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Motivation: dearth of and need for practical methods to compute with

linear groups over infinite fields.

Contrasts with the situation for matrix groups over finite fields; see the

‘Matrix Group Recognition Project’.

Our approach uses traditional linear group theory and computational group

theory to design algorithms for problems of basic, strategic interest (such

as ‘recognizing’ an input linear group) and from further afield, in, e.g.,

topology, geometry, etc.

We emphasize practicality; software is a compulsory outcome: efficient

algorithms, implemented in the Magma and GAP computer algebra

systems.
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Outline

Computing with solvable-by-finite linear groups (lecture 1);

Computing with groups in the other class of the Tits alternative:

applications of the strong approximation property for linear groups

(lectures 2, 3).

The lectures are based on joint work with

Alla Detinko

Alexander Hulpke;

and earlier work with Alla and Eamonn O’Brien.
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Throughout F is a field.

For a commutative ring R with 1, as usual GL(n,R) denotes the group

of invertible n× n matrices with entries in R.

That is, GL(n,R) is the unit group of Mat(n,R), the ring of all n× n

matrices with entries in R.

SL(n,R) is the (normal) subgroup of GL(n,R) comprising all matrices

with determinant 1. Note GL(n,R)/SL(n,R) ∼= R×, the unit group of R.

A linear group (interchangeably, matrix group) of degree n over F is a

subgroup of GL(n,F).
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Setting up finite approximation for linear groups

We restrict to finitely generated linear groups; a natural restriction for

computing.

Other formats are possible. A linear algebraic group may not be finitely

generated, but can be input as a finite set (of defining polynomials).

Computing with linear algebraic groups is a well-developed area, tied to

computation with Lie algebras. See the book by de Graaf (2017).

The method of finite approximation in linear group theory is classical. It

was introduced by Mal’cev (1940s) and developed by Platonov, Wehrfritz

et al. (1960s/70s).
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Let R be a commutative ring with 1, and ρ ⊂ R an ideal. Natural

surjection R → R/ρ extends entrywise to a ring epimorphism

Mat(n,R) → Mat(n,R/ρ),

which restricts to a group homomorphism

GL(n,R) → GL(n,R/ρ).

We denote each of these maps by φρ, and call them congruence

homomorphisms modulo ρ.

Let G ≤ GL(n,R). The kernel of φρ : G → GL(n,R/ρ) is a congruence

subgroup of G.
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Theorem (Mal’cev)

Let R be a finitely generated integral domain. Let g1, . . . , gr be distinct

elements of Mat(n,R). Then there exists a maximal ideal ρ of R such

that φρ(g1), . . . , φρ(gr) are distinct elements of Mat(n,R/ρ).

Note: a finitely generated integral domain is a homomorphic image of a

polynomial ring Z[x1, . . . , xm] for some m ≥ 0.

Proof. For each pair k, l, 1 ≤ k < l ≤ r, choose i, j such that δk,l :=

(gk)i,j − (gl)i,j ̸= 0. Let δ =
∏

k,l δk,l; so δ ̸= 0. Since the Jacobson

radical of R is equal to its nilradical (by finite generation of R; fact from

commutative algebra) and hence zero, φρ(δ) =
∏

k,l φρ(δk,l) ̸= 0 for some

maximal ideal ρ. Thus, ∀ k, l, φρ(gk), φρ(gl) differ in some position, i.e.,

φρ(gk) ̸= φρ(gl). □
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Main context: if G = ⟨X⟩, the group generated by finite X ⊆ GL(n,F),
then let R ⊆ F be the subring generated by the entries of g, g−1 ∀ g ∈ X.

Hence R is a finitely generated integral domain and G ≤ GL(n,R).

R/ρ in Malcev’s theorem is a finite field (another fact from commutative

ring theory; e.g., Z[x]/ρ is a finite field for maximal ideals ρ), so

Corollary

If R a finitely generated integral domain then GL(n,R) is residually finite.

A group is residually finite if the intersection of its finite-index subgroups is

trivial; each non-identity element survives in some finite quotient.

In particular, finitely generated linear groups are residually finite. These

statements are the essence of finite approximation.
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Fields for computing

Lemma

If F/E is a finitely generated field extension, then F is a finite-degree

extension of E(ξ1, . . . , ξm) for some E-algebraically independent

ξ1, . . . , ξm ∈ F, m ≥ 0.

‘E-algebraically independent’ means that f(ξ1, . . . , ξm) ̸= 0 for all

non-zero polynomials f(x1, . . . , xm) ∈ E[x1, . . . , xm].

{ξ1, . . . , ξm} is a transcendence basis for F over E;
F as in the lemma is an algebraic function field: a finite-degree extension

of a field of rational functions.
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By the lemma, in algorithms we restrict input to finitely generated

G ≤ GL(n,F) where F is one of

(i) Q;

(ii) an algebraic number field;

(iii) a function field P(x1, . . . , xm) where P is finite or a number field;

(iv) an algebraic function field: finite-degree extension of a field as in (iii).

Computation with fields of types (i)–(iv) is supported in Magma.
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Applying finite approximation I: deciding finiteness

In computing with a potentially infinite group G, naturally we ask at the

outset: is G finite? Is the question even decidable (does an algorithm to

answer it exist)?

Decidability of finiteness of residually finite groups is unknown.

We show that finiteness is decidable for finitely generated linear groups,

over ‘any’ field, i.e., after reducing to one of the four main field types.

Previous work on finiteness testing: Babai, Beals, & Rockmore, over Q
(1993); Ivanyos, over function fields of positive characteristic (2001).
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At the heart of our finiteness-testing algorithm is the following.

Theorem (Selberg–Wehrfritz)

Let G ≤ GL(n,R), where R is a finitely generated integral domain.

Then G has a finite-index normal subgroup N such that the finite-order

elements of N are unipotent.

Unipotent: all eigenvalues are 1. A unipotent subgroup of GL(n,F) can
be conjugated to a group of (upper) unitriangular matrices.

Also, if char F = 0 then a unipotent element ̸= 1n of GL(n,F) has infinite
order; if char F = p > 0 then a unipotent element has p-power order.

Hence, if charR = 0 then N in the theorem is torsion-free (has no

non-trivial finite-order elements).
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DFO (2013): given finitely generated G ≤ GL(n,R), we can construct a

congruence homomorphism φρ on GL(n,R) such that N as in the

Selberg–Wehrfritz theorem is the congruence subgroup Gρ := kerφρ on G.

Here ρ is a certain maximal ideal of R with R obtained as usual from a

generating set of G ≤ GL(n,F), F one of the four main types of field.

Now periodic finitely generated linear groups are finite (Schur). And a

finite-index subgroup of G is finitely generated (Schreier).

Thus, by the S–W theorem, finiteness of G can be decided by testing

whether

• Gρ = {1n} if char F = 0, or

• Gρ is unipotent (a p-group) if char F = p > 0.
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Call φρ as above an SW-homomorphism, and its kernel Gρ on G an

SW-subgroup of G. To repeat: we can construct SW-homomorphisms for

each of the four main field types.

Example. Let G be a finitely generated subgroup of GL(n,Q). Then

G ≤ GL(n,Z[1/µ]) for some positive integer µ. Assume that µ = 1 (if G

is finite then it can be conjugated into GL(n,Z) by a result of Burnside).

Simple matrix arithmetic shows that the reduction modulo m map φm on

GL(n,Z) for m > 2 has torsion-free kernel (Minkowski); so φm is an

SW-homomorphism, and Gm := kerφm on G is an SW-subgroup.

G is finite ⇔ Gm = {1n}.

How to test whether Gm is trivial?
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Although an SW-subgroup Gρ is finitely generated, we don’t need a full

generating set of Gρ.

Instead we use the following standard technique. For G = ⟨g1, . . . , gr⟩,
take a presentation of the matrix group φρ(G) over a finite field.

The relators in this presentation need to be words wj(φρ(g1), . . . , φρ(gr))

in the φρ(gi). Rewrite each wj as w̃j := wj(g1, . . . , gr) ∈ G.

Lemma

The w̃j are ‘normal generators’ of Gρ: they generate a subgroup of G

whose normal closure is Gρ.

In particular, Gρ = {1n} ⇔ each of its normal generators is 1n.
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Now suppose that we have tested G ≤ GL(n,F) and found that G is

infinite. A natural next step is to consider the Tits alternative for G.

Theorem (J. Tits, 1972)

Let G be a finitely generated linear group. Then either G is virtually

solvable (solvable-by-finite, SF), or G contains a non-abelian free

subgroup.

H SF means H has a (normal) solvable subgroup of finite index.

Tits’ theorem partitions finitely generated linear groups into two very

different classes. It is a fundamental problem to decide which of these

classes contains a given G ≤ GL(n,F).
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Applying finite approximation II: deciding virtual solvability

In this application of finite approximation, our algorithm is suggested by

the following.

Theorem (Kolchin–Lie–Mal’cev)

Let G ≤ GL(n,F) be solvable. Then G has a UA (unipotent-by-abelian)

normal subgroup of finite index. If furthermore G is connected in the

Zariski topology on GL(n,F), then G is UA.

H ≤ GL(n,F) being UA means that H has a normal unipotent subgroup

N such that H/N is abelian.

It can be shown that H is UA ⇔ there exists a finite-degree field extension

E/F s.t. H is conjugate in GL(n,E) to a group of triangular matrices.

17 / 23



Lemma

A triangular matrix group is solvable.

Let G ≤ GL(n,F) be finitely generated, F one of the four main types of

field. Using vital results of Wehrfritz (2010), we are able to realize the

Kolchin–Lie–Mal’cev theorem computationally: we construct a congruence

homomorphism φρ on G with φρ(G) over a finite field such that

G is SF =⇒ Gρ := kerφρ on G is UA.

Call such φρ a W-homomorphism. Hence, by the above lemma:

G is SF ⇔ the kernel of a W-homomorphism on G is UA.
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Hence we can test virtual solvability and so decide the Tits alternative for

finitely generated G ≤ GL(n,F) in similar fashion to finiteness testing.

That is, we are testing whether a congruence subgroup Gρ (for any

W-homomorphism φρ) has a particular property (in this problem, UA).

First we compute a normal generating set N for Gρ.

The UA test works with the enveloping algebra of N ∪N−1 (the smallest

subalgebra of Mat(n,F) containing N ∪N−1 ; a basis of it can readily be

computed by a standard recursion). Again, we don’t need a full generating

set of Gρ.

Cf. algorithms by Beals (1995, 2001) and Assmann & Eick (2007) to

decide virtual solvability over Q.
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Computing over the infinite ground field

There are several sources of discomfort when computing with matrix

groups over an infinite field.

‘Entry explosion’: too many multiplications can lead to huge matrix

entries. Try to mitigate by replacement with matrix algebra computations,

and transferring work to images over a finite field.

Decidability: problems may not have an algorithmic solution. E.g., by

Mihailova (1958), the generalized word problem is undecidable in SL(4,Z).

On the positive side, our algorithms prove that other fundamental

problems for finitely generated linear groups are decidable.
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Software

Our finite approximation algorithms are available within Magma,

implemented in collaboration with Eamonn O’Brien:

http://magma.maths.usyd.edu.au/magma/handbook/matrix_

groups_over_infinite_fields

Implementations make heavy use of MGRP machinery in Magma (see

Bäärnhielm et al., 2015) and associated advances in computational group

theory, e.g., constructing ‘short’ presentations (for efficient determination

of normal generators).
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