Problems to accompany lectures by D. Flannery

Basic definitions. Let \mathbb{F} be a field. A subgroup G of $GL(n, \mathbb{F})$ is *irreducible* if the only subspaces of the *n*-dimensional vector space \mathbb{F}^n that G leaves invariant (under matrix multiplication) are \mathbb{F}^n and $\{\mathbf{0}\}$. G is *absolutely irreducible* if G stays irreducible as a subgroup of $GL(n, \mathbb{E})$ for every field extension \mathbb{E}/\mathbb{F} ; here $GL(n, \mathbb{F})$ is viewed as a subgroup of $GL(n, \mathbb{E})$.

A square matrix is *(upper) triangular* if it has zeros everywhere below the main diagonal; it is *(upper) unitriangular* if it has zeros everywhere below the main diagonal and 1s all down the main diagonal. Unitriangular matrices are unipotent (have all eigenvalues equal to 1), and it can be shown that a unipotent subgroup (subgroup with all elements unipotent) of $GL(n, \mathbb{F})$ is conjugate to a group of unitriangular matrices.

The transvection $t_{i,j}(m) \in Mat(n, \mathbb{F})$ has m in position (i, j), 1s down its main diagonal, and zeros everywhere else.

 $G \leq \operatorname{GL}(n, \mathbb{F})$ is monomial if G is conjugate to a group of monomial matrices; a monomial matrix has exactly one non-zero entry in each row and column. The group of all monomial matrices in $\operatorname{GL}(n, \mathbb{F})$ is the semidirect product $D_n \rtimes S_n$, where D_n denotes the group of diagonal matrices and $S_n \cong \operatorname{Sym}(n)$ is the group of permutation matrices.

The enveloping algebra $\langle H \rangle_{\mathbb{F}}$ of $H \leq \operatorname{GL}(n, \mathbb{F})$ is the \mathbb{F} -linear span of H.

 $\mathbb{Z}[1/\mu]$ denotes the subring $\{a/\mu^i \mid a \in \mathbb{Z}, i \geq 0\}$ of \mathbb{Q} generated by $1/\mu$, μ a positive integer.

A group G is residually X, for some group-theoretic property X, if for each $g \in G \setminus \{1\}$ there exists a normal subgroup N of G such that G/N has property X and $g \notin N$.

A group G is X-by-Y if there is $N \leq G$ with property X such that G/N has property Y.

A group is *virtually free* if it has a free subgroup of finite index, i.e., is free-by-finite.

For coprime positive integers m and μ , let $\varphi_m : \operatorname{GL}(n, \mathbb{Z}[1/\mu]) \to \operatorname{GL}(n, p)$ be the (congruence) homomorphism that reduces matrix entries modulo m.

Below, 'dense' means 'Zariski-dense'.

- **1.** Let $G \leq \operatorname{GL}(n, \mathbb{F})$. Prove that G has a normal unipotent subgroup that contains all normal unipotent subgroups of G.
- **2.** Let $A \leq \operatorname{GL}(n, \mathbb{F})$ be abelian. Prove that if A is irreducible then the enveloping algebra $E := \langle A \rangle_{\mathbb{F}}$ is a field extension of $\mathbb{F}1_n$ of degree n. Prove that if A is absolutely irreducible then n = 1.
- **3.** Prove that $G \leq \operatorname{GL}(n, \mathbb{F})$ is unipotent-by-abelian if and only if G is conjugate to a group of triangular matrices, possibly as a subgroup of $\operatorname{GL}(n, \mathbb{E})$ for some field extension \mathbb{E}/\mathbb{F} .
- **4.** Prove that if $G \leq \operatorname{GL}(n, \mathbb{C})$ is irreducible, then $|G : Z(G)| \geq n^2$, where Z(G) denotes the center of G.
- 5. (Minkowski.) Prove that if m > 2 then the kernel K of φ_m in $GL(n, \mathbb{Z})$ is torsion-free, i.e., every non-identity element of K has infinite order.
- 6. Let \mathcal{P} be any infinite set of primes. Prove that the intersection of the kernels of all congruence homomorphisms $\varphi_p \colon \operatorname{GL}(n,\mathbb{Z}) \to \operatorname{GL}(n,p)$ as p ranges over \mathcal{P} is trivial. Deduce that $\operatorname{GL}(n,\mathbb{Z})$ is residually finite.

- 7. Prove that an infinite simple linear group cannot be finitely generated.
- 8. Prove that $G = SL(n, \mathbb{Z}[1/\mu])$ for $\mu > 1$ is not virtually free.
- 9. Prove that GL(n, Z) does not have the strong approximation property, i.e., GL(n, Z) does not surject onto GL(n, p) for almost all primes p. Does GL(n, Z[1/2]) have the strong approximation property?
- 10. Let *H* be a finitely generated subgroup of $\operatorname{GL}(n, \mathbb{Q})$; so $H \leq \operatorname{GL}(n, \mathbb{Z}[1/\mu])$ for some μ . Prove that if $\varphi_p(H) \leq \operatorname{GL}(n, p)$ is absolutely irreducible for a prime *p* not dividing μ , then *H* is absolutely irreducible.
- **11.** Suppose that $H \leq SL(n,\mathbb{Z})$ surjects onto SL(n,p) modulo p for some prime p, where p > 3 if n = 2. Prove that H is not monomial (over \mathbb{Q}).
- 12. Let $H \leq G$, where G is a dense subgroup of $SL(n, \mathbb{C})$. Prove that if H has finite index in G, then H is dense.
- **13.** Prove that a solvable-by-finite subgroup of $SL(n, \mathbb{Q})$ is not dense.
- 14. Let $\Gamma_{n,m}$ denote the principal congruence subgroup of level m in $\mathrm{SL}(n,\mathbb{Z})$, i.e., the kernel of the reduction modulo m congruence homomorphism $\varphi_m \colon \mathrm{SL}(n,\mathbb{Z}) \to \mathrm{SL}(n,\mathbb{Z}_m)$. Prove that $\Gamma_{n,m}/\Gamma_{n,m^2}$ is a finite abelian group of exponent dividing m.
- 15. Let H be a finite-index subgroup of $SL(n, \mathbb{Z})$, $n \geq 3$. Since the congruence subgroup property holds for $SL(n, \mathbb{Z})$, H contains a principal congruence subgroup of $SL(n, \mathbb{Z})$ of least possible level, defined to be the level of H. Prove that if H has index at most m in $SL(n, \mathbb{Z})$, then the level of H divides m!.
- **16.** Prove that if k and m are coprime then φ_k surjects $\Gamma_{n,m}$ onto $\mathrm{SL}(n,\mathbb{Z}_k)$. Deduce from this that any congruence subgroup of $\mathrm{SL}(n,\mathbb{Z})$ is dense in $\mathrm{SL}(n,\mathbb{Q})$.
- 17. Let G be the subgroup $\langle t_{1,2}(a/b), t_{2,1}(a/b) \rangle$ of $\mathrm{SL}(2,\mathbb{Q})$, where a, b are positive coprime integers. Prove that G is dense by showing that the set $\Pi(G)$ of all primes p not dividing b such that $\varphi_p(G) \neq \mathrm{SL}(2,p)$ is equal to the set $\pi(a)$ of prime divisors of a.
- 18. Let H be a finitely generated dense subgroup of $SL(n, \mathbb{Q})$ contained in $SL(n, \mathbb{Z})$. Denote the congruence closure of H by cl(H), i.e., cl(H) is the intersection of all congruence subgroups of $SL(n, \mathbb{Z})$ containing H. Prove that $cl(H) = \Gamma_{n,\ell}H$ where ℓ is the level of cl(H).
- **19.** Let $H \leq SL(n, \mathbb{Z})$ be finitely generated dense. Prove that the following are equivalent: (i) $\varphi_m(H) = SL(n, \mathbb{Z}_m)$ for all $m \geq 2$; (ii) $cl(H) = SL(n, \mathbb{Z})$.