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ROBUST ESTIMATION AND REGRESSION WITH MMD

PIERRE ALQUIER

Classification AMS 2020: 62F10, 62F35, 62J02, 68T05, 46E22.

Keywords: universal estimation; robust statistics; kernel methods; minimum distance
estimation.

Popular estimation methods in statistics, such as the maximum likelihood estimator
(MLE), or the method of moments, require strong assumptions on the statistical model
and the data-generating process to converge. When these conditions are not met, these
estimators can become very unstable. We are interested in universal estimators, that
would converge without assumptions on the model. For example, [15] proved that so-
called minimum distance estimators converge under far more general assumptions than
the MLE. More recently, the ρ-estimators defined in [4] are not only convergent, but
minimax-optimal, in a very large class of models. However, there are still a few limitating
assumptions in [15, 4], and the computation of these estimators might be difficult in
practice.

This talk will summarize a recent line of work on a variant of minimum distance
estimators based on the so-called maximum mean discrepancy (MMD). In the case of
i.i.d. data, these estimators converge without any assumption on the model nor on the
data generating process. Moreover, relatively efficient algorithms are available to
compute these estimators.

Let X1, . . . , Xn be X -valued random variables i.i.d. from a probability distribution
P 0. Let M = (Pθ, θ ∈ Θ) be a statistial model. Note that we don’t assume P 0 ∈ M.
Let H be a reproducing kernel Hilbert space (RKHS) equipped with a scalar product
⟨·, ·⟩, its associated norm ∥ · ∥ and a kernel k: there is a map φ : X → H with k(x, y) =
⟨φ(x), φ(y)⟩. The kernel mean embedding (KME) is defined for any probability P on X by
µ(P ) = EX∼P [φ(X)]. We refer the reader to [11] for more details on this construction.
In particular: if k is bounded, then the KME is indeed well-defined for any P ; if k is
characteristic (see [11] for a definition), µ is one-to-one. Thus, if k is both bounded
and characteristic, Dk(P, P

′) = ∥µ(P )− µ(P ′)∥ defines a metric on probabilities over X .
Finally, [11] provides examples of kernels that are indeed bounded and characteristic:
for example, when X = Rd, the Gaussian kernel k(x, y) = exp(−∥x− y∥2/γ).

Definition 0.1. We define the MMD-minimum distance estimator, or MMD-MDE, as

θ̂ = argmin
θ∈Θ

Dk(Pθ, P̂n)

where P̂n = 1
n

∑n
i=1 δXi

is the empirical distribution of the sample X1, . . . , Xn.

In the talk, I will prove the following result:
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Theorem 0.2 (Theorem 3.1 in [6]). Assume k ≤ 1, then

E
[
Dk(Pθ̂, P

0)
]
≤ inf

θ∈Θ
Dk(Pθ, P

0) +
2√
n
.

The fact that there are no assumptions on P 0 nor on M = (Pθ, θ ∈ Θ) in the theorem
is not due to lack of space: this is actually a nice feature of θ̂! Variants of Theorem 0.2,
including a bound that holds with large probability rather than in expectation, can be
found in [5, 6].

Various topics on θ̂ will be covered in this talk:

• the MMD distance can be written in terms of expectations, and thus, the
minimization in Definition 0.1 can be done with a stochastic gradient method.
Details are discussed in [5, 7].

• Theorem 1 leads to convergence: if the model is well-specified, P 0 ∈ M, then
E[Dk(Pθ̂, P

0)] ≤ 2/
√
n → 0 when n → ∞. It also leads to robustness as defined

by Huber: if P 0 = (1 − ε)Pθ0 + εQ for an arbitrary contamination Q and a small
ε, then E[Dk(Pθ̂, P

0)] ≤ 4ε + 2/
√
n. This is proven in [7], where we also prove

more difficult robustness results under adversarial contamination of the data.
• the asymptotic normality of θ̂ is studied in [5] (this requires assumptions).
• an extention of Theorem 0.2 to non-i.i.d. observations (time series) is provided

in [7], under a new mixing condition. We also prove that this mixing condition
is less restrictive than the standard β-mixing condition.

• the term 2/
√
n in Theorem 0.2 cannot be improved in general. However, under

assumptions on the variance of P 0, it can actually be improved: variance-aware
versions of Theorem 0.2 are proven in [14].

• we can define Bayesian-flavored estimators by using the MMD to define a pseudo-
likelihood. We studied such estimators in [7] and proved their convergence using
tools from the PAC-Bayes theory [1]. Other Bayesian-inspired variants of θ̂ are
based on sampling [8] and Approximate Bayesian Computation or ABC [10].

• this estimation strategy was successfully implemented in a wide range of
applications: generative artificial intelligence [9], quantisation and
clustering [13], estimation of copulas [2], estimation of parameters in stochastic
PDEs [5] etc.

A large part of the talk will be dedicated to parametric regression (linear, or not). In
this case, the observations are pairs input-output: Xi = (Zi, Yi). Theorem 0.2 guarantees
that we can estimate the joint distribution of these pairs. But this is not relevant in
regression, where the objective is rather the estimation of the conditional distribution of
Yi given Zi.

The problem is that, while the theory of KME looks simple and elegant, a rigorous
definition of conditional KME turns out to be far more difficult and cumbersome! We
refer the reader to [12] for a recent account and a general approach to solve the problem.

In our recent paper [3], we proved that, in standard regression models: linear
regression with Gaussian noise, logistic regression, Poisson regression, etc., the
conditions for the existence of conditional KMEs are met. This can be used to define
consistent and robust estimation of the regression parameters in the spirit of
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Definition 0.1 above. These estimators turn out to perform extremely when compared
to existing robust regression procedures.

REFERENCES

[1] Pierre Alquier. User-friendly Introduction to PAC-Bayes bounds. Foundations and Trends® in Machine
Learning, 17(2), 174–203, 2024.
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FORMULATION AND RESOLUTION OF INVERSE PROBLEMS IN SIGNAL AND
IMAGE PROCESSING - FROM CLASSICAL METHODS TO HYBRID AI

CAROLINE CHAUX

Classification AMS 2020: 94A08, 68T07

Keywords: Unrolled algorithms, parameter estimation, maximum a posteriori, wavelets,
sparsity, low-rank, deconvolution, robust PCA.

We are interested here in inverse problems arising in signal and image processing.
Solving such problems firstly consists in formalising the direct problem by
understanding the physics behind and secondly, solving the associated inverse problem
which results in solving an optimization problem. Two main ingredients are involved in
the optimization functional to be minimized: a data fidelity term accounting for the
model and a regularisation term (possibly several ones) accounting for prior
information on the targeted solution. Regularisation parameters come into the play to
guarantee the best trade-off between the two quantities.

Classical optimization-based approaches consist in, once the optimization problem
has been formulated, proposing iterative procedures (e.g. proximal algorithms [1])
converging to a solution of the considered inverse problem. In such a case, most of the
time, the parameters (either regularisation or algorithm’s hyperparamaters) are fixed
empirically. More recently, unrolled or unfolded neural networks have been proposed
[2]. They combine optimization and learning, constitute interpretable networks, and
integrate information about the direct model.

Inverse problems are encountered in many scientific domains such as biology, medical
imaging, chemistry, audio signal processing for which, different tasks must be tackled
such as deconvolution, restoration, unmixing, missing data reconstruction, etc.

We presented in this talk a physics-informed unrolled network [3] to automatically
choose regularisation parameters in image deconvolution when the regularisation is
performed in the wavelet domain. The resulting optimisation problem is solved by
using an unrolled version of FISTA algorithm [4]. Indeed, hyper-parameter tuning, and
especially regularisation parameter estimation, is a challenging but essential task when
solving inverse problems. We proposed to perform their estimation under an unrolled
strategy together with the inverse problem solving. The resulting network is trained
while incorporating information on the model through Maximum a Posteriori
estimation which drastically decreases the amount of data needed for the training and
results in better estimation results.

We also presented a physics-informed unrolled network [5] to solve the problem of
Robust Principal Component Analysis (RPCA) which consists in decomposing a matrix
into the sum of a low rank matrix and a sparse matrix. We proposed a deep unrolled
algorithm based on an accelerated alternating projection algorithm [6] which aims to
solve RPCA in its nonconvex form and where hyperparameters are automatically learnt.
We demonstrated the unrolled algorithm’s effectiveness on synthetic datasets and also
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on a face modelling problem, where it leads to both better numerical and visual
performances.

These works have been done in collaboration with Vincent Tan, Emmanuel Soubiès,
Pascal Nguyen and Elisabeth Tan.
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MINI-COURSE ON OPTIMAL TRANSPORT AND HIGH-DIMENSIONAL
PROBABILITY

SINHO CHEWI AND YAIR SHENFELD

The mini-course focused on the foundations and applications of optimal transport and high-
dimensional probability. The course was composed of 8 lectures whose outline is given below.

Lecture 1. The notion of transportation of measures was introduced, followed by the Monge prob-
lem of transporting between two measures in an optimal way. Since the Monge problem is difficult
to solve, a better behaved relaxation, known as the Kantorovich problem, was introduced, which
involves the notion of couplings as substitutes for transport maps.

Lecture 2. The Kantorovich problem is a linear programming problem where duality plays an
important. This duality was proved, yielding characterizations of the primal and dual solutions,
as well as Brenier’s theorem on the original problem of Monge. The important concept of cyclical
monotonicity was introduced and used in the proof.

Lecture 3. The Kantorovich problem leads to the notion of the Wasserstein distance over the space
of probability measures. It was shown that the Wasserstein distance is indeed a metric, which is
compatible with weak convergence. The formula for the linearization of the Wasserstein distance
was also derived.

Lecture 4. The Wasserstein space, the space of probability measures endowed with the Wasserstein
distance, can viewed as a formal infinite-dimensional Riemannian manifold. This perspective was
explained by introducing the dynamic formulation of optimal transport, known as the Benamou–
Brenier principle. Analogies to fluid dynamics were drawn. This led to the development of the Otto
calculus over the Wasserstein space.

Lecture 5. The Otto calculus over the Wasserstein space allows for the development of a theory
of gradient flows of functionals of probability measures. Formulas for gradients and gradient flows
were derived, emphasizing the roles of important functionals such as entropy, as well as the notion
of displacement convexity.

Lecture 6. Functional inequalities capture the convergence to equilibrium of gradient flows, and
some important examples of these inequalities were introduced: the log-Sobolev inequality, Tala-
grand’s inequality, and the HWI inequality. It was shown how the notion of displacement convexity
can be used to prove functional inequalities, and how in turn, the property of log-concavity of a
probability measure is closely connected with the displacement convexity of the relative entropy.

Lecture 7. Functional inequalities can also be used to establish the concentration of measure
phenomenon. The following notions were presented: sub-Gaussian variables, the entropy method
attributed to Herbst, the Bobkov–Götze theorem, tensorization, and transport inequalities.
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Lecture 8. The perspective of viewing flows of probability measures as gradient flows in Wasserstein
space ultimately leads to a powerful set of tools and insights from optimization which can be applied
to the analysis of sampling algorithms. This idea was developed in the context of providing a non-
asymptotic convergence analysis for the Euler–Maruyama discretization of the Langevin diffusion.
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PARSITY, FEATURE SELECTION &

THE SHAPLEY-FOLKMAN THEOREM.

ALEX D’ASPREMONT

Classification AMS 2020: 65K05

Keywords: Duality, Shapley-Folkman

Due to its linear complexity, naive Bayes classification remains an attractive
supervised learning method, especially in very large-scale settings. We propose a sparse
version of naive Bayes, which can be used for feature selection. This leads to a
combinatorial maximum-likelihood problem, for which we provide an exact solution in
the case of binary data, or a bound in the multinomial case. We prove that our convex
relaxation bounds becomes tight as the marginal contribution of additional features
decreases, using a priori duality gap bounds dervied from the Shapley-Folkman
theorem. We show how to produce primal solutions satisfying these bounds. Both
binary and multinomial sparse models are solvable in time almost linear in problem
size, representing a very small extra relative cost compared to the classical naive Bayes.
Numerical experiments on text data show that the naive Bayes feature selection method
is as statistically effective as state-of-the-art feature selection methods such as recursive
feature elimination, l1-penalized logistic regression and LASSO, while being orders of
magnitude faster 1

CNRS - ENS PARIS.
Email address: aspremon@ens.fr

1A python implementation can be found at https://github.com/aspremon/NaiveFeatureSelection
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Gradient flows for empirical Bayes in high-dimensional linear

models

Zhou Fan∗, Leying Guan†, Yandi Shen∗, Yihong Wu∗

Introduced by Robbins [Rob51, Rob56] in the 1950s, empirical Bayes (EB) is a powerful frame-
work for large-scale inference that learns and adapts to latent structure in data. In this work, we
consider empirical Bayes estimation in a linear model with Gaussian noise and i.i.d. prior,

y = Xθ + ε, θj
iid∼ g∗, εi

iid∼ N (0, σ2). (0.1)

Assuming that the sample size n and dimension p are both large, we study estimation of the effect
size prior g∗ from the regression data (X,y). Many methods based upon variational inference or
Monte Carlo EM have been proposed for this problem in the context of inferring genetic architec-
tures of complex traits [ZQPC18, O’C21, ZZ21, SSAAP22, MCW+23], but the problem has only
recently been the subject of theoretical study [MSS23].

We propose and study a new gradient-flow procedure for nonparametric estimation of g∗ via the
nonparametric maximum likelihood estimator (NPMLE). For a user-specified parameter τ2 > 0,
reparametrizing the model by a smoothed regression vector φ = θ + N (0, τ2 Id) and modified
residual ε̃ ∼ N (0, Σ) where Σ = σ2 Id−τ2XX⊤, the negative log-likelihood F̄n(g) admits a Gibbs
variational representation

F̄n(g) =min
q

Fn(q, g),

Fn(q, g) :=
1

p

∫ [
1

2
(y −Xφ)⊤Σ−1(y −Xφ)−

p∑
j=1

log[Nτ ∗ g](φj) + log q(φ)

]
q(φ)dφ+ constant.

We propose to jointly optimize Fn(q, g) over posterior densities q on Rp and prior densities g on a
bounded support [−M,M ], via the coupled gradient flows

d

dt
qt(φ) = −p · gradW2

q Fn(qt, gt)[φ]

= ∇ ·

[
qt(φ)

(
X⊤Σ−1(Xφ− y)−

(
[Nτ ∗ gt]′(φj)

[Nτ ∗ gt](φj)

)p

j=1

)]
+∆qt(φ) (0.2)

d

dt
gt(θ) = −α · gradFRg Fn(qt, gt)[θ] = α gt(θ)

([
Nτ ∗

q̄t
Nτ ∗ gt

]
(θ)− 1

)
(0.3)

where gradW2
q denotes the Wasserstein-2 gradient in q, gradFRg denotes the Fisher-Rao gradient in g,

Nτ ∗gt is the convolution of the N (0, τ2) density with gt, and q̄t is the univariate averaged marginal

∗Department of Statistics and Data Science, Yale University
†Department of Biostatistics, Yale University
zhou.fan@yale.edu, leying.guan@yale.edu, yandi.shen@yale.edu, yihong.wu@yale.edu
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density of coordinates under qt. The q-flow (0.2) is simulated via a Langevin diffusion [JKO98]

dφt =

(
−X⊤Σ−1(Xφt − y) +

(
[Nτ ∗ gt]′(φt,j)

[Nτ ∗ gt](φt,j)

)p

j=1

)
dt+

√
2 dBt (0.4)

with time-evolving drift. This is coupled with the g-flow (0.3) which is simulated by a fixed-grid
discretization of the domain [−M,M ] and an empirical estimate of q̄t from the coordinates of the
Langevin sample φt. The reparametrization of the model by φ rather than θ ensures that the
Langevin diffusion targets a continuous and sufficiently regular posterior density, even if the prior
estimate gt approaches a discrete measure. This idea of bivariate optimization of a Gibbs variational
representation for maximum likelihood inference can be attributed to [NH98], and has also been
proposed and studied recently in [KLJ23, ACG+23] in different contexts.

Our results consist of (1) a statistical consistency guarantee for the NPMLE in this problem,
extending recent work of [MSS23], (2) a new log-Sobolev inequality for mixing of Langevin dynamics
in the linear model, deriving from an insight of [BB19], and (3) a local convergence guarantee for
the above gradient flow algorithm.

For consistency, we show the following result.

Theorem 0.1. Suppose g∗ is supported on a known interval [−M,M ]. As n, p → ∞, under a
deterministic condition for the design matrix X, which in particular assumes the existence of test
vectors zj ∈ Rn for sufficiently many columns xj of X such that

z⊤j xj → 1, |z⊤j xk|2+ε → 0,

any approximate NPMLE ĝ over [−M,M ] satisfies ĝ ⇒ g∗ almost surely in the sense of weak
convergence.

Proposition 0.2. Suppose n/p ≥ γ for any constant γ > 0, and X ∈ Rn×p has i.i.d. sub-Gaussian
rows { 1√

n
x(i)}ni=1 where x(i) has mean 0, covariance ΣX ∈ Rp×p satisfying

c ≤ λmin(ΣX) ≤ λmax(ΣX) ≤ C,

and bounded sub-Gaussian norm. Then the assumptions for X needed in the above theorem hold
almost surely as n, p → ∞.

For mixing of the Langevin diffusion, let ν[g] be the posterior density of φ given (X,y) under
the prior g for θ. We prove the following uniform log-Sobolev inequality, which implies exponential
contraction in KL-divergence for the Langevin diffusion with ν[g] as its stationary law.

Theorem 0.3. Let g be supported on [−M,M ] and fix a constant δ > 0. Suppose that σ2/∥X∥2op >
M2+δ. Then for any τ2 ∈ (0, σ2/∥X∥2op−δ), ν[g] satisfies a LSI with constant C = C(M, τ, δ) > 0
that is uniform over all priors g on [−M,M ].

Finally, for local convergence of the bivariate gradient flow, we show the following.

Theorem 0.4. Suppose that ν[g] satisfies a LSI with some constant C = C(M, τ) > 0, uniformly
over priors g supported on [−M,M ]. Let {(qt, gt)}t≥0 be the solution to the bivariate gradient flow
(0.2–0.3).

If F̄n is convex over the sub-level set {g : F̄n(g) ≤ Fn(q0, g0)} and additional (mild) technical
conditions hold for the initialization (g0, q0), then for any ε > 0, some constant C(ε) > 0, and some
time t ≤ C(ε)(n+ p), it holds that F̄n(gt)− F̄n(g∗) ≤ ε.

We leave for future work several interesting open questions, including a better theoretical charac-
terization of the optimization landscape of F̄n(g) and conditions for global convergence, a theoretical
analysis of time discretization and consistency of estimating q̄t within the empirical implementation
of the g-flow equation (0.3), and extensions to more complex models and sampling algorithms.
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1. INTRODUCTION

The introduction of Transformers in 2017 marked a milestone in the development of
neural network architectures. Central to this is self-attention, a novel mechanism which
distinguishes Transformers from traditional architectures, and which plays a substantial
role in their superior practical performance. We present a mathematical framework for
analyzing Transformers based on their interpretation as interacting particle systems, in
which time plays the role of layers. Our analysis reveals that clusters emerge in long time,
confirming previous empirical findings, and shedding light on the role of the attention
mechanism.

2. MAIN RESULT

As first done in [3, 8], we define an idealized model of the Transformer architecture
that consists in viewing the discrete layer indices as a continuous time variable, and
which focuses exclusively on two key components of the Transformers architecture: self-
attention and layer normalization1. This results in the dynamics

(SA) ẋi(t) = P⊥
xi(t)

(
1

Zβ,i(t)

n∑
j=1

eβ⟨xi(t),xj(t)⟩xj(t)

)
for i ∈ [n] and t ≥ 0, where

(2.1) Zβ,i(t) =
n∑

k=1

eβ⟨xi(t),xk(t)⟩

and P⊥
x = Id − xx⊤ is the orthogonal projector to TxSd−1. We prove the following result

(see [1, 2]).

Theorem 2.1. Let d, n ≥ 2 and β ≥ 0, and suppose that either d ≥ n, or β ≳d n2, or
β ≲ n−1. Consider the unique solution (xi(·))i∈[n] ∈ C0(R≥0; (Sd−1)n) to the Cauchy problem
for (SA), corresponding to an initial sequence of points (xi(0))i∈[n] ∈ (Sd−1)n distributed
uniformly at random. Then almost surely there exists x∗ ∈ Sd−1 such that

lim
t→+∞

xi(t) = x∗

1Strictly speaking, we are using root-mean-square (RMS) norm. To the best of our knowledge, the
original layer normalization, which consists in standardizing every component of every token at every
layer has not yet been addressed in the continuous-time formulation of Transformers.
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for all i ∈ [n].

t = 0.0 t = 15.0

FIGURE 1. The evolution of trajectories can be fully described in very large
dimension (d ≫ poly n), beyond solely long time asymptotics with rates,
as seen in the phase diagram above. See [2].

Note that when d = 2 and β = 0, we recover the celebrated Kuramoto model of
oscillators [7] (see [6] for mathematical details in the case d ≥ 2).

Analyzing the self-attention model with a view toward understanding fine-grained and
empirically observed phenomena in Transformers has borne fruit to several interesting
results in the past year. Stability of the asymptotic results presented in [1] with respect
to perturbations of the parameters has been addressed in [5]. A mean-field version of
the masked attention mechanism, as well as a thorough study of the Lipschitz constant
of attention is presented in [4]. Steering ensembles of empirical measures to ensembles
of empirical measures via parametrized self-attention dynamics has been done in [9].
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Developing cheap and accurate computational techniques for Bayesian inference is an
important goal, as Bayesian inference tasks can be very computationally intensive.
These tasks include constructing posterior credible sets, computing the posterior mean
and covariance, and computing the posterior predictive distribution of a new data point.
Computing all of these quantities involves either sampling from the posterior π, or
taking integrals

∫
gdπ against the posterior. When the dimensionality of the parameter

of interest is large, these tasks can be very expensive.
The most common approach in Bayesian inference to both generate samples from,

and integrate against π is Markov Chain Monte Carlo (MCMC) [3]. In principle, MCMC
schemes can be made arbitrarily accurate by tuning parameters, e.g. by extending the
simulation time of the Markov chain or by decreasing step sizes. However, MCMC is
computationally intensive in high dimensions and it also has other disadvantages. For
example, it can be difficult to identify clear-cut stopping criteria for the algorithm [5].

Another popular approach is to find a simple distribution γ̂ which approximates π,
and to use this distribution as a proxy for π to do all of one’s inference tasks. In the
ideal scenario, many integrals against γ̂ are computable in closed form, and it is cheap
to sample from γ̂. The idea of using an approximation γ̂ to π is at the heart of
approximate Bayesian inference methods such as variational inference [2, 16],
expectation propagation [12], and the Laplace approximation, a Gaussian
approximation first introduced in the Bayesian inference context by [14].

The Laplace approximation (LA) exploits large sample properties of the posterior
which have been established in the Bernstein von-Mises theorem (BvM). The BvM is a
fundamental result which in its classical form states that if the model is well-specified,
then the posterior contracts around the ground truth parameter and becomes
asymptotically normal in the large sample limit [15, Section 10.2]. Despite the
theoretical and philosophical importance of the BvM (it has been used as a justification
of Bayesian procedures from the perspective of frequentist inference), this result does
not give an implementable Gaussian approximation to the posterior. This is where the
LA comes in.

To explain the LA construction, consider a posterior π whose mass concentrates in a
small neighborhood of the mode, which we call x̂. When the conditions of the BvM are
satisfied, this highest mode should be unique; otherwise, concentration cannot occur.
Since most of the mass of π is near x̂, we should incur only a small error by replacing the
log posterior with its second order Taylor expansion about x̂. This gives rise to the LA,
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the Gaussian density γ̂ which is given by

(0.1) γ̂ = N
(
x̂, ∇2V (x̂)−1

)
, x̂ = arg min

x∈Θ
V (x)

where π ∝ e−V is a density on Θ ⊆ Rd. The LA has proved to be an invaluable tool for
Bayesian inference in applications ranging from deep learning [6] to inverse
problems [4] to variable selection in high-dimensional regression [1].

Unlike methods such as MCMC, which can be made arbitrarily accurate, there are no
parameters to tune in the LA — it incurs some fixed approximation error. Quantifying
the LA’s error as a function of dimension d, sample size n, and model parameters, is a
worthy task given its widespread use. It is also a challenging theoretical endeavor when
dimension d is large, and currently a very active research area. Major contributions have
been made e.g. by [9, 13, 8]. We also study the LA error in this work.

But arguably, it is even more important to go beyond the LA to develop new, more
accurate approximations which better capture the complexity of the posterior π. For
example, a known downside of the LA γ̂ is that it is symmetric about the mode and
therefore cannot capture skewness of π. Instead of constructing an entirely new kind of
approximation, a natural idea is to correct the LA in some way to get a higher-order
accuracy approximation. Non-rigorous skew normal approximations have been
developed in [17], but we are aware of only a single work [7] that rigorously derives a
higher-order accurate LA. However, the corrected LA obtained by [7] is only shown to
be accurate in constant dimension d. In modern applications involving very
high-dimensional parameters, d cannot be considered constant relative to sample size n.
So far, no prior work has obtained a higher-accuracy LA which is rigorously justified in
high dimensions.

In this work, we develop a powerful technique to analyze the Laplace approximation
more precisely than was possible before. This technique leads us to derive the first ever
correction to the LA which provably improves its accuracy by an order of magnitude, in high
dimensions. Our approach allows us to prove error bounds on this corrected LA in terms
of a variety of error metrics discussed below. It also enables us to prove both tighter
upper bounds and the first ever lower bounds on the standard LA in high dimensions. In
particular, we prove that d2 � n is in general necessary for accuracy of the LA. Finally, we
apply our theory in two example models: a Dirichlet posterior arising from a multinomial
observation, and logistic regression with Gaussian design. In the latter setting, we prove
high probability bounds on the accuracy of the LA and skew-corrected LA in powers of
d/
√
n alone.
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The Watts–Strogatz small-world model has been an influential random graph model
since its proposal in 1998 due to the ubiquity of the small-world phenomenon in complex
networks [12, 11]. In this model, there are n vertices with latent positions on a circle,
and the vertices are more likely to be connected to their k-nearest geometric neighbors
than to more distant vertices. In other words, a denser cycle of length n and width k is
“planted” in the sparser ambient random graph on n vertices.

While there has been extensive literature on small-world networks and geometric
graphs in general, the associated statistical problems, such as detection and recovery of
the latent geometry from the observed random graph, have only gained attention more
recently. The information-theoretic thresholds and efficient algorithms for the
small-world model are studied in [2], but there remain several gaps between upper and
lower bounds that are unknown to be inherent or not. Much sharper characterizations
of the recovery thresholds are given in [1, 3] but only for a small bandwidth parameter
k = no(1). From the perspective of graphon estimation, there have also been algorithms
and statistical analyses introduced for related models recently [6, 10, 5]. Moreover, the
study of random geometric graphs has received broad interests in recent years; see the
survey [4] and the works [7, 8] for high-dimensional random geometric graphs with
edge noise similar to what we consider.

Since the model of interest consists of a hidden dense cycle planted in a sparser random
graph, the recent work [9] refers to it as the planted dense cycle problem, following
the etymology of planted clique and planted dense subgraph problems. The work [9]
studies the problem in the framework of low-degree polynomial algorithms, a framework
that has proved to be successful at predicting computational thresholds. However, the
more fundamental information-theoretic (or statistical) thresholds—where no constraints
are placed on computation time—remain open, and we aim to address them in this
work. More specifically, suppose that in an ambient random graph on n vertices with
edge density q, there is a hidden cycle with expected width k = nτ and edge density
p. We find the information-theoretic thresholds for detecting the presence of the cycle
and for recovering the location of the cycle, in terms of the parameters n, τ, p, q. In
particular, the information-theoretic thresholds for detection and recovery both differ
from the computational thresholds given in [9], justifying the existence of statistical-to-
computational gaps for this problem.

Problem setup. The planted dense cycle model can be described as follows. For any
a, b ∈ [0, 1], define d(a, b) := min{|a− b|, 1−|a− b|}. In other words, d(a, b) is the distance
between a and b on a circle of circumference 1. Throughout the paper, we consider the

1



2

setting where the number of vertices n grows, and other parameters p, q, r, τ ∈ [0, 1] may
depend on n. In the models to be defined, p and q will be the average edge densities on
and off the planted cycle respectively, r is the average edge density of the entire graph,
and nτ is the bandwidth of the cycle, satisfying

(1) n → ∞, 0 < q < r < p ≤ 1, 0 < τ < 1/2, r = τp+ (1− τ)q.

Definition 1 (Model P, planted dense cycle). Let z ∈ [0, 1]n be a latent random vector
whose entries z1, . . . , zn are i.i.d. Unif([0, 1]) variables. Let Xij := 1d(zi,zj)≤τ/2 for all (i, j) ∈(
[n]
2

)
. For concreteness, we let Xii = 0 and Xji = Xij for i ̸= j, so that X ∈ Rn×n is the

adjacency matrix of the underlying cycle. We observe an undirected graph with adjacency
matrix A ∈ Rn×n whose edges, conditional on z1, . . . , zn, are independently sampled as
follows: Aij ∼ Bern(p) if Xij = 1 and Aij ∼ Bern(q) if Xij = 0 for (i, j) ∈

(
[n]
2

)
. We write

A ∼ PA and (A,X) ∼ P (or, equivalently, (A, z) ∼ P).

Definition 2 (Model Q, Erdős–Rényi graph). We observe a G(n, r) Erdős–Rényi graph with
adjacency matrix A ∈ Rn×n. We write A ∼ Q.

We now formulate the detection and recovery problems of interest.

Definition 3 (Detection). Let P and Q be the models from Definitions 1 and 2 respectively,
with parameters in (1). Observing the adjacency matrix A ∈ Rn×n of a graph, we test
H1 : A ∼ PA against H0 : A ∼ Q. We say that a test Φ, a {0, 1}-valued measurable function
of the observation A, achieves

• strong detection, if limn→∞[P{Φ(A) = 0}+Q{Φ(A) = 1}] = 0;
• weak detection, if lim supn→∞[P{Φ(A) = 0}+Q{Φ(A) = 1}] < 1.

Definition 4 (Recovery). Let P be the model from Definition 1 with parameters in (1).
For (A,X) ∼ P, observing A, we aim to estimate X with an estimator X̂ ∈ Rn×n that is
measurable with respect to A. Consider the mean squared error
R(X̂,X) :=

∑
1≤i<j≤n E[(X̂ij −Xij)

2], where the expectation is with respect to (A,X) ∼ P.
We say that an estimator X̂ achieves

• strong recovery, if limn→∞
R(X̂,X)

(n2)τ(1−τ)
= 0;

• weak recovery, if lim supn→∞
R(X̂,X)

(n2)τ(1−τ)
< 1.

Note that each Xij is marginally a Bern(τ) random variable, so estimating Xij by its mean
τ for all (i, j) ∈

(
[n]
2

)
yields a trivial mean squared error

(
n
2

)
τ(1 − τ), which justifies the

above definition.

Main results. Our main results are summarized in the following theorem.

Theorem 5 (Information-theoretic thresholds). Consider the detection and recovery
problems in Definitions 3 and 4 respectively, with parameters n, τ, p, q, r in (1).
Furthermore, suppose that (log n)3 ≤ nτ ≤ n

(logn)2
and logn

n
≤ r ≤ 1

2
. Define λ := (p−q)2

r(1−r)

which can be seen as the signal-to-noise ratio of the problem. Then we have:
• If nτλ → 0 as n → ∞, then no test achieves weak detection, and no estimator

achieves weak recovery.
• If nτλ

logn
→ ∞ and nτ(p−r)

logn
→ ∞ as n → ∞, then there is a test that achieves strong

recovery, and there is an estimator that achieves strong recovery.
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Our conditions for positive and negative results match up to a logarithmic factor in
most cases. The threshold for both detection and recovery is nτλ = Θ̃(1), where nτ is
the bandwidth of the planted dense cycle, and λ is the edge-wise signal-to-noise ratio.

Remark 6 (Statistical-to-computational gap). Our information-theoretic results for the
detection and recovery of a planted dense cycle complement the work [9] which studies low-
degree polynomial algorithms for the same model. Suppose that the parameters in (1) satisfy
Cq ≤ p ≤ C ′q for some constants C ′ > C > 1. As shown in [9], the detection threshold for
the class of low-degree polynomial algorithms is n3p3τ 4 = no(1), and the recovery threshold
for the class of low-degree polynomial algorithms is npτ 2 = no(1). In this regime, the signal-
to-noise ratio λ = (p−q)2

r(1−r)
has the same order as p, so the information-theoretic threshold

from Theorem 5 can be expressed as npτ = Θ̃(1). Therefore, Theorem 5 and [9] together
suggest that there are statistical-to-computational gaps for both detection and recovery of a
planted dense cycle.
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1. GRADIENT DYNAMICS IN DEEP LEARNING

These lectures study the training dynamics of the deep linear network (DLN) using
the geometric theory of dynamical systems. The DLN is deep learning restricted to
linear functions. However, it retains two essential features of deep learning:
overparametrization and degenerate loss functions. Overparametrization provides a
foliation of phase space by invariant manifolds. Of these, there is a fundamental
invariant manifold, the balanced manifold, which is itself foliated by group orbits. This
geometric structure allows us to define a natural Boltzmann entropy (the logarithm of
the volume of a group orbit) that may be computed explicitly. Our approach unifies the
work of several authors into a thermodynamic framework.

2. THE MODEL

We fix two positive integer d and N referred to as the width and depth of the network.
The state space for the DLN is MN

d , where Md denotes the space of d × d real matrices.
Each point W ∈ MN

d is denoted by W = (WN ,WN−1, . . . ,W1). We equip Md with the
Frobenius norm so that MN

d is Euclidean with the norm ∥W∥2 =
∑N

p=1 Tr
(
W T

p Wp

)
. We

define the projection ϕ : MN
d → Md and end-to-end matrix X by

(2.1) ϕ(W) = WNWN−1 · · ·W1 =: W.

We assume given an energy E : Md → R. The training dynamics are described by the
gradient flow in MN

d of the ‘lifted’ loss function L = E ◦ ϕ

(2.2) Ẇ = −∇WL(W).

A computation then reduces equation (2.2) to a collection of N equations in Md

(2.3) Ẇp = −(WN · · ·Wp+1)
TE ′(X)(Wp−1 · · ·W1)

T , p = 1, . . . , N.

Here E ′(X) denotes the d× d matrix with entries

(2.4) E ′(X)ij =
∂E

∂Xjk

, 1 ≤ j, k ≤ d.

Date: May 20, 2024.
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3. OVERPARAMETRIZATION AND DEGENERATE LOSS FUNCTIONS

Let fp : Rd → Rd define the linear function fp(x) = Wpx for 1 ≤ p ≤ N . Then the linear
function f : Rd → Rd corresponding to the matrix f(x) = Xx is f = fN ◦ fN−1 . . . ◦ f1.
The output function f depends only on the end-to-end matrix X. However, the same
function f may be represented by Nd2 choices of training parameters W. Thus, despite
the absence of the nonlinear activation element and shifts, the choice of variables in the
DLN models overparametrization in deep learning.

Natural learning tasks, such as matrix completion, give rise to degenerate loss functions.
Assume given a subset S ⊂ {(i, j)}1≤i,j≤d and assume given the values of Xij, for (i, j) ∈
S, say Xij = aij. The task in matrix completion task is to obtain a principled answer to
the question: how do we reconstruct X from the partial observations Xij for (i, j) ∈ S?

The DLN is used to study this question as follows. Introduce the quadratic loss function

(3.1) E(X) =
1

2

∑
(i,j)∈S

|Xij − aij|2,

and seek the limit of X(t) = ϕ(W(t)) as t → ∞ when W(t) solves the gradient flow (2.3).
The loss function E(X) is degenerate because it does not depend on Xij when (i, j) ̸∈ S.
Thus, E is minimized on the affine subspace

S = {X ∈ Md : Xij = aij, (i, j) ∈ S}.

In particular, E does not have compact sublevel sets, and we cannot apply La Salle’s
invariance principle. However, a new mathematical structure emerges.

4. GEOMETRIC FEATURES OF TRAINING DYNAMICS

(1) Invariant varieties. Equation (2.3) shows that each Ẇp is obtained by a linear
transformation of E ′(X). Thus, the space of gradients of L = E ◦ ϕ at W has
only d2 dimensions, whereas the dimension of the tangent space TWMN

d is Nd2.
A simple calculation then yields (N − 1)d(d+ 1)/2 conserved quantities [1, 2, 3]

(4.1) Gp = W T
p+1Wp+1 −WpW

T
p , 1 ≤ p ≤ N − 1.

The solution set to these equations is a conic section in MN
d parametrized by N−1

symmetric matrices. We call these the G-balanced varieties, denoted MG, where
G = (GN−1, . . . , G1). Each of these varieties is invariant under the flow (2.2).

(2) Riemannian submersion of M When G = 0 and X has full rank, we obtain a
fundamental invariant manifold termed the balanced manifold, M. The dynamics
of X(t) ∈ Md are slaved to the dynamics of W(t) ∈ MG. However, when W(t)
lies on M, then X(t) satisfies the Riemannian gradient flow [4]

(4.2) Ẋ = −gradgNE(X),

where the metric gN is obtained by Riemannian submersion of the metric on MN
d

restricted to M.
(3) Group orbits and an entropy formula Given X ∈ Md, we may lift it to an O(d)N−1

orbit OX ∈ MN
d , such that ϕ(W) = X for each W ∈ OX . We may then quantify

overparametrization with a Boltzmann entropy of the form
S(X) = log vol(OX) [7], improving the main result in [5].
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(4) From gradient descent to the Riemannian Langevin equation (RLE). We augment
the gradient dynamics with natural stochastic dynamics, using the geometry of
overparametrization to add noise in the ‘null directions’. This extends the idea of
optimization by the DLN to that of Gibbs sampling, providing a thermodynamic
framework in which the energy E(X) is replaced by a Helmholtz free energy
F (X) = E(X)− β−1S(X) at inverse temperature β > 0 [6, 7].

The volume formula is as follows. Given X ∈ Md with full rank, let its SVD be X =
QNΣQ

T
0 , where QN , Q0 ∈ O(d),Σ = diag(σ1, ..., σd). Then

(4.3) vol(OX) = cN−1
d

√
van(Σ2)

van(Σ
2
N )

= cN−1
d

∏
1≤i<j≤d

√√√√ σ2
i − σ2

j

σ
2
N
i − σ

2
N
j

where cd = vol(O(d)) = 2
1
2
d(d+3)

∏d
r=1

π
r
2

Γ( r
2
)

is the volume of O(d)van(Λ) denotes the
Vandermonde determinant associated to a diagonal matrix Λ.

The formulation of the RLE, especially the definition of the noise in the null directions,
requires greater detail and is contained in the forthcoming work [6, 7].
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OPTIMAL TRANSPORT MAP ESTIMATION IN GENERAL FUNCTION SPACES
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We study the problem of estimating a function T given independent samples from a
distribution P and from the pushforward distribution T♯P . This setting is motivated by
applications in the sciences, where T represents the evolution of a physical system over
time, and in machine learning, where, for example, T may represent a transformation
learned by a deep neural network trained for a generative modeling task.

To ensure identifiability, we assume that T = ∇ϕ0 is the gradient of a convex
function, in which case T is known as an optimal transport map. The estimation of such
maps was inaugurated by Hütter and Rigollet [2], and has been subsequently studied in
a number of works [2, 1, 3, 4, 5]. These works all study estimation of T under the
assumption that it lies in a Hölder class, but general theory is lacking. We present a
unified methodology for obtaining rates of estimation of optimal transport maps in
general function spaces. Our assumptions are significantly weaker than those appearing
in the literature: we require only that the source measure P satisfy a Poincaré inequality
and that the optimal map be the gradient of a smooth convex function that lies in a
space whose metric entropy can be controlled. As a special case, we recover known
estimation rates for Hölder transport maps, but also obtain nearly sharp results in many
settings not covered by prior work. For example, we provide the first statistical rates of
estimation when P is the normal distribution, between log-smooth and strongly
log-concave distributions, and when the transport map is given by an infinite-width
shallow neural network.
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WHEN A SYSTEM OF REAL QUADRATIC EQUATIONS HAS A SOLUTION
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This talk is based on a joint paper with Alexander Barvinok [1]. It discussed a problem
of providing a computationally efficient certificate for the existence of a real solution of a
system of m real quadratic equations with n variables. The question of feasibility of this
type of a system of equations systems appears in various computer science contexts, see,
for example, [2], [3].

If m and n are both allowed to grow, the problem becomes computationally hard.
Unless the computational complexity hierarchy collapses, no polynomial time algorithm
provides a necessary and sufficient condition for the existence of solutions of such a
system. In fact, testing the feasibility of an arbitrary system of real polynomial equations
can be easily reduced to testing the feasibility of a system quadratic ones. First, we
gradually reduce the degree of polynomials by repeatedly introducing new variables and
equations of the type ξij − ξiξj = 0, which allows us to replace the product ξiξj of old
variables by a single new variable ξij, and hence eventually reduce a given polynomial
system to a system

qi(x) = 0 for i = 1, . . . ,m,

where qi are quadratic, not necessarily homogeneous, polynomials. Then we introduce
another, more delicate change of variables which is based on a semi-definite relaxation.
This semi-definite relaxation problem can be efficiently solved in polynomial time. It
allows to further reduce the system of general quadratic equations to a system

(0.1) qi(x) = ⟨Qix, x⟩ = tr(Qi) for i = 1, . . . ,m,

where Qi are n× n symmetric matrices and

⟨x, y⟩ =
n∑

i=1

ξiηi for x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn)

is the standard inner product in Rn and tr(A) denotes the trace of a matrix A.
We present computationally simple sufficient criterion for (0.1), to have a solution.

First, note that any linear combination of the equations of the form (0.1) has the same
form. Using this observation, we can choose the simplest set of matrices Q1, . . . , Qm

which generates the same system of equations. To this end, we introduce the standard
inner product of matrices

⟨A,B⟩ = tr(A⊤B).

Then without loss of generality, we can assume that the matrices Q1, . . . , Qm form an
orthonormal system with respect to this product. Computing such an orthonormal system
is also efficient and can be done, for example, by the Gram-Schmidt procedure.
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For an n × n real symmetric matrix Q, we denote by ∥Q∥op the operator norm of Q,
that is, the largest absolute value of an eigenvalue of Q.

Now, we can formulate the main result.

Theorem 0.1. There is an absolute constant η > 0 such that the following holds. Let
Q1, . . . , Qm, m ≥ 3, be linearly independent n× n symmetric matrices. Suppose that∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
op

≤ η

m

for some (equivalently, for any) orthonormal basis A1, . . . , Am of the linear subspace
spanned by Q1, . . . , Qm. Then the system of quadratic equations

⟨Qix, x⟩ = tr(Qi) for i = 1, . . . ,m

has a solution x ∈ Rn.

We also show that while the choice of the basis A1, . . . , Am depends on the
orthogonalization procedure, the key quantity ∥

∑m
i=1A

2
i ∥op is independent of it.

Moreover, since this quantity is the largest eigenvalue of a positive definite matrix, it
can be computed efficiently.

To illustrate the applicability of Theorem 0.1, we show that if Q1, . . . , Qm are symmetric
matrices with independent identically distributed entries, then with high probability, the
system is feasible provided that m ≤ c

√
n for some absolute constant c > 0.

While the condition we obtain is of an algebraic nature, the proof relies on analytic
tools including Fourier analysis and measure concentration.
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This talk was based on a joint paper with Xiaoyu Dong [4]. We considered a problem
which originated in signal processing. This problem was quickly reduced to a question
about sub-matrices of a random matrix. We showed that this probabilistic question can
be further reduced to a completely deterministic problem about the existence of
approximately Hadamard matrices. The solution of the last problem was achieved by a
combination of number theoretic and probabilistic tools, thus going back to the realm of
probability.

Let n < N be natural numbers. A set of vectors X1, . . . , XN ∈ Rn is called a frame if

(0.1) K(n,N) ∥x∥22 ≤
N∑
j=1

⟨x,Xj⟩2 ≤ RK(n,N) ∥x∥22

for all x ∈ Rn. Here R ≥ 1 is called the frame constant, and K(n,N) > 0 is some function
of n and N . The frame is considered to be good if its frame constant is relatively small.
The notation ∥x∥2 stands for the Euclidean norm of the vector x = (x1, . . . , xn).

In the last 40 years, frame theory became a well-developed area of applied
mathematics, see [1], [2], [3], and the references therein. A frame can intuitively be
regarded as overcomplete basis in Rn. Because of this property, frames became a
valuable tool in signal transmission. A signal which is viewed as an n-dimensional
vector can be encoded by the sequence of its inner products with the frame vectors. If
this sequence is transmitted over a communication line, then the original signal can be
reconstructed even if part of the coefficients is lost or corrupted in the process of
transmission. Moreover, this encoding is robust, which means that if the inner products
are evaluated with some noise, then the reconstructed version will be close to the
original one with the error depending on the noise magnitude.

One of the most popular classes of frames in algorithmic applications is the set of
random frames. Such frames became also the method of choice in compressed sensing
where one needs to reconstruct a low complexity signal from a small number of linear
measurements, see, e.g., [5]. For example, if complexity is measured as the size of the
support, and the support itself is unknown, the random frames provide robust recovery
with optimal or almost optimal theoretical guarantees.

We consider a problem when a random frame contains a copy, or many copies of a
“nice” basis. This problem can be conveniently translated to the language of random
matrices. Define the condition number of a matrix A as

κ(A) =
max∥x∥2=1 ∥Ax∥2
min∥x∥2=1 ∥Ax∥2

.
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With this notation, the frame property (0.1) can be rewritten as κ(An,N) ≤ C where
An,N is the n × N matrix with columns X1, . . . , XN . Thus, the problem of existence of
a ‘nice” basis in a random frame can be recast as the question of existence of one or
many well-conditioned square n× n sub-matrices of an n×N random matrix An,N with
i.i.d. entries. Our main result shows that the probability of finding such a sub-matrix
undergoes a phase transition when N is exponential in terms of n. Since the upper
and the lower bound hold under somewhat different assumptions, we formulate them
separately.

Denote by [N ] the set {1, . . . , N}. Let A be an n ×N matrix. If I ⊂ [N ], denote by AI

the sub-matrix of A whose columns belong to I. The following theorem shows that if N
is exponential in n, then with high probability, the n×N random matrix has many square
submatrices with uniformly bounded condition numbers. In the language of frames, it
means that a random frame with exponentially many vectors contains a large number of
bases whose frame constants are uniformly bounded.

Theorem 0.1. Let A be an n × N matrix with i.i.d. symmetric non-degenerate entries.
Then there exist constants c, C, α, β > 0 depending on the distribution of entries of A with
the following property.
Assume that N ≥ exp(Cn). Then there exists L ≥ exp(cn) such that

P
(
exist disjoint subsets I1, . . . , IL of [N ] with |Ij| = n and κ(AIj) < α for all j ∈ [L]

)
≥ 1− exp (− exp(βn)) .

The strategy of proving Theorem 0.1 relies on finding columns of A which are close
to the columns of a certain deterministic n × n matrix V having a bounded condition
number. The key to this strategy is a successful choice of the pattern matrix V . The
requirement that a column of A can be close to a column of V with a non-negligible
probability forces us to look for a matrix V which is a scaled copy of a matrix with ±1
entries. Such matrices are known in some cases. For instance, the condition number of
any Hadamard matrix is one. An n × n matrix H is called Hadamard if n−1/2H is an
isometry. Hadamard matrices is a well-studied subject, and a number of constructions
of such matrices are available. Yet, the dimensions in which Hadamard matrices were
constructed are rare, so we have to use approximately Hadamard matrices instead.

The existence of an approximately Hadamard matrix in any dimension is established
in the next theorem.

Theorem 0.2. There exists a constant C ≥ 1 such that for any n ∈ N, one can find an n×n
matrix V with ±1 entries satisfying

κ(V ) ≤ C.

The proof of Theorem 0.2 relies on Vinogradov’s theorem from analytic number theory
and combines number-theoretic and probabilistic ideas.

The conclusion of Theorem 0.1 holds under minimal assumptions on the distribution
of entries. If we assume that the entries of the matrix are sub-gaussian, then the bound
of Theorem 0.1 becomes sharp. Recall that a random variable X is called subgaussian
if there is a > 0 such that E exp

(
X2

a2

)
≤ 2. Subgaussian random variables form a large

family containing many naturally arising ones, see, e.g. [5].
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The next theorem shows that finding a submatrix with a bounded condition number
requires an exponential number of columns for matrices with subgaussian entries.

Theorem 0.3. Let X be a centered subgaussian random variable. Then there exist
C, c, c̃, t0 > 0 with the following property. Let t > t0, and assume that

N ≤ exp

(
c̃

t4
n

)
.

Let A be an n×N matrix whose entries are independent copies of X. Then

P (∃I ⊂ [N ] |I| = n and κ(AI) < t) ≤ exp

(
−c

n2

t4

)
.
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The group testing problem concerns discovering a small number of defective items
within a large population by performing tests on pools of items. A test is positive if
the pool contains at least one defective, and negative if it contains no defectives. This
is a sparse inference problem with a combinatorial flavor, with applications in medical
testing, biology, multi-access communication, database systems, and more.

In this talk, I reviewed recent advances in the mathematics of group testing, including
both information-theoretic limits and performance bounds for practical algorithms, with
an emphasis on the following defining features:

• Non-adaptive testing (all tests must be designed in advance) vs. adaptive testing
(tests are designed sequentially based on previous outcomes)

• Noiseless testing (tests are perfectly reliable) vs. noisy tests (some test outcomes
are corrupted)

These two features lead to 4 distinct settings with varying degrees of difficulty. The
over-arching goal is to determine the smallest possible number of tests while
maintaining reliable recovery of the defective set. This question has been studied from a
wide variety of perspectives, including high-dimensional statistics, information theory,
discrete algorithms, combinatorics, error-correcting codes, and others.

The results that I surveyed in this talk are summarized as follows:
• The noisy adaptive setting has long been very well-understood, with a prominent

approach being Hwang’s adaptive binary splitting algorithm [9].
• The noiseless non-adaptive setting was extensively studied over the last decade or

so (by myself and others), eventually leading to exact information-theoretic limits
and a method for matching them in with an efficient algorithm [1, 12, 2, 10, 6, 7].

• The noisy non-adaptive setting has had analogous developments and generally
lagged behind [4, 13, 14], but very recent works (including ours) works have
substantially closed these gaps [5, 8].

• The noisy adaptive setting was seemingly overlooked for a long time, and my
works showed that it can offer significant reductions in the number of tests
compared to non-adaptive methods [11, 15].

A detailed survey covering all of these settings can be found in [3].
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SAMPLING FROM CONVEX SETS WITH A COLD START
USING MULTISCALE DECOMPOSITIONS

HARIHARAN NARAYANAN, AMIT RAJARAMAN, AND PIYUSH SRIVASTAVA

ABSTRACT. A standard approach for sampling approximately uniformly from a convex
body K ⊆ Rn is to run a random walk within K. The requirement is that starting from
a suitable initial distribution, the random walk should “mix rapidly”, i.e., after a number
of steps that is polynomial in n and the aspect ratio R/r (here, K is assumed to contain
a ball of radius r and to be contained within a ball of radius R), the distribution of the
random walk should come close to the uniform distribution πK on K. Different random
walks differ in aspects such as the ease of implementation of each step, or suitability for
a specific class of convex bodies. Therefore, the rapid mixing of a wide variety of random
walks on convex bodies has been studied.

Many proofs of rapid mixing of such random walks however require that the initial
distribution of the random walk is not too different from the target distribution πK . In
particular, they require that the probability density function of the initial distribution
with respect to the uniform distribution πK on K must be bounded above by poly(n):
this is called a warm start. Achieving such a warm start often requires a non-trivial
pre-processing step before the random walk can be started. This motivates the problem
of proving rapid mixing from “cold starts”, i.e., when the density of the initial distribution
with respect to πK can be as high as exp(poly(n)). In contrast to warm starts, a cold start
is usually trivial to achieve. However, rapid mixing from a cold start may not hold for
every random walk, e.g., the well-known “ball walk” does not have rapid mixing from an
arbitrary cold start. On the other hand, for the “hit-and-run” random walk, Lovász and
Vempala proved rapid mixing from a cold start. For the related coordinate hit-and-run
(CHR) random walk, which has been found to be promising in computational
experiments, a rapid mixing result starting from a warm start was proven only recently,
while the question of whether CHR mixes rapidly from a cold start remained open.

In this paper, we construct a family of Markov chains inspired by classical multiscale
decompositions of subsets of Rn into countably many axis-aligned cubes. We show that
even with a cold start, the mixing times of these chains are bounded by a polynomial
in n and the aspect ratio of the body. Our main technical ingredient is an isoperimetric
inequality for K for a metric that magnifies distances between points that are close to the
boundary of K. As a byproduct of the analysis of this new family of chains, we show that
the coordinate hit-and-run (CHR) random walk also mixes rapidly from a cold start, and
also from any point that is not too close to the boundary of the body.

Classification AMS 2020: 60J22, 68Q25

Keywords: Convex bodies, Markov chains, Isoperimetric inequalities.

A full version of the paper is available at arXiv:2211.04439. An extended abstract
appears in Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC), June 2023, pp. 117–130.
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We consider an unknown N × n data matrix A. Suppose we cannot observe A directly
but instead have access to a corrupted version Ã given by

Ã := A+ E,

where E represents the noise matrix. A classical question is to estimate the leading
singular values and singular vectors (alternatively, eigenvalues and eigenvectors) of A
using Ã. This problem is crucial across various fields including engineering, statistics,
machine learning, computer science, and mathematics. Generally, it is assumed that A is
not arbitrary but exhibits specific structural characteristics, such as low-rank, which is a
common assumption in numerous applications.

Assume that A has rank r ≥ 1. The singular value decomposition (SVD) of A takes the
formA = UΣV T ,where Σ = diag(σ1, . . . , σr) is a diagonal matrix containing the non-zero
singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 of A; the columns of the matrices U = (u1, . . . , ur)
and V = (v1, . . . , vr) are the orthonormal left and right singular vectors of A, respectively.
In other words, ui and vi are the left and right singular vectors corresponding to σi. It
follows that UTU = V TV = Ir, where Ir is the r × r identity matrix. For convenience
we will take σr+i = 0 for all i ≥ 1. Denote the SVD of Ã similarly by Ã = ŨΣ̃Ṽ T , where
the diagonal entries of Σ̃ are the singular values σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃min{N,n} ≥ 0, and the
columns of Ũ and Ṽ are the orthonormal left and right singular vectors, denoted by ũi
and ṽi, respectively.

The famous Davis–Kahan bound addresses this question for the eigenvectors of
deterministic real symmetric matrices. An analogous version for the singular vectors of
non-square matrices was established by Wedin. The key parameters in this bound are
the gap (or separation) δ1 between the largest singular values of A given by
δ1 := σ1 − σ2 and the spectral norm of E defined by ‖E‖ := max‖u‖=1 ‖Eu‖, where ‖u‖
denotes the Euclidean norm of the vector u. The classical Wedin’s bound gives

sin∠(u1, ũ1) ≤ C
‖E‖
δ1

,

where ∠(u1, ũ1) is the acute angle between u1 and ũ1 taken in [0, π/2] and C > 0 is an
absolute constant. The same bound holds for sin∠(v1, ṽ1).

For the case when E is a random matrix, an earlier paper by O’Rourke, Vu and myself
[1] proved a version of bounds of the form

(0.1) sin∠(u1, ũ1) .
r1/α

δ1
+
‖E‖
σ1

+
‖E‖2

σ1δ1
,

1



2

which holds with high probability. Here, α > 0 is a parameter that depends on the
distribution of the random matrix E. When the rank r of A is sufficiently small compared
to the dimensions and σ1, δ1 are sufficiently large, this bound improves upon the bound
in Wedin’s theorem. The first term on the right-hand side of (0.1) was conjectured as
a consequence of the true dimension being actually r. The second term represents the
signal-to-noise ratio. However, the third term on the right-hand side of (0.1) appears
unnatural and unnecessary. By a completely different method, which uses tools from
random matrix theory, in a recent joint work with O’Rourke and Vu [2], we removed the
third term from (0.1) when the entries of E are independent and identically distributed
(i.i.d.) copies of a standard normal random variable. In particular, we obtained that with
high probability

sin∠(u1, ũ1) .
r
√

log(N + n)

δ1
+
‖E‖
σ1

.

My talk is concerned with the most recent progress in this direction of research. In [3],
we have enhanced the r-dependence in the bounds obtained from our previous work [2]
and have eased some technical assumptions. For instance, for the largest singular vector,
we have obtained that

sin∠(u1, ũ1) .

√
r + log(N + n)

δ1
+
‖E‖
σ1

.

Furthermore, we have presented a comprehensive extension of the Davis-Kahan-Wedin
sin Θ theorem. This extension applies to any unitarily invariant norm and operates
under the assumption that E contains i.i.d. standard normal entries. Moreover, we have
derived precise `∞ bounds for the perturbed singular vectors and the `2,∞ bounds for
the perturbed singular subspaces of A + E. Beyond these specific bounds, we have also
established results pertaining to the generalized components - also known as linear and
bilinear forms - of the perturbed singular vectors and singular subspaces. We further
investigate the `2,∞ bounds on the perturbed singular vectors, taking into account the
weighting by their respective singular values. These fine-grained analysis is motivated
by the substantial impact and wide-ranging applications these analyses offer in statistics
and machine learning.
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