorithms can be applied only after appropriate dimension reduction,
typically through basis expansions. Currently, these bases are chosen a priori
without the information for the task at hand and thus may be suboptimal. We
instead propose to adaptively learn these bases in an end-to-end fashion. We
introduce a DNN that employs a new basis-layer whose hidden units are each
basis functions themselves, implemented as a micro neural network. This
architecture learns parsimonious dimension reduction to functional inputs that
focuses only on information relevant to the target rather than irrelevant
variation in the input function. Across numerous classification and regression
tasks that involve functional data this method empirically outperforms other
types of DNN.

• Survival Data: While DNN have demonstrated empirical success in applications
for survival data, most of these methods are difficult to interpret and
mathematical understanding of them is lacking. We study the partially linear
Cox model, where the nonlinear component of the model is implemented using
a deep neural network. The proposed approach is flexible and able to
circumvent the curse of dimensionality, yet it facilitates interpretability of the
effects of treatment covariates on survival. We establish asymptotic theory for
maximum partial likelihood estimators and show that the nonparametric DNN
estimator achieves the minimax optimal rate of convergence (up to a
poly-logarithmic factor). Moreover, the corresponding parametric estimator for
treatment covariate effects is

√
n-consistent, asymptotically normal, and attains

semiparametric efficiency. Numerical experiments provide evidence of the
advantages of the proposed method.
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1. INTRODUCTION

With the surge in advanced data collection methods, researchers are increasingly
analyzing complex data objects within separable metric spaces across disciplines.
Motivated by real-world datasets such as gene expression and economic indicators, we
develop a robust distance-based test to evaluate distributional equality in such data.
This paper addresses critical issues in existing methods, offering computational
efficiency and accuracy for diverse applications; see [6] for more details.

2. METHODOLOGY

The proposed test is formulated using a distance-based statistic that leverages the
negative definiteness property of metrics[2,3]. By deriving its asymptotic null
distribution as a χ2-type mixture, we introduce a rapid three-cumulant matching
approximation [4] to bypass the computational cost of permutations that are widely
adopted as in [2,3]. The test’s asymptotic power and root-n consistency are established
under local alternatives. These theoretic properties are not established for the methods
developed in [2,3].

3. RESULTS AND SIMULATIONS

Extensive simulations demonstrate the test’s superior size control and power across
various settings, including high-dimensional and correlated data. Compared to MMD
[1] and energy tests [2,3], our method exhibits consistent performance advantages,
particularly in computational efficiency. Empirical validation using gene expression data
confirms its ability to discern distributional differences effectively.

4. APPLICATIONS

We apply the proposed test to two datasets: (1) high-dimensional gene expression
data distinguishing normal and tumor colon tissues, and (2) functional data on the Gini
index across countries. The first dataset, with its dimension much larger than its sample
size, is available at http://genomics-pubs.princeton.edu/oncology/affydata/ and the
second dataset is downloaded at https://data.worldbank.org/indicator/SI.POV.GINI.
Results show the proposed test’s robustness against data scaling and sensitivity to kernel
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parameter choices in competing methods as developed in [1,2,3], highlighting its
practicality in diverse contexts.

5. CONCLUSION

This study presents a versatile, efficient, and statistically robust approach for
two-sample distribution testing in separable metric spaces. Future work includes
extending this framework to multi-sample scenarios and exploring other functional data
applications.
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