Hints for the problems

- 1. By considering a composition series of \mathbb{F}^n as an $\langle G \rangle_{\mathbb{F}}$ -module, show that there exists a block upper triangular subgroup of $\operatorname{GL}(n,\mathbb{F})$ conjugate to G, with irreducible main diagonal blocks (write the elements of G with respect to a basis obtained from the composition series). Then look at the kernel of a homomorphism defined on this block triangular group.
- **2.** For $x \in E$ and $v \in \mathbb{F}^n \setminus \{0\}$, consider the actions of A on $x\mathbb{F}^n$ and on Ev. If A is absolutely irreducible, assume \mathbb{F} algebraically closed and consider the action of A on $(a \lambda 1_n)\mathbb{F}^n$ where $\lambda \in \mathbb{F}$ is an eigenvalue of $a \in A$.
- **3.** Suppose that G has a unipotent normal subgroup N such that G/N is abelian. Let U(G) be the subgroup in Q.1, i.e., U(G) is the unique normal unipotent subgroup of G that contains all such subgroups of G. Assume that \mathbb{F} is algebraically closed; then G/U(G) is a diagonal matrix group by Q.2.
- 4. Cf. Q.2. First show that Z(G) consists of scalar matrices.
- **5.** Choose $g \in K$ of prime order p. We have $g = 1_n + mx$ for some non-zero $n \times n$ matrix x, whose entries can be assumed pairwise coprime. Expand the left-hand side of $g^p = 1_n$ using the binomial theorem. Show that m = p, and derive a contradiction.
- 8. G has the congruence subgroup property: each $H \leq G$ of finite index contains a principal congruence subgroup, i.e., the kernel of φ_m for some m coprime to μ . Identify an isomorphism between a subgroup of H and an ideal of $\mathbb{Z}[1/\mu]$.
- 10. If $G = \varphi_p(H)$ is absolutely irreducible, then the enveloping algebra $\langle G \rangle_{\mathbb{Z}_p}$ has a basis of size n^2 contained in G.
- **12.** Use the following: if X is a closed subset of $SL(n, \mathbb{C})$, then so too is $gX \forall g \in SL(n, \mathbb{C})$; the closure of a subgroup of $SL(n, \mathbb{C})$ is also a subgroup; $SL(n, \mathbb{C})$ has no proper closed finite-index subgroups (it is connected).
- **15.** Proofs of the congruence subgroup property for $SL(n, \mathbb{Z})$ hinge on the fact (with a long proof) that $\Gamma_{n,m}$ is the normal closure of the subgroup generated by $t_{1,2}(m)$.
- 16. $SL(n, \mathbb{Z}_k)$ is generated by transvections $t_{i,j}(1)$, and m has a multiplicative inverse mod k.