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COUPLING OF BROWNIAN MOTIONS WITH SET VALUED DUAL PROCESSES ON
RIEMANNIAN MANIFOLDS

MARC ARNAUDON

Classification AMS 2020: 60J60, 60J65, 60H10, 58J65, 53E10, 60J55, 35K93

Keywords: Brownian motion on Riemannian manifolds, intertwining relations,
set-valued dual processes, couplings of primal and dual processes, stochastic mean
curvature evolutions, boundary and skeleton local times, generalized Pitman theorem

The purpose of this talk is to construct a Brownian motion (Xt)t≥0 taking values in
a Riemannian manifold M , coupled (intertwined) with a compact set-valued process
(Dt)t≥0 such that, at least for small enough (Dt)-stopping time τ > 0 and conditioned by
D[0,τ ] , the law of Xτ is the normalized Lebesgue measure on Dτ . This intertwining result
is a generalization of Pitman’s 2M − X theorem in the real line, where the set-valued
process is Dt = [−Rt, Rt] with Rt = 2Mt−Xt, Mt = maxs≤t Xs, (Xt) is a Brownian motion
started at 0.

Such couplings are very important for the construction of strong stationary times, as
explained by Diaconis and fill [5] in a discrete time and finite setting. A strong
stationary time τ for (Xt)t≥0 is a finite stopping time for (Xt)t≥0 (and some independent
randomness) such that τ and Xτ are independent and Xτ is distributed according to the
invariant probability π of (Xt)t≥0 (which is in our situation, assuming M is compact, the
renormalized volume measure in M). Strong stationary times are important for two
reasons (cf. [5]):

• they enable to sample exactly the invariant probability π, contrary to the usual
approximations provided by Monte Carlo techniques.

• They provide a probabilistic alternative to functional analysis approaches for the
quantitative investigation of convergence to equilibrium. More precisely, for any
strong stationary time τ , we have

∀ t ≥ 0, s(L(Xt), π) ≤ P[τ > t],

where the separation discrepancy s(µ, π) between two probability measures µ
and π is defined by

s(µ, π) := esssupπ

(
1− dµ

dπ

)
(where dµ/dπ is the Radon-Nikodym density). The separation discrepancy
dominates the total variation norm. In the context of convergence to
equilibrium, it is very difficult to estimate the discrepancy s(L(Xt), π) via
functional inequalities.
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COUPLING OF BROWNIAN MOTIONS WITH SET-VALUED DUAL PROCESSES

In our context, the first time τ (if it exists) such that Dτ = M is a strong stationary
time.

We first construct regular intertwined processes related to Stokes’ theorem. Then
using several limiting procedures we construct synchronous intertwined, free
intertwined processes. The local times of the Brownian motion on the (morphological)
skeleton or the boundary of each Dt play an important role.

More precisely, the synchronous intertwined process (Dt)t≥0 has motion at y ∈ ∂Dt:

d∂Dt(y) = NDt(y)

(
⟨dXt, N

Dt(Xt)⟩+
1

2
hDt(y)dt+

(
−hDt(Xt)dt− 2 sin θSt(Xt)dL

S·(X)
))

= NDt(y)

(
⟨dXt,∇ρ∂Dt(Xt)⟩+

1

2
hDt(y)dt+ ”∆ρ∂Dt(Xt)dt”

)
with NDt the inward unit normal vector (resp. hDt the mean curvature) of level sets of
distance to boundary ρ∂Dt, LS·(X) the local time of Xt on the morphological skeleton
St of Dt, θSt(Xt) the angle between the regular skeleton and any of the two minimal
geodesics from ∂Dt to Xt (when Xt ∈ St).

The free intertwined process has motion at y ∈ ∂Dt:

d∂Dt(y) = NDt(y)

(
dWt +

(
1

2
hDt(y)dt− dL∂D·

t (X)

))
where (Wt) is a real-valued Brownian motion independent of (Xt) and L∂D·

t (X) is the
local time of X· on ∂D·.

For both couplings the initial conditions are D0, and X0 uniformly distributed in D0.
Under these conditions, we prove that (Dt) is Markovian and has same law as the

moving set (D̃t) started at D̃0 = D0 and satisfying the equation at y ∈ ∂D̃t:

d∂D̃t(y) = N D̃t(y)

(
dW̃t +

(
1

2
hD̃t(y)−

µ(∂D̃t)

µ(D̃t)

)
dt

)
with µ(∂D̃t) and µ(D̃t) the respective volumes of ∂D̃t and D̃t, (W̃t) a real-valued
Brownian motion. The process (D̃t) is the so-called renormalized stochastic mean
curvature flow, playing the role of a Bessel(3) process: notice that the process (µ(D̃t)) is
a time-changed Bessel(3) process with speed µ(∂D̃t) ([4]).

The talk is mainly based on the reference [1]. Infinite lifetime for some set-valued
processes in the Euclidean plane is proven in [2]. Strong stationary times are exhibited
in [3].
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[3] Marc Arnaudon, Koléhè Coulibaly-Pasquier and Laurent Miclo. On the separation cut-off
phenomenon for Brownian motions on high dimensional spheres. Bernoulli, Vol. 30 (2024), no. 2, p.
1007-1028.

Page 4



COUPLING OF BROWNIAN MOTIONS WITH SET-VALUED DUAL PROCESSES
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INTERACTING PARTICLE SYSTEMS, CONDITIONED RANDOM WALKS AND THE
AZTEC DIAMOND

THEODOROS ASSIOTIS

Classification AMS 2020: 82C22, 82C23, 82C41, 60K35.

Keywords: Interacting particle systems, non-colliding random walks, intertwinings,
Aztec diamond.

In this talk I introduced a class of so-called integrable (or exactly-solvable models)
in inhomogeneous-space. These are interacting particle systems in interlacing arrays,
namely configurations of points (x(n)

i )1≤i≤n,n=1,...,N satisfying the interlacing inequalities:

(0.1) x
(n+1)
i ≤ x

(n)
i < x

(n+1)
i+1 .

Particles move independently except when interlacing is about to be break if a move
goes through in which case they interact via so-called “push-block” interactions, see [2].
Lower level particles push and block higher level particles in order for the interlacing to
remain, see [2]. The main novelty here is that the transition mechanism of individual
particles depends on the particle space location. Namely, particles can move in
continuous-time with general pure-birth chain jumps and in discrete-time with
inhomogeneous-space Bernoulli jumps or inhomogeneous-space geometric jumps, see
[2, 1]. These models generalise homogeneous models studied in seminal papers by
Borodin-Ferrari [4], Warren-Windridge [11] and Dieker-Warren [6]. It is also possible to
introduce inhomogeneities in time as well while retaining the exact-solvability of the
model, see [2].

If we denote by (x
(n)
i (t))i,n the process in the interlacing array informally described

above then by construction the projections (x
(k)
1 (t))Nk=1 and (x

(k)
k (t))Nk=1 on the left and

right edge of the array respectively are autonomous and evolve as a TASEP (totally
asymmetric exclusion processs)-like and PushTASEP systems in inhomogeneous space.
The first result I presented in the talk is that under certain “Gibbs-type” initial
conditions for (x

(n)
i (t))i,n the projection on any fixed level k of the array (x

(k)
i (t))ki=1 is

Markovian with explicit transition probabilities. These k-th level dynamics (x
(k)
i (t))ki=1

can be understood as the discrete inhomogeneous-space generalisation of Dyson
Brownian motion [7] or inhomogeneous walks conditioned to not intersect, see [8] for
work on the homogeneous case. In particular, the process (x

(n)
i (t))i,n provides a highly

non-obvious coupling between TASEP-like and PushTASEP systems in inhomogeneous
space and discrete inhomogeneous analogues of Dyson Brownian motion. From a
symmetric function point of view this result can also be thought of as the factorial Schur
process generalisation of seminal work of Borodin on dynamics for the Schur processes
[3].

The second result I presented was that the aforementioned dynamics viewed as a
dynamical point process have determinantal correlations functions along certain
space-time directions. This means that the correlations of the model (along these
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space-time directions) can be written as determinants of a function called the
correlation kernel K. All probabilistic information about the model is then encoded in
this kernel K. This allows to study the model asymptotically. A short-time asymptotic for
the dynamics was presented. The explicit formula for K was essential to establish this
result.

A key ingredient in the proof of the results above are certain new intertwining relations
satisfied by the transition probabilities of the projections (x(k)i (t))ki=1 on single-levels of the
array. The main tool I used to prove this and perform computations more generally is a
natural generalisation of an infinite Toeplitz matrix Tf associated to a “symbol” function f.
For certain choices of the symbol f one obtains the transition probabilities of an individual
free (non-interacting) particle in Z. The way the single-level intertwined semigroups are
coupled comes from a simple coalescing random walk model. It is interesting to note
that a general recipe for coupling intertwined semigroups exists, proposed by Diaconis
and Fill [5] and later developed further by Borodin and Ferrari [3, 4]. It gives the same
coupling as the one in [2] for continuous-time dynamics and discrete-time Bernoulli
jumps. However, in the case of discrete-time geometric jumps the coupling given by the
general recipe of Diaconics-Fill is different from the one in [2] and has only a single
Markovian projection on the right edge particles.

I then explained how such dynamics and in fact generalisations thereof are connected
to tilings of the Aztec diamond with general inhomogeneous weights. This statistical
mechanics model can equivalently be viewed as random dimer covers (perfect
matchings) of a certain graph called the Aztec diamond graph. One associates general
weights to each edge in this graph and attached to this data there is a canonical
Boltzmann probability measure which is the object of interest. The way dynamics are
introduced in the first place is via the so-called shuffling algorithm that was introduced
in seminal work by Propp [10]. This gives an exact sampling method using only local
moves for picking random tilings of the Aztec diamond with arbitrary weights according
to the aforementioned Boltzmann measure. The homogeneous case (when all edges
receive equal weight) of the Aztec diamond tiling model is very well-understood but the
inhomogeneous case is much less so. However, there has been intense activity and
spectacular progress in the past 10 years or so on inhomogeneous Aztec diamond tiling
models using a variety of techniques. Many of these advances are focused on the
multi-periodic case. The contribution of this part of [2] is to connect these models to
walks conditioned to never intersect which could be analysed further asymptotically
using probabilistic techniques. This generalises the work of Nordenstam [9] for the
homogeneous case.
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ON THE SEPARATION CUT-OFF PHENOMENON
FOR BROWNIAN MOTIONS ON HIGH DIMENSIONAL ROTATIONALLY

SYMMETRIC COMPACT MANIFOLDS

KOLÉHÈ COULIBALY-PASQUIER

Classification AMS 2020: primary: 58J65, secondary: 37A25 58J35 60J60 35K08.

Keywords: Rotationally symmetric Brownian motions, strong stationary times,
separation discrepancy, hitting times.

Given a family of rotationally symmetric compact manifolds indexed by the dimension
and a weight function, the goal is to investigate the cut-off phenomenon for the Brownian
motions on this family. We provide a class of compact manifolds with non-negative Ricci
curvatures for which the cut-off in separation occurs, in high dimension, with different
explicit mixing times. We also produce counter-examples, still with non-negative Ricci
curvatures, where there are no cut-off in separation. Our proof is based on a previous
construction of a sharp strong stationary times by the authors, and some quantitative
estimates on the two first moments of the covering time. The concentration of measure
phenomenon for the above family of manifolds appears to be relevant for the study of
the corresponding cut-off phenomenon. This is a joint work with Marc Arnaudon and
Laurent Miclo.

0.1. rotationally symmetric compact manifolds. For n ≥ 2, let Mn
f be the product

manifold [0, L] × Sn−1/ ∼, where (r1, θ1) ∼ (r2, θ2) if (r1, θ1) = (r2, θ2) or r1 = r2 = 0 or
r1 = r2 = L, endowed with the warping product metric

ds2 = dr ⊗ dr + f 2(r)dθ ⊗ dθ,

where Sn−1 is the usual sphere of dimension n − 1 and radius 1, dθ ⊗ dθ is the standard
metric on the sphere and f is a regular real function that satisfies the following
assumption:

(0.1)


f : [0, L] → R+,
f(s) ∼0 s , f(L− s) ∼0 s
f (2k)(0) = f (2k)(L) = 0, k ∈ Z+

We will call such function a weight function, we will assume all along the paper that f
is a weight function. Later, further conditions will be required to ensure the regularity
of the metric at 0̃ ∼ (0, .) and L̃ ∼ (L, .). The volume of the geodesic ball B(0̃, r)

in Mn
f centered at 0̃ of radius r ∈ [0, L] is given by Voln(B(0̃, r)) = cn

∫ r

0
fn−1(s)ds,

where cn = 2πn/2

Γ(n
2
)

is the volume of Sn−1. The area of the geodesic sphere ∂B(0̃, r) is

cnf
n−1(r) and the mean curvature of any point in ∂B(0̃, r) is given by (n − 1)f

′(r)
f(r)

. We

have Ric(v) =
(
(n− 2)1−f ′(r)2

f2(r)
− f ′′(r)

f(r)

)
v if v ∈ TSn−1 and Ric(∂r) =

(
−(n− 1)f

′′(r)
f(r)

)
∂r,

Date: 03 Sep. 2024.
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where Ric denote the Ricci tensor. For a good introduction to warped products, see
Chapter 3 in Petersen [9].

Definition 0.1. For any n ∈ N \ {1}, Xn := (Xn(t))t≥0 stands for the Brownian motion on
Mn

f started at 0̃ and time-accelerated by a factor 2, i.e. the ∆-diffusion in Mn
f .

0.2. Intertwining dual process. It was seen in [3] that Xn can be intertwined with a
process D := (D(t))t≥0 taking values in the closed balls of Mn

f centered at 0̃, starting at
{0̃} and absorbed in finite time τn in the whole set Mn

f . In [2], several couplings of Xn

and D were constructed (all with same marginal law), so that for any time t ≥ 0, the
conditional law of Xn(t) knowing the trajectory D([0, t]) := (D(s))s∈[0,t] is the normalized
uniform law over D(t), which will be denoted Λ(D(t), ·) in the sequel. Furthermore, D
is progressively measurable with respect to Xn, in the sense that for any t ≥ 0, D([0, t])
depends on Xn only through Xn([0, t]). Due to these couplings and to general arguments
from Diaconis and Fill [5], τn is a strong stationary time for Xn, meaning that τn and
Xn(τn) are independent and Xn(τn) is uniformly distributed over Mn

f . We deduce that

(0.2) ∀ t ≥ 0, s(L(Xn(t)),Un) ≤ P[τn > t]

where the l.h.s. is the separation discrepancy between the law of Xn(t) and the uniform
distribution Un over Mn

f . The separation discrepancy between two probability measures
µ and ν defined on the same measurable space is given by

s(µ, ν) = ess sup
ν

1− dµ

dν

where dµ/dν is the Radon-Nikodym density of µ with respect to ν.

Remarks 0.2. Note that for any t ∈ [0, τn), the “opposite pole” L̃ does not belong to the
support of Λ(D(t), ·). It follows from an extension of Remark 2.39 of Diaconis and Fill [5]
that τn is even a sharp strong stationary time for Xn, meaning that

∀ t ≥ 0, s(L(Xn(t)),Un) = P[τn > t]

Thus the understanding of the convergence in separation of Xn toward Un amounts to
understanding the distribution of τn. This time could be compute as follow :

Writing B(0̃, R(t)) := D(t) for t ∈ [0, τn], it has been seen in [3] that R := (R(t))t∈[0,τn]
is solution to the stochastic differential equation

∀ t ∈ (0, τn), dR(t) =
√
2dB(t) + bn(R(t))dt(0.3)

τn = inf{t ≥ 0 : R(t) = L}(0.4)

where (B(t))t≥0 is a standard Brownian motion in R and the mapping bn is given by

∀ r ∈ (0, L), bn(r) := 2
fn−1(r)∫ r

0
fn−1(u) du

− (n− 1)
f ′(r)

f(r)
(0.5)

0.3. Cut-off phenomenon. For fixed n, the Brownian motion Xn in Mn
f converges in

law to Un, namely
Xn(t)

L→t→+∞ Un.

Quantifying this convergence to equilibrium is relevant when the dimension n becomes
large. This speed of convergence or mixing time, depends one the way the difference
between the time marginal and the uniform distribution is measured. A cut-off
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phenomenon in separation at time an is a kind of phase transition, namely the
separation discrepancy between Xn and the equilibrium abruptly drops from the largest
value 1 to the smallest one 0 on a small interval around an. More precisely, we say the
family of diffusion processes (Xn)n∈N\{1} has a cut-off in separation with mixing times
(an)n∈N\{1} when

∀ r > 0, lim
n→∞

s(L(Xn((1 + r)an)),Un) = lim
n→∞

P [τn > (1 + r)an] = 0

∀ r ∈ (0, 1), lim
n→∞

s(L(Xn((1− r)an)),Un) = 1− lim
n→∞

P [τn ≤ (1− r)an] = 1

0.4. Discusses other related work. In the context of card shuffling, the cut-off
phenomenon was discovered by Diaconis and Shahshahani [4] and Aldous and Diaconis
[1]. Afterward, the cut-off phenomenon has been proven for a large variety of finite
Markov chains, see e.g. Diaconis and Fill [5], Levin, Peres and Wilmer [8] and Ding,
Lubetzky and Peres [6]. Nevertheless the literature on the cut-off phenomenon for
Markov processes on a continuous state space is rather sparse. For example Saloff-Coste
[11] has proven the cut-off phenomenon in total variation distance for the Brownian
motions on the spheres Sn for high dimensions n, with a mixing time of order
ln(n)/(2n), see also Méliot [10] for extensions to classical symmetric spaces of compact
type. Their approach are based on complete knowledge of the spectral decomposition.
It is shown in Hermon, Lacoin and Peres [7] that total variation and separation cut-off
are not equivalent and neither one implies the other. Our goal here is to check that
there is a cut-off phenomenon in separation for a large class of family of rotationally
symmetric manifolds with non-negative Ricci curvature, including the case of spheres.
We also give examples of rotationally symmetric manifolds with non-negative Ricci
curvature where there is no cut-off in separation. Our results are connected with those
of Salez, concerning sequences of irreducible Markov chains with symmetric support
and non-negative coarse Ricci curvature that exhibit cut-off in total variation when an
additional product condition hypothesis is satisfied, see [12] for the precise statement.

Our proof is based on two ingredients, the resort to the strong stationary times for Xn

presented in [2] and the detailed quantitative estimates on the cover time of dual process
that appear to be an one-dimensional diffusion processes in the case of rotationnaly
symmetric manifolds. The concentration of volume phenomenon plays a crucial role to
detect the scale on which the cut-off phenomenon occurs. This alternative point of view
differs from the traditional approach based on spectral analysis and could be extended
to other situations where spectral information is less available.

0.5. Main result. The following Theorem shows a phase transition (with respect to the
parameter α ∈ (−1,+∞) introduced below) for the cut-off phenomenon concerning the
Brownian motions on the model Mn

f for high dimensions n, depending on the shape of
the function f at L/2. Let us first introduce another set of assumptions on f :

∀ s ∈ [0, L], f(L− s) = f(s),
∀ s ∈ [0, L/2), f ′(s) > 0,

∀ s ∈ [0, L] \ {L/2}, f ′′(s) ≤ 0,
(0.6)
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Theorem 0.3. Consider a C2 function f on [0, L] \ {L/2} and C1 in [0, L], satisfying
Assumptions (0.1) and (0.6). Assume there exist α ∈ (−1,+∞) and C > 0 such that for
h ̸= 0 small enough,

f ′′(L/2− h) = −C|h|α + o(|h|α)(0.7)

Let Xn := (Xn(t))t≥0 be the Brownian motion described in Definition 0.1.
• if α ∈ (−1, 0) then (Xn)n∈N\{1} has a cut-off in separation at time C1/n, with
C1 = 2

∫ L/2

0
f(s)
f ′(s)

,

• if α = 0 then (Xn)n∈N\{1} has a cut-off in separation at time C2 ln(n)/n, with C2 =
f(L/2)

C
,

• if α > 0 then (Xn)n∈N\{1} has no cut-off in separation,

Remarks 0.4. An instance where (0.7) is satisfied is when there exist α ∈ (−1,+∞), C > 0
and ϵ ∈ (0, L/2) such that ∀ h ∈ [−ϵ, ϵ], f(L/2 + h) = f(L/2)− C|h|2+α.

Corollary 0.5. Let Xn := (Xn(t))t≥0 be the Brownian motion (0.1) in the sphere Sn and
where 0̃ now stands for any point of Sn. Then (Xn)n has a cut-off in separation with mixing
times (an)n =

(
ln(n)
n

)
.

Proof. Use Theorem 0.3, with f = sin and L = π, Mn
sin ∼ Sn.
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1. BACKGROUND

Duality with respect to a function is a useful tool in the theory of Markov processes,
in particular interacting particle systems, queuing theory and mathematical population
genetics. Two processes (Xt)t≥0 and (Yt)t≥0 with state spaces E and F and semigroups
(Pt)t≥0 and (Qt)t≥0 are dual with duality function H : E × F → R if, for all x ∈ E, y ∈ F ,
and t ≥ 0

Ex
[
H(Xt, y)

]
= Ey

[
H(x, Yt)

]
or equivalently ∫

Pt(x, dx
′)H(x′, y) =

∫
Qt(y, dy

′)H(x, y′).

A closely related concept is intertwining: A kernel Λ(x, dy) is an intertwiner for the
semigroups if PtΛ = ΛQt, i.e.,∫

Pt(x, dy
′)Λ(y′, B) =

∫
Λ(x, dy)Qt(y,B)

for all x ∈ E, measurable B ⊂ F , and t ≥ 0. On finite state spaces we may think of
Pt, Qt, H as matrices and the duality and intertwining relation become

PtH = HQT
t , PtΛ = ΛQt.

Staying with finite state spaces, suppose that (Yt) has a reversible measure µ with strictly
positive masses µ(y) > 0. Let D be the diagonal matrix with entries µ(y). Then DQt =
QT
t D and one easily sees that H is a duality function if and only if Λ(x, y) = H(x, y)µ(y)

is an intertwiner.
For interacting particle systems on lattices–e.g. the contact process, voter model or

symmetric simple exclusion process—the state space is {0, 1}Zd, possibly restricted to
configurations η = (ηx)x∈Zd with finitely many particles, N(η) =

∑
x∈Zd ηx < ∞. One

is interested in the long-time behavior of a system that starts with a very large number
of particles and faced with the challenge of a formidably large state space. As a way
out, one studies simpler quantities such as single-site occupation numbers E[ηx(t)] or
two-point correlation functions E[ηx(t)ηy(t)]. Duality sometimes allows to map the time-
evolution, of, say, the two-point correlation functions for a system of one million particles
to the time-evolution of a two-particle system, a considerable simplification.

Date: 12 August 2024.
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On lattices, the technique is well-developed. Much less is known for particles in the
continuum. It turns out that, if one seeks to generalize duality to the continuum, it
is advantageous to work with intertwining instead. We prove a general theorem for
consistent, conservative processes with finitely many particles. Such processes may be
modleled either with labeled particles or with counting measures.

2. INTERTWINING FOR CONSISTENT PARTICLE SYSTEMS

Let (X,X ) be a well behaved measurable space (e.g. Polish) and N<∞ the space of
finite counting measures η on X. Every counting measure is a sum of finitely many Dirac
measures, η = δx1 + · · ·+ δxn. Let (ηt)t≥0 be a continuous-time Markov process with state
space X and let (Pt)t≥0 be its semigroup. The process is conservative if the total number of
particles stays constant in time and it is consistent if time evolution and random removal
of particle, uniformly among the finitely many particles, commute. That is, introducing
the annihilation operator

Af
(
δx1 + · · ·+ δxn

)
=

n∑
i=1

f
(∑
j 6=i

δxj

)
we ask that PtAf = APtf for every measurable test function f : N<∞ → R+. We assume
that there is a compatible process for labelled configurations, i.e., for each n a process
(X

(n)
1 (t), . . . , X

(n)
n (t))t≥0 with state space Xn and semigroup p(n)t such that (ηt) started in

δx1 +· · ·+δxn equals δ
X

(n)
1 (t)

+· · ·+δ
X

(n)
n (t)

with X(n)(t) started in (x1, . . . , xn). The factorial

moment measures η(n)t satisfy∫
fdη

(k)
t =

∑
1≤i1,...,ik≤n:

pairwise different

f
(
X

(n)
i1

(t), . . . , X
(n)
ik

(t)
)

for all measurable f : Xk → R+.

Theorem 2.1. [3] Let (ηt)t≥0 be a conservative and consistent Markov process with state
space N<∞, and ((X(n)(t))t≥0 a compatible family of processes with state space Xn. Then

Eδx1+···+δxn
[∫

fdη
(k)
t

]
=

∑
1≤i1,...,ik≤n:

pairwise different

E(x1,...,xk)
[
f
(
X

(k)
1 (t), . . . , X

(k)
k (t)

)]

for all k ∈ N, measurable f : Xk → R+, n ∈ N, (x1, . . . , xn) ∈ Xn and t ≥ 0.

Choosing, for example, k = 1 and f = 1A the indicator of a set A ⊂ X, we find that
the expected number of particles in A is

Eδx1+···+δxn
[
ηt(A)

]
=

n∑
i=1

p
(1)
t (xi, A).

Thus, the time-evolution of the intensity measure of ηt is determined by the one-particle
dynamics! That is exactly the kind of simplification one is after. In [3] we explain
how the theorem may be recast as a self-intertwining relation with a signed kernel K,
representing Lenard’s K-transform, and how it relates to existing results on lattices.
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3. INTERTWINING WITH ORTHOGONAL POLYNOMIALS

Suppose in addition that the process (ηt) has a reversible measure ρ. Assume that
the reversible measure is the law of a completely random measure, i.e., under ρ the
occupation numbers η(A) for disjoint observation windows are independent. This is
the case, for instance, when ρ is the distribution of a Poisson point process. Let Pn ⊂
L2(N<∞, ρ) be the closure of linear combinations of monomials

η 7→ η(A1) · · · η(Ak) k ≤ n, A1, . . . , Ak ⊂ X.

We define an orthogonalized version of the above monomial by subtracting the
orthogonal projection onto Pn−1. The result is denoted with the Wick dots from
mathematical physics as : η(A1) · · · η(Ak) :. Under our conditions on ρ, we have

: η(A1) · · · η(Ak) : =
k∏
i=1

: η(Ai) :

whenever A1, . . . , Ak are disjoint. Below expressions like : ηt(A1) · · · ηt(Ak) : should be
read as follows: first, orthogonalize, this gives a function from N<∞ to R (defined up to
ρ-null sets); second, evaluate that function in ηt.

Theorem 3.1. [3] In the setup of Theorem 2.1, assume in addition that (ηt) has a reversible
measure ρ. Then

(3.1) Eδx1+···+δxn
[
: ηt(A1) · · · ηt(Ak) :

]
=:

∫
(p

(k)
t fk)dη

k :
(
δx1 + · · · δxn

)
.

for all k, A1, . . . , Ak, and ρ-almost all µ = δx1 + · · · δxn, with fk)(x1, . . . , xk) =
∏k

i=1 1Ai
(xi).

Write 〈·〉ρ for expectation with respect to the reversible measure ρ. When k = 2 and
A1 and A2 are disjoint, the left side in Eq. (3.1) is a kind of centered moment

Eδx1+···+δxn
[ 2∏
i=1

(
ηt(Ai)− 〈η(Ai)〉ρ

)]
.

For the right side in Eq. (3.1) , we proceed as follows:
(1) Define

Ft(x1, x2) := P(x1,x2)(X
(2)
1 (t) ∈ A1, X

(2)
2 (t) ∈ A2).

This is the probability that in the two-particle process started in (x1, x2), at time
t particle no. 1 is in A1 and particle no. 2 is in A2.

(2) Consider the function Gt : N<∞ → R+ given by

Gt(δx1 + · · ·+ δxn) =
∑

1≤i,j≤n

Ft(xi, xj).

The function Gt is in P2 and we denote with : Gt : its orthogonal version, i.e., Gt

minus its projection onto P1. The right side in (3.1) is simply

: Gt : (δx1 + · · ·+ δxn).

In [3] we explain how the theorem generalizes known dualities with orthogonal
polynomials on the lattice. Applications of intertwining relations in the continuum are
considered in [4]. In [2, 1] we explain the algebraic approach and we explore
connections with concepts from quantum mechanics, current algebras, chaos
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decompositions, non-Gaussian white noise analysis. In these articles we also consider
concrete classes of distributions, processes, orthogonal polynomials. This brings in
Poisson and negative binomial point processes, Gamma random measures, Meixner and
Charlier polynomials, measure-valued processes, and spatial birth-death processes.
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In [6], with Pierre Patie, we introduced interweaving relations, between the square
Bessel semigroup pQpβqt qtě0 of index β ´ 1 ą ´1 (the associated semigroup is B2x ` βBx for
x P r0,`8q) and the analogous birth-and-death semigroup p rQpβqt qtě0 whose generator is
pn`βqB``nB´, for n P Z` and where B`, B´ are respectively the jump generators to the
left and right neighbour. More precisely, we have, for any t ě 0,

Q
pβq
t Λ “ Λ rQ

pβq
t

rQ
pβq
t

rΛ “ rΛQ
pβq
t

ΛrΛ “ Q
pβq
1

rΛΛ “ rQ
pβq
1

where Λ and rΛ are respectively the Markov kernels from r0,`8q to Z` and from Z` to
r0,`8q given by:

‚ For any x P r0,`8q, Λpx, ¨q is the law of a Poisson random variable of parameter
x.

‚ For any n P Z`, rΛpn, ¨q is the law of a standard Gamma random variable of shape
parameter n` β.

The interest of these relations is that they enable to transfer informations from one of
the semi-group to the other one, up to a deterministic warming time whose value is 1.

Our goal in this talk based on [5] is to investigate if such relations are common or not,
in the finite context to begin with. Worse, we will only consider Markov kernels P and rP
defined on the same finite state space V .

We need some definitions:

Intertwining from P to rP :

PΛ “ Λ rP

where the link Λ is another Markov kernel on V . When Λ is invertible, the relation is
said to be faithful.

Bi-intertwining relation between P and rP , when in addition:

rP rΛ “ rΛP

with another link rΛ from V to V .
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Strengthening of bi-intertwining relations: interweaving relations, when furthermore
there exists a probability distribution q “ pqnqnPZ` on Z` such that

ΛrΛ “
ÿ

nPZ`

qnP
n

It is a bi-interweaving relation, when for a probability distribution rq “ prqnqnPZ` on Z`,

rΛΛ “
ÿ

nPZ`

rqn rP
n

These relations are said to be faithful when Λ and rΛ are invertible.

We begin by presenting two results showing that interweaving relations relations are
quite common:

Theorem 1. Assume that P and rP are irreducible and similar. Then there exists a faithful
bi-interweaving relation between them, with a probability q whose support contains at most
m ` 1 points, where m is the common period of P and rP . Thus when P is aperiodic, there
exists a faithful bi-interweaving relation between P and rP with a probability q “ rq having a
support with at most two points. When in addition of aperiodicity, we assume that none of
the eigenvalues of P vanishes, then there exists a faithful bi-interweaving relation between
P and rP with q a Dirac mass.

Next, rather assume P and rP are similar and non-transient kernels. Denote by C1,
C2, ..., C` (respectively rC1, rC2, ..., rC`) the irreducible classes of P (resp. rP ). They are
in the same number ` P N, because this is the multiplicity of the eigenvalue 1. For all
l P J`K B t1, 2, ..., `u, denote PCl (resp. rP

rCl
) the restriction of P (resp. rP ) to Cl (resp. rCl).

Theorem 2. There exists a faithful bi-interweaving relation between P and rP if and only if
there exists a permutation σ P S` and a probability q “ rq on Z` such that for any l P J`K,
|Cl| “ | rCσplq| and there is a faithful bi-interweaving relation between PCl and rP

rCσplq
with the

same probability q. It can furthermore be imposed that q has a finite support.

By contrast, two non-transient Markov matrices P and rP are similar if and only if
there exists a faithful bi-intertwining relation between them. Thus there is a faithful
bi-intertwining relation but no faithful bi-interweaving relation between

P B

¨

˚

˚

˝

1 0 0 0
0 1{3 1{3 1{3
0 1{3 1{3 1{3
0 1{3 1{3 1{3

˛

‹

‹

‚

rP B

¨

˚

˚

˝

1{2 1{2 0 0
1{2 1{2 0 0
0 0 1{2 1{2
0 0 1{2 1{2

˛

‹

‹

‚

The structure of the state space deduced from the Markov kernel is somewhat more
preserved by interweaving relations than by intertwining relations.

Extending the proofs of the previous results to the “degenerate” framework where
one of the Markov kernel is absorbing, we recover a result due to Matthews [4] relating
the construction of strong stationary times and the spectrum, in the context of
reversible Markov kernels (with non-negative eigenvalues). This point of view and the
concept of spectral models are next extended under the hypothesis that the considered
Markov kernels only admits non-negative eigenvalues (with Jordan blocks of any
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dimension). Finally we end the talk by mentioning the extensions to the easier
continuous-time framework.
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Given an integer partition λ, a reverse plane partition π with shape λ is a filling of λ
with non-negative integers (πij, (i, j) ∈ λ) which is weakly increasing across rows and
down columns. Let RPP(λ) denote the set of reverse plane partitions of shape λ. Fix
λ, and consider the Markov chain on RPP(λ), defined as follows: for each (i, j) ∈ λ,
subtract one from πij at rate

bij(π) = (πij − πi,j−1)(πij − πi−1,j),

with the convention πi,0 = π0,j = 0. The infinitesimal generator of this Markov chain is
given by the difference operator

Gλ =
∑

(i,j)∈λ

bij(π)Dπij ,

where Dn is the backward difference operator Dnf(n) = f(n− 1)− f(n).
If π is a Markov chain on RPP(λ) with generator Gλ and µ ⊂ λ, then the restriction of

π to µ is a Markov chain on RPP(µ) with generator Gµ. In particular, the first row of π is
a Markov chain in its own right, and it is natural to think of it as an interacting particle
system on the non-negative integers: the values nj := π1j, j = 1, . . . , λ1 are the positions
of λ1 particles; the left-most particle at position n1 jumps to the left at rate n2

1, while for
each j > 1, the particle at position nj jumps to the left at rate nj(nj − nj−1). In fact, this
interacting particle system is closely related to a discrete (repulsive) delta Bose gas.

We may also consider restrictions of Markov chain on RPP(λ) with generator Gλ to
certain skew diagrams λ/µ. For this we require that µ ⊂ λ◦, where λ◦ denotes the set
of (i, j) ∈ λ, such that (i + 1, j) ∈ λ and (i, j + 1) ∈ λ. Remarkably, if the initial law on
RPP(λ) is chosen correctly, then π|λ/µ will evolve as a Markov chain in its own right.

The simplest non-trivial example is related to Vandermonde’s identity(
n+m

n

)
=
∑
k

(
n

k

)(
m

k

)
.

Let λ = (2, 1), µ = (1), and write π11 = k, π12 = n, π21 = m. In this notation,

G(2,1) = k2Dk + n(n− k)Dn +m(m− k)Dm.

Suppose that, at time zero, π12 = n, π21 = m and π11 is chosen at random according to
the probability distribution

pn,m(k) =

(
n+m

n

)−1(
n

k

)(
m

k

)
, 0 ≤ k ≤ n ∧m.
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Then, if π evolves according to G(2,1), the restriction π|λ/µ = (π12, π21) is also a Markov
chain, in its own filtration, with generator

L =
n3

n+m
Dn +

m3

n+m
Dm.

More generally, if λ is the staircase shape δr+1 = (r, r − 1, . . . , 1) and µ = δr, then the
restriction π|λ/µ represents the ‘boundary values’ ni = πi,r−i+1, i = 1, . . . , r. Let us write
Gr = Gδr+1 in this case.

Theorem 0.1 ([1]). Suppose that, initially, the conditional law of π|δr , given the boundary
values (π1r, . . . , πr1), is proportional to

(0.1) Wr(π) =
∏

(i,j)∈δr

(
πi,j+1

πij

)(
πi+1,j

πij

)
.

Then, if π evolves according toGr, the boundary values (π1r, . . . , πr1) will evolve as a Markov
chain on Zr+ with generator

Lr =
r∑
i=1

Ar(n− ei)
Ar(n)

n2
iDni ,

where
Ar(n) =

∑
π∈RPP(δr): π|δr=n

Wr(π).

In [1] it is also shown that the Markov chain with generator Gr has a unique entrance
law starting from πij = +∞ for all (i, j) ∈ λ, and that the conclusion of the above
theorem remains valid under this entrance law.

The generator Lr is closely related to a discrete quantisation of the (r + 1)-particle
Toda chain, and the numbers Ar(n) are series coefficients of a particular fundamental
SL(r + 1)-Whittaker function, see [1] for more details.
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In this work we used the intertwining relationship to develop spectral theory for some
Markov processes defined on Carnot groups of step 2. One can define a sub-Riemannian
structure on G such that the horizontal vector fields are given by the first layer of the
Lie algebra g. The sub-Laplacian on G is defined as ∆H =

∑n
i=1X

2
i , where X1, . . . , Xn is

a basis of the first layer of g. In this work, we considered two classes of Markov
semigroups. First, we introduced a family of non-local operators obtained by
perturbation of ∆H. For any Lévy process with generator A, we defined ∆A = ∆H + AV ,
where AV is the Lévy operator on G acting only in the vertical directions. We showed
that any left-translation invariant Markov process on G whose horizontal projections
coincides with the Brownian motion on euclidean spaces, must have the generator of
the form ∆A. Using the Fourier analysis on nilpotent Lie groups, we obtained
intertwining relationship between ∆A and some operators defined on euclidean spaces.
This enabled us to get a complete description of the spectrum of ∆A. Subsequently, we
considered linear perturbations LA = ∆A + D, where D denotes the generator of the
dilation semigroup on G. Denoting LA by L when A ≡ 0, it is known that L is the
generator of the Ornstein-Uhlenbeck (OU) semigroup on G. Francoise Lust-Piquard [1]
proved that the spectrum of L is the set of all negative integers, a phenomenon also
exhibited by OU operators on euclidean spaces. This surprising connection motivated us
to search for intertwining relationships between the OU operators on G and euclidean
spaces. One of our main results in this direction is the following:

Theorem 0.1. The operator LA introduced above generates an ergodic Markov semigroup
on G. Moreover, there exists a Markov operator ΓA such that LΓA = ΓALA.

With the above result, we proved isospectrality of the perturbations, that is, σ(LA) =
−N0 for any A. In addition to that, we proved existence of Markov operators Π and ΛA

such that LAΠ = ΠL̃ and LΛA = ΛALA, where L̃ and L̃ are diffusive OU operators on
some euclidean spaces.
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In this talk we consider general intertwining of Markov semigroups and the
implications thereof. We discuss questions such as the simultaneous intertwining of
different boundary conditions, the preservation of the local time and the validity of the
weak Krein property in the case one of the intertwining semi-groups is a generalized
diffusion. We also present the intertwining of the class of all generalized one-sided
Laguerre semigroups with the classical Laguerre semigroup with emphasis on which
properties easily transfer from the latter diffusion to the whole class of non-selfadjoint
semigroups and which properties require additional efforts and we illustrate how we
overcome these difficulties.

Here, we always assume that we have two Markov semigroups P = (Pt)t≥0 and
Q = (Qt)t≥0 on the same Lusin space (E, E) pertaining to two strong Markov processes
X = (Xt)t≥0, Y = (Yt)t≥0. In addition, we take for granted the existence of two excessive
measures mP ,mQ for these semigroups which allow for their extension to the Hilbert
spaces L2(mP ), L

2(mQ) and guarantee the existence of adjoint semigroups P̂ , Q̂

connected to two moderate Markov processes X̂ = (X̂t)t≥0, Ŷ = (Ŷt)t≥0. Also, we
assume the existence of Λ : DΛ ⊆ L2(mQ) → L2(mP ) , which is bounded, linear, order
preserving operator such that DΛ = L2(mQ),ΛDΛ = L2(mP ), i.e. Λ has dense domain
and dense range. Regardless of whether 1E ∈ L2(mQ) or not we consider Λ to be mass
preserving, i.e. Λ1E = 1E. This Λ will typically be an intertwiner between semigroups
which in this case would read off as: for all t ≥ 0

(0.1) PtΛ = ΛQt on DΛ ∪ 1E.

Finally, let b ∈ E be regular for itself, i.e. with

TX
b = inf{t > 0 : Xt = b} and T Y

b = inf{t > 0 : Yt = b}
then

Pb(T
X
b = 0) = Pb(T

Y
b = 0) = 1.

We set for q ≥ 0, x ∈ E,

φX
q (x) = Ex[e

−qTX
b ] and φY

q (x) = Ex[e
−qTY

b ].

Since b is regular there are local and inverse local times1 at b

lX = (lXs )s≥0 and lY = (lYs )s≥0

1τ ·t = inf{s > 0 : l·s > t}
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τX = (τXt )t≥0 and τY = (τYt )t≥0.

Since τX , τY are potentially killed subordinators

Eb[e
−qτX1 ] = e−ΦX(q) and Eb[e

−qτY1 ] = e−ΦY (q) for q ≥ 0.

ΦX ,ΦY are Bernstein functions, i.e. for X

ΦX(q) = δX︸︷︷︸
killing rate

+ γXq︸︷︷︸
elasticity parameter

+

∫ ∞

0

(1− e−qs) µX(ds)︸ ︷︷ ︸
jump measure

with δX ≥ 0, γX ≥ 0 and µX the jump measure of the subordinator. The same is valid for
ΦY . Define the killed semigroups P †, Q† via

P †
t f(x) = Ex[f(Xt), t < TX

b ] and Q†
tf(x) = Ex[f(Yt), t < T Y

b ], x ∈ E.

Then we can formulate our first theorem which is a slightly narrower than our result in
[2, Theorem 2.1]

Theorem 0.1. Under the hypothesis for Λ above and with the additional assumptions

Λ1b(x) = 1b(x); Λ̂1b(x) = 1b(x); ΛQtf(b) = Qtf(b), Λ̂P̂tf(b) = P̂tf(b),

where Λ̂ is the adjoint of Λ and f ranges across the respective domains of Λ, Λ̂ we have the
equivalence of the following relations

(1) P †
t Λf = ΛQ†

tf for all t ≥ 0 and f ∈ DΛ ∪ {1E};
(2) PtΛf = ΛQtf for all t ≥ 0 and f ∈ DΛ ∪ {1E}.

They imply
(3) φX

q (x) = ΛφY
q (x)−mP a.e.;

(4) ΦX ≡ ΦY , i.e. the local times at {b} coincide.

Here, we remark that the intertwining implies the identity of the inverse local times
of the two Markov processes and since the killed semigroups can be thought of as
minimal semigroups then the stated equivalence implies the simultaneous intertwining
of different boundary conditions which are reflected in the potentially different P,Q
that correspond to the same minimal semigroups. This is in sharp contrast for higher
dimensional intertwining of Laplacians and the related semigroups pertaining to killed
Brownian motions.

Next, we assume that Q is a generalized diffusion and E = [0,∞) with:
(1) generator G = d

dmQ

d
dx

where mQ(0) = 0,mQ(∞) = ∞ and mQ being
non-decreasing;

(2) 0 is a regular boundary for Q.
(3) The killed semigroup Q† = (Q†

t)t≥0 is defined as

Q†
tf(x) = Ex[f(Yt), T

Y
0 > t].

(4) Q† is self-adjoint with σ(Q†) ⊆ R.
Then Q† extends to L2(mQ) and possesses the Krein property:

(1) for f ∈ L2(mQ) and t ≥ 0

Q†
tf =

∫
σ(Q†)

e−qtdEY
q f,
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where EY = (EY
q )q∈R are orthogonal projections2 on L2(mQ);

(2) for f, g ∈ L2(mQ)

< dEY
q f, g >mQ

=< f, hq >mQ
< g, hq >mQ

νY (dq).

We note that in [2] the possible generalized diffusions have less stringent conditions but
for the sake of clarity and conciseness we have imposed the restrictions above.

For generalized diffusions the Bernstein function enjoys

− lnE0(e
−τY1 ) = ΦY (q)

= δY + γY q +

∫ ∞

0

(1− e−qs)µY (ds)

with

µY (ds) = mY (s)ds =

∫ ∞

0

e−sqνY (dq)ds.

Then the following corollary is taken from [2, Corollary 2.6] and reflects the presence of
the weak Krein property.

Corollary 0.2. Let P †
t Λ = ΛQ†

t as in the main theorem. Let in addition for all
q ∈ σ(Q†), EY

q : DΛ 7→ D∗. Then for f ∈ DΛ, g ∈ L2(mP )

P †
t Λf =

∫
σ(P †)

e−qtdEX
q Λf

< dEX
q Λf, g >mP

=< f, hq >mQ
< g,Λhq >mP

νY (dq).

In the talk we also consider the spectral expansion of one-sided generalized Laguerre
semigroups as developed in [3]. To introduce briefly the setting recall that the Laguerre
semigroup Q = (Qt)t≥0 is generated by

Gf(x) = xf ′′(x) + (1− x)f ′(x), x > 0.

mQ(x) = 1x>0e
−xdx is stationary law and

Qtf =
∑
n≥0

e−nt < f,Ln >mQ
Ln, ∀f ∈ L2(mQ), t ≥ 0.

(Ln)n≥0 are the Laguerre polynomials

Ln(x) = ex
1

n!

dn

dxn
(xne−x)

and form an orthonormal basis in L2(mQ).
The generalized Laguerre semigroups have the properties

(1) Pt : C0(R+) 7→ C0(R+), ∀t ≥ 0, with P0f = f .
(2) ∃mP stationary law such that

mPPtf = mPf, t ≥ 0.

2limq↑r E
Y
q = EY

r , limq↓−∞ EY
q = 0, limq↑∞ EY

q = Id,EY
q EY

r = EY
min{q,r}
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(3) The deterministic space-time transform

(Kt)t≥0 = (Plog(1+t) ◦ d(1+t))t≥0

defines a Feller semigroup3, where dcf(x) = f(cx).
Here, we assume in addition that the pertaining Markov process can jump downwards
only. One of the main results taken from [3] states.

Theorem 0.3. For any one-sided generalized Laguerre semigroup there exists a order
preserving, bounded, injective, non-invertible linear operator Λ : L2(mQ) 7→ L2(mP ) with
dense range such that

PtΛ = ΛQt, ∀t ≥ 0.

Λf(x) = E[f(xIϕ)], where Iϕ =
∫∞
0

e−ηsds.

We remark that Iϕ is defined in [3] and is a special exponential functional of a
subordinator related to the process behind the generalized Laguerre semigroup.

For the rest of the talk we presented how the semigroup P can be expanded with the
help of the generalized Laguerre polynomials and the difficulties the description of the
co-eigenfunctions posed. We discuss topics such hypocoercivity, threshold of spectral
expansion and techniques employed in the derivation of the results. From technical
perspective the biggest role is played by the so-called Bernstein-gamma functions which
are thoroughly studied in [1]
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3K are semigroups of the positive 1-self-similar Markov processes (Xcx
t )

d
= (cXx

t/c)t≥0 with infinite
life-time and an entrance law from zero mP .
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1. MOTIVATION

This talk is based on the work [3] of Patie and the ongoing joint work [6] of the author
with Patie.

The squared Bessel process of index 0 is the unique solution (Xt)t≥0 to the SDE

dXt = 2(dt+
√
XtdWt), t ≥ 0,

and it is well-known that it possesses the following stochastic invariance properties

(1) (g−1Xgt)t≥0
d
= (Xt)t≥0 for all g > 0 (self-similarity),

(2) (t2X1/t)t≥0
d
= (Xt)t≥0 (time-inversion).

A natural question is if these (and, of course, the Markov property) are all of the
invariance properties of the squared Bessel process.

This question has an affirmative answer, which is provided by Lie group symmetry
methods as employed in [1] to obtain a complete description of the invariance properties
of the Brownian motion. While powerful, these methods are limited to the analysis of
diffusions because of the requirement of locality of the generator.

A dual, and perhaps more natural, question to ask is if given an invariance property,
can one determine all Markov processes possessing this symmetry. Patie observed that
when this question is considered from the viewpoint of Hilbert spaces, the analysis is not
limited to diffusions, and it even generalizes beyond Markov processes. In the sequel, we
provide this precise viewpoint and the answer to this dual question when the invariance
property considered is self-similarity.

It is classical that a Feller process with semigroup (Pt)t≥0 acting on C0(0,∞) is (1)-self-
similar if it satisfies the semi-invariance property

(1.1) Pt = d−1
g Pg−1tdg

for all t ≥ 0, g > 0, where dgf(x) = f(gx) is the group of dilations; this goes back to the
work of Lamperti [2], which also contains a characterization of all self-similar Feller
processes on (0,∞). It was a fundamental observation of Patie in [3] that this
invariance property (1.1) should be realized on the Hilbert space L2(G) with
G = (0,∞), whereupon the group of dilations, subject to an appropriate normalization,
will constitute a unitrary representation of the multiplicative group (G,×) on L2(G).
Deep results in respresentation theory, operator algebras, and spectral theory can then
be used to answer the dual question above.
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2. MAIN RESULTS IN THE SELF-ADJOINT SETTING

For a Markov process whose associated semigroup admits a self-adjoint generator B
acting on L2(G), [3] shows that the self-similarity of the process is equivalent to its
generator B satisfying the fixed point property

(2.1) B = πgg
−1Bπ∗

g

for all g ∈ G, where πG = (πg)g∈G is the strongly continuous unitary representation of G
on L2(G) given by πgf(x) = g−1/2f(g−1x). The fixed point property (2.1), which we
remark interpolates between the Weyl commutation relation and the canonical
commutation relation (appropriately translated from L2(R) to L2(G)), can be satisfied
by arbitrary linear operators on L2(G), and we say that any operator satisfying (2.1) is
self-similar. Our main results consist of the complete description of self-adjoint
self-similar linear operators on L2(G).

The representation πG induces an action of G on the set S(L2(G)) of possibly
unbounded self-adjoint operators on L2(G)

sπ(·) : G → Aut(S(L2(G)))

given by
sπg(B) = πgg

−1Bπ∗
g

for all g ∈ G and B ∈ S(L2(G)). The self-similar self-adjoint operators on L2(G) are those
fixed by sπG, and the set of all such operators is denoted

FS
πG

= {B ∈ S(L2(G)); sπG(B) = B}.

Their complete description is obtained in Theorem 2.5, which fundamentally relies on
the classical Stone-von Neumann theorem and novel spectral theoretic decompositions
of the unitary representation πG, its unitary commutant, and certain unitary intertwiners
(see Proposition 2.4).

Definition 2.1. We make use of the following notation for conjugation by an injective
operator:

AdΛ(T ) := Λ−1TΛ,

where T : Dom(T ) ⊆ H → H is a densely defined operator on a Hilbert space H and
Λ : H → H′ is an injective operator between the Hilbert spaces H and H′.

Definition 2.2. Let B ∈ S(L2(G)) be a self-adjoint operator with a spectral representation

B = AdU(Mf(R)),

where U : L2(G) → L2(R) is unitary and Mm(R) : Dom(Mm(R)) ⊆ L2(R) → L2(R) is the
multiplication operator

Mm(R)f(ξ) = m(ξ)f(ξ)

with m : R → R measurable and whose essential image is the spectrum of B. The
functional calculus for B is the map

L∞(R) ∋ u 7→ u(B) := AdO(Mu◦m(R)) ∈ B(L2(G)),

which is independent of the choice of spectral representation for B.
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Theorem 2.3 ([3]). There is, up to composition by a unitary multiplication operator on
L2(R), a unique unitary operator O : L2(G) → L2(R) such that

Oπgf(ξ) = giξOf(ξ)

for all f ∈ L2(G), g ∈ G, ξ ∈ R. Moreover, the unitary representation is generated by the
self-adjoint operator

D = AdO(MR) ∈ S(L2(G));

that is,
πg = giD ∀g ∈ G.

The Mellin transform is the unique operator O exhibited in the above theorem. By
restricting the operator onto C∞

c (G), we recover the classical representation of the Mellin
transform as an integral operator:

O|C∞
c (G)f(ξ) =

∫ ∞

0

giξ−1/2f(g)dg.

It is also shown in [3] that the group of unitary operators that commute with πG and
the set of unitary operators that intertwine πG with its adjoint are in bijection with the
following set of unimodular functions on R:

S(R) = {f : R → C; f is measurable, |f | = 1}.

Proposition 2.4 ([3]). The unitary commutant of πG is the subgroup of unitary operators
on L2(G) commuting with πG:

Cπ = {Λ ∈ U(L2(G)); πGΛ = ΛπG}.

It is explicitly characterized using the functional calculus for D:

Cπ = {u(D); u ∈ S(R)}.

The set of unitary intertwiners of πG and its adjoint group is the set of unitary operators
that intertwine πG with π∗

G:

Iπ,π∗ = {H ∈ U(L2(G)) : πGH = Hπ∗
G}.

It is the right (or, equivalently, left) coset of Cπ by the unitary involution J ∈ U(L2(G))
given by Jf(x) = x−1f(x−1):

Iπ,π∗ = CπJ = JCπ.

Theorem 2.5 ([3]). (1) Let H0 denote the Hankel transform of order 0, the unitary
operator on L2(G) given by

H0 = JAdO(Mu0(R))

where u0 ∈ S(R) is the function

u0(ξ) =
Γ(1/2 + iξ)

Γ(1/2− iξ)

for all ξ ∈ R. The Hankel transform H0 belongs to Iπ,π∗ and it diagonalizes the
generator of the squared Bessel process of order 0:

B0 = AdH0(MG).
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(2) The set of self-adjoint self-similar operators on L2(G) is the orbit through of B0 of
Cπ acting by conjugation:

FS
πG

= {AdΛ(B0); Λ ∈ Cπ}.

Equivalently, it is the orbit through MG of the partial group Iπ,π∗ acting by
conjugation:

FS
πG

= {AdH(MG); H ∈ Iπ,π∗}.
Moreover, FS

πG
is in bijection with the equivalence classes of S(R) under the

equivalence relation

u ∼ v
def⇐⇒ ∃λ ∈ C with |λ| = 1 such that u = λv.

(3) Set Hu = JAdO(Mu(R)) for some u ∈ S(R). Define the operator

Bu = AdHu(MG) ∈ FS
πG

and the function

Ψu(ξ) = u(−ξ − i/2)u(−ξ − i/2)

for all ξ ∈ R, where we assume that u has an analytic continuation on a domain
containing the strip {z ∈ C : |ℑ(z)| ≤ 1/2}. It follows that

O−Buf(ξ) = Ψu(ξ)O+f(ξ) on Dom(Bu),

where O± : L2(G, g∓1dg) → L2(R) are unitary operators that diagonalize the
representations of G on L2(G, g−1dg) and L2(G, gdg), respectively, given by

π+
g f(x) = f(g−1x)

for all f ∈ L2(G, g−1dg) and

π−
g f(x) = g−1f(g−1x)

for all f ∈ L2(G, gdg). More precisely, O± are characterized by the identities

O±π
±
g f(ξ) = giξO±f(ξ) ∀f ∈ L2(G, g∓1dg).

(4) Assuming the hypotheses of (3), Bu generates a Markov semigroup if and only if

u(ξ) =
Wϕ(iξ + i/2)

Wϕ(−iξ + 1/2)

for all ξ ∈ R, where ϕ is a Bernstein function and Wϕ(iξ + 1) = ϕ(iξ)Wϕ(iξ) is
the corresponding Bernstein-Gamma function introduced in [5]. Moreover, in the
notation of (3),

Ψu(ξ) = ϕ(iξ)ϕ(−iξ) = Ψu(0) +
σ2
u

2
ξ2 +

∫
R×

(1− cos(ξy))Πu(dy),

where Ψu(0), σu ≥ 0 and Πu is a symmetric Lévy measure.
(5) ([2]) Assuming the hypothesis of (3) and using the notation of (4), if Bu generates

a Markov semigroup, then

Bu|C∞
c (G)f(x) =

σ2
u

2
B0f(x) +

∫
R×

f(xy)
Πu(dy)

x
− Ψu(0)

x
f(x)

but C∞
c (G) need not be a core for Bu.
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This provides a complete description of self-adjoint self-similar operators on L2(G) in
terms of their spectral representations along with classical representations (i.e. as
pseudo-differential and integro-differential operators) of those operators in FS

πG
that

admit such descriptions. It is important to observe that the spectral representation of
self-similar operators may be restricted to obtain other classical representations of the
operators, whereas it is not possible in general to lift these classical representations to
obtain a spectral representation. Indeed, the integro-differential representation of Bu in
item (5) in general does not even uniquely define the operator because it fails to even
specify it on a core, so recovering a spectral representation is impossible.

We also remark that [3] develops a rich theory of scaling limits and universality for
self-adjoint self-similar operators.

3. MAIN RESULTS IN THE NON-SELF-ADJOINT SETTING

A complete description of the non-self-adjoint self-similar operators on L2(G)
analogous to the one obtained in [3] is currently unavailable. However, much progress
has been made in [4], which shows that the generators of self-similar Markov
semigroups on G are self-similar pseudo-differential operators weakly similar to the
generator of the squared Bessel semigroup. The authors also leverage this intertwining
to obtain a spectral representation of these self-similar operators on at least a dense
subspace of their domains.

We pursue the description of non-self-adjoint self-similar operators on L2(G) in [6] by
making use of the algebraic insights developed in [3]. The representation theoretic and
operator theoretic observations therein generalize to the non-self-adjoint setting, which
enables us to construct non-self-adjoint self-similar operators directly in terms of their
spectral representations, extending the results in [4] along the lines of a generalization
of the Stone-von Neumann theorem for non-self-adjoint operators.
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We say that a probability kernel Q is intertwined on top of another probability kernel
P if there exists a third probability kernel K (the “intertwiner”) such that

(0.1) PK = KQ.

Given a square probability kernel P of size d × d, we are interested in the problem of
finding probability kernels Q and K of the same size as P such that Q is intertwined on
top of P with intertwiner K, and moreover Q is “as simple as possible”. The basic idea
is to define K0 to be the identity matrix and then inductively define probability kernels
K1, K2, K3, . . . by

(0.2) Kt+1 := Kt + PKt −KtQ(P,Kt) (t ≥ 0),

for some cleverly chosen function Q. If we are lucky, then there exist probability kernels
K and Q such that

(0.3) Kt −→
t→∞

K and Q(P,Kt) =: Qt −→
t→∞

Q,

which implies

(0.4) PK −KQ = lim
t→∞

(
PKt −KtQt

)
= lim

t→∞

(
Kt+1 −Kt

)
= 0,

leading to a solution of (0.1). We focus on a function Q whose choice is based on the
following two guiding principles:

• We want the kernel Q to be as simple in possible, in the sense that as many as
possible of its off-diagonal elements are zero.

• We put restrictions on K by requiring some of its off-diagonal elements to be
zero.

More precisely, we fix a set

(0.5) Z ⊂
{
(x, y) ∈ {1, . . . , d}2 : x ̸= y

}
that has the interpretation that these are the off-diagonal elements of K that we want to
be zero, and define Q = QZ as follows. First, we set

(0.6)
KZ :=

{
K :K is a probability kernel of size d× d

such that K(x, y) = 0 for all (x, y) ∈ Z
}
,

and we let CZ(P,K) denote the set

(0.7)
CZ(P,K) :=

{
Q :Q is a probability kernel of size d× d

such that K ′ := K + PK −KQ ∈ KZ

}
.

Date: August 22, 2024.
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For given probability kernels P,K of size d×d such that K ∈ KZ , we then define QZ(P,K)
by setting

(0.8) QZ(P,K) := the unique minimiser of Q 7→
∑
x̸=y

Q(x, y) in CZ(P,K),

where the sum runs over all 1 ≤ x, y ≤ d such that x ̸= y. The idea of minimising this
function is that we want as many as possible of the off-diagonal elements of Q to be
zero. It is should be noted that a priori, it is not clear that this is a good definition since
in general we do not know whether such a minimiser exists (since CZ(P,K) could be
empty) or whether the minimiser is unique.

In my talk, I presented numerical data for the evolution in (0.2) for probability kernels
P on sets of the form {1, . . . , d} that satisfy:

(1) P (x, y) = 0 for all |x− y| ≥ 2,
(2) P (d, d) = 1,
(3) the spectrum of P is contained in [0, 1].

I considered two possible choices of the set Z from (0.5), namely
(1) Z =

{
(x, x+ 1) : 1 ≤ x < d

}
,

(2) Z =
{
(x, x+ 1) : 1 ≤ x < d

}
∪
{
(x, x− 2) : 2 < x ≤ d

}
.

For the first choice of Z, I recovered a discrete-time analogue of an intertwining for
continuous-time Markov chains first described in [1]. For the second choice of Z I
discovered an intertwining that seems to be new. A more precise description of the
results and a collection of scripts that can be used to simulate (0.2) can be found in [2].
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PROJECTIONS OF THE ALDOUS CHAIN ON BINARY TREES:
INTERTWINING AND CONSISTENCY

MATTHIAS WINKEL

Abstract: Consider the Aldous Markov chain on the space of rooted binary trees with n
labelled leaves in which at each transition a uniform random leaf is deleted and
reattached to a uniform random edge. Now, fix 1 ≤ k ≤ n and project the leaf mass onto
the subtree spanned by the first k leaves. This yields a binary tree with edge weights
that we call a “decorated k-tree with total mass n”. We introduce label swapping
dynamics for the Aldous chain so that, when it runs in stationarity, the decorated k-trees
evolve as Markov chains themselves, and are projectively consistent over k. The
construction of projectively consistent chains is a crucial step in our construction of the
Aldous diffusion on continuum trees, which is the n → ∞ continuum analogue of the
Aldous chain. This is joint work with Noah Forman, Soumik Pal and Douglas Rizzolo.
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1. THE ALDOUS CHAIN

Denote by Tpl
n the set of rooted binary n-leaf planar trees (and (n− 1) branchpoints of

degree 3) and consider the following down-up transitions that define the “Aldous chain”:
1. Remove a uniform leaf (together with the adjacent edge and branchpoint).
2. Reinsert at a uniform edge (reversing the above steps at the chosen edge).

Proposition 1.1 (Aldous). This Markov chain has uniform stationary distribution on Tpl
n .

While this observation is elementary, Aldous [3] and Schweinsberg [10] actually showed
that the relaxation time is of order n2. As Aldous [1] had established a metric space
scaling limit for uniform n-leaf trees, the Brownian continuum random tree (BCRT), and
after finding some diffusive limits of projections, he conjectured the following.

Conjecture 1.2 (Aldous [2]). This Markov chain has a diffusive scaling limit when taking
n2 steps per unit time, with the distribution of the BCRT as stationary distribution.

This conjecture is delicate as the BCRT has a complicated local structure. One way to
capture this is to consider contour functions of uniform planar trees. Their scaling limit
is a Brownian excursion. Informally, the BCRT can be seen as the tree whose contour
function is a Brownian excursion, where each local minimum of the Brownian excursion
corresponds to a branch point of the BCRT, resulting in a dense set of branch points.

A version of this conjecture was resolved in [7], for unrooted trees and using a new
space of algebraic trees that does not capture metric distances in the trees, just tree
structure. Our approach to this conjecture [5] constructs the diffusively evolving BCRT

Date: 13 August 2024.
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as a (simple) Markov process with continuous paths in the usual Gromov–Hausdorff–
Prokhorov space of metric measure trees. [5] also includes a scaling limit result for a
continuous-time version of the Aldous chain. Following the spirit of Aldous’s approach
to continuum random trees, a key element of our construction is to first build a system
of projectively consistent evolution of trees spanned by k ∈ N leaves. The purpose of this
talk, based on [4], is to build the corresponding projectively consistent Markov chains
associated with the Aldous chain for all k ∈ [n] = {1, . . . , n} and fixed n ∈ N.

Aldous actually studied a version of this Markov chain on cladograms, which are leaf-
labelled trees. Indeed, we will eventually also work in the set T[n] of (non-planar) rooted
binary trees with n leaves labelled 1, . . . , n, but it is instructive to begin without labels.

2. PROJECTIONS

Fix a branchpoint and record the numbers of leaves (“sizes”) in the component
containing the root (“root component”) and in the other two components, “left”/“right”,
or “top”. This gives rise to induced transitions on vectors of length 3 with sum n:

1A. Reduce by 1 a component with probability proportional to its size.
2A. Increase by 1 a component with probability proportional to 2×size±1.

Note that the root component has 2×size+1 edges, while the other two components have
2×size−1 edges, and this is the meaning we attach to the ±1.

Problem 2.1. Eventually, a top component reaches size 0.

This corresponds to the branchpoint around which we decompose being removed. We
address this by further decomposing the root component along the path between the root
and the branchpoint (“spine”). In addition to 1A. and 2A., the induced transitions are:

1B. If a spinal component reaches size 0, remove it.
If a top component reaches size 0, replace it by the top spinal component.

2B. Or create a new size-1 component in each gap with probability proportional to 1.
Here “gap” refers to a position before the first, between two adjacent or after the last
component in the vector capturing the sizes of spinal components. The gaps correspond
to the edges on the spine, which are now not in any of the spinal components.

Problem 2.2. Eventually, a top component reaches size 0, with 0 spinal components.

From this degenerate state (all mass in one component), we can continue in a
Markovian way (start again from a state chosen suitably at random). More generally,
T◦(n)[k] =

⋃
s∈T[k]

{s}×
{

((ni)i∈[k], (nE,j)1≤j≤`E ,E∈IntEdge(s)) :ni, n
E
j ≥1, `E≥0,

∑
ni+

∑
nEj =n

}
is the set of possible vectors of component sizes when decomposing a tree in T[n] around
the branchpoints of the tree spanned by [k] and along the paths between branch points
and to the root. We denote by ρ◦(n)k : T[n] → T◦(n)[k] the natural projection and by κ{i,j}n the

distribution of ρ◦(n)2 (T ) for T ∼ Unif(T[n]) with labels 1 and 2 relabelled i and j.
1C. If a component nh is reduced to 0 with 0 spinal component on the parent edge

E, swap h with another label j and resample label j. Skip Step 2A.–2B.
Here, “swap” means swapping labels h and j = max{a, b, h} before the down-step, where
a and b are the smallest labels on the subtrees in s respectively adjacent to h and adjacent
to the parent edge of h in s. We do this swap in order to achieve consistency of these
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transition rules as k varies: if h ≤ k′ < a ≤ k, then the component of h does not reduce
to 0 in the process for k′, and if h ≤ k′ < b ≤ k, then there is a top spinal component.
“Resample” means label j is reinserted in an up-step by increasing a component or a gap
in the usual way. If the chosen component is a spinal component, turn it into the top
component labelled j. If the chosen component is top component i, split it using κ{i,j}ni .

For k = n, this gives a labelled version of the Aldous chain. Indeed, T◦(n)[n]
∼= T[n].

Proposition 2.3. This T[n]-valued chain has uniform stationary distribution.

We call it the “uniform chain”. Note that all labels are treated differently according to
their rank, but the stationary distribution turns out to still be uniform on T[n].

Theorem 2.4. Let (T (m))m≥0 be a stationary uniform chain. Then (ρ
◦(n)
k (T (m)))m≥0 is a

stationary Markov chain, which we call the “decorated k-tree chain”.

Furthermore, the Markov chains (ρ
◦(n)
k (T (m)))m≥0, as k ∈ [n] varies, form a system that

is projectively consistent via the natural projections T◦(n)[k+1] → T◦(n)[k] , k ∈ [n− 1].

3. INTERTWINING AND THE PROOF OF THEOREM 2.4

While the statement of Theorem 2.4 appears to call for an intertwining relation,
(T (m))m≥0 and (ρ

◦(n)
k (T (m)))m≥0 are actually not intertwined for 2 ≤ k ≤ n− 2. It turns

out that the labels involved in the projection are important. The intermediate space
T[n]

[k] =
⋃

s∈T[k]
{s}×

{
((Bi)i∈[k], (B

E
j )1≤j≤`E ,E∈IntEdge(s)) : i ∈ Bi, and Bi and BE

j partition [n]
}

captures these labels in the natural projection ρ[n]k : T[n] → T[n]
[k] .

Lemma 3.1. (T (m))m≥0 and (ρ
[n]
k (T (m)))m≥0 are intertwined using the link kernel Λ

[n]
[k] that

grafts to s independent uniform trees labelled Bi and BE
j .

Proof of Theorem 2.4. By Lemma 3.1 and the Rogers–Pitman [9] intertwining criterion,
(ρ

[n]
k (T (m)))m≥0 is a stationary Markov chain, and by the Kemeny–Snell/Dynkin criterion

[6], the further projection to T◦(n)[n]
∼= T[n] is also a stationary Markov chain. �

4. RÉMY TREE GROWTH

To prove Lemma 3.1, we appeal to Rémy tree growth [8], which uses up-steps from
T[m] to T[m+1] to insert leaf m+ 1 as in Step 2. of the Aldous chain. Rémy exploited this:

Proposition 4.1. The marginals of the Rémy tree growth chain are uniform on T[m], m ∈ N.

If we run Rémy’s tree growth chain starting from s ∈ T[k] and observe the growth
of components, we find that each component follows the up-steps of Rémy tree growth
hence growing uniform trees that are conditionally independent given their label sets.

Sketch proof of Lemma 3.1. Starting the uniform chain from T (0) ∼ Λ
[n]
[k](tk, ·) for some

tk ∈ T[n]
[k] and making one transition to obtain T (1), we have to show that the conditional

distribution of T (1) given ρ[n]k (T (1)) = t′k ∈ T[n]
[k] is Λ

[n]
[k](t

′
k, ·).

Indeed, the conditional independence and uniformity of subtrees labelled Bi and BE
j

is preserved under down- and up-steps in all cases, the delicate case being when a label
j ∈ [k] resamples in Step 1C., but then it resamles into a component that is uniform and
κ
{i,j}
n splits it into more uniform components if resampling is into top component i. �
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5. THE ALDOUS DIFFUSION

Let us finally return to our approach in [5] to construct the Aldous diffusion via a
consistent system of trees spanned by k ∈ N leaves. In [5], we use spaces of decorated
k-trees Tcont

[k] =
⋃

s∈T[k]
{s}×

{
((xi)i∈[k], (βE)E∈IntEdge(s)) :

∑
xi+

∑
E

∑
U∈βE Leb(U) = 1

}
,

where xi ≥ 0 can be seen as the proportion of the continuum of leaves in a component
labelled i and βE captures the proportions of an ordered collection of typically infinitely
many spinal components in an interval partition with blocks U of corresponding lengths
(Lebesgue measure Leb(U)).

Making any of this more precise or indeed using the projectively consistent system of
such decorated k-tree evolutions to obtain a continuous evolution of continuum trees
is well beyond the scope of this talk. However, the role that intertwining plays in this
setting, in combination with Dynkin’s criterion is unchanged. The decorated (k + 1)-tree
evolution is intertwined with a decorated k-tree evolution that is enriched by marking
the block to which k + 1 is projected, and the latter evolution projects to the decorated
k-tree evolution via Dynkin’s criterion, for all k ∈ N. For details, see [5].
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Since its introduction in the 1970s, the exclusion process has been a fundamental
model for interacting particle systems [1], with significant importance in non-equilibrium
statistical physics, including applications to transport phenomena such as traffic flow
and molecular biology [2]. While the simplest case of the exclusion process, involving
only identical particles, has been widely studied, much less is known when multiple
interacting species of particles are present.

In this work, we focus on understanding the effect of the presence of a single particle
of a different type, called an impurity particle. This question is motivated by both
theoretical and application perspectives. We define our model where a usual particle
hops forward to an empty site with rate 1, while an impurity hops to an empty site with
rate α. Additionally, a particle can overtake an impurity with rate β. Denoting a particle
by •, an empty site by ◦, and an impurity by ∗, the dynamics of the model can be
schematically represented by the following exchanges with their corresponding rates:

(0.1) •◦ 1−→ ◦ • ∗◦ α−→ ◦ ∗ •∗ β−→ ∗ • .

For α = β = 1, the impurity behaves as a usual second-class particle, which has well-
known properties. A TASEP with a single second-class particle can be viewed as a TASEP
with an extra site, where the site containing the second-class particle is replaced by a
pair of sites, consisting of a hole on the left and a particle on the right. The second-class
particle moves forward if the particle in the pair jumps forward, and moves backward if
the hole is overtaken by another particle. This pair representation is thoroughly discussed
in [3]. One of our contributions is a generalization of this pair representation to the case
of an impurity. In a nutshell: One can replace an impurity by a pair consisting of a
”special” hole followed by a ”special” particle, where the special hole has a (backward)
hopping rate β, meaning that if a particle encounters it, it will overtake it with rate β,
while the special particle has a (forward) hopping rate α. Unlike the case with unity
rates, this representation is highly non-intuitive. A major difference is that the special
hole and the special particle, initially neighbors, will soon move away from each other.
Yet surprisingly, if we examine the hole-particle pair in the new system, it exhibits the
same statistics as the impurity in the original process. This tool will be defined rigorously
in a future publication. We mention below two results obtained using it.
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FIGURE 1. An illustration of the pair representation. The position of the
box (denoted by z(t)) can be mapped to the position of an impurity with
the same initial condition (outside the box)

Theorem 0.1. Consider TASEP on the line with an initial uniform Bernoulli product
measure with density ρ and a single impurity particle initially located at the site X0. Define
the asymptotic speed of the impurity particle as v∗ = limt→∞

Xt

t
. This limit has a

deterministic value given by:

(0.2) v∗ = min{α, 1− ρ} −min{β, ρ}.

This result is already known in the literature and has been proved using integrable
techniques such as the Matrix Product Ansatz [4] and Bethe Ansatz [5]. Our novelty is to
provide a purely probabilistic, simpler proof based on the pair representation previously
mentioned.

If we place the impurity at the interface separating two different densities, little is
known about the system’s behavior, except in the case α = β = 1, where the impurity
selects an asymptotic speed sampled from a uniform distribution in the interval [1 −
2ρL, 1 − 2ρR], where ρL and ρR are the densities to the left and right of the impurity,
respectively [6]. For general α and β, the following distinction holds depending on the
value of α + β:

• If α+β > 1, the impurity does not impact the macroscopic behavior of the system
but may still have a non-deterministic asymptotic speed.

• If α + β < 1, the impurity induces a macroscopic perturbation in the TASEP
environment, attempting to impose a density 1 − α on its left and β on its right.
It will have a deterministic speed.

In the following theorem, We generalise the result in [6] for the case of an impurity, in
a special case of ρL = 1 and ρR = 0 and α + β < 1

Theorem 0.2. Consider TASEP on the line with only particles on the negative sites and only
holes on the positive sites. Additionally, let an impurity particle with rates α, β ≤ 1 and
α + β > 1 be located initially at the origin. Let Xt denote its position at time t. Then,

Xt

t

P−→ U as t → ∞,

where U is a random variable uniformly distributed in [1− 2β, 2α− 1].

For the case α > 1 in a 1− 0 step initial condition, the impurity particle has a non-zero
probability of escaping the rarefaction fan from the right and moving freely with velocity
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α in a void environment. We computed this escaping probability, denoted by R1:

(0.3) R1 =
α− 1

α + β − 1
1α>1.

A similar phenomenon can occur from the left if β > 1, and the associated escaping
probability is given by:

(0.4) L1 =
β − 1

α + β − 1
1β>1.

The remaining question is what happens to the impurity if does not escape the rarefaction
fan. This is the subject of the following conjecture.

Conjecture 0.3. Consider TASEP on the line with only particles on the negative sites and
only holes on the positive sites. Let an impurity particle with rates α > 1 and/or β > 1 be
located initially at the origin. Conditioned on non-escaping, the impurity particle has an
asymptotic speed sampled from a uniform distribution in the interval [−1, 1].

For arbitrary densities ρL and ρR with ρL > ρR, the distribution of the asymptotic speed
is still an open question. However, it will have the following support:

U ∈
[
max(1− 2ρL, 1− 2β),min(2α− 1, 1− 2ρR)

]
.

This remark holds only for α+ β > 1. If α+ β < 1, the impurity will have a deterministic
asymptotic speed, and the more interesting question concerns the macroscopic behavior
of the TASEP environment, which will generally be impacted by the presence of the
impurity. A rich phenomenology is observed as a function of the four parameters α, β,
ρL, and ρR. The full classification will be available in a future publication. An initial
preprint can be found in Chapter 5 of [7].

It is also possible to define the same model on the line where each site can either
contain a usual particle with probability ρ• or an impurity with probability ρ∗. The
hydrodynamic behavior of this model was studied in [8], where the macroscopic limit
shape was computed starting from a step initial condition. Numerical simulations [7]
suggest an intriguing relationship between the macroscopic limit shape of this model in
the limit of a vanishing density of impurities and the macroscopic limit shape of TASEP
with a single impurity particle. The two coincide for some parameter values and differ
for others. Explaining this phenomenon remains an open question.
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