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In lectures 2 and 3, we move on to computing with finitely generated

linear groups in the second (i.e., non-SF) case of the Tits alternative.

Some new features:

One (maximal) ideal of the coefficient ring defining a congruence

homomorphism sufficed in previous algorithms, e.g., to test finiteness

and decide the Tits alternative. Now we consider multiple ideals for a

fixed input group.

Congruence images in previous algorithms are matrix groups over

finite fields, for which there is established computational machinery;

now we need to compute with congruence image groups over rings

Zm := Z/mZ, m not necessarily prime.
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Decidability looms larger. E.g., testing membership of elements of

GL(n,Q) in a given finitely generated SF subgroup of GL(n,Q) is

decidable (Kopytov, 1968); but membership testing in the non-SF group

GL(n,Q), n ≥ 4 is undecidable by Mihailova’s result.

Note also that while we can test virtual solvability of finitely generated

linear groups, no general method to test freeness of finitely generated

linear groups is known.

Motivation for design of algorithms in this lecture and the next stems

partially from applications (experimentation with small-degree groups

arising in problems from topology, number theory, etc.).
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Linear algebraic groups

The Zariski topology on Fm is defined as follows: S ⊆ Fm is closed (S is

an algebraic set) if ∃ P ⊆ F[x] = F[x1, . . . , xm] such that

S = {(a1, . . . , am) ∈ Fm | f(a1, . . . , am) = 0 for all f(x) ∈ P}.

A closed set is the set of zeros for a finite set of polynomials (Hilbert).

We identify Mat(n,F) as an F-vector space with Fn2
and endow it with

the Zariski topology.

A (linear) algebraic group is a subgroup of GL(n,F) closed in the

subspace topology on GL(n,F).

E.g., SL(n,F), Sp(n,F), other classical groups are algebraic.
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To recall: Sp(n,R) for a commutative ring R with 1 and n = 2m is the

subgroup of GL(n,R) consisting of all h such that

h⊤Jnh = Jn where Jn =

[
0m 1m

−1m 0m

]
.

It can be shown that Sp(n,R) ≤ SL(n,R).

Topological terms henceforth are with respect to the Zariski topology on

linear groups.

An algebraic subgroup G of GL(n,C) is a Q-group (defined over Q) if its

defining polynomials have all coefficients in Q.

E.g., SL(n,C) and Sp(n,C) are Q-groups.
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Density

For a commutative ring R with 1, Γ(n,R) := SL(n,R) or Sp(n,R).

At this stage, our algorithms applying strong approximation for linear

groups accept finitely generated dense subgroups of Γ(n,Q).

Testing density in Γ(n,Q) is thus an initial problem (and of fundamental

interest otherwise): given finitely generated H ≤ Γ(n,Q), is the closure of

H in Γ(n,Q)—which is a subgroup—equal to Γ(n,Q)?

For this see the Rivin theorem below. We have simpler density tests in

special cases, say prime degree. E.g., testing density in SL(2,Q) ≡ testing

virtual solvability.

Singletons are closed, so a dense subgroup of Γ(n,Q) must be infinite.
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Theorem (Rivin)

Let H ≤ G where G is a simple algebraic subgroup of GL(n,F), F
algebraically closed and char F = 0. Then H is dense in G ⇔ H is infinite

and the adjoint representation of H on the Lie algebra of G is irreducible.

Note G ≤ GL(n,F) is irreducible if the only subspaces of Fn that G leaves

invariant are Fn and {0}. G is absolutely irreducible if G stays irreducible

as a subgroup of GL(n,E) for every field extension E/F.

We can take G in the theorem to be Γ(n,F). The adjoint representation

ad: H → GL(n2 − 1,F) or GL(n
2+n
2 ,F) is induced by conjugation action

of H on the Lie algebra sl(n,F) = {x ∈ Mat(n,F) | trace(x) = 0} or
sp(n,F) = {x ∈ Mat(n,F) | x⊤Jn = −Jnx} as relevant.
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To apply the Rivin density criterion, recall that we can test finiteness.

Absolute irreducibility can be tested via an enveloping algebra basis.

Let H ≤ GL(n,F) be finitely generated, say H = ⟨X⟩ where X = X−1.

Task: compute a basis for the enveloping algebra ⟨H⟩F of H. (The latter is

the smallest subalgebra of Mat(n,F) that contains H: the F-span of H.)

Theorem (Burnside)

H ≤ GL(n,F) is absolutely irreducible ⇔ dim(⟨H⟩F) = n2.

A basis B of ⟨H⟩F can be computed by a simple recursion. Initialize B =

{1n}. While ∃x ∈ X and b ∈ B s.t. xb ̸∈ spanF(B), do B ← B ∪ {xb}.
This recursion terminates as dimensions are ≤ n2. Always B comprises

linearly independent elements of H, and at termination H ⊆ spanF(B).
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Strong approximation for linear groups

Let R = Z[1/µ] for some integer µ ≥ 1, and let φm be the reduction

modulo m congruence homomorphism on Mat(n,R), m ∈ N coprime to µ.

Note: finitely generated H ≤ Γ(n,Q) is contained in some Γ(n,R).

Starting point for our discussion of strong approximation is the observation

that φm : Γ(n,R)→ Γ(n,Zm) is surjective ∀m ≥ 2.

Proof. Fact: Γ(n,Zm) is generated by transvections; for Γ = SL these are

the ti,j for i ̸= j, with 1 in position (i, j), 1s on the diagonal, 0s elsewhere.

Each of these generators is the mod-m image of an element of Γ(n,Z) ≤
Γ(n,R). □
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Which finitely generated H < Γ(n,R) have this same property φm(H) =

Γ(n,Zm), say not for all, rather for all but finitely many m?

Dense subgroups of certain connected Q-groups have the strong

approximation property, giving positive answers to the above question.

This is a deep result. Our sole interest is the following consequence.

Strong approximation theorem (SAT)

Let H be a finitely generated dense subgroup of Γ(n,Q). Then there exists

a finite set P of primes such that φp(H) = Γ(n, p) for all primes p ̸∈ P.

Subgroup growth by Lubotzky & Segal, pp. 389–398, has a proof for

H ≤ Γ(n,R) = SL(n,Z), using Matthews, Vaserstein and Weisfeiler

(1984).
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Indeed, from now on Γ(n,R) = SL(n,Z); results have superficial changes

for SL(n,Z[1/µ]) with µ > 1, and adapt (using other ideas) to Sp(n,R).

To realize SAT computationally, we provide an algorithm to compute the

set Π(H) of ‘exceptional primes’ for dense H ≤ SL(n,Z).

Precisely:

∀ primes p, φp(H) ̸= SL(n, p) ⇐⇒ p ∈ Π(H).

Our algorithm to compute Π(H) is suggested by Matthews, Vaserstein

and Weisfeiler (1984).
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We use the Rivin density criterion, and proofs depend on a theorem of

Aschbacher (1984) which categorizes maximal subgroups of SL(n, p) into

eight ‘geometric’ classes and one ‘almost simple’ class (bedrock of the

Matrix Group Recognition Project).

Let ad: SL(n,F)→ GL(n2 − 1,F) be the adjoint representation.

Theorem Λ (DFH, 2019)

There exists a function λ : N→ N such that if G ≤ SL(n, p), ad(G) is

absolutely irreducible, and |G| > λ(n), then G = SL(n, p).

Good estimates of λ(n) for n ≤ 12 have been derived from tables in Bray

et al. (2013). Theorem Λ directs focus on (i) congruence image orders;

(ii) adjoint absolute irreducibility.
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Bounded orders

Lemma

Let H ≤ GL(n,Z) be finitely generated and infinite. If k ∈ N, then for

almost all primes p, φp(H) has an element of order greater than k.

Proof. Cf. proof of Mal’cev’s result. There exists infinite-order h ∈ H

(finitely generated periodic linear groups are finite; Schur). Let mi be

the gcd of all non-zero entries of hi − 1n. If p ∤ lcm(m1, . . . ,mk), then

φp(h)
i ̸= 1n for 1 ≤ i ≤ k; so |φp(h)| > k. □

For infinite H ≤ GL(n,Z) and k ∈ N, PrimesForOrder(H, k) returns all

primes p such that each element of φp(H) has order ≤ k. This output

obviously contains all primes p such that |φp(H)| ≤ k.
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Absolute irreducibility

Lemma

If H ≤ GL(n,Z) is absolutely irreducible (over Q), then φp(H) ≤
GL(n, p) is absolutely irreducible for almost all primes p.

Proof. Let {a1, . . . , an2} ⊆ H be a Q-basis of ⟨H⟩Q. Let ∆ be the

determinant of any matrix whose columns are the ai (written as vectors of

length n2). Then φp(H) is absolutely irreducible for all primes p ∤ ∆. □

The proof furnishes a procedure PrimesForAbsIrred that accepts

absolutely irreducible H ≤ SL(n,Z), computes ∆ from a basis of ⟨H⟩Q
(found by the recursive procedure given earlier), and returns all primes p

such that φp(H) is not absolutely irreducible.
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Computing Π(H)

The following procedure accepts finitely generated dense H ≤ SL(n,Z)
and returns Π(H).

PrimesForDense(H)

Step 1. Take λ as in Theorem Λ and do

P := PrimesForOrder(H,λ(n)) ∪ PrimesForAbsIrred(ad(H)).

Step 2. Compute and return {p ∈ P |φp(H) ̸= SL(n, p)}.

Step 1 terminates by Rivin’s density theorem and subprocedure definitions.

Since φp(ad(H)) = ad(φp(H)), if p ̸∈ P is prime, then φp(H) = SL(n, p)

by Theorem Λ. So P ⊇ Π(H), and step 2 weeds out spurious primes.
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Another major result (Weigel, 1996), is that surjection of finitely generated

H ≤ SL(n,Z) onto SL(n, p) modulo one prime p ≥ 5 implies that H is

dense: so surjects modulo almost all primes p. Cf. Lubotzky (1999).

The next theorem is a slight extension of these facts, merging density,

SAT, and ‘one for almost all’.

Theorem (DFH, 2019)

The following are equivalent, for finitely generated H ≤ SL(n,Q):

(i) H is dense;

(ii) H surjects onto SL(n, p) modulo p for almost all primes p;

(iii) H surjects onto SL(n, p) modulo p for some odd prime p ∤ n.

PrimesForDense yields a lower bound on p as in part (ii).
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A computational drawback of PrimesForDense is reliance on the adjoint

representation, forcing computation in degree about n4; expensive.

We have other approaches to compute Π(H) that avoid the adjoint.

These use deeper knowledge of maximal subgroups of SL(n, p) in each

Aschbacher class: see Bray et al. (2013).

Computations in GL(n, p) required by PrimesForDense are performed

using the GAP package recog by Neunhöffer and Seress.

Our SAT algorithms have been implemented and thoroughly tested in

GAP. See https://www.math.colostate.edu/~hulpke/arithmetic.g

and, e.g., DFH (2019) for details of experiments calculating Π(H) for

various H ≤ SL(n,Z), n ≤ 9.
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