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PUSHING THE FRONTIER ON APPROXIMATE EFX ALLOCATIONS

GEORGIOS AMANATIDIS

Classification AMS 2020: 68W25, 68W40, 91B32

Keywords: fair division, envy-freeness up to any good, approximate EFX

This talk was based on joint work with Aris Filos-Ratsikas and Alkmini Sgouritsa [3].

General. The existence of EFX allocations is an important open problem in fair division
with indivisible goods. In this setting, a set of agents have values over a set of indivisible
goods, and the goal is to allocate the goods to the agents in a way that is perceived as
fair by everyone. One of the most well-established notions of fairness is envy-freeness,
introduced by Gamow and Stern [13] in the context of divisible resources; this notion
stipulates that no agent would prefer another agent’s allocation to her own. For indivisible
goods, it is not hard to see that envy-free allocations may not be possible. Motivated
by this impossibility, the literature has defined relaxed fairness notions, appropriate for
indivisible goods allocation. Budish [5] defined envy-freeness up to one good (EF1), which
deems an allocation fair if the envy of an agent is eliminated after the removal of some
good from the bundle of another envied agent. EF1 was implicitly introduced by Lipton
et al. [15] who showed that EF1 allocations for monotone valuation functions always exist
and can be found efficiently. However, in certain applications EF1 might be unsatisfactory,
as it might require the removal of a very valuable good to restore envy-freeness. To
address this, Gourvès et al. [14] and Caragiannis et al. [7] introduced of envy-freeness up
to any good (EFX), which stipulates that the envy is eliminated even if the least valuable
good, from the envious agent’s perspective, is removed from the envied agent’s bundle.

Contrary to EF1 allocations, the existence of EFX allocations is much more intricate.
As we mentioned, this is a major open problem, carrying great momentum and being
met with intensive efforts from the research community. The associated research has
adopted a systematic approach to tackling this challenging question, by first obtaining
existence results for special cases of the problem, developing a deeper understanding
of its intricacies, and ultimately aiming to synthesize these ideas into an answer to the
main problem. Three notable such results are that EFX allocations exist when there
are at most three agents [10], or each agent’s value for each good can be one of two
numbers a or b [2], or the agents’ valuation functions can be represented by a graph, with
edges corresponding to goods and nodes corresponding to agents [11]. Other interesting
restrictions that have been studied include agents with values that induce the same
ordering over goods [17] and leaving some goods unallocated [6, 9, 4].

A related line of work has studied approximations to the EFX notion. An allocation
is α-EFX if after the removal of any good from the envied agent’s bundle, the envy is
bounded by a factor of α. The state of the art for approximate EFX allocations is a
ϕ − 1 = 0.618 approximation due to Amanatidis et al. [1]. Markakis and Santorinaios
[16] were able to produce 2/3-EFX allocations when all of the n agents agree on which n



goods are the most valuable. Whether 2/3-EFX allocations can be achieved in general is
still open. If sufficiently many goods are left unallocated, near optimal approximations to
EFX can be achieved [8].

The known results can thus be seen as lying on a certain kind of frontier: indeed, a
certain set of parameters (e.g., number of agents, type of values, approximation ratio),
can be seen as a point on a search space, with those points for which we have obtained
existence results constituting the frontier of our current understanding of the problem.
The ultimate goal is to move towards the point corresponding to (exact) EFX for any
number of agents and without restrictions on the values or the structure.

Our Results and Techniques. In this work, we prove that 2/3-EFX allocations exist and
can be efficiently computed for agents with additive valuation functions in three important
cases, namely when:

- There are at most seven agents.
- Each agent’s value for each good can be one of three non-negative numbers a, b, or c.
- The agents’ values can be represented by a multigraph, with edges corresponding to

goods and nodes corresponding to agents. Here an agent has nonzero value for a good
only if this good is incident to her. This setting generalizes the setting studied recently
by Christodoulou et al. [11].

We make progress in all three settings through the same algorithmic framework, although
each one requires its own modifications. While all of these are nontrivial, the most
intricate case is, somewhat surprisingly, the case of three values. We next present an
overview of our techniques.

Property-Preserving Partial Allocations. Our approach is based on the following general
principle: obtain a partial allocation X of goods to agents that satisfies a certain set
of properties. Then this allocation can be transformed into a complete allocation that
is 2/3-EFX. To be more precise, all of the known algorithms for α-EFX in the literature
[1, 16, 12] start by producing a partial allocation X using only a subset of the goods. How
this partial allocation is obtained may differ between different algorithms, but they all
serve the same purpose: once X is obtained, then one can run the Envy Cycle Elimination
algorithm of Lipton et al. [15], with initial input X, to produce an allocation that is
approximately EFX. For this to be possible, X has to satisfy certain properties, mainly that
(a) it is α-EFX, for the approximation factor α that we are aiming to prove, and (b) none
of the agents consider any of the goods that are left unallocated too valuable. Formally,
an unallocated good is “too valuable” for an agent i if her value for that good is at least
a factor β of her value for her allocated bundle in the partial allocation X. These goods
lie at the heart of our approach and we refer to them as critical goods. This is captured
by a lemma of Markakis and Santorinaios [16] stating that if a partial allocation X is
α-EFX and does not induce any critical goods (defined via a parameter β), then it can be
transformed into a complete min{α, 1

β+1
}-EFX allocation.

Therefore, the value of β that makes a good critical depends on the approximation
factor α that we are aiming to prove existence for. For α = 0.618 (achieved by Amanatidis
et al. [1]), it is also the case that β = 0.618. From a technical perspective, the “balance”
of these terms makes the construction of a partial allocation X that does not induce any
critical goods achievable via relatively simple algorithms. In fact, said algorithms also
guarantee that the cardinality of each bundle in X is at most 2; working with bundles



of such size is much more manageable. For larger α however, α ̸= β and we will have
a natural imbalance. For α = 2/3 in particular, we have β = 1/2. In this case, it can be
shown that even for the cases that we consider, it is not possible for X to be both 2/3-EFX
and induce no critical goods, unless agents receive bundles of cardinality 3 or more.

Our goal will be to obtain a 2/3-EFX partial allocation X without critical goods in
two stages. First, we devise a general algorithm called PROPERTY-PRESERVING PARTIAL

ALLOCATION algorithm (3PA), which obtains a partial allocation X1 that satisfies a certain
set of properties. One such property is that it is 2/3-EFX. This partial allocation X1 still
has critical goods, but it limits their number to at most one per agent, and only for agents
that have singleton bundles in X1. This, together with the other properties of X1 will
prepare the ground for allocating the critical goods to the agents in a subsequent stage,
resulting in a new partial allocation X2. This X2 will now satisfy the afoorementioned
lemma, and, thus, can be transformed into a complete 2/3-EFX allocation.

Swap steps and various envy graphs. The 3PA algorithm is based on a series of steps which
are executed in sequence according to a certain priority structure. Most of these are swap
steps, i.e., steps that enable certain agents to exchange (parts of) their bundles in the
partial allocation X with certain unallocated goods. The priority is determined by the
cardinality of the bundles in X, as well as the value of the agents for those unallocated
goods. Besides the swap steps, the algorithm also includes steps that are performed on
several different types of envy graphs, associated with allocation X. A (standard) envy
graph for a partial allocation X is a graph in which the nodes corresponds to agents,
and an edge (i, j) signifies that agent i envies agent j. Envy graphs are very common in
fair division, starting with the Envy Cycle Elimination algorithm [15]. We also consider
different types of graphs, named reduced graphs and enhanced graphs. In the former, any
envy towards agents with singleton bundles is disregarded, unless it is high enough. In
the latter, we add edges of near envy, as long as the value of the target bundle is above
a certain threshold. By exchanging bundles along cycles and paths in these graphs, we
deal with the inherently most challenging case of “moving value” from and to agents with
singleton bundles. In the case of three values we further refine our graphs, including
edges that indicate ties in the values. This allows for more options on how the partial
allocations evolve, but adds an extra layer of complexity in the analysis.

Throughout the execution of the 3PA algorithm, the value of an agent for her bundle
may decrease several times, but this is done in a controlled way that allows us to allocate
the critical goods in subsequent steps. We remark that since the steps of the 3PA algorithm
and its variants repeatedly allocate and de-allocate goods, their polynomial running time,
or even their termination is far from obvious.
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ACHIEVING ENVY-FREENESS THROUGH ITEMS SALE

VITTORIO BILÒ

Classification AMS 2020: 68Q17, 68Q25, 91B14.

Keywords: Fair division, Envy-freeness, Efficient algorithms, Hardness of approximation.

Fair division refers to the algorithmic question, dating back to the origins of the civil
society, of allocating resources or tasks to a set of agents according to some justice
criteria. It is by now a prominent area within Computational Social Choice, [3, Part II].
One of the most natural and well studied notions of fairness is envy-freeness [5]: a
division is envy-free if everyone thinks that her share is at least as valuable as the share
of any other agent. When items are indivisible, obtaining an envy-free allocation is very
challenging [4], and it is well known that, in the majority of cases, envy-free divisions
do not exist.

An approach that has been followed by several works, in order to recover some
existential guarantees, is to focus on relaxations of envy-freeness. Another natural
direction that comes into mind is to insist on envy-freeness, but provide some
compensation (e.g., monetary) to the agents who may feel unhappy by a proposed
division. Such models have been considered in the literature, where money is either
coming as an external subsidy from a third party or is already part of the initial
endowment. Under this setting, [6] investigated the question of determining the
minimum amount of money needed to obtain an envy-free division.

In this work, we also allow for monetary rewards, but we choose a different approach,
as already initiated in [7]: we require that the money used to compensate the envious
agents has to be raised from the set of available items, by selling some of them. This is
what happens, for instance, in inheritance division. To provide some examples, as stated
in Article n. 9 of the New York Laws - Real Property Actions and Article n. 720 of the
Italian Civil Code, whenever an agreement is not possible, part of the inheritance can be
sold through an auction. The same practice is also used in divorce settlements. Clearly,
envy-freeness is then always feasible by selling, if needed, the whole inheritance, and
equally sharing the proceeds. However, the amount of money raised by this process can
be fairly below the real value of the sold items for at least two reasons. First, the bidders
who participate in this type of auctions usually aim at winning items at very low prices;
secondly, running an auction bears organizational costs which need to be subtracted from
the proceeds. Thus, it is in the interest of the heirs to determine an envy-free division
by selling assets with as little value loss as possible. This gives rise to an interesting
optimization problem of determining which items to sell, so as to arrive at an envy-free
allocation with optimal social welfare. Algorithmically, this question has been largely
unexplored, with the exception of a particular case handled in [7].

Assuming that we are given the market value of each item as input, i.e., the money
that can be raised by selling it, we embark on a thorough investigation of algorithmic
and complexity questions for our problem and provide an almost tight set of results.
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We start with the case where all agents have the same value for each item. After
establishing NP-hardness, which can be easily shown even for 2 agents, our main results
exhibit a sharp separation on the approximability between the cases of n = 2 and n ≥ 3
agents. In particular, we prove that, with at least three agents, no polynomial time
algorithm can obtain a solution that performs better than the one which sells all items,
unless P = NP. On the other hand, for two agents, we are able to design a polynomial
time approximation scheme (PTAS), under the assumption that the market value of each
item is not smaller than half of the common agents’ value. The idea behind the PTAS is to
enumerate all partial allocations of the most valuable items, whose number is a constant
depending on the desired approximation guarantee. Each such partial allocation, which
consists of the two bundles assigned to the agents together with the bundle of sold items,
is then completed processing the remaining items by non-increasing value. At every step,
the next item is allocated to the agent having the lower valued bundle, until we reach a
situation where it is possible to equalize the two bundles by using the money raised from
the already sold items and from selling a subset of the not-yet-processed ones. The main
technical effort is needed to show that, if this condition occurs, then the final allocation
can be made envy-free at the expense of a negligible loss of social welfare, while, if
the condition never occurs, then it is not possible to obtain an envy-free solution from
the starting partial allocation. Finally, we design a dynamic-programming algorithm
which runs in polynomial time when the number of distinct item values is constant; this
assumption is in line with several other recent works on fair-division, e.g., [1, 2].

We then move to the case in which agents can have heterogeneous values for each
item. While all computational barriers from the case of equal valuations carry over to
this case as well, we are able to obtain two additional positive results. First, we focus
on the setting where the value that an agent i has for any item lies in an interval of
the form [xi, βxi], where β is common across all agents. This means, essentially, that
each agent attributes the same value to all items, up to a factor of β. For a constant
number of agents, and for a constant value of β, we are able to design again a PTAS. This
is very different from the PTAS for identical valuations and is based on an appropriate
combination of two main ideas. First, by using a linear programming formulation, we
compute a fractional solution with a bounded number of fractionally assigned items.
Then, we apply a ”reverse” version of the envy cycle elimination algorithm [8], so as
to decide which items to sell, in addition to the fractional ones. We believe that this
could be of independent interest for other allocation problems as well. Finally, even if
we drop the assumption on β being constant, we can still provide a pseudo-polynomial
time algorithm.
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STABILITY IN RANDOM HEDONIC GAMES

MARTIN BULLINGER

Classification AMS 2020: 91A68, 68W40, 68Q87

Keywords: Algorithmic game theory, hedonic games, stability, random games

In this talk, I demonstrate that stable outcomes are highly likely to exist in random
additively separable hedonic games and can be efficiently identified using appropriate
algorithms. The talk is based on a joint paper with Sonja Kraiczy [4].

1. HEDONIC GAMES

A frequent challenge is to partition a set of agents into meaningful groups. For
instance, this might involve assigning employees to company departments or organizing
students into project teams. However, even more abstract applications with nonhuman
agents are possible, e.g., when classifying a large body of webpages. Such settings can
be conceptualized as coalition formation games and they are studied across many fields
in computer science, mathematics, and economics [5, 7].

In many scenarios, especially when agents are assumed to be humans, preferences
are based on which group an agent is part of, whereas the composition of other groups
does not matter for an agent’s own utility. This assumption has led to the introduction
of hedonic games as a model of coalition formation over four decades ago [6]. The
algorithmic task of coalition formation is then to produce a partition of a set of agents,
given their preferences over possible coalitions. A first elementary question, therefore,
is how to elicit agents’ preferences. In principle, one could ask agents to provide a
ranking of all possible coalitions they could be part of. However, this would require
exponentially large space with respect to the number of agents, and is thus infeasible,
even for moderately small instances. A lot of the research on hedonic games has,
therefore, addressed the question of how to succinctly express preferences, see, e.g.,
[1, 2]. A common approach is to assume that preferences can be encoded as a complete
and weighted directed graph, where the vertices represent the agents and the weight of
an edge from agent a to agent b represents the valuation of a for b. These valuations can
then aggregated to utilities over coalitions. A natural and widely studied model is to
assume that the utility of a for a coalition C is the sum of edges from a to other agents
in C. Games that can be represented like this are called additively separable hedonic
games [2].

2. STABILITY

We now assume that we have given a hedonic game (in some representation) and
want to specify desirable outcomes. A key concept in this context are stable partitions,
in which no agent would prefer joining another coalition (or forming a coalition on their
own) over staying in their assigned coalition.



Let us consider a simple scenario that is illustrated in Figure 1. Assume that there are
two agents, a mouse and a cat. For two agents, there are only two possible coalitions for
each agent: the singleton coalition, where they are on their own, and the grand coalition,
where they form a coalition together with the other agent. In our game, the preferences
might be as follows: The mouse is scared of the cat and prefers to be in the singleton
coalition, whereas the cat is hungry and prefers the grand coalition. These preferences
can be captured by an additively separable hedonic game. A possible representation is
provided in Figure 1.

−10

10

FIGURE 1. Additively separable hedonic game representing the run-and-
chase scenario.

What would constitute a stable outcome in this scenario? In the singleton partition,
where both agents form singleton coalitions, the cat would prefer joining the mouse.
Indeed, this would increase her (additively separable) utility from 0 (the utility for the
singleton coalition) to 10. If, however, the grand coalition was proposed, then the mouse
would prefer to leave and be on her own. Again, this would lead to an increase in utility,
this time from −10 to 0. Intuitively, there is no stable outcome. We are caught in an
endless run-and-chase loop.

The stability concept considered in the example requires that no agent can unilaterally
decide to abandon their coalition and join another coalition. An outcome in which no
such deviation leads to an improvement is called Nash-stable [2]. As we have seen,
Nash-stable outcomes are not guaranteed to exist, even in simple settings. Arguably,
the unilateral nature of Nash stability is demanding and can even be inappropriate in a
coalition formation setting.

In some cases, deviating may require the consent of other agents. For example,
coalition membership might be governed by contracts, allowing an agent to leave only if
no member of the coalition exercises a veto. This concept is known as contractual Nash
stability [8]. In the previous example, the grand coalition remains contractually
Nash-stable because the mouse would be prevented from making its beneficial
deviation.

Instead of requiring consent to abandon a coalition, an agent might also need
permission to join one. This leads to the concept of individual stability [2]. In our
example, the singleton partition is individually stable. Indeed, the mouse would veto
the cat’s attempt to join her.

3. COMPUTATIONAL COMPLEXITY

The discussion of the example in Figure 1 looks like it is easier to construct
contractually Nash-stable or individually stable partitions. And indeed, both are
weakenings of Nash stability that may exist when Nash stability is not satisfiable.
However, their existence is not guaranteed in general either. There are simple examples
with a small number of agents, in which no contractually Nash-stable (see [8],



Example 2) or individually stable (see [2], Example 5) partition exists. This gives rise to
the following decision problem: given an additively separable hedonic game, does there
exist a stable partition? For all three of our stability concepts, this problem is
NP-complete [3, 8]. In the case of Nash stability, this hardness result holds even for
games where valuations are restricted to one positive and one negative value [3].

4. RESULTS

How significant are the hardness results discussed in the last section? As our example
along Figure 1 suggests, Nash stability is a volatile concept and there are many
instances without a Nash-stable outcome. However, the additively separable hedonic
games constructed in all three hardness results are combinatorially involved and rely on
a careful choice of valuations. By contrast, assume that games are based on randomly
selected valuation graphs. Our central question is whether this helps to achieve stability.

How likely is it for stable partitions to exist in random games?

It is easy to see that the consideration of random games can lead to stability: Assume
that valuations are drawn independently from some distribution. If the probability of a
positive valuation is 0, then all valuations are nonpositive with probability 1. In this case,
the singleton partition is Nash-stable (and, therefore, also contractually Nash-stable). If,
however, the probability of a positive valuation is positive, then every agent will be liked
by some other agent with high probability for a large number of agents. Hence, the
grand coalition is contractually Nash-stable with probability 1 in the large agent limit.
We capture this in the following proposition.

Proposition 1 ([4]). In the large agent limit, a contractually Nash-stable partition exists
with probability 1 in random additively separable hedonic games.

It seems that contractual Nash stability is easy to achieve. However, the partitions
that lead to Theorem 1 are the “trivial” ones. Clearly, if there are no positive valuations,
then the singleton partition is the only sensible choice: it is most preferred by every
agent, and there is no incentive to form nonsingleton coalitions at all. However, even
in the presence of positive weights, the grand coalition can be highly undesirable: first,
all agents might still obtain a negative utility, and the coalition is only rendered stable
due to the vetoes of unhappy agents. In other words, a partition is not required to be
individually rational, defined as yielding a utility of at least 0 for each agent. Second, the
grand coalition seems unreasonable in a context with many agents. By contrast, smaller
coalitions might be more reasonable or desirable.

Interestingly, since they do not require consent to abandon a coalition, individual
stability and Nash stability entail individual rationality. Hence, they seem to be the
harder objectives to satisfy. With high probability, they are neither satisfied by the
singleton partition nor the grand coalition.

The first main contribution of our paper is an algorithm that efficiently finds partitions
with the following properties with high probability:

(1) Individually stable,
(2) Contractually Nash-stable, and
(3) Coalition sizes of Θ(log n) where n is the number of agents.



This algorithm holds for the natural special case, where the random valuations are
drawn from a uniform distribution over the interval [−1, 1]. We refer to such games as
uniformly random additively separable hedonic games.

Theorem 2 ([4]). There exists a polynomial-time algorithm that, in the large agent limit,
produces individually stable and contractually Nash-stable partitions consisting of coalitions
of size O(log n) with probability 1 for uniformly random additively separable hedonic games.

Notably, the produced partitions simultaneously satisfy both of the discussed
weakenings of Nash stability. This raises the question of whether Nash-stable partitions
also exist with high probability. Interestingly, this is not the case, as we prove in our
second main contribution.

Theorem 3 ([4]). In the large agent limit, uniformly random additively separable hedonic
games do not admit Nash-stable partitions with probability 1.

Theorems 2 and 3 present a strict separation of Nash stability and weaker stability
concepts. We interpret them as follows: In a coalition formation context, where the
agents affected by a deviation are involved in determining its permissibility, stability
is likely to exist. By contrast, agents acting single-handedly are usually to blame for
instabilities.
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FAIR RANK AGGREGATION
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Keywords: Ranking, Median, Fairness, Kendall-tau distance, Ulam distance

Aggregating multiple input rankings over a group of candidates to derive a consensus
ranking is a vital challenge, with numerous applications in areas such as social choice
theory, hiring processes, college admissions, web search, and databases. One of the
popular objectives is to find a median ranking – compute a ranking that minimizes the
sum of distances to all the input rankings. Different distance metrics have been
considered to study this problem. For example, with the Kendall-tau metric, a
polynomial-time approximation scheme (PTAS) is known [2]. For the
Spearman-footrule metric, there is an exact polynomial-time algorithm [1]. When
considering the Ulam metric, we have developed an algorithm offering a
1.999-approximation [5, 6].

However, achieving the optimal consensus ranking can sometimes result in biases
against individual candidates or groups, particularly those from marginalized
communities. This concern has prompted investigations into rank aggregation with a
focus on fairness. The goal, in addition to generating a consensus ranking, is to ensure
equitable representation of each group in the top tiers of the final aggregated ranking.

Proportionate fairness in rank aggregation was first explored by [3, 4] among others.
They proposed a basic algorithm that identifies the closest fair ranking for each input
ranking and selects the one with the lowest total distance. Using the triangle inequality,
it can be shown that this approach achieves a 3-approximation, regardless of the
distance function used. However, for metrics like Ulam and Kendall-tau, this 3-factor
can be improved with more advanced methods. It’s important to note that the
approximation factor is influenced by the specific fairness criterion applied. For certain
fairness variations, it is possible to achieve an approximation factor approaching 2.

The challenge becomes significantly more complex when it comes to determining a
center ranking – to compute a ranking that minimizes the maximum distance to input
rankings. For all three distance measures, identifying a center ranking (without any
fairness constraint) is recognized as an NP-hard problem [7, 8]. Currently, the only
widely known approach is a basic 2-approximation algorithm that simply selects one of
the input rankings as the output. Exploring the potential for achieving a better
approximation guarantee presents an intriguing avenue for further research.
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FAIR CONGESTED ASSIGNMENTS: CONCEPTS, ALGORITHMS, AND COMPLEXITY

JIEHUA CHEN

Classification AMS 2020:

Keywords: Many-to-one matching with sided preferences; congestion games

The congested assignment problem is concerned with assigning agents to posts where
agents care about both the posts and their congestion levels. Here, agents are averse to
congestion, consistently preferring lower over higher congestion for the same resource.
Such scenarios are prevalent across many domains, including traffic management and
school choice, where fair resource allocation is crucial. Congested assignment can be
considered as a restricted variant of the Group Activity Selection problem, introduced
by Darmann et al. [Darmann et al.(2012)]. Additionally, it is related to many-to-one
matching in matching under preferences.

In this talk, I will explore one ex-ante fairness concept, top-fairness, and two ex-post
fairness concepts, envy-freeness and competitiveness. The top-fairness and
competitiveness concepts were recently introduced by Bogomolnaia and
Moulin [Bogomolnaia and Moulin(2023)]. While a top-fair or envy-free assignment
always exists and can be found easily, competitive assignments do not always exist. The
talk will cover the following key points:

(1) An efficient method to determine the existence of competitive or maximally
competitive assignments for a given congestion profile.

(2) Two optimization variants of congested assignments and their computational
complexity: a) Finding a top-fair assignment that is envy-free b) Finding a
top-fair assignment that is maximally competitive. Both variants are NP-hard,
unfortunately.

(3) Parameterized algorithms for these NP-hard problems.
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ENVY-FREE POLICY TEACHING TO MULTIPLE AGENTS

JIARUI GAN

Classification AMS 2020: 91B32, 91A15, 91A65

Keywords: Policy teaching, envyfreeness, Markov decision process

Incentive design is a key approach to influencing the behavior of rational agents. In
reinforcement learning (RL), an agent’s incentives are defined by its reward function
[1]. Thus, one can guide an agent toward a desired policy by modifying its reward
function so that the target policy becomes optimal with respect to the adjusted rewards.
For example, in safe RL, penalties can be assigned to hazardous actions to discourage an
agent from taking them [2]. In many cases, personalized teaching programs are
beneficial for heterogeneous agents, who may have vastly different innate reward
functions or apply different discount rates. As a result, agents may perceive the same
action in the same situation as being rewarded or penalized differently. This raises
concerns about fairness, leading to the question: how can we design fair personalized
teaching programs that ensure agents perceive their treatment as fair?

Ojectives and Results. Our first goal is to define fairness in the context of policy
teaching. We adopt the well-established notion of envy-freeness (EF) from fair division
theory, which has been applied to resolving disputes over, e.g., property division and
rent splitting [3, 4]. In the context of policy teaching, our aim is to design a set of
personalized teaching programs such that no agent prefers another agent’s program over
their own. At the same time, each program must incentivize its corresponding agent
to follow the target policy—a fundamental requirement of policy teaching. Beyond the
standard EF condition, we consider two stronger variants: one allows agents to evaluate
alternative teaching programs by considering deviations from the target policy, while the
other mandates identical teaching programs for all agents, ensuring absolute fairness.

We investigate several fundamental questions about EF policy teaching.
• Existence of an EF Solution. The first question is about the existence of an EF

solution under the EF notions of interest. We show that an EF solution always
exists and can be obtained by penalizing undesired actions by a sufficiently large
value. Nevertheless, the reverse does not hold true: one cannot hope to find an
EF solution only by rewarding actions desired by the target policy. We
demonstrate instances that do not admit any EF solution when penalties are not
allowed even with the weakest EF notion; we also prove that this non-existence
issue is resolved if the agents have the same discount factor.

• Cost Minimization. Since reward modification can be costly, we are interested in
least-cost EF solutions. We show that computing a cost-minimizing EF solution
can be formulated as convex optimization and hence can be solved efficiently.

• Price of Fairness. Finally, we analyze the price of fairness (PoF), a quantity that
measures the (multiplicative) increase of the cost due to consideration of
fairness, in the spirit of the price of anarchy (PoA) in game theory [5]. We

Page 10



present tight asymptotic bounds on the PoF. The PoF increases at most
quadratically with the geometric sum of the discount factor and linearly with
the size of the MDP in general. Additionally, it may also grow linearly with the
number of agents involved depending on the specific EF notion considered.

In summary, our results suggest that incorporating fairness into policy teaching can
lead to the non-existence of feasible solutions in some cases, but existence is ensured in
a broad range of important settings. Fairness does not appear to increase the
computational complexity of policy teaching, and the additional cost it incurs grows
only moderately with problem size. Overall, our findings indicate that fairness can be
integrated into multi-agent teaching without significant computational overhead or a
high Price of Fairness (PoF).
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JUGAL GARG
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We study the problem of fair allocation of chores among agents with additive
preferences. In the discrete setting, envy-freeness up to any chore (EFX) has emerged as
a compelling fairness criterion. However, establishing its (non-)existence or achieving a
meaningful approximation remains a major open question in fair division. The current
best guarantee is the existence of O(n2)-EFX allocations, where n denotes the number of
agents, obtained through a sophisticated algorithm [Zhou and Wu (2022)]. In this
paper, we show the existence of 4-EFX allocations, providing the first constant-factor
approximation of EFX.

We further investigate the existence of allocations that are both fair and efficient,
using Pareto optimality (PO) as our efficiency criterion. For the special case of bivalued
instances, we establish the existence of allocations that are both 3-EFX and PO, thereby
improving upon the current best factor of O(n)-EFX without any efficiency guarantees.
For general additive instances, the existence of allocations that are α-EFk and PO has
remained open for any constant values of α and k, where EFk denotes envy-freeness up
to k chores. We provide the first positive result in this direction by showing the
existence of allocations that are 2-EF2 and PO.

Our results are obtained via a novel economic framework called earning restricted
(ER) competitive equilibrium for fractional allocations, which imposes limits on the
earnings of agents from each chore. We show the existence of ER equilibria by carefully
formulating a linear complementarity problem (LCP) that captures all ER equilibria,
and then prove that the classic complementary pivot algorithm applied to this LCP
terminates at an ER equilibrium. By carefully setting earning limits and leveraging the
properties of ER equilibria, we design algorithms that involve rounding the fractional
solutions and then performing swaps and merges of bundles to meet the desired
fairness and efficiency criteria. We expect that the concept of ER equilibrium will play a
crucial role in deriving further results on related problems.
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1. INTRODUCTION

Participatory budgeting (see, e.g., [2]) defines a framework that allows citizens to
actively participate in deciding how to distribute an exogenously given budget among a
set of public projects. For that, the preferences of the citizens (or agents) are collected
and aggregated into a collective decision.

The standard model assumes each project has a fixed cost, meaning that it is either
fully funded or not funded. However, some instances require us to handle projects and
preferences in a more “continuous” way, e.g., when allocating money to whole areas of
public interest like education, nature conservation, and public transport. There,
preferences depend on the distribution of the budget rather than the set of implemented
projects. This class of problems is called portioning, fair mixing, or budget aggregation.

2. RELATED WORK

Having a convex set of outcomes, one has to impose some structure on the agents’
preferences in order to efficiently elicit them. This can be done by asking each agent to
report her set of approved projects ([3]) or her favorite distribution. For the latter case,
ℓ1 and Leontief preferences were introduced to the portioning setting by [8] and [5],
respectively.

We want to find sensible outcomes and more general mechanisms with good
axiomatic properties based on the favorite distributions reported by the agents.
Strategyproof mechanisms have initially been investigated by [9] for single-peaked
preferences and by [7] for ℓ1 preferences. We consider two fairness axioms, namely
proportionality ([7]) and the (α-)core due to [1].

3. MODEL

Given a finite set A of m projects, the set of all possible outcomes consists of all
distributions over A and is denoted by ∆(1). Furthermore, we have a set N of n agents
where an agent i’s preferences over the outcomes can be represented by a continuous
and quasi-concave utility function ui : ∆(1) → R.

Utility functions are assumed to be star-shaped [4], i.e., for any distribution q ̸= pi

and λ ∈ (0, 1), ui(pi) > ui(λpi + (1− λ)q) > ui(q), where pi = (pi,x)x∈A denotes agent i’s
unique peak which corresponds to her favorite outcome.

In my talk, I considered two specific star-shaped utility models, namely ℓ1 preferences
(ui(q) = −

∑
x∈A |pi,x − qx|) and Leontief preferences (ui(q) = minx∈A : pi,x>0 qx/pi,x).
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4. MAIN RESULTS

For m = 2, star-shaped preferences coincide with single-peaked preferences, and a
unique fair and strategyproof mechanism exists, the uniform phantom mechanism ([6,
7]).

Theorem 4.1 ([5]). For m = 2, the only continuous mechanism that satisfies
strategyproofness and proportionality is the uniform phantom mechanism (independent of
the underlying utility model).

In addition, this mechanism always returns Pareto optimal outcomes.
For larger m, the underlying utility model becomes essential. First, I covered an

impossibility result for ℓ1 preferences.

Theorem 4.2 ([5]). With ℓ1 preferences, no mechanism satisfies Pareto optimality,
strategyproofness, and proportionality when m ≥ 3 and n ≥ 3.

Second, I presented a characterization of the Nash product rule (which returns the
outcome that maximizes the product of the agents’ utilities) for Leontief preferences.

Theorem 4.3 ([5]). With Leontief preferences, the Nash product rule is the only continuous
mechanism that satisfies group-strategyproofness and always returns core outcomes.

This theorem implies that Pareto optimality, strategyproofness, and fairness can be
achieved simultaneously for Leontief preferences.
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1. INTRODUCTION

Social choice theory studies how to aggregate individual preferences into a single
collective decision. Traditionally, this assumes complete access to each individual’s
complete preferences. However, in a variety of settings, this assumption does not hold.
For example, modern online platforms promoting civic participation, such as
https://Pol.is, aggregate complex preferences over a vast space of alternatives,
rendering it infeasible to learn any individual’s preferences completely. Instead,
preferences are elicited by asking each user a query about a small subset of their
preferences.

In this talk, I present a simple framework for analyzing what social choice guarantees
are possible in these setups, where preferences can only be elicited via small queries.
It covers two papers: one on approval-based preferences [1] and one on ranking-based
preferences [2].

Contributions include (i) positive algorithmic results: efficient algorithms that produce
representative outcomes with limited queries. (ii) information-theoretic impossibilities:
fundamental limits on what can be learned, regardless of the number of queries, and
(iii) query-complexity lower bounds: situations where, even if it is possible in theory to
achieve a desired outcome, an exponential number of queries may be required, making
it practically infeasible.

2. MODEL

Preferences. A population of voters have preferences over a set of m candidates, C. In
the approval-based model, each voter has an approval set A ⊆ C of candidates that they
approve of. In the ranking-based model, each voter has a ranking σ over C, where σ is
a bijection from C 7→ {1, . . . ,m}, where σ(c) indicates the position of candidate c in the
ranking. The entire population is represented by a distribution over preferences π, called
a profile.

Output Goals. Given a profile π, we would like to output a candidate c ∈ C, or set
of candidates W ⊆ C of a fixed size k (also called a committee), that satisfies some
desirable property. In the approval-based model, the goal will be finding committees that
satisfy some representation axiom. Two of interest are the following. These definitions
are adapted from [3] to fit our distributional model.

https://Pol.is


Definition 2.1 (Justified Representation). A committee W ⊆ C of size |W | = k satisfies
Justified Representation (JR) if there is no group of voters making up 1/k of the population
that all agree on a candidate, and do not like any of the members of W . More formally,
there is no candidate c ∈ C such that PrA∼π[c ∈ A and W ∩ A = ∅] ≥ 1/k.

Definition 2.2 (Extended Justified Representation). A committee W ⊆ C of size |W | = k
satisfies Extended Justified Representation (EJR) if there is no group of voters making up
ℓ/k of the population that all agree on ℓ candidates, and do not like any of the members of
W . More formally, for all subsets of candidates S ⊆ C, PrA∼π[S ⊆ A and |W∩A| < ℓ] ≥ ℓ/k
where ℓ = |S|.

For ranking-based preferences we are interested in maximizing scoring rules. A
scoring-rule is given by a vector s ∈ Rm. Intuitively, each voter gives sj points to the
candidate in their j’th position. More formally, the score for a candidate c ∈ C is
Eσ∼π[sσ(c)]. Our goal is to output a candidate with maximal score.

Query Model. Instead of us learning the entire population distribution, we interact with
it only by querying arriving voters on a subset of candidates. At each time step, our
algorithms may choose a subset Q ⊆ C of size t. A random voter arrives from the
population, and the algorithm learns their preferences restricted to Q. For approval-
based preferences, A ∼ π and we learn A∩Q. For ranking based preferences, σ ∼ π, and
we learn the ranking restricted to Q, denoted σQ, i.e., σQ maps Q 7→ {1, . . . , t}, where
σQ(c) is the ranking of c out of the candidates in Q. We are interested in whether our
algorithms can find one of the desirable outputs making a reasonable number of queries.

3. RESULTS

For approval-based preferences, we show the following negative result. We say an
algorithm is non-adaptive if, at each step, it chooses a query Q drawn from a distribution,
independent of responses seen so far.

Theorem 3.1. For any constants k and t with k ≥ 2, and for any δ > 0, any non-adaptive
algorithm making fewer than Ω(m2) queries outputs a committee of size k satisfying JR with
probability at most δ. Furthermore, if k ≥ Ω(log(1/δ)), then this holds for any algorithm
making fewer than Ω(m11) queries.

On the other hand, if we allow for adaptive algorithms, then it is possible to guarantee
the stronger EJR.

Theorem 3.2. For any m ≥ t > k and any δ > 0, there is an algorithm outputting an EJR
committee of size k with probability 1− δ making at most O(mk6 log k logm) queries.

For ranking-based preferences, we have the following negative result. From [4], it can
be inferred that for all t > 0, there is a t-dimensional subspace St ⊆ Rm such that using
queries of size t, for all s ∈ St, the score of each candidate can be estimated to arbitrary
precision assuming enough voters arrive. On the other hand, we show the following.

Theorem 3.3. For all s /∈ St, there exist m profiles π1, . . . , πm such that each has a unique
candidate with maximal s-score, but all are indistinguishable to algorithms making queries
of size t.
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The aim of this talk is to present some recent results and open questions for the envy-
free cake-cutting problem with connected pieces. This is based on a joint paper with
Aviad Rubinstein [7].

Cake-Cutting. The cake-cutting problem, first introduced by Steinhaus [10], is perhaps
the most famous, and certainly the most well-studied problem in fair division. The cake
serves as a metaphor for modeling settings where the resource is divisible – namely it
can be divided arbitrarily – and heterogeneous – different parts of the resource have
different attributes and can thus be valued differently by different agents. Examples
where the resource can be modeled as a cake, include, among other things, division of
land, time, and other natural resources. The problem has been extensively studied in
mathematics and economics [2, 9] and more recently in computer science [8].

More formally, the cake is usually modeled as the interval [0, 1], and there are n agents,
each with their own preferences over different pieces of the cake. A piece of the cake is
simply an interval of [0, 1]. The preferences of each agent i are represented by a valuation
function vi which assigns a value to each piece of the cake. Formally, vi : [0, 1]2 → [0, 1],
where vi(a, b) represents the value that agent i has for interval [a, b]. For this to be well-
defined, we require that vi(a, b) = 0 whenever b ≤ a. Furthermore, we always assume
that the valuations vi are continuous.

The goal is to divide the cake into n pieces A1, . . . , An and assign one piece to each
agent in a fair manner. Here we consider the fairness notion of envy-freeness. An
allocation is envy-free, if no agent is envious of another agent’s piece. Formally, we
require that vi(Ai) ≥ vi(Aj) for all agents i, j. The problem of envy-free cake-cutting
was popularized by Gamow and Stern [6] and has since been studied extensively.
Stromquist [11], Woodall [14], and more recently Su [13] have shown that an
envy-free allocation always exists for continuous valuations.

Computation. The existence proofs all rely on tools such as Brouwer’s fixed point
theorem, or Sperner’s lemma. These powerful tools prove the existence of envy-free
allocations, but they do not yield an efficient algorithm for finding one. Mathematicians
and economists have tried to address this by proposing so-called moving-knife protocols
to solve the problem. Unfortunately, the definition of a moving-knife protocol is
somewhat informal and thus not well-suited for theoretical investigation (see [3] for a
discussion). In more recent years, research in theoretical computer science has started
studying these questions in formal models of computation. However, despite extensive
efforts on the envy-free cake-cutting problem, its complexity is still poorly understood.
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We study the query complexity of the problem. A (value) query consists of the
endpoints of an interval [x, y], and the agent responds with its value for that interval,
i.e., vi(x, y). The running time of an algorithm consists of the number of queries. Given
that we insist on connected pieces, it is known that an exact envy-free allocation cannot
be found with a finite number of queries [12]. Thus, we consider approximate envy-free
allocations instead.1 An allocation is ε-envy-free, if vi(Ai) ≥ vi(Aj)− ε for all agents i, j.
In this setting, an ε-envy-free allocation can be found by brute force using poly(1/ε)
queries when the number of agents is constant [4]. We say that an algorithm is efficient
if it uses poly(log(1/ε)) queries.

A simple algorithm is known for two agents: the cut-and-choose protocol. The first
agent cuts the cake in two (approximately) equal parts, according to its own valuation,
and then the second agent picks its favorite piece, and the first agent receives the
remaining piece. This simple algorithm can be implemented using O(log(1/ε)) queries.
For three agents, the problem can be solved using O(log2(1/ε)) queries by using an
algorithm by Deng, Qi, and Saberi [5]. As shown by Brânzei and Nisan [4],
moving-knife algorithms due to Barbanel and Brams [1] and Stromquist [11] can also
be simulated in the query model to obtain the same bound. The positive results for
three agents require that the valuations be monotone, a standard assumption in many
works on the topic. A valuation function vi is monotone if vi(A) ≥ vi(B), whenever A is
a superset of B.

For four agents, the problem has remained open, and Brânzei and Nisan [4]
conjectured that there is no efficient algorithm. In our work, we disprove this
conjecture.

Theorem 1. For four agents with monotone Lipschitz valuations, we can compute an ε-
envy-free connected allocation using O(log3(1/ε)) value queries.

In the second part of our work, we investigate whether monotonicity is necessary for
obtaining efficient algorithms. We prove that this is indeed the case, in a very strong
sense. Namely, we show that the communication complexity of finding an ε-envy-free
allocation with four non-monotone agents is Ω(poly(1/ε)). To the best of our knowledge,
this is the first intractability result for any version of the cake-cutting problem in the
communication model. For the case of agents with identical non-monotone valuations,
our reduction also yields an Ω(poly(1/ε)) query lower bound, as well as a PPAD-hardness
result in the standard Turing machine model.

Open problems and future directions. In Tables 1 and 2 we summarize the current
state-of-the-art results for connected ε-envy-free cake-cutting, including our results, in
two natural models of computation for this problem.

The following two questions are particularly interesting:

• What is the complexity of the problem for five agents with monotone valuations?
Can the problem be solved efficiently, or can we show a lower bound? Can we at
least show a lower bound for some larger number of players?

• What is the complexity of the problem for three agents with general valuations?

1We also have to assume that the valuations are L-Lipschitz-continuous for some constant L.
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valuations n = 2 n = 3 n = 4 n ≥ 5

monotone
Θ(log(1/ε))

O(log2(1/ε)) O(log3(1/ε)) ?

general ? Θ(poly(1/ε)) Θ(poly(1/ε))

TABLE 1. Query complexity bounds for ε-envy-free cake-cutting. Here
“Θ(poly(1/ε))” denotes that there is a polynomial upper bound and a
(possibly different) polynomial lower bound. All the lower bounds also
hold for agents with identical valuations.

valuations n = 2 n = 3 n = 4 n ≥ 5

monotone
O(log(1/ε))

O(log(1/ε)) O(log2(1/ε)) ?

general ? Θ(poly(1/ε)) Θ(poly(1/ε))

TABLE 2. Communication complexity bounds for ε-envy-free cake-cutting.
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1. INTRODUCTION

The topic of this talk is the stable matching problem in a bipartite graph. This problem
was introduced by Gale and Shapley [3], and it is one of the most famous mathematical
models of matching. In the basic setting of the stable matching problem, it is assumed
that each agent has a strict preference, i.e., the preference of an agent does not contain
ties. It is known that, in this setting, a stable matching always exists [3]. In this talk, we
consider the stable matching problem with ties. In particular, we focus on super-stability
in the stable matching problem with ties. Super-stability is one of the stability concepts in
the stable matching problem with ties. Roughly speaking, super-stability guarantees that
there does not exist an unmatched pair of agents such that both agents weakly prefer the
other agent in the pair to the current partner (i.e., the new partners are not worse than
their current partners). It is known that there may not exist a super-stable matching, and
the existence of a super-stable matching can be checked in polynomial time [5, 8].

2. MODIFYING AN INSTANCE OF THE SUPER-STABLE MATCHING PROBLEM

The aim of the first part of this talk is to consider how to cope with an instance of the
stable matching problem with ties in which there does not exist a super-stable matching.
In the first part, we consider the problem of modifying an instance of the stable matching
problem with ties by deleting some bounded number of agents in such a way that there
exists a super-stable matching in the modified instance. Our problem is motivated by the
following question. How far is a given instance of the stable matching problem with ties
from the set of instances where there exists a super-stable matching? Our problem gives
one approach to this question. If we have to delete many agents from the given instance,
then we could conclude that this instance is far from the set of instances where there
exists a super-stable matching.

The contribution of this part is summarized as follows. First, we consider the setting
where we are allowed to delete agents on only one side. We prove that, in this setting, our
problem can be solved in polynomial time. Interestingly, this positive result is obtained
by carefully observing the existing algorithm [5, 8] for checking the existence of a super-
stable matching. Next, we consider the setting where we are given an upper bound on
the number of deleted agents for each side, and we are allowed to delete agents on both
sides. We prove that our problem is NP-complete in this setting. See [6] for the details
of the results of this part.
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3. SUPER-STABLE MATCHINGS WITH GENERALIZED MATROID CONSTRAINTS

In typical settings of variants of the stable matching problem, we are given an upper
bound on the number of partners assigned to each agent. In some applications, we need
to consider not only an upper bound but also a lower bound on the number of partners
assigned to each agent. For example, we consider the problem of assigning residents to
hospitals. In order to balance the numbers of residents assigned to hospitals, we could
impose lower bounds on the numbers of residents assigned to hospitals.

In this talk, we focus on the classified stable matching problem, which was introduced
by Huang [4]. Here we consider the problem of assigning residents to hospitals again.
In the classified stable matching problem, a hospital has a laminar family of subsets of
acceptable residents, and imposes an upper bound and a lower bound on each subset in
this family. In the setting where the preferences of agents are strict, Huang [4] proved
that we can check the existence of a stable matching in polynomial time. Furthermore,
Fleiner and Kamiyama [2] proposed a matroid approach to the classified stable matching
problem, and proved that its many-to-many variant can be solved in polynomial time.
Yokoi [9] proposed an abstract generalization of the classified stable matching problem
where the constraints are generalized by generalized matroids [1], and proved that, in
this setting, we can check the existence of a stable matching in polynomial time.

In the second part, we consider a variant of the problem proposed by Yokoi [9] where
the preferences of agents may contain ties. We prove that the problem of determining
whether there exists a super-stable matching [5] can be solved in polynomial time in this
setting. See [7] for the details of the results of this part.

Acknowledgments. The work was supported by JSPS KAKENHI Grant Number JP20H05795
and JST ERATO Grant Number JPMJER2301, Japan.
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This is a short report based on joint work with Hanna Sumita and Yu Yokoi [3].

Assigning indivisible items to agents with preferences is one of the most fundamental
problems in computer science and economics [4, 5]. Examples of such problems include
university housing assignments, student course placements, employee shift assignments,
and professional sports drafts. In these kinds of problems, we are given a set of agents, a
set of indivisible items, and preferences of the agents. The goal of the problem is to find
an assignment that satisfies efficiency and fairness. This study deals with the case where
only ordinal information on preferences is available. Such an assumption is common in
the literature because eliciting precise cardinal preferences would be difficult in practice
(see Bogomolnaia and Moulin [2] for more detailed justifications).

Model. For a nonnegative integer k, we write [k] to denote {1, 2, . . . , k}. An instance of
our problem is a tuple (N,E, (�i,Fi)i∈N), where N = [n] represents the set of agents and
E = {e1, e2, . . . , em} represents the set of indivisible items. Each agent i ∈ N has a strict
preference �i over E and can consume a set of items in Fi ⊆ 2E, which is the feasible
set family of agent i. We assume that Fi is given by a membership oracle for each i ∈ N .
The preferences over sets of items are additively separable across items, meaning that
each agent i has a cardinal utility function ui : E → R++, and her utility for a bundle
E ′ ∈ Fi is

∑
e∈E′ ui(e). Here, R++ is the set of positive real numbers. We assume that

the preference of each agent i has no ties and that the central authority knows only the
ordinal preferences �i that are consistent with ui. In other words, �i is a strict order on
E such that e �i e

′ if and only if ui(e) > ui(e
′).

For each agent i ∈ N , we assume that the pair (E,Fi) forms an independence system:
the feasible set family Fi ⊆ 2E is nonempty and satisfies the hereditary property, that is,
X ⊆ Y ∈ Fi implies X ∈ Fi. We will also consider a special case where each (E,Fi) is a
matroid, which is an independence system satisfying a property called the augmentation
axiom: if X, Y ∈ Fi and |X| < |Y | then there exists e ∈ Y \X such that X ∪ {e} ∈ Fi.

A deterministic assignment is a list A = (A1, . . . , An) of subsets of E such that (i)
Ai ∈ Fi for all i ∈ N and (ii) Ai ∩ Aj = ∅ for all distinct i, j ∈ N . Let A be the set of all
deterministic assignments. A lottery assignment is a probability distribution over A. We
denote the set of all lottery assignments by ∆(A).

A fractional assignment is a matrix π = (πie)i∈N,e∈E ∈ RN×E such that, for every item
e ∈ E,

∑
i∈N πie ≤ 1. We interpret πie as the probability that agent i ∈ N receives item

e ∈ E. For each i ∈ N , we denote the row in π corresponding to agent i by πi, that is,
πi = (πie)e∈E ∈ [0, 1]E. A lottery assignment p ∈ ∆(A) induces a fractional assignment
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π ∈ RN×E such that πie = PrA∼p[e ∈ Ai] =
∑

A∈A: e∈Ai
pA for all i ∈ N and e ∈ E. We will

write πp for the fractional assignment induced from p. A fractional assignment is called
feasible if it is induced from some lottery assignment.

Desirable Properties. For a preference �i, let U(�i, e) := {e′ ∈ E : e′ �i e} be the
set of items that are not worse than e with respect to �i. We say that x ∈ RE

+ weakly
stochastically dominates y ∈ RE

+, denoted by x �sd
i y, if

∑
e′∈U(�i,e)

xe′ ≥
∑

e′∈U(�i,e)
ye′

for all e ∈ E. If x �sd
i y and x 6= y, we say that x stochastically dominates y and denote

x �sd
i y. Note that x stochastically dominates y if and only if the expected utility of x is

greater than that of y for all possible cardinal utilities consistent with �i.
Pareto-efficiency is a standard efficiency concept where no agents can be made better

off without making at least one other agent worse off. A natural notion of efficiency for
lottery assignments is defined as Pareto-efficiency with respect to the SD relation.

Definition 1 (sd-efficiency). A lottery assignment p ∈ ∆(A) is called sd-efficient (also
called ordinally efficient or necessarily Pareto-efficient) if there is no lottery assignment
q ∈ ∆(A) that satisfies πq

i �sd
i πp

i for all i ∈ N and πq
j �sd

j πp
j for some j ∈ N .

As a notion of fairness, we consider envy-freeness. For the unconstrained setting, a
standard definition of sd-envy-freeness requires a fractional assignment to satisfy
πp
i �sd

i πp
j for any agents i, j ∈ N . This condition is equivalent to the expected utility of

the fractional assignment of agent i being no worse than that of any other agent j with
respect to any cardinal utility consistent to �i [1]. In our setting, however, this
equivalence does not hold due to the existence of constraints. Indeed, the bundle
assigned to agent j is not feasible for agent i in general. Therefore, we have to take
constraints into account when considering each agent’s envy toward other agents. For a
utility function ui consistent to �i, let ũi(X) be i’s evaluation of a bundle X ⊆ E (that
may be infeasible for i to consume). That is, ũi(X) = max{

∑
e∈Y ui(e)|Y ⊆ X, Y ∈ Fi}.

Then, a natural generalization of sd-envy-freeness is to impose a lottery assignment
p ∈ ∆(A) to satisfy

EA∼p[ũi(Ai)] ≥ EA∼p[ũi(Aj)] (∀i, j ∈ N,∀ui ∈ RE
++ consistent to �i).(1)

It turns out that the condition (1) is equivalent to the condition (2) below. Since (2)
does not use utility functions, we adopt (2) as the definition of sd-envy-freeness. The
envy-freeness with respect to the SD relation is defined as follows.

Definition 2 (sd-envy-freeness). A lottery assignment p ∈ ∆(A) is called sd-envy-free
(also called necessary envy-free or not envy-possible) if∑

A∈A

pA|Ai ∩ U(�i, e)| ≥
∑
A∈A

pA max
Y⊆Aj :

Y ∈Fi

|Y ∩ U(�i, e)| (∀i, j ∈ N, ∀e ∈ E).(2)

Our Results. We investigate the existence of sd-efficient and sd-envy-free assignments
in 16 settings according to the following: (i) the number of agents is 2 or arbitrary n, (ii)
the constraints are matroids or general hereditary constraints, (iii) the constraints of the
agents are identical or heterogeneous, and (iv) the ordinal preferences of the agents are
identical or heterogeneous.

We show that an sd-efficient and sd-envy-free assignment always exists in the following
cases.
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Theorem 3 Theorem 4 Theorem 5

Theorem 6 Theorem 7

2,m,i,i

n,m,i,i2,g,i,i

n,g,i,i

2,m,i,h

n,m,i,h2,g,i,h

n,g,i,h

2,m,h,i

n,m,h,i2,g,h,i

n,g,h,i

2,m,h,h

n,m,h,h2,g,h,h

n,g,h,h

FIGURE 1. Summary of our results on the existence of an sd-efficient
and sd-envy-free assignment. Each of the 16 cases is identified by four
characters, such as “2,m,i,i.” The first, second, third, and fourth characters,
respectively, indicate whether there are 2 or an arbitrary n number of
agents, whether the constraints are matroids or general, whether the
constraints are identical or heterogeneous, and whether the preferences
are identical or heterogeneous. For each case, the box is painted green if
such a lottery assignment always exists and red otherwise.

Theorem 3. A lottery assignment that satisfies sd-efficiency and sd-envy-freeness always
exists and can be computed in polynomial time if the number of agents is 2 and the
constraints are matroids.

Theorem 4. An sd-efficient and sd-envy-free lottery assignment always exists and can be
computed in polynomial time if the constraints are matroids, and the preferences are
identical.

Theorem 5. An sd-efficient and sd-envy-free lottery assignment must exist for any instance
with identical constraints and preferences.

We also show that an sd-efficient and sd-envy-free assignment may not exist in the
following cases.

Theorem 6. An sd-efficient and sd-envy-free lottery assignment may not exist even with two
agents, and the preferences are identical.

Theorem 7. An sd-efficient and sd-envy-free lottery assignment may not exist even with
three agents and identical matroid constraints.

Taking the inclusion relations into account, we obtain the results shown in Figure 1.
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1. INTRODUCTION

In the classic variant of the facility location problem, agents are located on a
unidimensional interval, and we are tasked with finding an ideal location to place a
facility which serves these agents. The agents have single-peaked preferences for the
facility location, as they incur a cost equal to their distance from the facility. This
problem models many real-world single-peaked social choice and preference
aggregation problems.

In our setting, we assume that the agents’ locations are private information, and take
a strategyproof mechanism design approach to the classic facility location problem. We
also add an additional dimension of complexity: each agent’s cost is scaled by an external
factor corresponding to the facility’s location on the domain. Specifically, there is a
(continuous) scaling function which maps the facility location to a positive scaling factor
which is multiplied by each agent’s distance to calculate their individual costs. A local
minimum of the scaling function implies that the facility is particularly effective when
placed at this point.

The paper most similar to our work considers the facility location model with
entrance fees [1], in which agents incur, in addition to their distance from the facility,
an additive cost which depends on the facility placement. In this model, the authors
give strategyproof mechanisms and compute their approximation ratios with respect to
the total and maximum cost objectives. The key difference with our model is that our
agents experience a multiplicative scaling factor to their cost, whilst their agents
experience an additional additive cost. Our work and [1] are inspired by the line of
research on approximate mechanism design without money, initially proposed for the
facility location problem by [2]. In their paper, the authors compute the worst-case ratio
between the performance of strategyproof mechanisms and welfare-optimal
mechanisms.

2. MODEL

We have a set of agents N = {1, . . . , n}, where agent i has location xi on the domain1

X := [0, 1]. Although we consider the space of potentially non-anonymous mechanisms,
we assume for simplicity that agent locations are ordered such that x1 ≤ · · · ≤ xn. This
does not affect the nature of our results. A scaling function q : X → R>0 gives the

1Although we consider the unit interval domain, our results can be scaled and shifted to any compact
interval on R. We consider a bounded domain so that a single-peaked linear scaling function does not take
negative values.
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effectiveness of a facility.2 We also assume that the scaling function is continuous. Note
that continuity of q is required for the optimal facility location to be well-defined.

Denoting Q as the space of all scaling functions, a continuous3 facility location
mechanism f : Q × Xn → X maps the agent location profile x = (x1, . . . , xn) to the
location of a facility y. We define the cost incurred by agent i as its distance from the
facility multiplied by the scaling factor: ci(q, y) := q(y)|y − xi|. Finally, we define the
total cost of an instance as TC(q, y,x) :=

∑
i ci(q, y) = q(y)

∑
i |y − xi|, and the

maximum cost of an instance as MC(q, y,x) := maxi ci(q, y) = q(y)maxi |y − xi|.
Respectively, we denote the optimal facility location which minimizes the total cost
(resp. maximum cost) as y∗TC (resp. y∗MC).

It is typically ideal for the mechanism output to be independent of the agents’ labelling,
so we are concerned with mechanisms that satisfy anonymity, meaning that output does
not change when the agents’ labels are permuted.

As we assume agent locations are private information, there is a concern that agents
may misreport their locations to unfairly attain a better facility placement. It is therefore
ideal to implement a strategyproof mechanism, which does not incentivize agents to lie
about their locations.

Definition 2.1 (Strategyproofness). A mechanism f(·) is strategyproof if for every agent
i ∈ N , we have, for every scaling function q and agent locations x′

i, x−i and xi,

ci(q, f(xi, x−i)) ≤ ci(q, f(x
′
i, x−i)).

3. COMPUTING THE OPTIMAL SOLUTION

We first investigate the properties of the optimal facility locations for total cost y∗TC

and maximum cost y∗MC .

Theorem 3.1. Let the scaling function q be a continuous, piecewise linear function. The
facility location minimizing total cost y∗TC is either on one of the agents’ locations or on a
local minimum of q.

Proposition 3.2. For continuous scaling functions, the optimal facility location for
maximum cost satisfies

y∗MC ∈

{
argmin

y∈[0,x1+xn
2

]

cn(q, y), argmin
y∈[x1+xn

2
,1]

c1(q, y)

}
.

Note that neither optimal solution is strategyproof.

4. ACHIEVING SINGLE-PEAKED PREFERENCES

When agents have single-peaked preferences along a compact domain, [3]
characterized the set of anonymous and strategyproof mechanisms as phantom
mechanisms, which place the facility at the median of the n agent locations and n + 1
constant ‘phantom’ points.

2If there is a point y where q(y) = 0, then it is trivial to place the facility at that point.
3For mechanisms, we define continuity with respect to the agents’ locations. Formally, we say a

mechanism is continuous if ∀x ∈ Xn : ∀ϵ > 0 : ∃δ > 0 : ∀x′ ∈ Xn,∀q ∈ Q : ∥x − x′∥1 < δ =⇒
∥f(q,x)− f(q,x′)∥1 < ϵ.
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Definition 4.1 (Phantom Mechanism). Given x and n + 1 constant values 0 ≤ p1 ≤ p2 ≤
· · · ≤ pn+1 ≤ 1, a phantom mechanism places the facility at med{x1, · · · , xn, p1, · · · , pn+1}.

However, we find that in our setting, phantom mechanisms are not necessarily
strategyproof.

Theorem 4.2. Every phantom mechanism with n + 1 phantoms on at least two unique
phantom locations is not strategyproof.

This is because the scaling function may cause the agent’s preference to no longer
be single-peaked. However, we can characterize the conditions on the scaling functions
which ensure that agents have single-peaked preferences. These conditions hold as long
as q is continuous, even if it is not differentiable at a countable set of points D.

Theorem 4.3. If q is continuous but not differentiable at a countable set of points D :=
{j|q′(j) does not exist}, the agents’ preferences are guaranteed to be single-peaked if and
only if q(y)− |q′(y)| ≥ 0 for all y ∈ [0, 1]\D.

5. CHARACTERIZATION OF STRATEGYPROOF AND ANONYMOUS MECHANISMS

As we have characterized the conditions for the scaling function to guarantee
single-peaked agent preferences, it may seem immediate to apply the results by [3] to
characterize strategyproof and anonymous mechanisms under these conditions as
phantom mechanisms. However, recall that the mechanism takes the scaling function as
an additional input, meaning that the constant value p1, . . . , pn+1 may be dependent on
the scaling function. Furthermore, the domain of single-peaked preferences induced by
a scaling function meeting the key condition of Theorem 4.3 may be a strict subset of
the domain of all arbitrary single-peaked preferences. As a result, the characterization
by [3] does not immediately hold in our setting.

Nevertheless, we are still able to obtain a similar characterization of strategyproof
and anonymous mechanisms in our setting when the scaling function guarantees single-
peaked agent preferences, but we additionally require that the mechanism is continuous.
We first define an adaptation of the phantom mechanism, in which each ‘constant’ value
admits the scaling function as input.

Definition 5.1 (Phantom Mechanism with Scaling). Given an agent location profile x, a
scaling function q, and n + 1 ‘phantom values’ {pi(q)}i∈[n+1] defined by pi : Q → [0, 1], a
phantom mechanism with scaling places the facility at

med{x1, · · · , xn, p1(q), · · · , pn+1(q)}.

We now present our characterization, which leverages a key result by [4].

Theorem 5.2. When agents are guaranteed to have single-peaked preferences, a continuous
mechanism is strategyproof and anonymous if and only if it is a phantom mechanism with
scaling.
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General Pref. Single-Peaked Pref.
Continuous and
Piecewise Linear q

Continuous q Piecewise Linear q

Total Cost rq e (1 + 1
k
)k

Max. Cost 2rq 2e 2(1 + 1
k
)k

TABLE 1. Phantom mechanism approximation ratio results for total and
maximum cost. Agents have single-peaked preferences when the scaling
function q meets certain conditions, resulting in phantom mechanisms with
scaling being strategyproof. The term rq denotes the ratio between the
max. and min. values of q, and k denotes the number of line segments in
the piecewise linear q.

6. APPROXIMATION RATIO RESULTS

Finally, Table 1 gives results on the approximation ratios of phantom mechanisms with
scaling. All results are tight in the sense that they are a lower bound for all phantom
mechanisms, and that there exists a phantom mechanism with a matching approximation
ratio.
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This is a summary of a longer research article co-authored with Sylvain Bouveret, Hugo Gilbert,
and Guillaume Méroué [1].

When allocating indivisible items to agents, it is known that the only strategyproof mechanisms
that satisfy a set of rather mild conditions are constrained serial dictatorships (CSDs): given
a fixed order over agents, at each step the designated agent chooses a given number of items
(depending on her position in the sequence). Agents who come earlier in the sequence have a
larger choice of items; however, this advantage can be compensated by a higher number of items
received by those who come later. How to balance priority in the sequence and number of items
received is a nontrivial question.

1. RELATED WORK

Various characterization theorems state that, under mild additional conditions, strategyproof
allocation mechanisms all have a serial dictatorship flavour: with strict preferences over subsets,
only serial dictatorships are strategyproof, neutral, and nonbossy [2], whereas only sequential
dictatorships (a generalization of serial dictatorship where the identity of the agent picking in
position k depends on the items assigned to the agents in positions 1 to k − 1) are strategyproof,
Pareto-efficient, and nonbossy [4]. If preferences are quantity-monotonic (a bundle of larger
cardinality is always preferred to one of lower cardinality) then a mechanism is strategyproof,
nonbossy, Pareto-efficient and neutral if and only if it is a CSD [3]. Similar characterizations hold
replacing quantity-monotonic by lexicographic preferences [12, 11]. Ignoring Pareto-efficiency or
neutrality opens the door to more complex strategyproof mechanisms; a full characterization in
the two-agent case is given in [13]. It is shown in [14] that the CSD where all agents except the
last one pick only one item approximates the maxmin fair share criterion.

Sequential allocation of indivisible goods, also known as picking sequences, originates from
[15, 10] and have been studied in a number of subsequent works. CSDs correspond to non-
interleaving picking sequences, where agents pick all their items in a row.

A classical way of guaranteeing a level of fairness and/or efficiency consists in finding an
allocation maximizing social welfare [16], under the assumption that the input contains, for each
agent, her utility function over all bundles of goods (usually assumed additive). Egalitarian social
welfare places fairness above all, utilitarian social welfare cares only about efficiency only, and
Nash social welfare is considered as a sweet spot inbetween. Surveys of social welfare maximizing
fair division can be found in [5, 6, 8]. These mechanisms are not strategyproof.
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2. THE MODEL

Let A = {a1, . . . , an} be a set of n agents with ai the ith agent to intervene in the allocation
process and G = {g1, . . . , gm} a set of m goods. A preference profile P = (�a1 , . . . ,�an)
describes the preferences of the agents: �a is a ranking that specifies the preferences of agent a
over the goods in G. We denote by rkaP (g), the rank of item g in the ranking of a, given profile P .
The preference profile is hidden, and therefore not part of the input: we will assume that rankings
are drawn independently according to some probabilistic model, that we denote by Ψ.

Two well-known probabilistic models are the Mallows (denoted by Mllφ,µ) and Plackett-Luce
(denoted by PLν) models. These models generalize the two following sub-cases: Impartial
Culture, denoted by IC, in which each preference ranking is drawn u.a.r. from the set of all
possible rankings; The Full Correlation case, denoted by FC stipulates that all agents have exactly
the same preference ranking.

The items are allocated to the different agents according to a CSD: given a vector k =
(k1, . . . , kn) of n non-negative integers, agent a1 will first pick k1 goods, then a2 will pick k2

goods within the remaining ones, and so on until an picks kn items. In most cases, we will consider
complete CSDs, in the sense that

∑n
i=1 ki = m. However, we may also consider incomplete

CSDs such that
∑n

i=1 ki < m. We assume that agents behave greedily by choosing their preferred
goods within the remaining ones. This sequential process leads to an allocation that we denote by
πkP . More formally, πkP is a function such that πkP (a) is the set of goods that agent a has obtained
at the end of the sequential allocation process, given preference profile P and vector k.

Reusing a model from [17], he utility of an agent for obtaining an item i will be derived using a
scoring vector s = (s1, . . . , sm) ∈ Q+m such that si ≥ si+1 for all i = 1, . . . ,m− 1. The value
received by an agent for obtaining her jth preferred item is sj . Different scoring vectors can be
considered. An important example is the Borda scoring vector, where si = m− i+ 1.

We denote by UkP (a) =
∑

g∈πk
P (a) srkaP (g) the utility obtained by a when receiving πkP (a) and

by EUkΨ(a) = EP∼Ψ[UkP (a)] her expected utility given model Ψ. This assumes that agents have
additive preferences, which is very common in fair division. The utilitarian social welfare (USW)
WU

Ψ (k), egalitarian social welfare (ESW) SWE
Ψ (k), and Nash social welfare (NSW) SWN

Ψ (k)
are then defined by:

SWU
Ψ (k) =

∑
a∈A

EUkΨ(a), SWE
Ψ (k) = min

a∈A
EUkΨ(a),

SWN
Ψ (k) =

∏
a∈A

EUkΨ(a).

Our objective is to study the following class of optimization problems: Given a number n
of agents, a number m of goods, and a scoring vector s, find a vector k = (k1, . . . , kn) of n
non-negative integers with

∑n
i=1 ki = m maximizing SW x

Ψ(k).

3. RESULTS

Depending on the social welfare functional notion and the distribution over profiles, the optimal
sequence can be:

• polynomial-time computable,
• efficiently approximated by sampling,
• or hard to approximate by sampling.
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The following table summarizes the results obtained for the three social welfare functionals
under different distributions; poly means “polynomial-time computable”, and approx means
“efficiently approximable by sampling”.

Ψ EUkΨ(ai) Egal Nash Uti
FC poly poly poly poly
IC poly poly poly poly
PLν approx approx approx approx

Mllφ,µ approx approx ? ?

We also performed several experiments to explore further the properties of the CSDs obtained
by maximizing USW, NSW or ESW.
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This is a summary of a longer research article co-authored with Théo Delemazure and Grzegorz
Pierczyński [1].

We give a quantitative analysis of the independence of irrelevant alternatives (IIA) axiom. IIA
says that the society’s preference between x and y should depend only on individual preferences
between x and y: we show that, in several contexts, if the individuals express their preferences
about additional (or “irrelevant”) alternatives, this information helps to estimate better which of
x and y has higher social welfare. Our contribution is threefold: (1) we provide a new tool to
measure the impact of IIA on social welfare (pairwise distortion), based on the well-established
notion of voting distortion, (2) we study the average impact of IIA in both general and metric
settings, with experiments on synthetic data, and its impact with real datasets; and (3) we study
the worst-case impact of IIA in the 1D-Euclidean metric space.

1. RELATED WORK

Distortion has been introduced by [4] as a means to evaluate whether it is reasonable to make a
collective decision after eliciting only ordinal preferences. Assuming that cardinal preferences are
represented by utilities, the social welfare of an alternative is the sum of the utilities it provides to
the agents. The distortion of a voting rule f for a given profile is then defined as the ratio between
the maximum social welfare of an alternative, and the social welfare of the alternative selected
by f ; and the distortion of f is the maximum, over all profiles, of the distortion of f for that
profile. Metric distortion [2] aims at minimizing social cost instead of maximizing social welfare:
voters and alternatives belong to a metric space, and the cost of an alternative to a voter is the
distance between them. See [3] for an extensive survey of the literature of voting distortion until
2021. Average-case analyses of distortion are far less common than worst-case analyses: [7, 8]
for single-winner voting, [14] for multi-winner elections, [9] for district-based elections and [6]
for social welfare functions.

The primary reason why Arrow imposed IIA was to prevent the implicit use of interpersonal
comparisons [5]. However, it also prevents the use of information about intensities of preferences
between two alternatives revealed by the positions of thesealternatives with respect to other
(“irrelevant”) alternatives. This has been previously discussed in many places, and examples such
as the one presented in our introduction highlight its practical negative implications. Because
Arrow’s theorem ruled out the existence of a social welfare function under “reasonable” conditions,
it has had a negative impact on welfare economics [10, 11, 12]. As other properties stated in
Arrow’s theorem can hardly be given up, IIA is the most debatable of the conditions of Arrow’s
theorem, and is actually given up de facto when defining voting rules. Still, IIA is considered
attractive for several reasons, such as avoiding vote splitting [13].
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2. THE SETTING

2.1. Pairwise Voting Rules. Let V be a set of n voters and A a set of m alternatives. A ranking
� of A is a linear order (irreflexive, antisymmetric, transitive and connected relation) of A.
L(A) denotes the set of all rankings over A. A preference profile is a collection of rankings
P = (�1, . . . ,�n). For a ranking �i, we denote by σi the corresponding rank function: for each
alternative x ∈ A, σi(x) = |{y ∈ A | y �i x}|+ 1 the rank of x in �i.

A pairwise (voting) rule is a function f that, given a preference profile P over A and two
alternatives x, y ∈ A, outputs f(P | x, y) ∈ {x, y}. Equivalently, f associates with every
preference profile P a tournament (an irreflexive, antisymmetric and connected relation, but not
necessarily transitive).

A pairwise rule f satisfies IIA if f(P | x, y) = f(P ′ | x, y) for all P = (�1, . . . ,�n) and
P ′ = (�′1, . . . ,�′n) such that for all voters i ∈ V , x �i y if and only if x �′i y.

Among pairwise rules that satisfy IIA, the canonical one is the pairwise majority rule: fmaj(P |
x, y) = x (resp. y) if a majority of voters prefer x to y (resp. y to x). (Ties are broke by a priority
relation over alternatives.)

Another prominent family of pairwise rules consists of those that output transitive tournaments,
that is, if f(P | x, y) = x and f(P | y, z) = y then f(P | x, z) = x. In this case, f corresponds
to a social welfare function g mapping every profile P to a ranking g(P ) ∈ L(A) defined by
x �g(P ) y if and only if f(P | x, y) = x. Conversely, any social welfare function g induces a
pairwise rule gPW. Among pairwise rules of this class, are all those that are based on a score
function Sc that maps every profile P and alternative x to a score Sc(x, P ). The pairwise rule fSc
is then defined by fSc(P |x, y) = argmax(Sc(x, P ), Sc(y, P )). Examples of such pairwise rules
are plurality, Borda, or Copeland.

2.2. Pairwise Distortion. In the unconstrained distortion setting, every voter i ∈ V receives a
utility Ui(x) ∈ R≥0 from alternative x ∈ A. A utility profile U is a collection U = (Ui)i∈V . We
say that a preference profile P and a utility profile U are consistent with each other if for all
x, y ∈ A and all voters i, if Ui(x) > Ui(y), then x �i y in P and we denote it P ≈ U . The social
welfare of an alternative x ∈ A is SW (x) =

∑
i∈V Ui(x). The pairwise distortion of a pairwise

rule f on a utility profile U for two alternatives x, y ∈ A is the worst-case ratio over all P ≈ U
between the social welfare of the optimal alternative and that of f(P | x, y):

dist(f, U | x, y) = max
P :P≈U

max(SWU(x), SWU(y))

SWU(f(P | x, y))
Finally, we define the average pairwise distortion given a probability distribution D over utility

profiles U . When the distribution is sampled based on a real dataset, we refer to it as empirical
distortion. Given a utility profile, we obtain a pairwise distortion for each pair of alternatives,
which we have then to aggregate; for this we consider two possibilities: taking the maximum or
the average over all pairs.

We also define pairwise distortion (worst-case and average) in the metric distortion setting,
replacing costs by distances and maximization by minimization.

3. RESULTS

3.1. Average (metric and nonmetric). We first investigate how the average pairwise distortion
varies with the number of alternatives m. For all experiments, we use profiles of 30 voters and
up to 15 alternatives. We compare distortion for pairwise majority (which satisfies IIA) and four
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transitive pairwise rules. Our conclusion is that using information about additional alternatives can
help a lot, provided that the way to use it is carefully chosen, and that BordaPW and CopelandPW

seem both to be good choices.

3.2. Worst-case, metric. In the metric setting, we consider worst-case pairwise distortion,
assuming that voters are placed in the metric space so as to maximize the pairwise distortion of a
specific pair of alternatives (x, y), given the positions of all the alternatives. A key question is
how to choose the positions of the other alternatives when determining the worst-case pairwise
distortion of a pair (x, y). This can be seen as a game: a first agent selects the positions of the
alternatives, and a second agent responds in an adversarial manner by choosing the positions of
the voters that maximize pairwise distortion. A cooperative (resp. adversarial) first agent that
places the alternatives so as to minimize (resp. maximize) the worst-case pairwise distortion gives
us a lower (resp. upper) bound, called inf-pairwise distortion (resp. sup-pairwise distortion).

The following table gives the worst-case pairwise distortion of various pairwise rules.

IIA (majorityPW) BordaPW k-ApprovalPW PluralityPW

inf-pairwise distortion 3 m+1
m−1 2 3

sup-pairwise distortion 3 2m− 1 ∞ ∞

4. CONCLUSION

Our conclusions are mixed:
• using information about additional alternatives may help reducing average distortion, but

it crucially depends on the choice of the pairwise voting rule used. We found out that —
among the rules we studied — the Copeland and Borda pairwise rules are particularly
good at decreasing average distortion, but the Plurality pairwise rule has the opposite
effect and leads to a larger distortion than sticking to IIA and using pairwise majority.
• when it comes to worst-case distortion, a crucial parameter is the origin of additional

alternatives. If they are chosen by the election designer, then the Borda pairwise rule is
quite good, and one of its variant, called OddBorda (a rule that may be interesting on its
own) is even better. However, if they are chosen adversarily, then better stick to IIA.
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We study the maximin share (MMS) fair allocation of m indivisible chores to n agents
who have costs for completing the assigned items. It is known that exact MMS fairness
cannot be guaranteed, and so far the best-known approximation for additive cost
functions is 11/9 by Huang and Segal-Halevi [1]; however, beyond additivity, very little
is known. In our work [4], we first prove that no algorithm can ensure better than
min{n, logm

log logm
} approximation if the cost functions are submodular. This result also

shows a sharp contrast with the allocation of goods where constant approximations
exist as shown by Barman and Krishnamurthy [2] and Ghodsi et al. [3]. We then prove
that for subadditive costs, there always exists an allocation that is
min{n, ⌈logm⌉}-approximation, and thus the approximation ratio is asymptotically
tight. Due to these hardness results for the general subadditive setting, we study several
specific problems, including job scheduling, bin-packing [4], and vertex cover [5]. For
all problems, we show that constant approximate allocations exist.

In particular, the vertex cover cost function is motivated by a generalization of the
surveillance problem, where the monitoring area, represented by a graph, is divided
and assigned to a set of agents with personalized cost functions. In our work [5], each
agent’s patrolling cost towards receiving a subgraph is measured by the weight of the
minimum vertex cover therein, and our objective is to design algorithms to compute fair
assignments of the surveillance tasks. Our main result is an algorithm which ensures a
4.562-approximate MMS allocation for any number of agents with arbitrary vertex
weights. We then prove that no algorithm can be better than 2-approximate MMS. For
scenarios involving no more than four agents, we improve the approximation ratio to 2,
which is thus the optimal achievable ratio.
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This talk is based on a joint work with Xiaolin Bu, Zihao Li, Shengxin Liu, and
Biaoshuai Tao [14]. We study the problem of fairly allocating either a set of indivisible
goods or a set of mixed divisible and indivisible goods (i.e., mixed goods) to agents with
additive utilities, taking the best-of-both-worlds perspective of guaranteeing fairness
properties both ex ante and ex post.

1. INTRODUCTION

Two classic fairness notions in the literature are envy-freeness (EF) and proportionality.
An allocation is said to be envy-free if each agent values her own bundle the most, and
proportional if each of n agents gets a bundle of value at least 1/n times her value for
the entire resources. Despite being desirable properties, neither can always be satisfied
when (deterministically) allocating indivisible or mixed goods among the agents.

To circumvent the issue, relaxations of the notions have been proposed and studied.
With indivisible goods, envy-freeness up to any good (EFX) (resp., envy-freeness up to one
good (EF1)) requires that an agent’s envy towards another agent should be eliminated
after the hypothetical removal of any (resp., some) good from the latter agent’s
bundle [13, 15]. While the existence of EFX allocations is only known in special
cases [4, Section 4], the weaker notion of EF1 can always be satisfied [23]. With mixed
goods, Bei et al. [11] proposed envy-freeness for mixed goods (EFM), which generalizes
both envy-freeness and EF1 as follows: An agent is envy-free towards any agent whose
bundle contains some divisible goods and EF1 towards the rest. An EFM allocation
always exists for any number of agents with additive utilities.

An alternative and common method to achieve fairness is through randomization.
Both envy-freeness and proportionality can be easily and trivially achieved by giving all
goods to a single agent uniformly at random. The realized allocation, however, is
patently unfair since all agents but one are left empty-handed.

Aziz et al. [5] timely introduced the best-of-both-worlds approach, which combines
the two aforementioned methods with the goal of constructing a randomized allocation
(i.e., a probabilistic distribution over deterministic allocations) that is exactly fair ex
ante (before the randomness is realized) and approximately fair ex post (after the
randomness is realized). They showed that ex-ante EF and ex-post EF1 can be
simultaneously achieved when agents have additive utilities.

In our work, we aim to strengthen the ex-post fairness guarantee to EFX when
allocating indivisible goods, and, for the first time, extend the study of
best-of-both-worlds fairness to the mixed-goods setting. More specifically, we have the
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following two main results. In both cases, we assume that agents have bi-valued utilities,
i.e., each agent’s utility for each good belongs to one of two possible values.1

Theorem 1.1. In the mixed-goods setting where agents have bi-valued utilities, there exists
an algorithm which can compute in polynomial time a deterministic allocation sampled
from a randomized allocation that is ex-ante proportional and ex-post EFM.

This result on the compatibility between EFM and ex-ante fairness notions adds to the
growing literature revolved around EFM when allocating mixed
resources [12, 20, 21, 22, 25]. Our next result concerns indivisible-goods allocation. In
addition to fairness, it also takes economic efficiency into consideration. A deterministic
allocation of indivisible goods is said to be Pareto optimal (resp., fractionally Pareto
optimal (fPO)) if there is no other deterministic allocation (resp., deterministic or
fractional allocation of the indivisible goods) that makes some agent better off without
making another worse off.2 Clearly, fPO implies PO.

Theorem 1.2. In the indivisible-goods setting where agents have bi-valued utilities, there
exists an algorithm which can compute in polynomial time a deterministic allocation
sampled from a randomized allocation that is ex-ante EF, ex-post EFX and ex-post fPO.

This result generalizes multiple results known in the literature. The compatibility
between ex-ante EF, ex-post EFX, and ex-post PO was only known for binary utilities [9,
18].3 For bi-valued utilities, we only knew the compatibility of ex-post notions between
EFX and PO [3] as well as between EFX and fPO [17].

2. FURTHER RELATED WORK ON BEST-OF-BOTH-WORLDS FAIRNESS

The fair allocation of indivisible goods has received extensive attention in the past
decades [4, 26, 27]. Liu et al. [24] gave an overview of the recent developments of
mixed-goods allocations. Below, we discuss more work on best-of-both-worlds fairness.

In addition to the compatibility between ex-ante EF and ex-post EF1, Aziz et al. [5]
showed several impossibilities of achieving best-of-both-worlds fair and economically
efficient allocations. For agents with unequal entitlements, ex-ante weighted EF (WEF)
is compatible with ex-post weighted transfer EF up to one good, but not compatible
with any stronger ex-post WEF relaxation [6, 19]. For agents with subadditive utilities,
ex-ante 1

2
-EF, ex-post 1

2
-EFX and ex-post EF1 can be achieved simultaneously [16].

Best-of-both-worlds fairness has also been explored for fair-share-based notions like
proportionality and the maximin share (MMS) guarantee for agents with
additive [2, 10] or fractionally subadditive utilities [1]. Babaioff et al. [10] showed
ex-ante proportionality and ex-post 1

2
-MMS are compatible. The ex-post MMS

approximation ratio was improved in [2], at the cost of weakening ex-ante fairness
guarantees.

Slightly further afield, the best-of-both-worlds paradigm has also been applied to the
contexts of collective choice, such as committee voting [7, 28] and participatory
budgeting [8].

1Binary utilities (the two possible values are 0 and 1) are special cases.
2In an fractional allocation, an indivisible good can be divided and allocated fractionally among agents.
3The result in [9] works for the more general binary submodular (also known as matroid-rank) utilities.
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We study the problem of fairly allocating a set of indivisible goods to multiple agents
and focus on the proportionality, which is one of the classical fairness notions. Since
proportional allocations do not always exist when goods are indivisible, approximate
concepts of proportionality have been considered in the previous work. Among them,
proportionality up to the maximin good (PROPm) has been the best approximate notion
of proportionality that can be achieved for all instances [1]. In this study, we introduce
the notion of proportionality up to the least valued good on average (PROPavg), which is
a stronger notion than PROPm, and show that a PROPavg allocation always exists for all
instances and can be computed in polynomial time. Our results establish PROPavg as a
notable non-trivial fairness notion that can be achieved for all instances.

Our algorithm can be seen as a generalization of cut-and-choose protocol, which is
a well-known procedure to fairly allocate resources between two agents. In the cut-
and-choose protocol, one agent partitions resources into two bundles for her valuation,
and then the other agent chooses the best bundle of the two for her valuation. We
generalize this protocol from two agents to n agents in the following way: some n − 1
agents partition the goods into n bundles, and then the remaining agent chooses the best
bundle among them for her valuation. To apply this protocol, it suffices to show that
there exists a partition of the goods into n bundles such that no matter which bundle
the remaining agent chooses, the remaining n − 1 bundles can be allocated to the first
n − 1 agents fairly. This technique is interesting by itself and seems to have a potential
for further applications.

In our algorithm, we find such a partition by using an auxiliary graph called PROPavg-
graph. Let us emphasize that introducing the PROPavg-graph is a key technical ingredient
in this study. It is also worth noting that Hall’s marriage theorem [2], a classical and
famous result in discrete mathematics, plays an important role in our argument.
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1. BACKGROUND

The STABLE MARRIAGE PROBLEM, and its many-to-one extension, the HOSPITALS /
RESIDENTS PROBLEM (HR), are well-studied and central problems in Computational
Social Choice, Computer Science, Game Theory and Economics, with numerous
applications including in entry-level labour markets, school choice and higher education
allocation [14]. In the medical sphere, centralised matching schemes that assign
aspiring junior doctors to hospitals operate in many countries. One of the largest and
best known examples is the National Resident Matching Program (NRMP) in the US
[24]. There are analogous matching schemes for junior doctor allocation in other
countries around the world.

The HR problem model represents a bipartite matching market with two-sided
preferences, involving the preferences of doctors over acceptable hospitals, and those of
hospitals over their applicants. Each hospital has a capacity, indicating the maximum
number of doctors that it can admit. Roth [21] argued that a key property to be
satisfied by a matching M in an instance I of HR is stability, which ensures that there is
no blocking pair, comprising a doctor and a hospital, both of whom have an incentive to
deviate from their assignments in M and become matched to one another, undermining
the integrity of M . It is known that every instance of HR admits a stable matching,
which may be found in time linear in the size of I [10].

In many of the above applications, there may be couples amongst the applying doctors,
who wish to be allocated to hospitals that are geographically close to each other, for
example. Indeed, the NRMP matching algorithm was redesigned in 1983 specifically to
allow couples to provide preferences over pairs of hospitals, with each pair representing a
simultaneous assignment that is suitable for both members of the couple. We thus obtain
a generalisation of HR called the HOSPITALS / RESIDENTS PROBLEM WITH COUPLES (HRC).
By modifying the definition of stability, taking into account how a couple could improve
relative to a matching, Roth [21] showed that the addition of couples destroys the crucial
property that a stable matching must always exist. In HRC, the problem therefore is to
find a stable matching or report that none exists. Even when a stable matching does
exist, such matchings may have different sizes [1]. Worse still, and again in contrast to
the case for HR, Ronn [20] showed that HRC is NP-hard.
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2. RELATED WORK

In this work, we adopt the stability definition of McDermid and Manlove [17]. With
respect to this definition, several algorithmic results for HRC hold. Firstly, Ronn’s NP-
hardness result for HRC holds even in the case that each hospital has capacity 1 and
there are no single doctors [20].

Ng and Hirschberg [18] also proved NP-hardness for a “dual market” restriction of
HRC, which we refer to as HRC-DUAL MARKET, where the two sets H1 and H2, comprising
the hospitals appearing in the first (respectively second) positions of the acceptable pairs
of the first (respectively second) members of each couple, are disjoint.

Further NP-hardness and polynomial-time solvability results for HRC when preferences
lists are bounded in length were established by McDermid and Manlove [17], Biró et al.
[4] and Manlove et al. [15]. A simple tractable case of HRC was given by Klaus and Klijn
[12] (see also [13]). They required that each couple’s preference list must be weakly
responsive, each couple must find acceptable all possible outcomes where at least one
member is matched, and each hospital has capacity 1.

Given the prevalence of NP-hardness results for HRC, and the scarcity of polynomial-
time algorithms, heuristics have been applied to the problem (see [14, Section 5.3,3]
for a survey) as well as approaches based on parameterised complexity and local search
[16, 3], integer programming [4, 8], constraint programming [15] and SAT solving [9].

Nguyen and Vohra [19] studied so-called near-feasible stable matchings in HRC. They
showed that if one can modify the capacities of the hospitals by at most 2, then a stable
matching with respect to the new capacities always exists (the new total hospital capacity
is at least as large as before and increases by at most 4). They also provided an algorithm
to find such a near-feasible solution, however their algorithm is not guaranteed to run
in polynomial time, as in the first step it computes a stable fractional matching using
Scarf’s algorithm [23], and the computation of stable fractional matchings is known to
be PPAD-hard [5]. Biró et al. [2] also used Scarf’s algorithm to find stable matchings in
HRC instances.

Another direction, to cope with the possible non-existence of a stable matching, is to
consider matchings that are “as stable as possible”, i.e., admit the minimum number of
blocking pairs. We refer to this problem as MIN BP HRC. Biró et al. [4] showed that
this problem is NP-hard and not approximable within n1−ε

D , for any ε > 0, unless P=NP,
where nD is the number of doctors in a given instance. Manlove et al. [15] presented
integer and constraint programming formulations for MIN BP HRC.

3. OUR CONTRIBUTIONS

We present new polynomial-time algorithms for HRC in the case that the couples’
preference lists are sub-complete and sub-responsive. Informally, a couple’s preferences
are sub-complete if there are underlying preferences for the couple members, such that
if both members go to a hospital that is acceptable for them individually, then the pair
of hospitals is also acceptable for the couple, and if one member is willing to be
unmatched, then any assignment of the other member to an acceptable hospital is
acceptable for the couple. The concept of sub-responsiveness is closely related to, but a
lot less restrictive than weak responsiveness as described above, even together with
sub-completeness, and has been extensively studied by economists [22].
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Our main result is a novel and surprising polynomial-time algorithm to find a near-
feasible stable matching in an HRC instance if the couples’ preferences are sub-responsive
and sub-complete. Our notion of near-feasibility is based on modifying the capacities of
each hospital by at most 1. This strengthens Nguyen and Vohra’s result [19], albeit for
a special case of HRC, in two ways: (i) capacities are varied by at most 1 rather than 2,
and (ii) our algorithm runs in polynomial time.

Next, we provide another polynomial-time algorithm for HRC in the presence of sub-
responsive and sub-complete preferences that can find a stable matching if all couples
are one of several possible types. One of these types corresponds to the very practical and
natural restriction of HRC-DUAL MARKET in the case of sub-responsive and sub-complete
preference lists, and gives a contrast to the NP-hardness result of Ng and Hirschberg for
general HRC-DUAL MARKET instances as mentioned earlier. Using our approach, we argue
that this algorithm can potentially be extended to other types of couples, depending on
the specific application.

On the structural side, we prove that a version of the Rural Hospitals Theorem for HR

remains true even in our HRC setting with sub-responsive and sub-complete preferences,
and couples belonging to one of several possible types. These are the first non-trivial
classes of HRC instances that we are aware of where these structural properties hold.

We complement our positive results with several hardness results. We show that HRC

is NP-hard, even with unit hospital capacities, short preference lists and other strong
(simultaneous) restrictions, including (i) sub-responsive and sub-complete couples, and
(ii) dual markets and master preference lists [11]. Hence, even in these settings we may
not hope to find an exact stable matching in polynomial time, so our algorithm to find a
near-feasible stable solution becomes even more appealing.

Finally, we show that MIN BP HRC is not approximable within m1−ε, for any ε > 0,
where m is the total length of the hospitals’ preference lists, unless P=NP, even if each
couple applies to only one pair of hospitals.

The polynomial-time algorithms that we present substantially push forward our
knowledge of tractable special cases of HRC. Moreover they give additional evidence as
to why successful matching schemes such as the NRMP have continued to find stable
matchings even in the presence of couples. Our algorithm for the case that the couples’
preferences are sub-responsive and sub-complete, and the couples are one of several
possible types, also helps to identify the frontier between polynomial-time solvable and
NP-hard cases, as our hardness results show that if we have weaker restrictions on the
couples’ preferences, then it becomes NP-hard to find a stable matching.

This is joint work with Gergely Csáji, Iain McBride and James Trimble. A preliminary
version of this paper appeared in the Proceedings of IJCAI 2024 [6]; see [7] for the full
version. David Manlove gratefully acknowledges financial support from the Institute for
Mathematical Sciences, National University of Singapore, from the School of Computing
Science, University of Glasgow, and from the Engineering and Physical Sciences Research
Council, grant number EP/P028306/1.
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[2] P. Biró, T. Fleiner, and R.W. Irving. Matching couples with Scarf’s algorithm. Annals of Mathematics
and Artificial Intelligence, 77:303–316, 2016.
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In recent years, several works have studied fair division in a random model where the
utilities are drawn from some distributions. A typical question is to determine when the
allocation exists (with high probability); this question has been raised for many fairness
notions and both in the individual setting—where each bundle is given to a single agent–
and in the group setting—where each bundle is given to a group of agents. In this talk,
we survey the results and techniques from this line of work.

1. PRELIMINARIES

We use the following notations, which are standard in fair division literature. Let N be
the set of n agents and M the set of m goods. For each agent i ∈ N , let ui : P(M) → R≥0

be their utility function where P(M) denote the power set of M . We assume throughout
that the utility function is monotone: ui(S) ≤ ui(S

′) for all S ⊆ S ′ ⊆ M .
An allocation A = (Ai)i∈N is a partition of goods, i.e., Ai’s are disjoint and

⋃
i∈N Ai =

M . There are many fairness criteria studied in literature; we will only focus on two
well-studied notions: Envy-freeness and proportionality.

• An allocation A = (Ai)i∈N is envy-free (EF) if ui(Ai) ≥ ui(Aj) for all i, j ∈ N .
• An allocation A = (Ai)i∈N is proportional (PROP) if ui(Ai) ≥ 1

n
ui(M) for all i ∈ N .

2. ADDITIVE UTILITIES

It is not hard to see that, in some “worst-case” instances, EF or PROP allocation may
not exist. This motivates the study of “average-case” instances. The first—and simplest—
such model is proposed by [5] where we assume that there is an underlying distribution
D such that the valuation ui(j) is drawn independently from D for each i ∈ N, j ∈ M ,
and the utility is assumed to be additive (i.e. ui(S) =

∑
j∈S ui(j)). Much research has

been done in this model [5, 7, 11, 8, 1, 9, 10]. We summarize the results for EF and
PROP below; for convenience, we assume throughout that D is the uniform distribution
on (0, 1). We say that an event occurs with high probability (w.h.p.) if the probability
that it occurs approaches one as n → ∞ (in this model).

2.1. Proportionality. It has been shown that a PROP allocation exists w.h.p. if m ≥ n.
Note that this is tight since no PROP allocation can exist if m < n.

Theorem 2.1 ([10]). For any m ≥ n, PROP allocation exists w.h.p.

For m = n, the high-level idea of the proof is to select a certain threshold τ to be
slightly above 1/2, and construct a bipartite graph between the agents and the items
such that agent i is connected to item j iff ui(j) ≥ τ . A classic result in random graph
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theory [6] states that a perfect matching exists in this “threshold graph” w.h.p. Such a
perfect matching corresponds to an allocation where each agent receives a good with
valuation at least τ . It can then be shown that such an allocation is PROP w.h.p.

It is not hard to extend the above algorithm to the case where m is divisible by n, e.g.
by dividing the goods into m/n subsets of equal size n and using the above matching
strategy on each subset. The case where m is not divisible by n is more challenging.
Roughly speaking, it requires picking a larger threshold τ (very close to 1) and applies
the matching strategy on the first n · ⌊m/n⌋ goods. The remaining m mod n goods are
then used to “fix” the agents whose proportional condition is not yet satisfied.

2.2. Envy-Freeness. For EF, the answer is more subtle and depends on whether m is
divisible by n. We start with the divisible case, for which the high-probability existence
is known for m ≥ 2n and non-existence is known for m = n.

Theorem 2.2 ([5, 9]). For m = n, EF allocation does not exist w.h.p. For any m ≥ 2n such
that m is divisible by n, EF allocation exists w.h.p.

The non-existence follows by observing that w.h.p. some pair of agents will share the
same most-preferred item. When m = n (and all items have different valuations), this
implies that EF allocation does not exist.

The existence follows a matching strategy similar to PROP. In fact, the exact same
algorithm already suffices for m ≥ 3n. The m = 2n case requires more care. Specifically,
with a constant probability, some pair of agents have the same top-two items, which can
make the above matching algorithm fail. By modifying the graph “slightly”, we can avoid
such bad cases while still maintaining the high-probability existence of perfect matchings.

Next, we discuss the indivisible case. In this case, it is known that an EF allocation
exists as long as m ≥ Θ

(
n logn
log logn

)
. Perhaps surprisingly, this is also known to be tight as

long as m is not “nearly divisible” by n, as stated more formally below.

Theorem 2.3 ([10, 9]). For any m ≥ Θ
(

n logn
log logn

)
, EF allocation exists w.h.p. For any

m ≤ Θ
(

n logn
log logn

)
such that the remainder of m when divided by n is between [n0.1, n− n0,1],

EF allocation does not exist w.h.p.

The existence is shown via the widely-used round robin algorithm, while the non-
existence is shown by carefully bounding the probability that each allocation is EF and
taking the union bound over all the possible allocations.

3. OTHER MODELS

While the additive, independent and identical assumptions in the previous section
allow for convenient analysis, these assumptions might be too strong and unrealistic. As
such, several recent works have proposed different models with relaxed assumptions.

3.1. Non-identical Assumption. One such model, due to [3], relaxes the identical
distribution assumption by allowing each agent i to have a different distribution Di

from which ui(j) is drawn (independently). Among other results, they show that the
round-robin algorithm still finds EF allocation w.h.p. for any m ≥ Θ

(
n logn
log logn

)
.
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3.2. Smoothed Analysis. Another approach taken is via smoothed analysis. In a
smoothed model proposed by [2], we assume that there are base (worst-case) utility
functions ui. For each i ∈ N, j ∈ M , with some probability p, a noise ζi,j is drawn from
some distribution and the final valuation is ui(j) = ui(j) + ζi,j. With the remaining
probability 1 − p, the valuation remains the same, i.e., ui(j) = ui(j). Bai et al. [2] show
high-probability existence results for certain regimes of parameters p,m in this model.

3.3. Non-Additive Utilities. Finally, a random model for non-additive utilities has been
proposed by Benade et al. [4]. Again, we assume that there are base utility functions
ui. Then, the items are randomly renamed for each agent. In particular, we randomly
sample a permutation πi : M → M independently for each agent i. The final utility
function for agent i is ui(S) = ui(πi(S)). Without any additional assumption1 on ui, for
n = 2, Benade et al. show that EF allocation exists with probability approaching one if
m → ∞ is an even number (i.e. m is divisible by n). However, such an existence remains
open for n ≥ 3. In this case, the authors show a high-probability existence but only for a
restricted class of “order-consistent” utility functions.
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This is joint work with Mark de Berg, Rupert Freeman, and Markus Utke. For a full
version of the paper, we refer to [de Berg et al., 2024].

1. EXTENDED ABSTRACT

Consider a scenario where a perfectly divisible resource, such as money or time,
needs to be distributed among various alternatives while taking the preferences of a
group of voters into account. This task, known as portioning, lies at the heart of
participatory budgeting, a voting model gaining increasing attention thanks to its
pivotal role in civic participation initiatives [Aziz and Shah, 2021, Cabannes, 2004]. We
study a variant called budget aggregation [Lindner et al., 2008, Goel et al., 2019,
Freeman et al., 2021], where voters express their favorite allocation over alternatives
(also called projects), and their dissatisfaction with an outcome is measured by its
ℓ1-distance from their ideal distribution. Unlike many traditional voting scenarios,
budget aggregation with ℓ1-utilities opens the door to mechanisms that incentivize
truthfulness among voters. In fact, Freeman et al. [2021] present a whole class of
truthful mechanisms called moving-phantom mechanisms. Moving-phantom mechanisms
are an extension of (the neutral subclass of) generalized median rules [Moulin, 1980],
characterized as the only truthful mechanisms in the two-alternative setting meeting the
criteria of anonymity and continuity [Moulin, 1980, Massó and De Barreda, 2011], to
elections with more than two alternatives. However, the question of whether
moving-phantom mechanisms are the only truthful, continuous, anonymous, and
neutral1 mechanisms in the general case has remained open and was repeatedly
mentioned in recent literature [Freeman et al., 2021, Caragiannis et al., 2022, Freeman
and Schmidt-Kraepelin, 2024, Brandt et al., 2024]. We resolve this question.

Theorem 1.1 (Informal). There exists a budget-aggregation mechanism that is truthful,
anonymous, neutral, and continuous but not a moving-phantom mechanism.

To prove Theorem 1.1, we define the class of cutoff-phantom mechanisms by
combining moving-phantom mechanisms with a cutoff function that redistributes

1Informally, a mechanism is truthful if a voter can never decrease the ℓ1-distance between its favorite
allocation and the mechanism’s outcome by reporting an allocation that is not its favorite. A mechanism
is anonymous (neutral, respectively) if the outcome does not depend on the identity of the voters
(alternatives, respectively), and it is continuous if it is continuous according to the standard definition,
when interpreted as a function.
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budget away from any project that the moving-phantom mechanism assigns more than
a certain threshold share of the budget. Cutoff-phantoms are well defined for any
moving-phantom mechanism and any threshold at least 1/2, but in general both
components need to be chosen carefully to preserve truthfulness. We identify one novel
moving-phantom mechanism, GREEDYMAX, for which all of the corresponding
cutoff-phantoms (one per choice of threshold) are truthful.

While cutoff-phantoms significantly expand the class of known (anonymous, neutral,
continuous) truthful mechanisms, they fail to satisfy unanimity, which prescribes that,
whenever the voters all agree on their most preferred distribution, the mechanism should
output that distribution. What happens when we add unanimity to our list of properties?
We provide a partial answer to this question, by giving a mechanism that is not a moving-
phantom mechanism but is unanimous and truthful (as well as anonymous, neutral, and
continuous) for instances with two voters and three alternatives. While primarily a proof
of concept, this result suggests that the class of truthful budget-aggregation mechanisms
satisfying other desirable properties might not allow for a concise description.

One motivation to search for alternative truthful mechanisms stems from the desire
for mechanisms that are not only truthful but also fair. To this end, one might consider
the MEAN mechanism—the mechanism that averages the voters’ reports for every
alternative—as a benchmark. This mechanism appears to be particularly appealing
since it is equivalent to assigning each of the n voters their equal fair share of the
budget and letting them allocate this budget according to their ideal distribution.
However, doing so might not be in the voter’s best interest: it is well-known and
intuitive that mean aggregation incentivizes voters to extremize their reported
preference in order to bring the mean closer to their true preference. In other words,
the mean mechanism violates truthfulness. A natural question, then, is how much
fairness needs to be compromised in order to restore truthfulness.

To quantify (violations of) fairness, Caragiannis et al. [2022] proposed measuring the
worst-case deviation, in terms of ℓ1-distance, of a mechanism’s outcome from the mean.
They introduced the PIECEWISEUNIFORM mechanism, ensuring an ℓ1-distance of 2/3 + ε
for some constant ε < 10−5, for the case of three alternatives. Freeman and
Schmidt-Kraepelin [2024] presented the LADDER mechanism, establishing an upper
bound of 2/3 for three alternatives and non-trivial bounds for up to six alternatives. They
demonstrate that the ladder mechanism results in a worst-case ℓ∞-distance from the
mean of m−1

2m
, where m is the number of alternatives. While a lower bound provided by

Caragiannis et al. [2022] indicates the tightness of these results within the class of
moving-phantom mechanisms, the best lower bounds for ℓ1-approximation (and
ℓ∞-approximation, respectively) for three alternatives within the class of all truthful
mechanisms stand at 1/2 (and 1/4, respectively).

We show lower bounds matching the best known lower bounds for the class of moving-
phantom mechanisms. These bounds are known to be tight for ℓ∞-approximation and
for ℓ1-approximation with m = 3, but a gap remains for ℓ1 with m > 3.

Theorem 1.2 (informal). There exists a budget-aggregation instance for which every
truthful, anonymous, neutral, and continuous mechanism returns an outcome with
ℓ∞-distance of m−1

2m
and ℓ1-distance of m−1

m
from the mean.
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Related Work. Our work contributes to a growing literature on budget aggregation.
Lindner et al. [2008] and Goel et al. [2019] study the rule that maximizes utilitarian
welfare, the neutral version of which turns out to be the unique Pareto-efficient
moving-phantom mechanism [Freeman et al., 2021]. Caragiannis et al. [2022]
introduce the paradigm of mean approximation for the budget aggregation problem,
which is built upon by Freeman and Schmidt-Kraepelin [2024]. Brandt et al. [2024]
show that no mechanism can be truthful, Pareto-efficient, and proportional,2

generalizing a result of Freeman et al. [2021] that held only for moving-phantom
mechanisms. Elkind et al. [2023] axiomatically study several budget-aggregation
mechanisms, and find that the mean performs well relative to the other rules they
consider. Goyal et al. [2023] work in a similar setting to ours (except that every
alternative’s funding is capped by its predefined cost) and study mechanisms with low
sample complexity in terms of their distortion.

For the special case of two alternatives, it is known that truthful and anonymous
budget-aggregation mechanisms are characterized by generalized median
rules [Moulin, 1980, Massó and De Barreda, 2011]. Generalized median rules are
parameterized by n + 1 “phantom” votes, with the output being the median of these
phantom votes and the n submitted votes. Several papers have used generalized median
mechanisms to truthfully approximate the mean in the two-alternative setting [Renault
and Trannoy, 2005, 2011, Caragiannis et al., 2016, Jennings et al., 2023], with the
optimal approximation stated explicitly by Caragiannis et al. [2022]. However, for
higher numbers of alternatives, Caragiannis et al. [2022] obtained a lower bound for
general truthful mechanisms that diverged from their lower bound for moving-phantom
mechanisms. Our Theorem 1.2 closes this gap.

Beyond budget aggregation, portioning has been studied with other input models
including ordinal preferences [Airiau et al., 2023], dichotomous
preferences [Bogomolnaia et al., 2005, Brandl et al., 2021, Michorzewski et al., 2020],
or more general cardinal utility functions over alternatives [Fain et al., 2016, Wagner
and Meir, 2023]. We refer the reader to the survey of Aziz and Shah [2021] for
additional discussion of the participatory budgeting literature.

Finally, we remark that a weaker version of our Theorem 1.1 was recently
independently obtained by Brandt et al. [2024, Appendix D]. Specifically, the authors
show that for the case of a single voter, there exists a truthful, anonymous, neutral, and
continuous mechanism that is not a moving-phantom mechanism. Such a mechanism
can then be extended to a mechanism satisfying the four properties by concatenating it
with any moving-phantom mechanism for the cases of more voters. However, this seems
unsatisfactory, since such a mechanism is only not a moving-phantom mechanism for
the case of one voter. Our result is significantly stronger since we design mechanisms
that are not moving-phantom mechanisms for any number of voters and alternatives.

2Proportionality [Freeman et al., 2021] says that, on instances where every voter prefers to spend the
entire budget on a single alternative, the mechanism should output the mean of the votes.
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Urban renewal processes, such as Rebuild and Divide, are becoming pivotal in
addressing housing shortages and improving infrastructure in densely populated city
centers. These processes aim to transform aging residential infrastructure into modern,
safe, and more spacious housing while simultaneously increasing urban density.

The process involves demolishing old buildings and constructing new ones, with
original homeowners receiving upgraded apartments as compensation. The primary
goals include enhancing urban housing availability and improving disaster resilience.

However, disagreements over the assignment of new units often hinder progress, as
disputes regarding fairness and equity arise. These disagreements commonly stem from
perceptions of unfairness, as homeowners compare the value of their newly assigned
units to others. For example, differences in size, floor levels, or unique features of
apartments can lead to envy among stakeholders. Courts and legal systems frequently
address such disputes, but their resolutions are often unsatisfactory, leading to delays or
even project cancellations. For illustration, in a recent court discussion, one homeowner
claimed that their new apartment is only 19 square meters larger than their old one,
while other homeowners with larger original apartments received upgrades of 23
square meters. The court responded by stating that homeowners with larger original
apartments belong to a different “class” and are therefore incomparable to others. This
example illustrate the subjective nature of fairness and the challenges in resolving
disputes in a way that satisfies all stakeholders.

Current regulations require at least two-thirds of homeowners in a building to agree to
participate in a renewal project. This highlights the urgent need for systematic, equitable
solutions to apartment allocation.

Monetary compensation in indivisible resource allocation has been widely studied.
Demange et al. [2] introduced an ascending auction for envy-free allocation with
payments. Halpern and Shah [10] studied the amount of subsidy required for
envy-freeness under additive valuations. Brustle et al. [11] and Kawase et al. [17]
explored subsidies for envy-freeness under monotone valuations.

Caragiannis and Ioannidis [13] approximated minimum subsidies, though exact
computation is hard for many agents. Aziz [12] proposed conditions for envy-freeness
and equitability with monetary transfers. Barman et al. [15] studied envy-freeness
under dichotomous valuations. Goko et al. [16] developed a truthful subsidy-based
allocation for agents with submodular binary valuations.
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The house allocation problem involves assigning m houses to n agents based on
preferences, ensuring each agent gets one house [1, 3]. Pareto optimality is a key
efficiency criterion [7, 8].

Early work focused on strategy-proofness and stability [6, 4], while recent studies
emphasize fairness. Gan et al. [9] provided a polynomial-time algorithm for envy-free
assignments, and Kamiyama et al. [14] proved fairness-related computational hardness
results.

Rental Harmony defined by Su in [5] is a formal approach to resource allocation that
seeks to assign n rooms to n tenants with a fixed total rent R, in such a way that the total
prices equals R and no tenant envies the room and price of another tenant. Inspired by
this concept, we adapt and extend these principles to the context of Rebuild and Divide.
In a Rebuild and Redivide problem we have n old units, n new units and n agents, each
with subjective valuations. Each agent owns exactly one old unit, and the goal is to assign
one new unit to each agent, charging a positive or negative price to each agent such that
the total sum of all prices is zero (balanced budget). Additionally, the assignment should
ensure that no agent envies another agent’s allocation.

In addition to assessing the value of apartments based solely on unit values, we focus
on the values of their characteristics, following the approach commonly used in real
estate appraisal — consider a collection of apartment characteristics, such as floor level,
parking availability, airflow direction, and natural light. Each agent assigns a score to
each characteristic. We assume that the value of an apartment is the sum of the values of
its characteristics. Under this model, agents may have reduced incentives to manipulate
their valuations, as truthful reporting aligns better with their preferences.

In our work, we introduce three distinct models:
(1) The Difference Model examines how each agent compares their own improvement

to that of other agents. We provide a necessary and sufficient condition for an
allocation to be EF-able. Additionally, we show that in certain scenarios, no EF-
able solution exists. In such cases, we aim to identify an allocation and a payment
vector that minimize positive envy.

(2) The Entitlement Model evaluates the perceived entitlements of agents, determined
by the value of their original apartments. We establish a necessary and sufficient
condition for an allocation to be EF-able. However, we also demonstrate that
there are cases where no EF-able allocation is feasible.

(3) The Envy Sum Model permits agents to tolerate some envy toward others, as long
as the total envy they experience does not exceed the level present in the initial
allocation. We establish a necessary and sufficient condition for an allocation
to be EF-able. We also prove that it is possible to determine in polynomial time
whether an EF-able allocation and payment vector exist and, if so, to compute
them.
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1. MOTIVATION

In social choice, the goal is to find the best choice for society, but ’best’ can be defined in
many ways. Two frequent, and often contrasting definitions are the utilitarian best, which
focuses on maximizing the total welfare (i.e., the sum of utilities); and the egalitarian
best, which focuses on maximizing the least utility. The leximin best generalizes the
egalitarian one. It first aims to maximize the least utility; then, among all options that
maximize the least utility, it chooses the one that maximizes the second-smallest utility,
among these — the third-smallest utility, and so forth. Leximin is often the solution of
choice in social choice applications, and frequently used (e.g., [7, 4, 5, 6]).

Calculating a choice that maximizes utilitarian welfare is often easier than finding
one that maximizes egalitarian welfare, while finding one that is leximin optimal is
typically even more complex. For example, when allocating indivisible goods among
agents with additive utilities, finding a choice (in this case, an allocation) that
maximizes the utilitarian welfare can be done by greedily assigning each item to the
agent who values it most. Finding an allocation that maximizes the egalitarian welfare,
however, is NP-hard [3], even in this relatively simple case.

2. THE REDUCTION IDEA

In the paper, we present a general reduction from leximin to utilitarian. Specifically,
for any social choice problem with non-negative utilities, we prove that given a black-box
that returns a state (deterministic outcome) that maximizes the utilitarian welfare, one
can obtain a polynomial-time algorithm that returns a lottery over states that is leximin-
optimal with respect to the agents’ expected utilities.

Our reduction extends to approximations, meaning that given an α-approximate solver
for utilitarian welfare for some α ∈ (0, 1), the output is an α-leximin-approximation,
preserving the same approximation factor. The reduction also extends to randomized
solvers, which means that given a solver that returns a utilitarian-optimal state only with
some probability p ∈ (0, 1), then the output is leximin-optimal with the same
probability p. Furthermore, the reduction applies even when the utilitarian solver is
both approximate and randomized simultaneously.

In all, with our reduction at hand, optimizing leximin in expectation is no more difficult
than optimizing the utilitarian welfare.

https://arxiv.org/abs/2409.10395


FIGURE 1. High level description of the reduction algorithm. An arrow
from element A to B denotes that the corresponding section reduces
problem A to B. White components are implemented in the paper; gray
components represent existing algorithms; the black component is the
black-box for the utilitarian welfare.

3. HIGH-LEVEL DESCRIPTION OF THE REDUCTION

The reduction is done step by step. At each step, we simplify the problem further until
we rely only on a solver for utilitarian welfare.

We start with leximin-optimization and consider an iterative algorithm introduced by
[9], called the Ordered Outcomes Algorithm. This algorithm iteratively solves an evolving
mathematical program, P1, which, in our context, is non-trivial to solve or approximate.
We define a new type of solver for P1, which we call shallow, and prove that when using a
shallow solver for P1, the Ordered Outcomes algorithm returns a leximin-approximation.
Next, we show that such a solver can be designed by perform a binary search over the
potential objective values – where we use the black-box for the utilitarian welfare to get
an upper bound for the search; and operate a procedure we call Weak Feasibility Oracle
for P1 on each value. We then prove that this oracle can be obtained by approximating
a different mathematical program, P2, and subsequently show that this can be achieved
by approximating an equivalent linear program, P3. Finally, we prove that P3 can be
approximated using a variant of the ellipsoid method applied to this program and its
dual, D3; this method requires an approximate separation oracle for the dual, which can
be implemented using the given black-box.

A schematic description of the reduction structure is provided in Figure 1.

4. APPLICATIONS

We demonstrate the significance of this reduction by applying it to three social choice
problems as follows.

First, we consider the classic problem of allocations of indivisible goods [8], where one
seeks to fairly distribute a a set of indivisible goods among a set of heterogeneous agents.
Maximizing the utilitarian welfare in this case is well-studied. Using our reduction, the
previously mentioned greedy algorithm for agents with additive utilities, allows us to
achieve a leximin optimal lottery over the allocations in polynomial time. For submodular
utilities, approximating leximin to a factor better than (1 − 1

e
) is NP-hard. However, by



applying our reduction, existing approximation algorithms for utilitarian welfare can be
leveraged to prove that a 0.5-approximation can be obtained deterministically, while the
best-possible (1− 1

e
)-approximation can be obtained with high probability.

Second, we consider the problem of giveaway lotteries [1], where there is an event with
limited capacity and groups wish to attend, but only-if they can all be admitted together.
Maximizing the utilitarian welfare in this setting can be seen as a knapsack problem,
for which there is a well-known FPTAS (fully polynomial-time approximation scheme).
Using our reduction, we obtain an FPTAS for leximin as well.

Lastly, we consider the problem of fair lotteries for participatory budgeting [2], where
one seeks to find a fair lottery over the possible budget allocations. When agents have
additive utilities, maximizing the utilitarian welfare can also be interpreted as a knapsack
problem (albeit in a slightly different way), which allows us to provide an FPTAS for
leximin.
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Antonio Laganá, Youngsong Mun, and Hyunseung Choo, editors, Computational Science and Its
Applications - ICCSA 2006, pages 802–811, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

ARIEL UNIVERSITY, ISRAEL

Email address: erelsgl@gmail.com



FAIR ALLOCATION WITH BINARY VALUATIONS
FOR MIXED DIVISIBLE AND INDIVISIBLE GOODS

VIA HYBRID CONVEX OPTIMIZATION

HANNA SUMITA

Classification AMS 2020: 91B14, 91B32

Keywords: Fair allocation, Mixed goods, Maximum Nash welfare

In this talk, we study fair allocation problem of mixed goods. We are given a set
N = {1, 2, . . . , n} of n agents and a set E = C ∪ M , where C and M are the sets of
divisible and indivisible goods, respectively. We are also given a symmetric strictly convex
function Φ: RN → R. Each agent i has a binary valuation vie ∈ {0, 1} for each good e,
meaning that for each good, each agent either desires it or not. An allocation is a matrix
π ∈ [0, 1]N×E such that πie ∈ {0, 1} for all agent i ∈ N and indivisible good e ∈ M . The
entry πie means the allocated amount of good e to agent i. Throughout this paper, we
only consider utilitarian optimum allocations, that is, πie > 0 only if vie = 1. Agents have
additive utility, and the utility of agent i in allocation π is πi(E) =

∑
e∈E vieπie. For an

allocation π, a vector z = (π1(E), . . . , πn(E)) is called a utility vector of π. We say that
an allocation π is Φ-fair if its utility vector z minimizes Φ(z) among allocations. The goal
of our problem is to find a Φ-fair allocation.

By appropriately setting a function Φ, this problem is equivalent to finding an
allocation achieving maximum Nash welfare (MNW). There also exists a function Φ such
that a Φ-fair allocation is leximin, i.e., the smallest utility is maximized and subject to
that, the second smallest utility is maximized, and so on.

There is a vast body of literature on the allocation of goods in cases where only divisible
or indivisible goods are present. In such cases, it suffices to find a feasible minimizer
(utility vector) of Φ because we can find an allocation achieving the utilities by solving
the maximum flow problem. In the continuous case, where there are only divisible
goods, the set of possible utility vectors forms an integral base-polyhedron. This is a
polyhedron represented as B̄ = {x ∈ RN | x(N) = f(N), x(X) ≤ f(X) (∀X ⊆ N)},
where f : 2N → Z is an integer-valued submodular function with f(∅) = 0. It is known
that an integral base-polyhedron has a common unique minimizer independent of Φ, and
the minimizer can be characterized by a structure called the principal partition [5, 7].
The minimizer can also be found in polynomial time [5, 6]. In the discrete case, where
there are only indivisible goods, the set of possible utility vectors forms an M-convex set,
which is the set B̈ of integral vectors in an integral base-polyhedron. It is known that a
minimizer of Φ on an M-convex set can be characterized by the canonical partition [2],
which is an aggregation of the principal partition. Additionally, the set of minimizers of a
symmetric strictly convex function does not depend on the function [2] and a minimizer
(utility vector) can be found in polynomial time [3]. Furthermore, a proximity theorem
has been established [4]. This theorem states that a minimizer of Φ in an M-convex set

Page 55



lies within a unit hypercube that contains the minimizer in the corresponding integral
base-polyhedron.

Our problem is regarded as the hybrid of continuous and discrete optimization
problems: finding an allocation whose utility vector z minimizes Φ(z) under the
constraint that z ∈ BE := B̄C + B̈M , where BE is the Minkowski sum of a given integral
base-polyhedron B̄C and a given M-convex set B̈M . Note that the convex hull of BE,
denoted by B̄E, is an integral base-polyhedron, and the set of integral points in BE is an
M-convex set.

In this talk, we show the following results.

Structure of Φ-fair allocations. First, we investigate the structure of the fair allocation
of mixed goods. Unfortunately, the set of minimizers argminBE

Φ(z) depends on Φ in
general. Nevertheless, we show that the hybrid problem still retains a structure of the
canonical partition. By using this fact, we prove a proximity theorem. We remark that
this is not specialized to the fair allocation setting, and thus it extends the existing result
for the discrete case [4].

Theorem 1. Let Φ be a symmetric strictly convex function. For any z∗ ∈ argminz∈BE
Φ(z)

and z̄ ∈ argminz∈B̄E
Φ(z), we have ⌊z̄i⌋ ≤ z∗i ≤ ⌈z̄i⌉ for all i ∈ N .

By using the canonical partition, we also show that there exists partitions E1, . . . , Eq

of goods E and N1, . . . , Nq of agents N such that goods in Ej are allocated to agents in
Nj for each j = 1, 2, . . . , q in any Φ-fair allocation.

NP-hardness. Next, by utilizing the proximity theorem, we show that our problem is
NP-hard even when indivisible goods are identical, i.e., for each agent i, either vie = 1
(∀e ∈ M) or vie = 0 (∀e ∈ M).

Theorem 2. For any fixed symmetric strictly convex function Φ, finding a Φ-fair allocation
is NP-hard even when indivisible goods are identical.

We also prove that computing an MNW allocation and an leximin allocation are both
NP-hard. These results highlight the difficulty of the mixed goods case.

Polynomial-time solvable case. In contrast, we show the following tractability when
divisible goods are identical.

Theorem 3. Let Φ be a symmetric strictly convex function. There exists a polynomial-time
algorithm that finds a Φ-fair allocation if all the divisible goods are identical.

A key tool to construct the algorithm is the structure of Φ-fair allocation. We can find
the above-mentioned partitions E1, . . . , Eq of E and N1, . . . , Nq of N in polynomial time
by using the canonical partition. Because of the structure, we can find a minimizer of Φ
by independently solving the subproblems of assigning goods in Ej to agents in Nj for
j = 1, 2, . . . , q. When divisible goods are identical, there exists j∗ such that Ej∗ has all
the divisible goods, and the utilities of the agents receiving a piece of divisible goods are
the same. By using this property, we can enumerate possible utility vectors of agents and
check the existence of the corresponding allocation by submodular flow [6].
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Connection to relaxed envy-freeness. As another consequence of our structural result,
we also show the connection between MNW allocations and relaxed envy-freeness. For
binary valuations, we prove that MNW allocations satisfy envy-freeness up to any good for
mixed goods (EFXM): if agent i envies agent j, then agent j has no piece of divisible goods
and the envy can be eliminated by removing any indivisible good in agent j’s bundle. The
notion of EFXM coincides with envy-freeness (EF) when only divisible goods exists, and
envy-freeness up to any good (EFX) when only indivisible goods exists. It is known that
any MNW allocation for divisible goods is EF [8] and the one for indivisible goods is
EFX [1]. Thus, our result is a generalization of these results. We also mention results on
other classes of valuations.

This talk is based on the joint work with Yasushi Kawase and Koichi Nishimura.
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With the prevalence of dual-career households in recent years, the demand for daycare
facilities in Japan, especially in metropolitan areas, has soared. Unfortunately, scarce
space and insufficient teachers lead to a long waiting list each year, leaving numerous
children unable to enroll in daycare centers. The waiting child problem becomes one of
the critical social challenges nowadays. The allocation of children to daycare centers in
Japan is not done on a first-come, first-served basis. Instead, the allocation process starts
with families submitting applications to their local government office, which contains
basic information such as children’s age, guardians’ health conditions and work schedule,
as well as preferences over acceptable daycare centers. Each municipality adopts a unique
scoring system that strictly prioritizes children. The scoring system is designed in a
way that children who may have greater needs or face additional challenges have more
chances of utilizing daycare services. Typically, children from low-income or single-parent
households, and those whose guardians are suffering from diseases or disabilities take
precedence over others. Some local governments formulate lottery rules for tie-breaking
when children have identical priority scores. The allocation is then computed by a
centralized matching algorithm that allows for both families’ preferences over daycares
and daycares’ priorities over children.

The daycare matching process has faced criticism due to long waiting lists and the
Japanese government has made considerable efforts to address this issue, including
improving working conditions and increasing salaries for childcare workers to engage
more people in early childhood education, and providing financial assistance for families
in need to enlarge their options of affordable daycare centers. Although the number
of children on the waiting list significantly decreased recently, the shortage of daycare
facilities continues. This is because not all unmatched children are counted in the waiting
list, such as those who live near daycare centers with vacant slots but are only willing to
attend certain oversubscribed daycare centers and those whose parents have to suspend
their jobs or extend their childcare leave. Thus, despite these measures, the waiting child
problem remains a major social challenge and long waiting lists have a profound impact
on young couples’ careers and lives.

The daycare matching problem bears similarities with conventional two-sided matching
problems such as college admissions and job hunting, where one side of the market
consists of families who submit applications on behalf of their children and the other side
consists of daycare centers with limited resources (e.g., room space, teachers). However,
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initial # siblings any joint transferable
enrollments 2 3 any preferences quotas

(McDermid and Manlove, 2010) ✕ ✔ ✕ ✕

(Ashlagi, Braverman, and Hassidim, 2014) ✕ ✔ ✔ ✕

(Manlove, McBride, and Trimble, 2017) ✕ ✔ ✔ ✕

(Suzuki et al., 2023) ✔ ✕ ✕ ✕

(Okumura, 2019) ✕ ✕ ✕ ✔

(Kamada and Kojima, 2023) ✕ ✕ ✕ ✔

(Dur, Morrill, and Phan, 2022) ✕ ✔ ✕ ✕

(Correa et al., 2022) ✔ ✔ ✕ ✕

(Sun et al., 2023) ✔ ✔ ✔ ✕

This Work ✔ ✔ ✔ ✔

TABLE 1. Comparison with some recent papers. ✔indicates that the
proposed approach in that paper is applicable to a particular feature.

the daycare matching market possesses three features that set it apart from classical
matching models. These features include i) transfers (i.e., some children who are already
enrolled prefer to be transferred to other daycare centers), ii) siblings (i.e., several children
from the same family report joint preferences and only consent to an assignment if all
of them are matched), and iii) transferable quotas (i.e., a daycare center may partition
grades into grade groups and available spots can be used by any child within the same
grade group). It is well-known that when couples exist, there may not exist any matching
satisfying stability (Roth, 1984) (i.e., one of the most important solution concepts in
matching theory) and determining whether there exists a stable matching is NP-complete
(Ronn, 1990). The presence of these complexities poses more significant challenges.

The objective of this research is to develop a trustworthy algorithm to help municipalities
tackle the waiting children problem. The key research question is how to design and
implement practical matching algorithms that minimize the number of children on the
waiting list in a transparent, stable and computationally efficient manner.

Our contributions are summarized as follows: Firstly, we formalize three particular
features of the market and develop a comprehensive model that encompasses other
important matching markets.

Secondly, we present some new computational complexity results, including that it is
NP-complete to check the existence of feasible and individual rational matching that differs
from the initial enrollments. Thirdly, we propose a practical algorithm based on constraint
programming (CP) which is a powerful technique for coping with NP-hard problems.
Fourthly, we evaluate the effectiveness of our algorithm by conducting experiments on
real-world data sets and summarize interesting findings on the factors that could increase
the number of matched children. Lastly, we release our implementation that could benefit
future work in related domains.

RELATED WORK

There is a large body of literature on matching problems under preferences and we
give a more detailed review of related work in Appendix. We next compare our work
with some recent papers that also consider some of the features mentioned above. The
daycare matching problem can be seen as a generalization of hospital-doctor matching
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with couples, where pairs of doctors participate in the market and aim to secure a pair of
positions (Kojima, Pathak, and Roth, 2013; Biró, Manlove, and McBride, 2014; Nguyen
and Vohra, 2018). While some papers focus on school choice with initial enrollment, they
do not take siblings into consideration (Hamada et al., 2017; Suzuki, Tamura, and Yokoo,
2018; Suzuki et al., 2023). On the other hand, two recent papers delve into school choice
with siblings, but assuming restrictive preferences of families (Dur, Morrill, and Phan,
2022; Correa et al., 2022). Regarding the Japanese daycare matching problem, two prior
works investigate transferable quotas but do not consider initial enrollments or siblings in
their models (Okumura, 2019; Kamada and Kojima, 2023). Another study also examines
the Japanese daycare matching market; however, they do not allow for transferable
quotas and propose an algorithm suitable for a specific scenario with a maximum of
three children per family (Sun et al., 2023). Several papers tackle the practical daycare
matching problem in European countries, but it is important to note that the settings and
objectives of these studies differ significantly from ours (Veski et al., 2017; Geitle et al.,
2021; Reischmann, Klein, and Giegerich, 2021).
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TRUTHFUL AND ALMOST ENVY-FREE MECHANISM OF ALLOCATING INDIVISIBLE
GOODS: THE POWER OF RANDOMNESS

BIAOSHUAI TAO

Classification AMS 2020: 91A05, 91A06, 91A80
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We study the problem of fairly and truthfully allocating m indivisible items to n agents
with additive preferences. Specifically, we consider truthful mechanisms outputting
allocations that satisfy EF+u

−v , where, in an EF+u
−v allocation, for any pair of agents i and j,

agent i will not envy agent j if u items were added to i’s bundle and v items were
removed from j’s bundle. Previous work easily indicates that, when restricted to
deterministic mechanisms, truthfulness will lead to a poor guarantee of fairness: even
with two agents, for any u and v, EF+u

−v cannot be guaranteed by truthful mechanisms
when the number of items is large enough. In this work, we focus on randomized
mechanisms, where we consider ex-ante truthfulness and ex-post fairness. For two
agents, we present a truthful mechanism that achieves EF+0

−1 (i.e., the well-studied
fairness notion EF1). For three agents, we present a truthful mechanism that achieves
EF+1

−1 (i.e., envy-freeness up to one good more-and-less proposed by Barman and
Krishnamurthy (2019)). For n agents in general, we show that there exist truthful
mechanisms that achieve EF+u

−v for some u and v that depend only on n (not m).
We further consider fair and truthful mechanisms that also satisfy the standard

efficiency guarantee: Pareto-optimality. We provide a mechanism that simultaneously
achieves truthfulness, EF1, and Pareto-optimality for bi-valued utilities (where agents’
valuation on each item is either p or q for some p > q ≥ 0). For tri-valued utilities
(where agents’ valuations on each item belong to {p, q, r} for some p > q > r ≥ 0) and
any u, v, we show that truthfulness is incompatible with EF+u

−v and Pareto-optimality
even for two agents.

This is a joint work with Xiaolin Bu.

1. INTRODUCTION

Fair division studies how to allocate a set of resources to a set of agents with
heterogeneous preferences. In this paper, we study the fair division problem when
resources are indivisible items. Specifically, we aim to fairly allocate m items to n agents,
where each agent has her own valuations on those m items.

Among various fairness criteria, envy-freeness is arguably the most studied notion,
which says that, for any pair of agents i and j, agent i should value her own allocated
share weakly more than agent j’s, i.e., agent i does not envy agent j. However, when
indivisible items are concerned, envy-free allocation may not exist (e.g., all the agents
value the items equally, but m is not a multiple of n). It is then natural to define
relaxations of envy-freeness that are tractable. The most popular line of research
considers envy-freeness up to the addition or/and removal of a small number of items.
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In particular, an allocation is “almost envy-free” if, for each pair of agents i and j, agent
i will no longer envy agent j if a small number of items is (hypothetically) added to
agent i’s allocated bundle and a small number of items is (hypothetically) removed from
agent j’s allocated bundle. Among this type of relaxation, envy-freeness up to one item
(EF1) receives the most significant attention. It is well-known that an EF1 allocation
always exists, and it can be computed efficiently Budish (2011); Lipton et al. (2004).

When deploying a fair division algorithm in practice, agents may not honestly report
their valuation preferences to the algorithm if they can benefit from strategic behaviors.
This motivates the study of the fair division problem from the mechanism design point
of view. Other than guaranteeing fairness, we would also like an algorithm, or a
mechanism, to be truthful, where truth-telling is each agent’s dominant strategy.
Unfortunately, it is known that truthfulness is incompatible with most of the meaningful
fairness notions for deterministic mechanisms Lipton et al. (2004); Amanatidis et al.
(2017, 2016); Caragiannis et al. (2009); Dobzinski et al. (2023), including those
above-mentioned variants of envy-freeness Amanatidis et al. (2017). In particular,
Amanatidis et al. (2017) give a characterization of truthful mechanisms with two
agents. Their observation implies that no truthful mechanism can achieve envy-freeness
even up to adding/removing an arbitrary number of items. Truthfulness and (almost)
envy-freeness are compatible only for very restrictive valuation functions Halpern et al.
(2020); Babaioff et al. (2021); Barman and Verma (2022); Christodoulou and
Christoforidis (2024). Further, it is shown that under mild additional assumptions, the
only deterministic truthful mechanism is serial/sequential-quota dictatorship Pápai
(2000, 2001); Bouveret et al. (2023); Babaioff and Morag (2024), where each agent is
asked to take a predefined number of items one by one1. Such mechanisms clearly lack
fairness guarantees.

In this paper, we seek to resolve the incompatibility of truthfulness and fairness by
applying randomness in mechanisms. We aim to design randomized mechanisms that is
truthful in expectation—truth-telling maximizes each agent’s expected utility, and
meanwhile guaranteeing that every allocation possibly output by the mechanism is
almost envy-free. Although the use of randomness to achieve truthfulness has been
proven successful in other problems Mossel and Tamuz (2010); Dobzinski and Dughmi
(2013), our understanding of the power of randomness for fair division of indivisible
items is still limited, especially for envy-based fairness notions.

2. OUR RESULTS

In this paper, we mainly focus on envy-based fairness notions, and we show that
randomized mechanisms provide significantly better fairness guarantees than their
deterministic counterpart.

For n = 2 agents, we provide a simple truthful randomized mechanism based on the
equal division rule that outputs EF1 allocations. We show that the equal division rule
fails to guarantee the EF1 fairness property for n = 3. For n = 3 agents, we provide a
truthful randomized mechanism that outputs EF+1

−1 allocations (envy-freeness up to
adding and removing one item, also called envy-freeness up to one good more-and-less

1In serial dictatorship, the order of the agents is predefined and independent of the agents’ preferences.
In sequential dictatorship, the order of the agents depends on the agents’ preferences.
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proposed by Barman and Krishnamurthy (2019)). This is achieved by some carefully
designed fractional allocation rule, and the decomposition to EF+1

−1 allocations applies a
series of techniques including proper coloring of regular bipartite graphs and rounding
of vertex solutions of linear programs. For general numbers of agents, we design two
mechanisms based on the equal division rule: a truthful randomized mechanism that
outputs EF+(n−1)2

−(n−1) allocations and a truthful randomized mechanism that outputs
allocations simultaneously satisfying two share-based fairness notions—PROP1 and
1
n
-MMS.
Finally, we study efficient randomized truthful mechanisms that satisfy

Pareto-optimality in addition to fairness. We show that the truthful EF1 Pareto-optimal
mechanism for binary valuations Halpern et al. (2020); Babaioff et al. (2021); Barman
and Verma (2022) generalizes to the bi-valued valuations (where an agent’s value to an
item can only take two values p or q) if randomization is allowed. This is complemented
by the impossibility result that, for any u and v, EF+u

−v is incompatible with
Pareto-optimality for randomized truthful mechanisms for two agents with tri-valued
valuations.
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Szilvia Pápai. Strategyproof multiple assignment using quotas. Review of Economic
Design, 5:91–105, 2000.
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TEMPORAL FAIR DIVISION OF INDIVISIBLE GOODS AND CHORES

NICHOLAS TEH
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This talk is based on joint work with Edith Elkind, Alexander Lam, Mohamad Latifian,
and Tzeh Yuan Neoh [14].

1. PRELIMINARIES

For each positive integer k, let [k] := {1, . . . , k}. We consider the problem of fairly
allocating indivisible items to agents over multiple rounds. Let an instance of the problem
be denoted by I = 〈N, T, {Ot}t∈[T ],v = (v1, . . . , vn)〉, in which we have a set of agents
N = [n] and a set O of m items which arrive over T rounds, and are to be allocated to
the agents. For each t ∈ [T ], we denote the set of items that arrive at round t by Ot, and
define the cumulative set of items that arrived in rounds 1, . . . , t by Ot :=

󰁖
ℓ∈[t] Oℓ. Note

that O = OT .
We assume that each agent i ∈ N has an additive valuation function vi : 2O → R

over the items, i.e., for S ⊆ O, vi(S) =
󰁓

o∈S vi({o}). For notational convenience, we
write vi(o) instead of vi({o}) for a single item o ∈ O, and v instead of vi when valuation
functions are identical. Denote v = (v1, . . . , vn) as the valuation profile. In this work,
we consider two cases: goods allocation where for each i ∈ N and o ∈ O, vi(o) ≥ 0,
and chores allocation where for each i ∈ N and o ∈ O, vi(o) ≤ 0. For clarity, we use g
instead of o and refer to items as goods when explicitly referring to the goods setting,
and c instead of o and refer to the items as chores when considering the chores setting.

An allocation A = (A1, . . . , An) of items in O to the agents is an ordered partition of
O, i.e. for i, j ∈ N , Ai ∩ Aj = ∅ and

󰁖
i∈N Ai = O. In addition, for t ∈ [T ] we denote

the allocation after round t by At = (At
1, . . . , A

t
n) where At

i = Ai ∩ Ot. For t < T , we
sometimes refer to At as a partial allocation. Note that A = AT . Our goal is to find an
allocation that is fair after each round.

Definition 1.1. In a goods (resp. chores) allocation instance, an allocation
A = (A1, . . . , An) is said to be EF1 if for all pairs of agents i, j ∈ N , there exists a good
g ∈ Aj (resp. chore c ∈ Ai) such that vi(Ai) ≥ vi(Aj \ {g}) (resp. vi(Ai \ {c}) ≥ vi(Aj)).

In this work we target fairness in a cumulative sense, introducing the notion of
temporal envy-freeness up to one item (TEF1) which requires that at every round prefix,
the cumulative allocation of items that have arrived so far satisfies EF1.

Definition 1.2 (Temporal EF1). For any t ∈ [T ], an allocation At = (At
1, . . . , A

t
n) is said to

be temporal envy-free up to one item (TEF1) if for all t′ ≤ t, the allocation At′ is EF1.
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However, the possible non-existence of TEF1 allocations has been shown in the general
goods allocation setting, as He et al. (2019) illustrated using a counterexample with 3
agents and 23 items, which can be generalized to n > 3 agents.

2. EXISTENCE OF TEF1 ALLOCATIONS IN SPECIAL CASES

In this section we identify several restricted classes of instances under which a TEF1
allocation is guaranteed to exist.

He et al. (2019) showed the existence of a TEF1 allocation for goods when n = 2, by
presenting a polynomial-time algorithm that returns such an allocation. We extend this
result to the case of chores, and combine the results into a single theorem, as follows.

Theorem 2.1. For n = 2, a TEF1 allocation for goods or chores chores exists and can be
computed in polynomial time.

The next setting we consider is one where items can be divided into two types, and
each agent values all items of a particular type equally. Formally, let S1, S2 ⊆ O be a
partition of the set of items, so that S1 ∩ S2 = ∅, and S1 ∪ S2 = O. Then, for any
r ∈ {1, 2}, two items o, o′ ∈ Sr, and agent i ∈ N , we have that vi(o) = vi(o

′).

Theorem 2.2. When there are two types of items, a TEF1 allocation for goods or chores
exists and can be computed in polynomial time.

Another setting we consider is one where agents have generalized binary valuations
(also known as restricted additive valuations [1, 8]). Formally, we say that agents have
generalized binary valuations if for every agent i ∈ N and item oj ∈ O, vi(oj) ∈ {0, pj},
where pj ∈ R \ {0}.

Theorem 2.3. When agents have generalized binary valuations, a TEF1 allocation for goods
or chores exists and can be computed in polynomial time.

3. HARDNESS RESULTS FOR TEF1 ALLOCATIONS

The non-existence of TEF1 goods allocations for n ≥ 3 prompts us to explore whether
we can determine if a given instance admits a TEF1 allocation for goods. Unfortunately,
we show that this problem is NP-hard, with the following result.

Theorem 3.1. Given an instance with goods and n ≥ 3, determining whether there exists a
TEF1 allocation is NP-hard.

However, we note that the approach used in proving the above result cannot be
extended to show hardness for the setting with chores. Nevertheless, we are able to
show a similar, though weaker, intractability result for the case of chores in general.

Theorem 3.2. For every t ∈ [T ], given any partial TEF1 allocation At for chores, deciding
if there exists an allocation A that is TEF1 is NP-hard.

4. COMPATIBILITY BETWEEN TEF1 AND EFFICIENCY

In traditional fair division, many papers have focused on the existence and
computation of fair and efficient allocations for goods or chores, with a particular
emphasis on simultaneously achieving EF1 and Pareto-optimality (PO). In this section,
we explore the compatibility between TEF1 and PO. We begin by defining PO as follows.
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Definition 4.1 (Pareto-optimality). We say that an allocation A is Pareto-optimal (PO)
if there does not exist another allocation A′ such that for all i ∈ N , vi(A′

i) ≥ vi(Ai), and
for some j ∈ N , vj(A′

j) > vj(Aj). If such an allocation A′ exists, we say that A′ Pareto-
dominates A.

Observe that for any A that is PO, any partial allocation At for t ≤ [T ] is necessarily
PO as well. We demonstrate that PO is incompatible with TEF1 in this setting, even
under very strong assumptions (of two agents and two types of items). Despite this non-
existence result, one may still wish to obtain a TEF1 and PO outcome when the instance
admits one. However, we show that this is not computationally tractable.

Theorem 4.2. Determining whether there exists a TEF1 allocation that is PO for goods or
chores is NP-hard, even when n = 2.

5. CONCLUSION

Numerous potential directions remain for future work, including revisiting variants of
the standard fair division model. Examples include studying the existence (and
polynomial-time computability) of allocations satisfying a temporal variant of the
weaker proportionality up to one item property, which would be implied by EF1;
studying group fairness [2, 4, 7, 11, 19, 23]; considering the more general class of
submodular valuations [18, 22, 24, 25, 26]; examining the house allocation model
where each agent gets a single item [10, 17], which was partially explored in [21], or
even looking at more general settings with additional size constraints [6, 5, 12]. It
would also be interesting to extend our results, which hold for the cases of goods and
chores separately, to the more general case of mixed manna, in which items can be
simultaneously viewed as goods by some agents and as chores by others (see, e.g., [3]).
The concept of achieving cumulative fairness while knowing all future information
could also be applied to other temporal models in the social choice literature
[9, 13, 16, 15, 20, 27].
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This talk considers a problem in the emerging area of “fair division under
constraints” [1].

As a motivating example, consider a scheduling problem where each task, or chore,
has a designated start and finish time, and each agent can perform at most one chore at
any time (in other words, agents cannot multitask). The agents have possibly differing
values for subsets of chores, and should be allocated disjoint subsets of chores so that
the final allocation is fair and economically efficient. In our model, the chores are
represented as vertices of an interval graph whose edges capture temporal overlaps
between the chores. A feasible allocation corresponds to a subpartition of the vertices
into independent subsets. Note that due to the conflict constraints, some chores may
have to be left unassigned.

An allocation is deemed “fair” if it is envy-free up to one chore (EF1), which means that
any pairwise envy can be eliminated by the hypothetical removal of some chore from the
envious agent’s bundle. We also study a strengthening of EF1 called envy-freeness up to
any chore (EFX), wherein pairwise envy can be eliminated by dropping any individual
chore from the envious agent’s bundle. On the economic efficiency front, we consider
two criteria: maximality and Pareto optimality. Maximality requires that any unallocated
chore generates a conflict when assigned to any agent. Pareto optimality, on the other
hand, stipulates that an allocation, in addition to being maximal, should not be Pareto
dominated by another maximal allocation.

We note that EFX is not compatible with the weaker efficiency notion of maximality,
and EF1 is incompatible with Pareto optimality. This leaves us with only the
combination of EF1 and maximality as the potential candidates for universal existence.
Notably, several techniques from unconstrained fair division that achieve EF1, such as
round-robin and top-trading envy-cycle algorithms, fail to maintain EF1 in the
constrained setting.

Towards showing the existence of EF1 and maximal allocations, we contribute two
results:

• We show that for two agents, an EF1 and maximal schedule always exists and can
be efficiently computed when the conflicts are represented by an interval graph.
This result uses an alternate coloring technique and holds even under monotone
valuations.

• We show that for an arbitrary number of agents with identical additive
valuations, an EF1 and maximal allocation always exists when the conflict graph
is a path graph. This result is largely non-algorithmic and uses an application of
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the “cycle-plus-triangles” theorem (originally conjectured by Erdös) for
achieving approximate envyfreeness.

The talk also highlights several open problems and directions for future work.
Based on joint work with Sarfaraz Equbal, Rohit Gurjar, Yatharth Kumar, Swaprava

Nath, and Raghuvansh Saxena. An early version of the paper is available as [2].
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SIX CANDIDATES SUFFICE TO WIN A VOTER MAJORITY

ADRIAN VETTA

(This talk concerned joint work with Moses Charikar, Alexandra Lassota, Prasanna
Ramakrishnan, and Kangning Wang)

Keywords: Social Choice, Voting, Condorcet Winner, Condorcet Winning Sets,
Committee Selection.

Abstract: A cornerstone of social choice theory is Condorcet’s paradox which says that
in an election where n voters rank m candidates it is possible that, no matter which
candidate is declared the winner, a majority of voters would have preferred an alternative
candidate. Instead, can we always choose a small committee of winning candidates that
is preferred to any alternative candidate by a majority of voters?

Elkind, Lang, and Saffidine raised this question and called such a committee a
Condorcet winning set. They showed that winning sets of size 2 may not exist, but sets of
size logarithmic in the number of candidates always do. In this work, we show that
Condorcet winning sets of size 6 always exist, regardless of the number of candidates or
the number of voters. More generally, we show that if α

1−lnα ≥
2

k+1
, then there always

exists a committee of size k such that less than an α fraction of the voters prefer an
alternate candidate. These are the first nontrivial positive results that apply for all
k ≥ 2.

Our proof uses the probabilistic method and the minimax theorem, inspired by recent
work on approximately stable committee selection. We construct a distribution over
committees that performs sufficiently well (when compared against any candidate on
any small subset of the voters) so that this distribution must contain a committee with
the desired property in its support.

1. INTRODUCTION

Voting is a versatile model for the aggregation of individual preferences to reach a
collective decision. Disparate situations, such as constituents choosing representatives,
organizations hiring employees, judges choosing prize winners, and even friends
choosing games to play, can all be understood as a group of voters choosing from a pool
of candidates. Voting theory seeks to understand how winning candidates can be
selected in a fair and representative manner.

One of the longest known challenges with voting is Condorcet’s paradox, discovered
by Nicolas de Condorcet around the French Revolution [2].1 The paradox is that in an
election where voters have ranked preferences over candidates, the preferences of the
“majority” can be contradictory — no matter which candidate is declared the winner, a
majority of the voters would have preferred another candidate. In fact, the contradiction

1It is plausible that in early academic explorations of voting, 13th-century philosopher Ramon Llull had
already discovered the possibility of this paradoxical situation [8, 6].
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can be even more dramatic, with “majority” replaced by a fraction arbitrarily close to
1. An illustrative example is when the voters have cyclic preferences as, for example,
displayed in 1.

v1 v2 v3 v4 v5 v6
1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

TABLE 1. An election where voters have cyclic preferences. The column
headed with vi represents the ith voter’s ranking of the candidates (labeled
1, 2, . . . , 6 from top to bottom). For each candidate, another candidate is
preferred by every voter except one.

Though it is impossible to always find a single candidate that is always preferred over
the others by a majority (called a Condorcet winner), one hope is that relaxations of
this condition are still possible to achieve. A natural relaxation arises in the setting of
committee selection, where rather than choosing a single winner, the goal is to choose a
committee of k winners. For example, a political system may have districts with multiple
representatives, organizations may make many hires at once, and friends might play
more than one game in an evening. Another view is that committee selection can be
used as an filtering step in a process with more than one round, like primaries or runoffs,
choosing interviewees for a position, or nominations for a prize.

In this context, Elkind, Lang, and Saffidine [3] asked: is it always possible to find a
small committee of candidates such that no other candidate is preferred by a majority of
voters over each member of the committee? They called this committee-analogue of a
Condorcet winner a Condorcet winning set, and defined the Condorcet dimension of an
election as the size of its smallest Condorcet winning set. For example, the election
depicted in 1 has Condorcet dimension 2, since any pair of diametrically opposite
candidates such as {3, 6} would be a Condorcet winning set. More generally, [3] raised
the following question for an arbitrary threshold of α in place of 1

2
, and a target

committee size k.

Question 1.1 ([3]). A committee S is α-undominated if for all candidates a /∈ S, less than
an α fraction of voters prefer a over each member of S. For what values of k ∈ Z+ and
α ∈ (0, 1] does every election have an α-undominated committee of size k?

In particular, we would like to know, for each k, what is the smallest α for which
α-undominated committees of size k always exist (and, equivalently, for each α, the
smallest k such that these committees always exist).

Condorcet’s paradox (or rather, its aformentioned generalization) shows that for
k = 1 and any α bounded away from 1, there are elections with no α-undominated
singleton candidates. For the threshold of α = 1

2
, [3] constructed instances with

Condorcet dimension 3 by taking the Kronecker product of two elections with cyclic
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preferences. This construction can be easily extended to give a lower bound of 2
k+1

on
the smallest α such that there always exists an α-undominated committee of size k.
They also showed that an election with m candidates has Condorcet dimension at most
dlog2me; to see this, note that some candidate beats a majority of the other candidates,
so we can iteratively add such a candidate to our committee and remove all the
candidates that it beats.

1.1. Our Contributions. We prove that every election has Condorcet dimension at most
6. This result is a corollary of our main theorem, which gives a nontrivial existence result
for α-undominated committees of size k ≥ 2. We note that the final result we prove is
stronger, but the approximation below is easier to get a handle on.

Theorem 1.2. If α
1−lnα ≥

2
k+1

, then in any election, there exists an α-undominated
committee of size k.

For the specific threshold of α = 1
2
, 1.2 applies as long as k ≥ 3 + 4 ln 2 ≈ 5.77, and so

any election has Condorcet dimension at most 6 (which is not far from the lower bound
of 3). Taking k = 2, 1.2 implies that there always exists a pair of candidates such that no
third candidate is preferred by more than roughly 80% of the voters. Even replacing 80%
with 99%, this was previously unknown.

These results show that just by having a few winners instead of one, the most dramatic
failures of Condorcet’s paradox are avoidable. We emphasize that these results hold
for any election, regardless of the number of voters, the number of candidates, or the
preferences that the voters have over candidates.

Our starting point for proving Theorem 1.2 is the observation that Question 1.1 is
closely linked to the problem of approximate stability in committee selection [7]. The
principle behind stability is that a subset of voters should have control over a subset of
the committee of proportional size. That is, a committee of size k is stable (also referred
to as in the core [9, 4, 5]) if the fraction of voters that prefers any committee of size
k′ is less than k′

k
. We note that in this setting, voters have preferences over committees

rather than candidates. This more expressive space of preferences gives it the power to
model a wide variety of preference structures, such as approval voting and participatory
budgeting.

Unfortunately, in many settings, stable committees do not always exist. To remedy this,
[7] put forth the following approximate notion of stability, and showed the surprising
result that for any monotone preference structure and any k, a 32-stable committee of
size k exists.

Definition 1.3 (Approximately stable committees [7]). A committee S of k candidates is
c-stable if for any committee S ′ of size k′, the fraction of voters that prefers S ′ over S is less
than c · k′

k
.

Consider the natural preference order over committees induced by rankings over
candidates, where v prefers S ′ over S if and only if she prefers her favorite candidate in
S ′ over her favorite in S. A simple observation shows that a committee of size k is
c-stable if and only if it is c

k
-undominated. For this ranked preference structure, the

constant of 32 in the result of [7] can be improved to 16 using the existence of stable
lotteries for these preferences [1]. Then, as a black box, [7] implies that
16
k

-undominated committees of size k always exist, which in turn implies that we can
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always find Condorcet winning sets of size at most 32. Since this conclusion follows
easily from [7], we attribute the first constant upper bound on the size of Condorcet
winning sets to their work.

One can interpret the approximately stable committee problem as a version of
Question 1.1 focused on the asymptotics of α as the committee size k grows large. For
this purpose, [7] implies a result that is optimal up to a constant factor, but it says
nothing nontrivial for committees of size at most 16. In contrast, Theorem 1.2 gives
results even for k = 2, and outperforms the bound implied by [7] for k ≤ 1.75 × 104,
despite only implying the existence of O(log k)-stable committees.

Nonetheless, we show that our techniques can be applied to the asymptotic setting as
well, giving an improvement over [7].

Theorem 1.4. In any election, there exists a 9.8217
k

-undominated committee of size k.

As a corollary, Theorem 1.4 implies the existence of 9.8217-stable committees for
preferences induced by rankings over candidates. We note that Theorem 1.4 improves
Theorem 1.2 for k ≥ 496.
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pluralité des voix. Imprimerie royale, 1785.

[3] E. Elkind, J. Lang and A. Saffidine, Condorcet winning sets. Social Choice and Welfare, 44(3), pp493–
517, 2015.

[4] D. Foley, Lindahl’s Solution and the Core of an Economy with Public Goods Econometrica, pp66–72,
1970.

[5] B. Fain, K. Munagala and N. Shah, Fair Allocation of Indivisible Public Goods Proceedings of ACM
Conference on Economics and Computation (EC), pp575–592, 2018.
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PRESENTATION REPORT: FAIR ALLOCATION OF CHORES WITH SUBSIDY

XIAOWEI WU

ABSTRACT. The fair allocation problem has gained significant attention recently in the
fields of theoretical computer science, artificial intelligence, and economics. In this
presentation, I will discuss our latest research on ensuring fairness for the allocation of
chores using subsidies. We consider the allocation of m indivisible chores among n

agents with subsidies. Specifically, we focus on scenarios where agents have additive cost
functions and assume that the maximum cost of an item to an agent can be offset by one
dollar, we show that a total subsidy of n/4 dollars is sufficient to achieve a proportional
allocation. Furthermore, we prove that n/4 is the minimum necessary subsidy, as there
exists an instance with n agents where any proportional allocation requires at least n/4
dollars in subsidies. Additionally, we explore the weighted case and show that a total
subsidy of n/3 dollars is sufficient to ensure weighted proportionality.

Classification AMS 2020:
• 91-08 Computational methods for problems pertaining to game theory,

economics, and finance
• 91B14 Social choice
• 91B32 Resource and cost allocation (including fair division, apportionment, etc.)

Keywords: Fair Allocation of Chores, Proportionality, Allocation with Subsidy

1. INTRODUCTION

We study the fair allocation problem of allocating a set of m indivisible items M to
a group of n heterogeneous agents N . When all items M give positive values to all
agents, the problem refers to the fair allocation of goods, which represents the situation
of distributing resources or public goods. Analogous but contrary, when all items M give
negative values (positive costs) to all agents, the problem refers to the fair allocation of
chores, which covers the task allocation among employees. In this paper, we mainly focus
on the allocation of chores, where each agent i has a cost function ci : 2

M → R+∪{0}, but
our main result also applies to the allocation of goods. We consider the general weighted
setting in which each agent i has a wi > 0 that represents her obligation to undertake the
chores. We normalize the weights of agents such that

∑
i∈N wi = 1. Traditionally, the fair

allocation problem considers how to fairly allocate the items into n bundles (X1, . . . , Xn),
while each agent receives exactly one bundle that guarantees some fairness criteria for
her. We say that agent i has cost ci(S) for bundle S ⊆ M . One natural and well-
studied fairness notion is proportionality (PROP) [33]: an allocation is called weighted
proportional (WPROP) [31] if for all agent i, ci(Xi) ≤ wi · ci(M), where we refer to
wi · ci(M) as the proportional share of agent i. Unfortunately, when items are indivisible,
PROP allocations are not guaranteed to exist, e.g., considering allocating a single item to
two agents. One possible way to circumvent this non-existence result is by introducing
money to eliminate the inevitable unfairness. Maskin [30] first proposed the setting
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called fair allocation with money that allows each agent to receive a subsidy si ≥ 0
to eliminate unfairness, under which the objective is to minimize the total subsidized
money. Halpern and Shah [24] considered the fair allocation of goods with money, for
another well-known fairness notion, called envy-freeness [22]. Assuming that each item
has a value of at most 1 to each agent, they conjecture that a total subsidy of n−1 suffices
to guarantee envy-freeness for the allocation of goods. The conjecture was later verified
by Brustle et al. [13]. Very recently, Aziz et al. [4] considered the weighted setting and
characterized the property of guaranteeing weighted envy-free allocation with subsidy.

1.1. Our Results for the Unweighted Case. We aim to compute an allocation
(X1, . . . , Xn) and subsidies (s1, . . . , sn) such that ci(Xi) − si ≤ wi · ci(M) for all agent
i ∈ N , with a small amount of total subsidy ∥s∥1 =

∑
i∈N si. When all agents have equal

weights (wi = 1/n for all i ∈ N), we propose an algorithm that computes a proportional
allocation with a total subsidy of at most n/4 [35]. Our algorithm is based on rounding
a fractional allocation returned by the Moving Knife Algorithm, where we use two
rounding schemes: Up Rounding and Threshold Rounding (Greedy).

1.2. Our Results for the Weighted Case. For the weighted case, we revisit the fractional
bid-and-take algorithm proposed by our recent work [26] and devise a new rounding
scheme. We characterize the structure of the fractional allocations returned by FBAT,
by introducing the item-sharing graph where agents are nodes and fractional items are
edges. We show that the item-sharing graph of the allocation returned by FBAT is a
directed tree1. We introduce a general rounding framework based on tree splitting, which
allows us to split the directed tree graph into canonical components and round each
component independently. We show that there exists a rounding scheme that guarantees
weighted proportionality with a total subsidy of at most n/3− 1/6.

1.3. Other Related Works. Other than proportionality, another well-studied fairness
notion is envy-freeness (EF) [22], that is, no agent wants to exchange her bundle of
items with another agent to improve her utility. Since both EF and PROP are not
guaranteed to exist when items are indivisible, a line of literature focused on some
relaxed fairness notions. Envy-freeness up to one item (EF1) [28] and envy-freeness up to
any item (EFX) [15] are two widely studied relaxations of EF, which require that the
envy between any two agents can be eliminated by removing some item; any item
respectively. Similarly, we have proportionality up to one item (PROP1) [18, 9] and
proportionality up to any item (PROPX) [6] to be two relaxations of PROP. In addition,
maximin share (MMS) [14] is another popular relaxation of PROP.
Weighted Setting. Motivated by real-world applications where agents are usually not
equally obliged, Chakraborty et al. [16] proposed the weighted setting. They introduced
the weighted envy-freeness up to one item (WEF1) for the allocation of goods and show
that WEF1 allocations always exist. Lately, WPROP1 allocations have been proved to
exist for chores [12], and the mixture of goods and chores [6]. Li et al. [26] showed the
existence and computation of WPROPX allocations of chores. Wu et al. [36] and
Springer et al. [32] proposed algorithms for the computation of WEF1 allocations for
chores. We refer to the recent survey [34] for a review of weighted fair allocation.

1As a comparison, the item-sharing graph defined by the allocation returned by the Moving Knife
Algorithm is a path; while that for the Eating Algorithm can be any complex dense multi-graph.
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Fair Allocation with Money. Beyond additive valuation functions, Brustle et al. [13]
showed that a subsidy of 2(n − 1) dollars per agent suffices to guarantee envy-freeness
for monotonic functions. The result was recently improved by Kawase et al. [25] to
n − 1 per agent. Barman et al. [8] considered the dichotomous valuations and showed
that envy-freeness can be guaranteed with a per-agent subsidy of at most 1. Regarding
truthfulness, Goko et al. [23] showed that for submodular functions, there exists a
truthful mechanism that guarantees envy-freeness with a subsidy of at most one dollar
per agent. The subsidy setting was recently extended to the weighted setting [17, 19].
A similar setting is called fair allocation with monetary transfers, introduced by
Aziz [2], that allows agents to transfer money to each other. Instead of minimizing the
total subsidy, their result focused on the characterization of allocations that are
equitable and envy-free with monetary transfers. When considering money as a
divisible good, the setting of fair allocation with money is similar to the fair allocation
of mixed divisible and indivisible items, which also receives much
attention [10, 11, 27]. For a more detailed review of the existing works on mixed fair
allocation, please refer to the recent survey [29].
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POPULAR MATCHING UNDER MATROID AND OPTIMALITY CONSTRAINTS

YU YOKOI

Classification AMS 2020: 91B68, 90C27.

Keywords: matching under preferences, popularity, matroids

We present recent algorithmic results on popular matching problems with constraints,
such as matroid, size, and weight constraints. These results have appeared in [3,9].

In general, popular matchings are defined in bipartite graphs and have two models.
One is the one-sided preferences model, where only vertices on one side have preferences,
and the other is the two-sided preferences model, where all vertices have preferences.
In the former model, a popular matching may not exist, but it is tractable to test its
existence. In the latter model, a popular matching always exists, as any stable matching
is popular. For each of these models, a matroid generalization has been proposed [4,5].

As a variant of a popular matching, the notion of a popular maximum matching has
been proposed. This is a popular solution among the set of all maximum matchings, and
many algorithmic results have been developed [6,8]. A more general popular maximum-
weight matching has also been introduced and shown to be computable efficiently [7].
Our results are common generalizations of those in the above settings.

We first describe our result on the one-sided preferences model. For a positive integer
k, we write [k] = {1, 2, . . . , k}. Let {S1, S2, . . . , Sn} be a partition of a finite set S, and let
M1 be a 1-partition matroid defined by this partition. That is, M1 = (S, I1) is a matroid
with ground set S and independent set family I1 = {I ⊆ S : |I ∩ Si| ≤ 1 (i ∈ [n])}. Each
index i ∈ [n] represents an agent and has a partial order ≻i on Si ∪ {∅} satisfying u ≻i ∅
for each element u ∈ Si. Additionally, we have another matroid M2 = (S, I2), which can
be arbitrary and has no associated orders. For a common independent set I ∈ I1∩I2 and
an agent i ∈ [n], let I(i) denote the unique element in I ∩ Si if it exists, and ∅ otherwise.
Given common independent sets I, J ∈ I1 ∩ I2, define ∆(I, J) ∈ Z as

∆(I, J) = |{i ∈ [n] : I(i) ≻i J(i)}| − |{i ∈ [n] : J(i) ≻i I(i)}|.
We are also given a weight function w : S → R. For a common independent set I ⊆ S,
its weight w(I) is defined as w(I) =

∑
u∈I w(u). Let opt(w) denote the maximum weight

of a common independent set, i.e., opt(w) = max{w(I) : I ∈ I1 ∩ I2}.

Definition 0.1. A common independent set I ∈ I1∩I2 is called a popular maximum-weight
common independent set if w(I) = opt(w) and ∆(I, J) ≥ 0 holds for every J ∈ I1 ∩ I2

with w(J) = opt(w).

We provide a polynomial-time algorithm to determine the existence of such a solution.

Theorem 0.2 (Tractability in the one-sided preferences model). Given a 1-partition
matroid M1 = (S, I1) associated with partial orders {≻i}i∈[n], any matroid M2 = (S, I2),
and a weight function w : S → R, one can determine the existence of a popular
maximum-weight common independent set and find one, if it exists, in polynomial time.
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This result is obtained by a reduction to the popular common base problem, for which
a polynomial-time algorithm was recently provided in [9]. The popular common base
problem includes the popular arborescence problem as a notable special case.

For the two-sided preferences model, we address the problem of finding a popular
maximum-weight matching in a many-to-many setting with two-sided preferences and
matroid constraints. In this model, two matroids are given on the same ground set S,
both as direct sums: M1 = M1

1 ⊕ M1
2 ⊕ · · · ⊕ M1

k1
, M2 = M2

1 ⊕ M2
2 ⊕ · · · ⊕ M2

k2
. Each

summand M i
j = (Si

j, I i
j) corresponds to an agent, so there are k1 + k2 agents. A set I ⊆ S

is feasible if I ∩ Si
j ∈ I i

j for each i ∈ {1, 2} and j ∈ [ki]. The simple bipartite matching
model is a special case where each M i

j is a uniform matroid of rank 1. Since the definition
of popularity in general matroid intersection is nontrivial, we omit it and refer the reader
to [3]. We provide the following tractability result in this setting.

Theorem 0.3 (Tractability in the two-sided preferences model). In the two-sided
preferences model, if preferences are total orders, then a popular maximum-weight
common independent set always exists and can be found in polynomial time.

This theorem assumes that preferences are total orders. Note that if ties are allowed,
finding a popular matching is NP-hard, even in the simple bipartite matching model [2].

To contrast these tractability results, we also provide some hardness results on popular
near-maximum-weight matching, which is a matching that is popular among all matchings
whose weights are at least a given threshold. See [3] for details.
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The popular assignment problem: when cardinality is more important than popularity. In Proc. of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 103–123. SIAM, 2022.
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1. INTRODUCTION

Fair division refers to the study of how to allocate resources fairly among competing
agents. The fair division literature typically assumes that there is a set of unallocated
goods and the objective is to allocate them fairly. We take a different perspective by
assuming that an initial allocation is already given. In the first problem of this report,
we initiate the study of reachability in fair division: given two fair allocations—an initial
allocation and a target allocation—we are interested in whether the target allocation
can be reached from the initial allocation via a sequence of operations such that every
intermediate allocation is also fair. In the second problem of this report, we are instead
given an initial unfair allocation, and we are interested in whether a fair allocation can
be reached from the initial allocation via a sequence of operations. In both problems,
the fairness benchmark used is envy-freeness up to one good (EF1), and we allow any two
agents to exchange a pair of goods in each operation.

This is a joint work with Ayumi Igarashi, Naoyuki Kamiyama, and Warut Suksompong
[1, 2].

1.1. Related Work. Closest to our work is perhaps a line of work initiated by Gourvès
et al. [3]. These authors considered the “housing market” setting, where the number of
agents is the same as the number of goods and each agent receives exactly one good. In
their model, a pair of agents is allowed to exchange goods if the two agents are neighbors
in a given social network and the exchange benefits both agents. Their paper, along with
a series of follow-up papers [4, 5, 6, 7], explored the complexity of determining whether
an allocation can be reached from another allocation in this model and its variants. More
broadly, reachability problems are also known as reconfiguration problems [8]; examples
of such problems that have been studied include minimum spanning tree [9], graph
coloring [10], and perfect matching [11].

Boehmer et al. [12] studied the problem of discarding goods from an initial allocation
in order to reach an envy-free or EF1 allocation. In a similar vein, Dorn et al. [13]
investigated deleting goods to attain another fairness notion called proportionality. Aziz
et al. [14] focused on reallocating goods to make agents better off, but did not delve into
the aspect of fairness. Chandramouleeswaran et al. [15] examined transferring goods
starting from a “near-EF1” allocation with the goal of reaching an EF1 allocation. Segal-
Halevi [16] considered the reallocation of a divisible good and explored the trade-off
between guaranteeing a minimum utility for every agent and ensuring each agent a

Date: 4 February 2025.
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certain fraction of her original utility. Chevaleyre et al. [17] also strived to reach fair
allocations but via exchanges with money.

1.2. Preliminaries. Let N be a set of n ≥ 2 agents, and M be a set of m ≥ 1 goods. A
bundle is a subset of goods. An allocation A = (A1, . . . An) is an ordered partition of M
into n bundles such that bundle Ai is allocated to agent i ∈ N . An (allocation) size vector
s⃗ = (s1, . . . , sn) is a vector of non-negative integers such that

∑
i∈N si = m. We say that

an allocation A has size vector s⃗ if |Ai| = si for all i ∈ N . A size vector s⃗ is balanced if
|si − sj| ≤ 1 for all i, j ∈ N , and an allocation is balanced if it has a balanced size vector.
Each agent i ∈ N has an additive utility function ui that maps bundles to non-negative
real numbers. The utility functions are identical if ui = uj for all i, j ∈ N , and the utility
functions are binary if ui({g}) ∈ {0, 1} for all i ∈ N and g ∈ M . An allocation A is EF1 if
for all i, j ∈ N and Aj ̸= ∅, there exists a good g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g}).
A (fair division) instance I consists of a set of agents N , a set of goods M , the agents’
utility functions (ui)i∈N , and a size vector s⃗.

Given an instance, define the exchange graph G as a simple undirected graph with
the following properties: the set of vertices consists of all allocations A with size vector
s⃗, and the set of edges consists of all pairs {A,B} such that B = (B1, . . . , Bn) can be
obtained from A = (A1, . . . , An) by having two agents exchange one pair of goods with
each other—that is, there exist distinct agents i, j ∈ N and goods g ∈ Ai and g′ ∈ Aj such
that Bi = (Ai∪{g′})\{g}, Bj = (Aj ∪{g})\{g′}, and Bk = Ak for all k ∈ N \{i, j}. Note
that the exchange graph is a non-empty connected graph. A path from one allocation
to another on the graph is called an exchange path. The distance (or the optimal number
of exchanges) between two allocations is the length of a shortest exchange path between
them. Define the EF1 exchange graph H as the subgraph of the exchange graph G induced
by all EF1 allocations. An exchange path using only the edges in H is called an EF1
exchange path. An EF1 exchange path is optimal if its length is equal to the distance
between the two corresponding allocations (in G).

2. MAIN RESULTS

We first state the results related to the first problem of our work. The first five results
are on the connectivity of the EF1 exchange graph.

Theorem 2.1. There exists an instance with two agents such that the EF1 exchange graph
is not connected.

Theorem 2.2. For two agents with identical (resp. binary) utilities, the EF1 exchange graph
is always connected. Moreover, there always exists an optimal EF1 exchange path between
any two EF1 allocations, and this path can be found in polynomial time.

Theorem 2.3. For each n ≥ 3, there exists an instance with n agents with identical
(resp. binary) utilities such that the EF1 exchange graph is not connected.

Theorem 2.4. For three or more agents with identical binary utilities, the EF1 exchange
graph is always connected. Moreover, an EF1 exchange path between any two EF1
allocations can be found in polynomial time.

Theorem 2.5. Deciding the existence of an EF1 exchange path between two EF1 allocations
is PSPACE-complete.
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Without EF1 considerations, finding the distance between two allocations is NP-hard.

Theorem 2.6. Finding the distance between two allocations is NP-hard.

The next three results concern the existence of an optimal EF1 exchange path. Note
that Theorem 2.2 already gives the result for two agents with identical (resp. binary)
utilities.

Theorem 2.7. There exists an instance with two agents satisfying the following properties:
the EF1 exchange graph is connected, but for some pair of EF1 allocations, no optimal EF1
exchange path exists between them.

Theorem 2.8. For each n ≥ 3, there exists an instance with n agents with identical binary
utilities satisfying the following properties: the EF1 exchange graph is connected, but for
some pair of EF1 allocations, no optimal EF1 exchange path exists between them.

Theorem 2.9. Deciding the existence of an optimal EF1 exchange path between two EF1
allocations is NP-hard, even for four agents with identical utilities.

We now state the results related to the second problem of our work. It can be shown
that two allocations can be reached from each other via sequential exchanges if and only
if they have the same size vector. Deciding whether there exists an EF1 allocation that
can be reached from a given initial allocation is equivalent to deciding whether an EF1
allocation with a given size vector exists in a given instance—we shall refer to this latter
problem as REFORMABILITY.

Theorem 2.10. REFORMABILITY is in P for (i) two agents with identical utilities, (ii) a
constant number of agents with binary utilities, and (iii) identical binary utilities.

Theorem 2.11. REFORMABILITY is weakly NP-complete for (i) n agents where n ≥ 2 is a
constant, and (ii) n agents with identical utilities where n ≥ 3 is a constant.

Theorem 2.12. REFORMABILITY is strongly NP-complete for (i) identical utilities, and (ii)
binary utilities.

We refer to as OPTIMAL EXCHANGES the problem of computing the optimal number of
exchanges to reach an EF1 allocation from a given initial allocation.

Theorem 2.13. OPTIMAL EXCHANGES is in P for (i) two agents with identical utilities, (ii)
a constant number of agents with binary utilities, and (iii) identical binary utilities.

Theorem 2.14. OPTIMAL EXCHANGES is NP-hard for (i) two agents, (ii) three or more
agents with identical utilities, and (iii) binary utilities, even when the given initial allocation
is balanced.

Given n and s, let f(n, s) be the smallest integer such that for every instance with n
agents, ns goods, and size vector s⃗ = (s, . . . , s), and for every allocation A with size
vector s⃗ in the instance, there exists an EF1 allocation with distance at most f(n, s)
from A.

Theorem 2.15. f(n, s) ≈ s(n− 1)/2.
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[13] Britta Dorn, Ronald de Haan, and Ildikó Schlotter. Obtaining a proportional allocation by deleting
items. Algorithmica, 83(5):1559–1603, 2021.
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