Computing with congruence subgroups of linear groups
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Previously we realized strong approximation computationally for (finitely
generated) dense groups H < T'(n,Q), I = SL or Sp.

That is, we showed how to determine all congruence images ¢, (H) of H
modulo the maximal ideals p of R = Z[1/u] C Q such that H < I'(n, R).

Now we discuss algorithms for structural investigation of such H.

Again for convenience restrict to dense input H < SL(n,Z); however, the
algorithms work for input dense H < I'(n, Q) generally.
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The congruence subgroup property J

SL(n,Q) and SL(n,Z) have very different normal subgroup structure.

For ', := SL(n,Z), n,m > 2, let @y, SL(n,Z) — SL(n, Z,) be the
reduction modulo m congruence homomorphism.

Then T';, 1, := ker ¢, on Iy, is the principal congruence subgroup (PCS)
of level m in T',. Note that Ty < T < alb.

A subgroup of '), that contains some PCS is called a congruence subgroup.

Each congruence subgroup of I';, has finite index: it contains a normal
subgroup of I';, with quotient SL(n, Z,,) for some m.

Conversely, must finite-index H < I';,, be a congruence subgroup?



This question was raised long ago. If the answer is ‘yes’, then I';, has the
congruence subgroup property (CSP).

I'5 does not have the CSP. J

This was known to Klein. E.g., for large r the simple group Alt(r) is not a
quotient of any SL(2,Z,,); whereas Alt(r) is a quotient of SL(2,Z).

Note that I's is virtually free—i.e., it has a free subgroup of finite index
(T'22 = (—1p, H) where H = <[; ﬂ , [; (1)]> is free of rank 2)—whereas
I',, for n > 2 is not virtually free.

Also note that there are implemented algorithms to decide whether a given
finite-index subgroup of I' is a congruence subgroup.



However:

Theorem
If n > 2 then I';, has the CSP.

Independent proofs were given by Mennicke (1965), and by Bass, Milnor,
Serre (1967; they proved that Sp(n,Z) for n > 2 also has the CSP). This

theorem is actually a consequence of the following.

Theorem
For m > 2, let E, ,, be the subgroup of I';, generated by all transvections
tij(m), i # j. Then I',, ,, is the normal closure of E,, ,,, in T'y,.

Clearly Ty, ;, contains the normal closure: each ¢; ;(m), the matrix with m
in position (i, j), 1s down the main diagonal, and Os elsewhere, is in I';, ;.
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Computing the level J

Proposition
Finding the level of a PCS in any given congruence subgroup of [';; is
decidable.

Proof. I';, has a known finite presentation. Let H < I',, be a congruence
subgroup, so H is finitely generated. Assume that H is given by a finite
generating set. Express each generator of H as a word in generators of I';,.
Compute ¢ = |T,, : H| by coset enumeration. Let K = Nyer, gHg ™!, the
core of H; so K T, and |I',, : K| divides m := c!. Hence t; j(m) =
ti;(1)™ € K, implying that E,, ,,, < K. Then H contains the I',-normal

closure I'y, ,, of K, 1. O



Two principal congruence subgroups generate a congruence subgroup; the
intersection of any two of them is a PCS.

Proposition

Let a,b € N, and put d = ged(a, b), | =lcm(a,b). Then
(i) Tnalnp =Cna

(i) TnaNTpp = Tny.

By (i), 3 a unique maximal PCS in any congruence subgroup H of I';,: the
PCS of I'), of least level in H; it contains every PCS contained in H.

Say that a congruence subgroup has level ¢ if its maximal PCS has level ¢.



Main problem: compute the level of a given congruence subgroup of I';,.
The solution of this problem is connected to the main problem of the

previous lecture, and thus to SAT.

Lemma
If k& and m are coprime then ¢y, surjects I'y, ,,, < I, onto SL(n, Zy).

Proof. Use that m is invertible modulo k and the fact (again) that
SL(n,Zy,) is generated by transvections ¢; ; = t; ;(1). O

So a congruence subgroup of I';, surjects onto SL(n, p) modulo almost all
primes p. By SAT (= density for finitely generated subgroups of I';,):

Each congruence subgroup of I';, is dense. J




Let H < T, be a congruence subgroup, of level ¢. Recall: by running
PrimesForDense, we can compute the set II(H) of primes p such that

¢p(H) # SL(n, p).

By the lemma, if k is a prime not dividing ¢, then ¢y (H) = SL(n, Zy).
So, denoting the set of prime divisors of r € N by 7(r):

II(H) C n(f). )

We have almost a full converse.

Theorem (DFH, 2018)
Let n > 3 and let H < T'), be a congruence subgroup, of level £. Then

m(0) \ {2} C TI(H).




The proof of this theorem is long. It uses knowledge of the subgroup
structure of SL(n, Z,) for primes p. We also need a theorem of Holt on
simple sections of finite classical groups.

Note that we can decide when ¢ is even, and there is a version of the
above theorem in degree 2 (DFH, 2023). So for all degrees n > 2:

If H <T,, is a congruence subgroup, of level ¢, then 7(¢) can be found
once II(H) is known.




To explain how the above may be turned into an algorithm to compute the
level of a given congruence subgroup of I';;, we make the following
definition, for any H <T,,.

dp(m) =Ty : Ty mH],
i.e., 0g(m) = |SL(n,Zp,) : om(H)| can be computed in SL(n, Zy,).
Lemma (DFH, 2018)
Suppose that 8 (kp®) = 0y (kp®*!) for p prime, a > 1, and p { k. Then

(1) 6H(kpb) =0 (kp®) Vb > a;
(ii) 6g(Ip®) = 6g(Ip?) Yb > a and multiples [ of k s.t. w(1) = 7 (k).
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As noted, TI(H) gives the set 7(¢) of all primes dividing the level ¢ of a
congruence subgroup H < T',,.
The above lemma leads to the main idea of our level algorithm:

e Grow exponents on each prime p|{ as dg-values (fixing other prime
divisors of £) increase.

@ The exact p-power dividing £ is reached as soon as dy-values stabilize.
(Proof of this claim uses the above lemma. See the theorem below.)
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LevelMaxPCS(X,S)

INPUT: a generating set X for H < T',, a set S of primes.
OUTPUT: an integer k.

Foreachp e S
vp = 1; 2z, := the product of all primes in S\ {p}.

While §g (p*»tL-2,) > S (p™r - 2p)
Vp < vp+ 1.

Return k := the product of all p*» for p € S.

Theorem (DFH, 2018)

If H = (X) is a congruence subgroup of level ¢ in T',,, then LevelMaxPCS
with input X and & = m(¢) terminates, returning /.




All computation for LevelMaxPCS is in groups over finite rings Z,,. For
this, 3 a standard reduction to prime-power m (implicit in earlier proofs).

Let m = mq - - - my, m; powers of distinct primes. Define o: Z,, —
®!_Zm, by ala) = (a1,...,a;) where a; = a mod m;. By the Chinese
remainder theorem, « is a ring isomorphism.

Lemma

The above map « extends to a ring isomorphism from Mat(n, Z,,) onto

Mat(n, Zm,) @ - - - ® Mat(n, Z,, ), which restricts to group isomorphisms
GL(n,Zy,) — GL(n, Zpy,) X -+ x GL(n, Zp,)

and

SL(n, Zm) — SL(n, Zpm, ) X -+ X SL(n, Zm, ).
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The congruence closure J

Congruence subgroups are dense. In the opposite direction we have the
following deep result, another consequence of strong approximation (see
Theorem 2, p. 391 of Subgroup growth by Lubotzky & Segal).

Theorem
If H <T, is finitely generated and dense, then the intersection of all
congruence subgroups of I';, that contain H is also a congruence subgroup.

So the dense group H has a congruence closure: 3 a congruence subgroup
cl(H) of Ty, such that H < cl(H) and cl(H) < C for every congruence
subgroup C' containing H.
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Lemma
Let H be a finitely generated dense subgroup of I',,. Then

(i) cl(H) =T, H where £ is the level of cl(H);
(it) H(cl(H)) =II(H).

Say that dense finitely generated H < T',, has level ¢ if cI(H) has level ¢.

Theorem (DFH, 2023)
LevelMaxPCS with input finitely generated dense H < I';, and the set of
primes S dividing the level of cl(H) returns the level of H.

Since II(cl(H)) = II(H), after running PrimesForDense on H we can
compute S from II(H) as before.



Arithmetic subgroups J

Let G < GL(n,C) be a Q-group. If H < GNGL(n,Q) and H NGL(n,Z)
has finite index in each of H and G N GL(n,Z), then H is an arithmetic
subgroup of G. In particular, finite-index subgroups of I';, are arithmetic.

Note that finite-index subgroups of I';, are dense.

Suppose that H < T, is finitely generated dense, and we have computed
the level ¢ of H using LevelMaxPCS and PrimesForDense.

If 6 (¢) = |y, - cl(H)| = |[SL(n,Zy) : @e(H)| is not big, then to test
whether H is arithmetic, we are encouraged to attempt coset enumeration.
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On the other hand, if |T', : cl(H)| is small, but coset enumeration for H in
I',, fails to terminate, then we might suspect that H is thin: dense and of

infinite index in I',,.

It is unknown whether arithmeticity testing is decidable in general. It is
certainly semidecidable (coset enumeration confirms arithmeticity of H if
H is indeed arithmetic).

Arithmeticity testing algorithms exist in special cases, e.g., for input
subgroups of solvable Q-groups; see de Graaf, Detinko, Flannery (2015).



Suppose that H < T, for n > 3 is known to be arithmetic, by whatever
means; so H is dense.

By CSP, H is a congruence subgroup. If we have computed the level ¢ of
H = cl(H), then other problems for H can be solved.

E.g., membership testing (easy: g € 'y, is in H < ¢y(g) € w¢(H)), and
the orbit-stabilizer problem for H acting on Z™ (DFH 2015).



Implementation and experimentation J

As noted, computing with congruence images ¢,,,(H) in GL(n,Z,,) can
be reduced to the case of m a power of a prime p.

For computing in GL(n,Z,x), p prime, a ‘trivial Fitting’ method is used;
as a main step this factors out the solvable radical of . (H).

LevelMaxPCS and associated procedures have been implemented and
tested in GAP by exhaustive experimentation. For GAP code see
Alexander's github page https://github.com/hulpke/arithmetic

Experiments are fully discussed in, e.g., DFH (2015, 2018, 2023).

See the talks next week by Alexander and Alla Detinko for more details.


https://github.com/hulpke/arithmetic
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