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Previously we realized strong approximation computationally for (finitely

generated) dense groups H ≤ Γ(n,Q), Γ = SL or Sp.

That is, we showed how to determine all congruence images φρ(H) of H

modulo the maximal ideals ρ of R = Z[1/µ] ⊆ Q such that H ≤ Γ(n,R).

Now we discuss algorithms for structural investigation of such H.

Again for convenience restrict to dense input H ≤ SL(n,Z); however, the
algorithms work for input dense H ≤ Γ(n,Q) generally.
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The congruence subgroup property

SL(n,Q) and SL(n,Z) have very different normal subgroup structure.

For Γn := SL(n,Z), n,m ≥ 2, let φm : SL(n,Z) ↠ SL(n,Zm) be the

reduction modulo m congruence homomorphism.

Then Γn,m := kerφm on Γn is the principal congruence subgroup (PCS)

of level m in Γn. Note that Γn,b ≤ Γn,a ⇔ a
∣∣b.

A subgroup of Γn that contains some PCS is called a congruence subgroup.

Each congruence subgroup of Γn has finite index: it contains a normal

subgroup of Γn with quotient SL(n,Zm) for some m.

Conversely, must finite-index H ≤ Γn be a congruence subgroup?
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This question was raised long ago. If the answer is ‘yes’, then Γn has the

congruence subgroup property (CSP).

Γ2 does not have the CSP.

This was known to Klein. E.g., for large r the simple group Alt(r) is not a

quotient of any SL(2,Zm); whereas Alt(r) is a quotient of SL(2,Z).

Note that Γ2 is virtually free—i.e., it has a free subgroup of finite index

(Γ2,2 = ⟨−1n, H⟩ where H =
〈[

1 2

0 1

]
,
[
1 0

2 1

]〉
is free of rank 2)—whereas

Γn for n > 2 is not virtually free.

Also note that there are implemented algorithms to decide whether a given

finite-index subgroup of Γ2 is a congruence subgroup.
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However:

Theorem

If n > 2 then Γn has the CSP.

Independent proofs were given by Mennicke (1965), and by Bass, Milnor,

Serre (1967; they proved that Sp(n,Z) for n > 2 also has the CSP). This

theorem is actually a consequence of the following.

Theorem

For m ≥ 2, let En,m be the subgroup of Γn generated by all transvections

ti,j(m), i ̸= j. Then Γn,m is the normal closure of En,m in Γn.

Clearly Γn,m contains the normal closure: each ti,j(m), the matrix with m

in position (i, j), 1s down the main diagonal, and 0s elsewhere, is in Γn,m.
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Computing the level

Proposition

Finding the level of a PCS in any given congruence subgroup of Γn is

decidable.

Proof. Γn has a known finite presentation. Let H ≤ Γn be a congruence

subgroup, so H is finitely generated. Assume that H is given by a finite

generating set. Express each generator of H as a word in generators of Γn.

Compute c = |Γn : H| by coset enumeration. Let K = ∩g∈ΓngHg−1, the

core of H; so K ⊴ Γn and |Γn : K| divides m := c!. Hence ti,j(m) =

ti,j(1)
m ∈ K, implying that En,m ≤ K. Then H contains the Γn-normal

closure Γn,m of En,m. □
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Two principal congruence subgroups generate a congruence subgroup; the

intersection of any two of them is a PCS.

Proposition

Let a, b ∈ N, and put d = gcd(a, b), l = lcm(a, b). Then

(i) Γn,aΓn,b = Γn,d;

(ii) Γn,a ∩ Γn,b = Γn,l.

By (i), ∃ a unique maximal PCS in any congruence subgroup H of Γn: the

PCS of Γn of least level in H; it contains every PCS contained in H.

Say that a congruence subgroup has level ℓ if its maximal PCS has level ℓ.
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Main problem: compute the level of a given congruence subgroup of Γn.

The solution of this problem is connected to the main problem of the

previous lecture, and thus to SAT.

Lemma

If k and m are coprime then φk surjects Γn,m ≤ Γn onto SL(n,Zk).

Proof. Use that m is invertible modulo k and the fact (again) that

SL(n,Zk) is generated by transvections ti,j = ti,j(1). □

So a congruence subgroup of Γn surjects onto SL(n, p) modulo almost all

primes p. By SAT (≡ density for finitely generated subgroups of Γn):

Each congruence subgroup of Γn is dense.
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Let H ≤ Γn be a congruence subgroup, of level ℓ. Recall: by running

PrimesForDense, we can compute the set Π(H) of primes p such that

φp(H) ̸= SL(n, p).

By the lemma, if k is a prime not dividing ℓ, then φk(H) = SL(n,Zk).

So, denoting the set of prime divisors of r ∈ N by π(r):

Π(H) ⊆ π(ℓ).

We have almost a full converse.

Theorem (DFH, 2018)

Let n ≥ 3 and let H ≤ Γn be a congruence subgroup, of level ℓ. Then

π(ℓ) \ {2} ⊆ Π(H).
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The proof of this theorem is long. It uses knowledge of the subgroup

structure of SL(n,Zpk) for primes p. We also need a theorem of Holt on

simple sections of finite classical groups.

Note that we can decide when ℓ is even, and there is a version of the

above theorem in degree 2 (DFH, 2023). So for all degrees n ≥ 2:

If H ≤ Γn is a congruence subgroup, of level ℓ, then π(ℓ) can be found

once Π(H) is known.

10 / 21



To explain how the above may be turned into an algorithm to compute the

level of a given congruence subgroup of Γn, we make the following

definition, for any H ≤ Γn.

δH(m) := |Γn : Γn,mH|,

i.e., δH(m) = |SL(n,Zm) : φm(H)| can be computed in SL(n,Zm).

Lemma (DFH, 2018)

Suppose that δH(kpa) = δH(kpa+1) for p prime, a ≥ 1, and p ∤ k. Then

(i) δH(kpb) = δH(kpa) ∀ b ≥ a;

(ii) δH(lpb) = δH(lpa) ∀ b ≥ a and multiples l of k s.t. π(l) = π(k).
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As noted, Π(H) gives the set π(ℓ) of all primes dividing the level ℓ of a

congruence subgroup H ≤ Γn.

The above lemma leads to the main idea of our level algorithm:

Grow exponents on each prime p |ℓ as δH -values (fixing other prime

divisors of ℓ) increase.

The exact p-power dividing ℓ is reached as soon as δH -values stabilize.

(Proof of this claim uses the above lemma. See the theorem below.)
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LevelMaxPCS(X,S)

Input: a generating set X for H ≤ Γn, a set S of primes.

Output: an integer k.

For each p ∈ S
νp := 1; zp := the product of all primes in S \ {p}.

While δH(pνp+1 ·zp) > δH(pνp ·zp)
νp ← νp + 1.

Return k := the product of all pνp for p ∈ S.

Theorem (DFH, 2018)

If H = ⟨X⟩ is a congruence subgroup of level ℓ in Γn, then LevelMaxPCS

with input X and S = π(ℓ) terminates, returning ℓ.
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All computation for LevelMaxPCS is in groups over finite rings Zm. For

this, ∃ a standard reduction to prime-power m (implicit in earlier proofs).

Let m = m1 · · ·mt, mi powers of distinct primes. Define α : Zm →
⊕t

i=1Zmi by α(a) = (a1, . . . , at) where ai ≡ a mod mi. By the Chinese

remainder theorem, α is a ring isomorphism.

Lemma

The above map α extends to a ring isomorphism from Mat(n,Zm) onto

Mat(n,Zm1)⊕ · · · ⊕Mat(n,Zmt), which restricts to group isomorphisms

GL(n,Zm)→ GL(n,Zm1)× · · · ×GL(n,Zmt)

and

SL(n,Zm)→ SL(n,Zm1)× · · · × SL(n,Zmt).
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The congruence closure

Congruence subgroups are dense. In the opposite direction we have the

following deep result, another consequence of strong approximation (see

Theorem 2, p. 391 of Subgroup growth by Lubotzky & Segal).

Theorem

If H ≤ Γn is finitely generated and dense, then the intersection of all

congruence subgroups of Γn that contain H is also a congruence subgroup.

So the dense group H has a congruence closure: ∃ a congruence subgroup

cl(H) of Γn such that H ≤ cl(H) and cl(H) ≤ C for every congruence

subgroup C containing H.
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Lemma

Let H be a finitely generated dense subgroup of Γn. Then

(i) cl(H) = Γn,ℓH where ℓ is the level of cl(H);

(ii) Π(cl(H)) = Π(H).

Say that dense finitely generated H ≤ Γn has level ℓ if cl(H) has level ℓ.

Theorem (DFH, 2023)

LevelMaxPCS with input finitely generated dense H ≤ Γn and the set of

primes S dividing the level of cl(H) returns the level of H.

Since Π(cl(H)) = Π(H), after running PrimesForDense on H we can

compute S from Π(H) as before.
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Arithmetic subgroups

Let G ≤ GL(n,C) be a Q-group. If H ≤ G∩GL(n,Q) and H ∩GL(n,Z)
has finite index in each of H and G ∩GL(n,Z), then H is an arithmetic

subgroup of G. In particular, finite-index subgroups of Γn are arithmetic.

Note that finite-index subgroups of Γn are dense.

Suppose that H ≤ Γn is finitely generated dense, and we have computed

the level ℓ of H using LevelMaxPCS and PrimesForDense.

If δH(ℓ) = |Γn : cl(H)| = |SL(n,Zℓ) : φℓ(H)| is not big, then to test

whether H is arithmetic, we are encouraged to attempt coset enumeration.
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On the other hand, if |Γn : cl(H)| is small, but coset enumeration for H in

Γn fails to terminate, then we might suspect that H is thin: dense and of

infinite index in Γn.

It is unknown whether arithmeticity testing is decidable in general. It is

certainly semidecidable (coset enumeration confirms arithmeticity of H if

H is indeed arithmetic).

Arithmeticity testing algorithms exist in special cases, e.g., for input

subgroups of solvable Q-groups; see de Graaf, Detinko, Flannery (2015).
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Suppose that H ≤ Γn for n ≥ 3 is known to be arithmetic, by whatever

means; so H is dense.

By CSP, H is a congruence subgroup. If we have computed the level ℓ of

H = cl(H), then other problems for H can be solved.

E.g., membership testing (easy: g ∈ Γn is in H ⇔ φℓ(g) ∈ φℓ(H)), and

the orbit-stabilizer problem for H acting on Zn (DFH 2015).
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Implementation and experimentation

As noted, computing with congruence images φm(H) in GL(n,Zm) can

be reduced to the case of m a power of a prime p.

For computing in GL(n,Zpk), p prime, a ‘trivial Fitting’ method is used;

as a main step this factors out the solvable radical of φpk(H).

LevelMaxPCS and associated procedures have been implemented and

tested in GAP by exhaustive experimentation. For GAP code see

Alexander’s github page https://github.com/hulpke/arithmetic

Experiments are fully discussed in, e.g., DFH (2015, 2018, 2023).

See the talks next week by Alexander and Alla Detinko for more details.
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