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LOCAL DYNAMICS OF SKEW-PRODUCTS TANGENT TO IDENTITY (JOINT WORK
WITH L. BOC THALER)

MATTHIEU ASTORG

Classification AMS 2020: 37F80, 32H50

Keywords: Local dynamics in several complex variables, Parabolic implosion, Wandering
Fatou components

Skew-products are holomorphic self-maps of C2 of the form

P (z, w) = (p(z), q(z, w)).

An important feature of these maps is that they preserve the set of vertical lines in C2.
This means that we can view the restriction of P n to a line {z} × C as the composition
of n entire functions on C, which allows techniques from one-dimensional complex
dynamics to be applied. The dynamics of skew-products is therefore in some ways
reminiscent of the dynamics of one-variable maps; however, in recent years, several
important results have shown that these maps have rich and interesting dynamics, see
[8, 11, 12, 15]. For example, in [3], it was shown that there exists polynomial
skew-products, i.e. P is a polynomial map, with wandering Fatou components, a
dynamical phenomenon that is known not to occur for polynomial maps in one complex
dimension. The proof of the main result in that paper involves the adaptation of
parabolic implosion to the skew-product setting (see also [4, 5, 2] for further results on
parabolic implosion in several complex variables). Polynomial skew-products were also
used in [6] and [14] to construct robust bifurcations, i.e. open sets contained in the
bifurcation locus of the family of endomorphisms of P2 of given algebraic degree d ≥ 2.

Given a germ of a holomorphic self-map P of C2 that fixes the origin, we say that P is
tangent to the identity if it is of the form P = Id+Pk(z, w) +O(‖(z, w)‖k+1), where k ≥ 2
and Pk : C2 → C2 is a non-trivial homogeneous polynomial map of degree k. The study of
local dynamics of germs tangent to the identity has received significant attention over the
last decades. For general germs of (C2, 0) tangent to the identity, a complete description
of the dynamics on a full neighborhood of the origin is for now far out of reach. Much
effort has been instead devoted to investigating the existence of invariant manifolds or
invariant formal curves on which the dynamics converges to the origin (see e.g. [7, 1],
and more recently [10, 9]).

In this talk we investigate the local dynamics of skew-products P which are tangent to
the identity and have a non-degenerate second order differential at the origin.

By this we mean holomorphic maps P : C2 → C2 of the form

(0.1) P (z, w) =

(
z +

∑
i≥2

aiz
i, w +

∑
i+j≥2

bi,jz
iwj

)
with a2 6= 0, b2,0 6= 0 and b0,2 6= 0.
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Definition 0.1. Let P be a holomorphic self-map of Ck with a parabolic fixed point at
the origin. A parabolic domain of P is a maximal invariant connected domain BP ⊂ C2

such that the origin is contained in the boundary of U and the iterates P n
|U converge locally

uniformly on U to the origin. Moreover, when k > 1 we say that a parabolic domain is
tangent to a direction v ∈ CPk−1 if and only if each point from the domain is attracted to
the origin along trajectories tangent to v.

We begin by discussing the existence of parabolic domains for maps of the form (0.1),
which depends only on b := b0,2:

Theorem 0.2. Let P be a map of the form (0.1). Then
(1) If b ∈ (1

4
,+∞), the map P has an invariant parabolic domain which is not tangent

to any directions.
(2) If b ∈ C\(1

4
,+∞), the map P has an invariant parabolic domain which is tangent

to one of its non-degenerate characteristic directions.

Invariant parabolic domains which are not tangent to any direction are also sometimes
called spiral domains. Such domains were first constructed by Rivi in her thesis [13,
Proposition 4.4.4].

From now on we will assume that b := b0,2 > 1
4
, and we introduce the following

notations:

(0.2) c :=

√
4b− 1

2
, α0 := eπ/c.

Observe that since b > 1
4
, we have c > 0 and α0 > 1.

Theorem 0.3. Let P be a map of the form (0.1) with b > 1
4
, and satisfying some explicit

condition on cubic terms which we do not state here. Then P has wandering Fatou
components which admit non-constant limit of iterates.

In the case where P is quadratic, we can be more precise:

Theorem 0.4. Let P (z, w) := (z + z2, w + w2 + bz2), with b > 1
4
. Then P has countably

many different grand orbits of wandering domains, each of which admit non-constant limit
of iterates.

Definition 0.5. Given real numbers α > 1 and β ∈ R, we say that a strictly increasing
sequence of positive integers (nk)k≥0 is (α, β)-admissible if and only if its phase sequence
(σk)k≥0, defined by σk := nk+1−αnk − β lnnk, is bounded. In the case where β = 0, we will
simply call such a sequence α-admissible.

The two theorems mentionned above are consequences of the following more technical
result:

Main Theorem. Let P be a map of the form (0.1), satisfying the conditions of Theorem
0.3. Let (nk)k≥0 be an (α0, β0)-admissible sequence and let (σk)k≥0 denote its phase sequence
(β0 is a constant depending explicitly on cubic terms of P ). Then

P nk+1−nk(pnk(z), w) = (0,L(α0, σk; z, w)) + o(1) ( as k → +∞)
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with uniform convergence on compacts in Bp × Bq0, where L : C2 × Bp × Bq0 → C is a
holomorphic map called the generalized Lavaurs map of P .

The usefulness of this Main Theorem (and of similar results, such as [[3], Proposition
A] is that by applying it successively, one can estimate more and more precisely certain
high iterates of P in terms of iterates of the maps Lz : w 7→ L(α0, σk; z, w). Therefore,
one can transfer dynamical properties of Lz to obtain information on the dynamics of P .
These maps Lz are quite complicated (they are non-explicit, transcendental maps, with
infinitely many critical points and in general infinitely many critical values). However, by
thinking of them as a one-parameter family of maps (Lz)z∈Bp, we can use ideas from one-
dimensional bifurcation theory to obtain information on the dynamics of Lz for certain
values of z. Moreover, under the additional assumption that α0 ∈ N≥2, we prove that
these maps are semi-conjugated to finite type maps in the sense of Epstein, which allow
us to obtain a more precise understanding of their dynamics, and in turn, of the dynamics
of P .
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COMPLEX TROPICAL CURRENTS

FARHAD BABAEE

Classification AMS 2020: 14T10, 37F80, 32U40

Keywords: Tropical Geometry, Tropicalisations, Currents

In this presentation, we revisit fundamental concepts in tropical geometry, including
tropical varieties and tropicalization. We also recall the interpretation of tropicalization
concerning the trivial valuation from several angles:

• It can be seen as the intersection of corner loci of tropicalized polynomials.
• It serves as a logarithmic limit set.
• It represents a Chow cohomology class in compatible toric varieties.

For a comprehensive understanding, see [?]. As an important application, we review
the proof of Read and Rota–Heron–Welsh conjecture in the realisable case by June Huh
and Eric Katz in [?].

Next, we explore the definition of analytical constructs such as tropical currents, which
serve as counterparts to tropical varieties in the context of positive closed currents. We
also view tropicalization as a dynamic process. To this end, we define the mapping:

Φm : (C∗)n −→ (C∗)n

(z1, . . . , zn) 7−→ (zm1 , . . . , zmn ),

We then present the following theorem (refer to [?]):

Theorem 0.1. Let Z ⊆ (C∗)n be an irreducible subvariety of dimension p. As m tends to
infinity, we have:

1

mn−p
Φ∗

m[Z] −→ Ttrop(Z),

Here, Ttrop(Z) represents the complex tropical current associated with trop(Z).

We also discuss a version that corresponds to Kajiwara–Payne tropicalization:

Theorem 0.2. Let Z ⊆ (C∗)n be an irreducible subvariety of dimension p, and let Z be the
”tropical compactification” of Z in the compatible smooth toric variety X. As m approaches
infinity, we observe:

1

mn−p
Φ∗

m[Z] −→ T trop(Z),

Where Φm : X −→ X is the continuous extension of Φm : (C∗)n −→ (C∗)n, and T trop(Z)

is the extension by zero of Ttrop(Z) to X.

We then proceed to explore various applications of the above results in recovering
several theorems in tropical geometry. The presentation further delves into an equivalent
version of the Hodge Conjecture formulated in the language of currents, as well as a

1
Page 8



2

stronger version of the Hodge conjecture for positive currents, as proposed by Demailly.
We provide a brief overview of the strategy for finding counterexamples in [?] and [?]
for the latter statement.
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CENTRAL LIMIT THEOREMS FOR COMPLEX HÉNON MAPS AND 
AUTOMORPHISMS OF COMPACT KÄHLER MANIFOLDS

FABRIZIO BIANCHI (JOINT WORK WITH TIEN-CUONG DINH)

Classification AMS 2020: 37F80 (primary), 32U05, 32H50, 37A25, 60F05 (secondary)

Keywords: Complex Hénon maps, Exponential mixing of all orders, Central Limit 
Theorem

Hénon maps are among the most studied dynamical systems that exhibit interesting 
chaotic behaviour. They were introduced by Michel Hénon in the real setting as a 
simplified m odel o f t he Poincaré s ection f or t he L orenz m odel. H énon m aps a re also 
actively studied in the complex setting, where complex analysis offers additional 
powerful tools. This talk was based on our work [2], where we prove that the measure 
of maximal entropy of any complex Hénon map is exponentially mixing of all orders with 
respect to Hölder observables. As a consequence, we also solve a long-standing question 
proving the Central Limit Theorem for all Hölder observables with respect to the 
maximal entropy measures of complex Hénon maps. A similar result holds for 
automorphisms of compact Kähler surfaces with positive entropy [3], and related 
versions are also true in higher dimension. We just focus on the case of Hénon maps in 
this report for simplicity.

The reader can find in the work of Bedford, Dinh, Fornaess, Lyubich, Sibony, Smillie 
fundamental dynamical properties of Hénon maps. In particular, by Bedford-Lyubich-
Smillie, the measure of maximal entropy µ is Bernoulli, which implies that it is mixing 
of all orders. On the other hand, the control of the speed of mixing (i.e., the rate of the 
above convergence) for general dynamical systems and for regular enough observables 
is a challenging problem, and usually one can obtain it only under strong hyperbolicity 
assumptions on the system. Let us recall the following general definition.

Definition 0 .1. Let (X, f ) be a dynamical system and ν  an f -invariant measure. Let (E, ‖ ·
‖E) be a normed space of real functions on X with ‖ · ‖Lp(ν) . ‖ · ‖E for all 1 ≤ p < ∞. 
We say that ν is exponentially mixing of order κ ∈ N∗ for observables in E if there exist 
constants Cκ > 0 and 0 < θκ < 1 such that, for all g0, . . . , gκ in E and integers 0 =: n0 ≤ 
n1 ≤ · · · ≤ nκ, we have∣∣∣〈ν, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0

〈ν, gj〉
∣∣∣ ≤ Cκ ·

( κ∏
j=0

‖gj‖E
)
· θmin0≤j≤κ−1(nj+1−nj)

κ .

We say that ν is exponentially mixing of all orders for observables in E if it is exponentially
mixing of order κ for every κ ∈ N.

A recent major result by Dolgopyat, Kanigowski, and Rodriguez-Hertz ensures that,
under suitable assumptions on the system, the exponential mixing of order 1 implies
that the system is Bernoulli. In particular, it implies the mixing of all orders (with no
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control on the rate of decay of correlation). It is a main open question whether the
exponential mixing of order 1 implies the exponential mixing of all orders.

Let now f be a complex Hénon map on C2. It is a polynomial diffeomorphism of C2.
We can associate to f its unique measure of maximal entropy µ. It was established by
Dinh that such measure is exponential mixing of order 1 for Hölder observables. Similar
results were obtained by Liverani in the case of uniformly hyperbolic diffeomorphisms
and Dolgopyat for Anosov flows.

Theorem 0.2. Let f be a complex Hénon map and µ its measure of maximal entropy. Then,
for every κ ∈ N∗, µ is exponential mixing of order κ as in Definition 0.1 for Cγ observables
(0 < γ ≤ 2), with θκ = d−(γ/2)κ+1/2.

For endomorphisms of Pk(C), the exponential mixing for all orders for the measure of
maximal entropy and Hölder observables was established by Dinh-Nguyen-Sibony. We
recently proved such property for a large class of invariant measures with strictly
positive Lyapunov exponents [1]. This was done by constructing a suitable (semi-)norm
on functions that turns the so-called Ruelle-Perron-Frobenius operator (suitably
normalized) into a contraction.

The exponential mixing of all orders is one of the strongest properties in dynamics.
It was recently shown to imply a number of statistical properties. As an example, a
consequence of Theorem 0.2 is the following result. Take u ∈ L1(µ). As µ is ergodic,
Birkhoff’s ergodic theorem states that

n−1Sn(u) := n−1
(
u(x) + u ◦ f(x) + · · ·+ u ◦ fn−1(x)

)
→ 〈µ, u〉 for µ− a.e. x ∈ X.

This can be seen as a version of the law of large numbers for the sequence {u ◦ f j}j∈N,
which can be interpreted as a sequence of non independent random variables with
respect to µ. We say that u satisfies the Central Limit Theorem (CLT) with variance
σ2 ≥ 0 with respect to µ if n−1/2(Sn(u) − n〈µ, u〉) → N (0, σ2) in law, where N (0, σ2)
denotes the (possibly degenerate, for σ = 0) Gaussian distribution with mean 0 and
variance σ2. By a result of Björklund and Gorodnik [4], the following is then a
consequence of Theorem 0.2.

Corollary 0.3. Let f be a complex Hénon map and µ its measure of maximal entropy.
Then all Hölder observables u satisfy the Central Limit Theorem with respect to µ with
σ2 =

∑
n∈Z〈µ, ũ(ũ◦fn)〉 = limn→∞

1
n

∫
X

(ũ+ ũ◦f+ . . .+ ũ◦fn−1)2dµ, where ũ := u−〈µ, u〉.

Theorem 0.2 and Corollary 0.3 hold also in the larger settings of Hénon-Sibony
automorphisms (sometimes called regular, or regular in the sense of Sibony) of Ck in
any dimension and invertible horizontal-like maps in any dimension.

Our method to prove Theorem 0.2 relies on pluripotential theory and on the theory
of positive closed currents. The idea is as follows. By interpolation, we can reduce the
problem to the case γ = 2. For simplicity, assume that ‖gj‖C2 ≤ 1 for all j. The measure of
maximal entropy µ of a Hénon map f of C2 of algebraic degree d ≥ 2 is the intersection
µ = T+∧T− of the two Green currents T+ and T− of f . If we identify C2 to an affine chart
of P2 in the standard way, these currents are the unique positive closed (1, 1)-currents of
mass 1 on P2, without mass at infinity, satisfying f ∗T+ = dT+ and f∗T− = dT−.

Page 11



3

Consider the automorphism F of C4 given by F := (f, f−1). Such automorphism
also admits Green currents T+ = T+ ⊗ T− and T− = T− ⊗ T+. These currents satisfy
(F n)∗T+ = d2T+ and (F n)∗T− = d2T−. Under mild assumptions on their support, other
positive closed (2, 2)-currents S of mass 1 of P4 satisfy the estimate

(0.1) |〈d−2n(F n)∗(S)− T−,Φ〉| ≤ cS,Φd
−n

when Φ is a sufficiently smooth test form and cS,Φ is a constant depending on S and Φ.

We show that proving the exponential mixing for κ + 1 observables g0, . . . , gκ with
‖gj‖C2 ≤ 1 can be reduced to proving the convergence (we assume that n1 is even for
simplicity)

(0.2) |〈d−n1(F n1/2)∗[∆]− T−,Θ{gj},{nj}〉| . d−min0≤j≤κ−1(nj+1−nj)/2,

where Θ{gj},{nj} := g0(w)g1(z)(g2◦fn2−n1(z)) . . . (gκ◦fnκ−n1(z))T+, [∆] denotes the current
of integration on the diagonal ∆ of C2×C2, and (z, w) denote the coordinates on C2×C2.
A crucial point here is that the estimate should not only be uniform in the gj ’s, but also
in the nj ’s. Note also that the current [∆] is singular and the dependence of the constant
cS,Φ in (0.1) from S makes it difficult to employ regularization techniques to deduce the
convergence (0.2) from (0.1).

The key point here is to notice that, when ddcΦ ≥ 0 (on a suitable open set), one can
also get the following variation of (0.1):

(0.3) 〈d−2n(F n)∗(S)− T−,Φ〉 ≤ cΦd
−n.

With respect to (0.1), only the bound from above is present, but the constant cΦ is now
independent of S. This permits to regularize ∆ and work as if this current were smooth.
Note also that, although Θ{gj},{nj} is not smooth, we can handle it using a similar
regularization.

Working by induction, we show that it is possible to replace both Θ{gj},{nj} and
−Θ{gj},{nj} in (0.2) with currents Θ± satisfying ddcΘ± ≥ 0. This permits to deduce the
estimate (0.2) from two upper bounds given by (0.3) for Θ±, completing the proof.

In the companion paper [3], we explain how to adapt the strategy above to get the
exponential mixing of all orders and the CLT for automorphisms of compact Kähler
manifolds with simple action on cohomology. The proof in that case requires the theory
of super-potentials, which is not needed for Hénon maps.
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ON THE CHERN NUMBERS OF A SMOOTH THREEFOLD

PAOLO CASCINI

Classification AMS 2020: 14E30, 14J30.

Keywords: Chern numbers, Minimal model program

The aim of this talk is to discuss the following question:

Question 0.1 (Kotschich [4]). Let X be a smooth complex projective threefold. Are Chern
numbers of X bounded by a number that depends only on the topology of the manifold
underlying X?

Note that this question is known to have a negative answer for non-Kähler complex
threefolds [5] and for complex projective varieties of dimension greater than three [6].
On the other hand, the question has a positive answer in the case of Kähler varieties
underlying a spin manifold [8].

In the case of a smooth projective threefold X, the only Chern numbers are c31(X),
c1c2(X) and c3(X). The last one coincides with the topological Euler characteristic of X
and, in particular, it is a topological invariant. On the other hand, by
Hirzebruch-Riemann-Roch theorem, we have that |c1c2(X)| coincides with |24χ(OX)|
and it is therefore bounded by an integer depending only on the sum of the Betti
numbers of X. Therefore, it remains to bound c31(X) or, in other words, K3

X .
Thanks to the Minimal Model Program, we know that a smooth projective threefold is

birational to either a minimal model, i.e. a variety Y such that KY is nef or to a variety
Y which admits a Mori fibre space, i.e. a fibration η : Y → Z such that dimZ < 3, the
general fibre of η is Fano and the relative Picard number ρ(Y/Z) is one. We first want
to bound K3

Y . To this end, if Y is a minimal model then K3
Y concides with the volume

of Y and by [2] this number is bounded by the Betti numbers of X. In the second case,
instead, it follows from [7] that if the cubic form FY has non-zero discriminant ∆FY

, then
K3

Y is bounded by a number that depends only on FY and the first Pontryagin class p1(Y )
of Y .

We then need to show that these bounds hold also on X. By [3], we have that the
number k of steps of an MMP

X = X0 99K X1 99K ... 99K Xk = Y

starting from X and the singularities of the output Y of this MMP are both bounded
by a number which depends only on the topology of the manifold underlying X. Thus,
the primary challenge lies in bounding the variation of the topological invariants of the
underlying varieties and the Chern number K3

Xi
at each step Xi 99K Xi+1 of this MMP.

In the case of divisorial contractions, this problem was solved in [2], provided that the
discriminant of the associated cubic form FXi

is non-zero. In this talk, we discuss the
case of flips:

1
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Theorem 0.2. [1] Let X be a smooth complex projective threefold and let

X = X0 99K X1 99K ... 99K Xk = Y

be a KX-MMP.
Then |K3

Xi
−K3

Xi+1
| is bounded by an integer which depends only on b2(X).

The remaining question is to understand how the cubic form varies after each flip.
Indeed if Xi → Xi+1 is a divisorial contraction to a curve then K3

Xi
−K3

Xi+1
depends on

the cubic form of FXi
of Xi and not only on its Betti numbers ( e.g., consider the blowup

of a rational curve of degree d in P3). More precisely, if Xi 99K Xi+1 is a flip then we
need to show:

(1) the equivalence class of FXi+1
belongs to a finite set which depends only on FXi

;
and

(2) if ∆FXi
̸= 0 then ∆FXi+1

̸= 0.

We have a partial solution about the finiteness of cubic forms.

Theorem 0.3. [1] Let X be a smooth complex projective threefold and let

X = X0 99K X1 99K ... 99K Xk = Y

be a KX-MMP. Assume that Xi 99K Xi+1 is a flip for some i = 1, . . . , k−1, and let ϕi : Xi →
Wi be the corresponding flipping contraction.

Then the equivalence class of FXi+1
belongs to a finite set which depends only on b2(X),

FXi
and ϕ∗

iH
2(Wi,Z) ⊂ H2(Xi,Z)
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This talk aims to report my recent research advances with Zhi Jiang on the relevant
topics (for details, please refer to [1]).

Let X be a smooth projective variety of general type. Define the canonical stability
index

rs(X) := min{l|φm,X is birational for all m ≥ l}.
For any n ≥ 1, define the n-th canonical stability

rn := max{rs(X)|X is a smooth proj. n-fold of general type}
and the n-th minimal volume

vn := min{vol(X)|X is a smooth proj. n-fold of general type}.

Conjecture 0.1. v3 = 1
420

.

Iano-Fletcher had the following example:

Example 0.2. The general hypersurface
X46 ⊂ P(4, 5, 6, 7, 23)

is a canoncal 3-fold with the canonical volume 1
420

.

Recall the first theorem on the lower bound of the canonical volume in dimension 3 as
follows:

Theorem 0.3. (Chen-Chen [2, Theorem 3.11]) Let X be a smooth projective 3-fold of general
type with χ(OX) ≤ 1. Then vol(X) ≥ 1

420
. The equality holds if and only if the weighted

basket of X is B(X) = {B420, 0, 1} where B420 is the Reid basket corresponding to Example
0.2.

Let X be a smooth projective 3-fold of general type. Recall the following two known
results:

(i) If pg(X) > 0, then one has vol(X) ≥ 1
75

by Chen [3, Theorem 1.4] and Chen-Chen
[4, Corollary 1.7];

(ii) If q(X) > 0, then vol(X) ≥ 3
8

by Chen-Hacon and Jiang (see [5, Theorem 1.5]).
Assume pg(X) = q(X) = 0. Then χ(OX) > 1 if and only if h2(OX) > 0. This is the main
reason that we study a variety with many global k-forms (k > 0).

Lemma 0.4. (Chen-Jiang [1, Lemma 2.2]) Let E be a torsion-free sheaf of rank r over a
projective variety X. Assume that h0(X, E) > 0. There exists a torsion-free subsheaf
F ⊂ E such that h0(X, detF) ≥ h0(X,E)

r
.
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Now we take E := Ωk
X with k > 0. By Lemma 0.4, there exists a subsheaf F of Ωk

X such
that h0(X, detF) ≥ h0(X,Ωk

X)

(n
k
)

. We may replace F by its saturation in Ωk
X and denote by Q

the corresponding quotient bundle. Set H := detF and L := detQ. Then(
n− 1

k − 1

)
KX ∼ det(Ωk

X) ∼ H + L.

By Campana and Paun [6, Theorem 1.2], we know that L is pseudo-effective.
The first application is the direct consequence on 3-folds with χ(OX) > 1.

Theorem 0.5. (Chen-Jiang [1, Theorem 2.6]) Let X be a smooth projective threefold of
general type with h2,0(X) ≥ 3. Then vol(X) ≥ 1

224
.

About the number v3, we have the following Theorem:

Theorem 0.6. (cf. Chen-Jiang [1, Theorem 1.2]) Let X be a smooth projective 3-fold of
general type with χ(OX) ̸= 2, 3 and h2,0(X) ̸= 1, 2. Then vol(X) ≥ 1

420
. The equality

holds if and only if the weighted basket of X is B(X) = {B420, 0, 1} where B420 is the Reid
basket corresponding to Example 0.2.

The second application of our key idea is some direct result on varieties with sufficiently
many global 2-forms.

Theorem 0.7. (Chen-Jiang [1, Theorem 1.3, Theorem 1.4]) Let X be any smooth projective
3-fold of general type with either h2,0(X) ≥ 108 · 183 + 4 or χ(OX) ≥ 108 · 183 + 5. Then
the m-canonical map φm,X is birational for all m ≥ 3.

Theorem 0.8. (Chen-Jiang [1, Theorem 1.6]) There exists a constant H(4) > 0 such that,
for any nonsingular projective 4-fold X of general type with h0(X,Ω2

X) ≥ H(4), φm,X is
birational for all m ≥ 5.

We end up with the following conjecture:

Conjecture 0.9. (Chen-Jiang [1, Conjecture 7.3]) For any n ≥ 5, there exists a constant
H(n) > 0 such that, for every smooth projective n-fold X of general type with h2,0(X) ≥
H(n), |mKX | induces a birational map for all m ≥ rn−2.
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In this talk, we will talk about a hyerplane restriction theorem for the local
holomorphic mappings between projective spaces, which is inspired by the
corresponding theorem of Green for homogeneous ideals in polynomial rings.

To state our hyperplane restriction theorem, we first bring out the fact that every
positive integer A can be written as certain sums of binomial coefficients. For every
n ∈ N+, there exist unique positive integers an > an−1 > · · · > aδ, where δ ≥ 1 and
aj ≥ j for every j, such that A =

(
an
n

)
+ · · · +

(
aδ
δ

)
. This is called the n-th Macaulay’s

representation of A and its existence and uniqueness can be proved by a greedy
algorithm. These representations originally appeared in Macaulay’s work of
homogeneous ideals in polynomial rings [Ma]. Using the n-th Macaulay representation
of A, we define the operation A−<n> :=

(
an−1
n−1

)
+ · · · +

(
aδ−1
δ−1

)
. In what follows, “span”

means the projective linear span:

Theorem 0.1. ([GN]) Let f : U ⊂ Pn → PM be a local holomorphic map such that
dim(span(f(U)) ≥ N . Then, for a general hyperplane H such that H ∩ U 6= ∅,
dim(span(f(H ∩ U)) ≥ N−<n>.

The equality in the theorem can hold, for example, when f is a rational map whose
components are all the monomials of a fixed degree. Our theorem is obtained from
combining Green’s hyperplane restriction theorem (Theorem ??) with a pair of
combinatoric identities. It holds for any local holomorphic maps between projective
spaces and we believe that it will find applications elsewhere.This theorem gives us a
formula to estimate the dimension of the linear span of image from the dimension of
image of a general linear subspace.

As an application, we will introduce a new coordinate-free approach to study the
Cauchy-Riemann maps between the real hyperquadrics in the complex projective
space.The study of holomorphic mappings between real hyperquadrics in the complex
projective space is a very classical topic in Several Complex Variables, especially in the
field of CR (Cauchy-Riemann) Geometry.The traditional approach to the study is based
on Chern-Moser’s normal form theory, in which the central theme is that one can choose
good coordinates such that the CR manifolds and the relevant holomorphic maps take
certain normal forms. This is a powerful method which has been used to solve many
problems but usually it requires formidable calculation.On the other hand, we observe
that when the CR manifolds being concerned are real hyperquadrics, there are a certain
type of orthogonality and a number of related notions such as null spaces and
orthogonal complements which interact well with the CR maps. Our approach to the
study of real hyperquadrics is to work on these geometric objects directly. While our
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method might not be able to produce as much detail of the relevant maps as the
traditional normal form theory, it has the advantages of being coordinate free and
geometrically more transparent. It is especially suited for obtaining rigidities and
general behaviors with shorter and easier arguments.

Theorem 0.2. ([GN1]) Let U ⊂ Br,s,t be a connected open set such that U ∩ ∂Br,s,t 6= ∅
and f : U → Br′,s′,t′ be a proper map. Then f is either null or quasi-linear if one of the
conditions below is satisfied:

(i) r, s ≥ 2 and min{r′, s′} ≤ min{r, s};

(ii) t = 0 and min{r′, s′} ≤ 2min{r, s} − 2;

(iii) t = 0 and r′ + s′ ≤ 2 dim(Pr,s)− 1.

From Theorem 0.2, we can deduce and generalize a number of well-known rigidity
theorems for the holomorphic maps between real hyperquadrics, including those of
Baouendi-Huang [BH] (from (i) and (iv)); Baouendi-Ebenfelt-Huang [BEH] (from (ii));
Faran [Fa1] (from (iii)); and Xiao-Yuan [XY] (from (iii)).

The other application of Hyperplane restriction Theorem is to study the structure of
the set of rational proper maps between complex unit balls,which is a very classical
topic in Several Complex Variables. Among the many unsolved problems in this topic,
it is well-known that there is an interesting gap phenomenon, as follows. Fix an integer
n ≥ 2. For each k ∈ N+ such that k(k + 1)/2 < n, define the closed interval Ik :=

[kn + 1, (k + 1)n − k(k+1)
2
− 1]. The classical theorem of Faran [Fa1] amounts to saying

that when N ∈ I1 = [n+1, 2n− 2], any local holomorphic map sending an open piece of
∂Bn to ∂BN actually maps ∂Bn to a linear section ∂Bn ⊂ ∂BN . In other words, there are
no “new” maps when N increases from n to 2n − 2. Then, it was discovered by Huang-
Ji-Xu [HJX] that the same phenomenon holds for N ∈ I2 = [2n + 1, 3n − 4] and later
by Huang-Ji-Yin [HJY] for N ∈ I3 = [3n + 1, 4n − 7]. The Gap Conjecture, formulated
in [HJY2], states that the gap phenomenon holds whenever N ∈ Ik.

We are going to establish the existence of similar gaps for all levels at once and also to
demonstrate the gap phenomenon actually holds for all generalized balls (whose
definition will be recalled below).

Theorem 0.3. (GN1) Let k, n ∈ N+ such that n > k(k+1). For the local proper holomorphic
maps between generalized balls, the gap phenomenon holds over the intervals

Jk := [kn+ k, (k + 1)n− (k2 + 1)].

For the ordinary unit balls, Theorem 0.3 is understood as the usual way, as described
above. However, we will see that formulating precisely the gap phenomenon for all
generalized balls. Note that although the interval Jk in our theorem is smaller than the
Ik in the original Gap Conjecture, this is to be expected since our theorem holds for all
generalized balls. As a matter of fact, the lower bound for Jk is sharp in the present
context.

Our proof for Theorem 0.3 consists of two main ingredients: the orthogonality
preserved by the relevant proper maps; and a hyperplane restriction theorem for
holomorphic mappings. Regarding the study of orthogonality, we proposed a coordinate
free approach to the rigidity problems related to real hyperquadrics on the projecture
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space and generalized a number of well-known rigidity theorems by using rather simple
arguments.

It is a joint work with Sui-Chung Ng.
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THE MUKAI-TYPE CONJECTURE
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First of all, we introduce he following famous conjecture by Shigeru Mukai:

Conjecture 0.1 ([M]). Let X be a d-dimensional smooth Fano varieties, ρ(X) the Picard number,
and

iX := max{r ∈ Z| − KX ∼Z rH for some Cartier divisor H}
be the Fano index. Then it holds that

d + ρ(X) − i(X) · ρ(X) ≥ 0.

Moreover the above is equal if and only if X ≃ Pi(X)−1 × · · · × Pi(X)−1.

If we call d+ρ(X)− i(X) ·ρ(X) the Mukai complexity , the above conjectures the complexities
are non-negative and smallest one is the product of projective spaces. This observation is
very closed to the Shokurov conjecture charactarizing the Toric varieties.

Then we propose a new approach to the above traditional conjecture by using more
modern technique from the minimal model program and Toric geometry.

First we propose the new invariant and give a new conjecture of Mukai type.

Definition 0.2. Let X be a Fano manifold. We define the total index γX of X as the maximal of
∑

ai

for a decomposition

−KX =
∑

aiLi,

where Li are nef line bundles which is not numerically trivial and ai ∈ Z>0. Note that we allow
Li = L j for i , j.

Conjecture 0.3 (Mukai type conjecture). It holds that

dim X + ρX − γX ≥ 0

and the equality holds if and only if the product of projective spaces

Note that dim X+ρX −γX should be called by the Shokurov complexities for generalized
pairs. The above Mukai type conjecture is more accessible than the original one since that is
more direct related with the Shokurov complexities than the original Mukai conjecture by
using the minimal model program techniques for generalized pairs. Indeed we proposed
two approach to the Mukai type conjecture. First one is to use the Kawamata–Ambro
effective non-vanishing ([Am], [Ka]):

Conjecture 0.4. Let (X,B) be a projective klt pair and L a nef line bundle on X such that L− (KX+B)
is ample.

Then H0(X,L) , 0.

Date: October 31, 2023, version 1.10.
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Indeed the we prove

Theorem 0.5. Assume that Conjecture 0.4 holds. Then Conjecture 0.3 holds.

The second approach is to generaralize the Shokurov conjecture (which is proved by
[BMSZ]) to generalized pairs. Then we need to expand the notion of Shokurov’s complex-
ieies for generalized pairs. However that is known for only surfaces in [GM].

Moreover by comparing the Shokurov and Mukai complexities, we discuss when these
have relationships. In particular, we discuss when Shokurov’s one is smaller than and equal
to Mukai’s one. For this purpose, it seems that the key point to study of the effective and
nef cone of the Fano manifolds. In particular, we need to investigate about the extremal
contraction under the assumption of small Mukai complexities. If it is less than one, we
expect to have only fiber type. On the other hand, we have very naive question about the
effective cone of Fano manifolds such that all extremal contraction are fiber type. We shall
ask whether the such cone is simplicial over Z.

In the last, we include discussion the difference of the integer total index and rational
total index.

Definition 0.6. Let X be a Fano manifold. We define the total index γX of X as the maximal of
∑

ai

for a decomposition

−KX =
∑

aiLi,

where Li are nef line bundles which is not numerically trivial and ai ∈ Z>0. Note that we allow
Li = L j for i , j.

It seems to be no direct relationship with the product of the Fano index and the Picard
number although we propose Conjecture 0.3 motivated with Conjecture 0.1 ;

Example 0.7. Let X be a three point blow-up of P2. Then γX = 3 but ρ(X) = 4 and the Fano index
i(X) = 1. Thus γX < ρ(X)i(X).

Example 0.8. Let X be a one point blow-up of P2. Then γX = 3 but ρ(X) = 2 and the Fano index
i(X) = 1. Thus γX > ρ(X)i(X).

We also consider the rational version of γX:

Definition 0.9. Let X be a Fano manifold. We define the total index γX,Q of X as the upperlimit of∑
ai for a decomposition

−KX =
∑

aiLi,

where Li are nef line bundles which is not numerically trivial and ai ∈ Q>0. Note that we allow
Li = L j for i , j.

We have a naive question about whether the integral and rational total indexes coincide:

Question 0.10. Let X be a Fano manifold. Then γX = γX,Q?

However, the answer is no to the following example by Atsushi Ito.

Example 0.11 (Atsushi Ito). Let π : S→ P2 be a general 4-points blow-up of the projective plane.
Then γS = 2. Indeed let E1,E2,E3,E4 be the exceptional divisors of π and L be a line on P2. Since
π∗(2L) −∑4

i=1 Ei is semi-ample, the decomposition

−KS ∼Z (π∗(2L) −
4∑

i=1

Ei) + π∗L
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gives γS ≥ 2. On the other hand, if γS ≥ 3, we have a decomposition −KS ∼Z L1 + L2 + L3 such
that Li is nef and not numerical trivial Cartier divisor. By the Reimann–Roch formula, we see that
H0(X,Li) , 0. Thus we may assume that Li is an effective divisor. π∗Li is equal to a line on P2. Now
fix i, Since π∗(π∗Li) = Li +

∑
j d jE j for some non negative integers d j. Since Li is nef,

∑
j d jE j is the

prime exceptional divisor. Thus we may assume that π∗(π∗Li) = Li + ϵiEi (by changing the index of
the exceptional divisors), where ϵi = 0 or 1. But then

∑
Li is not linear equivalent to −KS. This is

the contradiction. Thus we see that γS = 2. Now we see that γS,Q > 2. Indeed, let

Di = π
∗L − Ei,D′ = 2π∗L − E1 − E2 − E3 − E4.

Then it holds that
1/2(D1 +D2 +D3 +D4 +D′) = −KS.

This decomposition gives γS,Q ≥ 5/2 > 2. Thus γS , γS,Q

Still, we are interested in the above question for the Toric varieties.
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AN UPPER BOUND FOR POLYNOMIAL VOLUME GROWTH OF AUTOMORPHISMS
OF ZERO ENTROPY

FEI HU AND CHEN JIANG

ABSTRACT. Let X be a smooth complex projective variety of dimension d and f an
automorphism of X. Suppose that the pullback f∗|N1(X)R of f on the real Néron–Severi
space N1(X)R is unipotent and denote the index of the eigenvalue 1 by k+1. We prove an
upper bound for the polynomial volume growth plov(f) of f as follows:

plov(f) ≤ (k/2 + 1)d.

Combining with the inequality k ≤ 2(d− 1) due to Dinh–Lin–Oguiso–Zhang, we obtain an
optimal inequality that

plov(f) ≤ d2,

which affirmatively answers questions of Cantat–Paris-Romaskevich and Lin–Oguiso–Zhang.

Given a surjective endomorphism f of a smooth complex projective variety X of
dimension d, Gromov [7] introduced in 1977 the so-called iterated graph Γn ⊂ Xn of f ,
i.e., the graph of the morphism (f, . . . , fn−1) : X → Xn−1, and bounded the topological
entropy htop(f) of f by the volume growth lov(f) of f and further by the algebraic entropy
halg(f) of f as follows:

htop(f) ≤ lov(f) := lim sup
n→∞

log Vol(Γn)

n

≤ halg(f) := log max
0≤i≤d

λi(f),

where the volume Vol(Γn) is computed against the ample divisor on the product variety
Xn induced from an arbitrary ample divisor HX on X, and the i-th dynamical degree λi(f)
of f is defined by

λi(f) := lim
n→∞

((fn)∗H i
X ·Hd−i

X )1/n.(1.1)

Combining with Yomdin’s remarkable inequality halg(f) ≤ htop(f) (which resolves Shub’s
entropy conjecture; see [12]), the above Gromov’s result yields the fundamental equality
in higher-dimensional algebraic/holomorphic dynamics, saying that

htop(f) = lov(f) = halg(f).

Recently, there are many works on varieties with slow dynamics (see, e.g., [3, 10, 4, 6, 5,
11, 8]), and in particular, we are interested in automorphisms of zero entropy.

Let X be a normal projective variety of dimension d, HX an ample divisor on X,
and f an automorphism of X. Denote by N1(X)R the real Néron–Severi space of Cartier

2020 Mathematics Subject Classification. 14J50, 16P90, 05E14, 16S38.
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divisors on X modulo numerical equivalence, which is a finite-dimensional R-vector space.
Suppose that f is of zero entropy, i.e., f ∗|N1(X)R is quasi-unipotent. Namely, all eigenvalues
of f ∗|N1(X)R are roots of unity. Denote by k + 1 the maximum size of Jordan blocks of (the
Jordan canonical form of) f ∗|N1(X)R. Note that k = 2r is an even (nonnegative) integer.

In their study of polynomial entropy in slow dynamics, Cantat and Paris-Romaskevich
[4] introduced the polynomial volume growth plov(f) of f as follows:

plov(f) := lim sup
n→∞

log Vol(Γn)

log n
,

which turns out to be closely related to the Gelfand–Kirillov dimension of the twisted
homogeneous coordinate ring associated with (X, f) (see [9, Proposition 6.11]). The
coincidence of these two invariants in algebraic dynamics and noncommutative geometry
was first noticed by Lin, Oguiso, and Zhang [11], where, among many other things, they
also improved Keeler’s upper bound k(d− 1) + d for plov(f) using dynamical filtrations
introduced by their earlier joint work [5] with Dinh.

Our main result is a new upper bound for plov(f) which is almost the half of known
upper bounds, and it affirmatively answers [11, Question 6.6] and [8, Question 2.10].
The proof involves combinatorics and representation theory (see Remark 1.4).

Theorem 1.1. Let X be a normal projective variety of dimension d and f an automorphism
of X. Suppose that f ∗|N1(X)R is quasi-unipotent and the maximum size of Jordan blocks of
f ∗|N1(X)R is k + 1. Then we have

plov(f) ≤ (k/2 + 1)d.

The upper bound in Theorem 1.1 is optimal when k/2 + 1 divides d. On the other hand,
if k = 2 and d is odd, then the actual optimal upper bound turns out to be 2d− 1 (see [8,
Theorem 2.9] or [11, Theorem 4.2]).

Combining our Theorem 1.1 with [5, Theorem 1.1], we give affirmative answers to [4,
Question 4.1] and [11, Question 1.5 (1)].

Corollary 1.2. Let X be a normal projective variety of dimension d. Let f be an
automorphism of zero entropy of X. Then one has

plov(f) ≤ d2.

This upper bound is optimal by [11, Example 6.4].

Remark 1.3. In noncommutative geometry, Artin, Tate, and Van den Bergh [1, 2] introduced
in the 1990s the so-called twisted homogeneous coordinate ring B := B(X, f,L ) associated
with a normal projective variety X, an automorphism f of X, and an invertible sheaf L on
X. It was proved by Keeler [9] that the Gelfand–Kirillov dimension GKdim(B) is finite (and
equals plov(f) + 1) if and only if f ∗|N1(X)R is quasi-unipotent (see also [11]). So our result
provides an optimal upper bound d2 + 1 for GKdim(B), too.

Remark 1.4. The idea of our proof of Theorem 1.1 is simple and goes back to [2, 9].
Precisely, without loss of generality, we may assume that f ∗|N1(X)R is unipotent and hence
can be written as f ∗|N1(X)R = id+N , where N is a nilpotent operator on N1(X)R. Then by
[9, Proof of Lemma 6.13] or [11, Lemma 2.16], we will be interested in the vanishing of
intersection numbers N i1HX · · ·N idHX . Applying the projection formula and by induction,
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we obtain a homogeneous system of linear equations, where these intersection numbers are
unknowns.

To show the vanishing of certain intersection numbers, we shall prove that the matrix of
coefficients of the above homogeneous system of linear equations, denoted by Ak,d,n later, is
of full column rank whenever n > dk/2. While handling a single matrix Ak,d,n seems to be
quite complicated, our key observation is that the family of such matrices (with n varying)
can be naturally realized as representative matrices of Lefschetz operators of a representation
of the Lie algebra sl2(C). This gives us a hard Lefschetz type result that the product matrix
Ak,d,n+1Ak,d,n+2 · · ·Ak,d,dk−n is invertible for any n < dk/2.
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SLOPE INEQUALITY FOR FIBERED THREEFOLDS OVER CURVES

YONG HU

Classification AMS 2020: 14D06, 14E30

Keywords: Fibration, threefolds, minimal model

A fibration always means a surjective morphism with connected fibers. Let f : X → B
be a fibration from X to a curve B. We say that f is relatively minimal, if X is projective
and normal, with at worst terminal singularities, and the divisor KX is f -nef. Notice that
Ohno [5, Theorem 1.4] has proved that this implies that KX/B is nef in characteristic
zero. By an (a, b)-surface, we mean a minimal surface of general type with K2 = a and
pg = b.

In this talk, we will introduce the slope inequality for fibered varieties over curves.
The classical slope inequality for fibered surfaces was established by M. Cornalba-J. D.
Harris (c. f. [3]) and G. Xiao (c. f. [6]) independently. Motivated by their results, we
are interested in the following question.

Question 0.1. Let f : X → B be relatively minimal fibration from an n-fold X to a curve B
such that the general fiber is of general type and that deg f∗ωX/B > 0. What is the optimal
lower bound of Kn

X/B/ deg f∗ωX/B?

When n = 2, the optimal slope is obtained by [3] and [6]. When n > 2, some partial
results are proved in [5], [1], [4] and [2].

Our first main result is the following theorem:

Theorem 0.2. Let f : X → B be a relatively minimal fibration over a smooth projective
curve. Then we have the following optimal inequality:

K3
X/B ≥

4

3
deg f∗ωX/B.

This theorem removes the smoothness assumption in our previous work (c. f. [4]).
When the equality K3

X/B = 4
3
deg f∗ωX/B > 0, we prove that the general fiber of f :

X → B is a (1, 2)-surface and X is Gorenstein minimal. It follows that X is locally
factorial. We also give the explicit classification of geometric structure of f .

This is a joint work in progress with Tong Zhang.

REFERENCES

[1] Miguel A. Barja and Lidia Stoppino. Stability conditions and positivity of invariants of fibrations.
Algebraic and complex geometry, Springer Proc. Math. Stat., vol.71, 1-40, 2014.

[2] Giulio Codogni, Luca Tasin and Filippo Viviani. Slope inequalities for KSB-stable and K-stable
families. Proc. Lond. Math. Soc., (3) 126, no. 4, 1394-1465, 2023.

[3] Maurizio Cornalba and Joe Harris. Divisor classes associated to families of stable varieties, with
applications to the moduli space of curves. Ann. Sci. École Norm. Sup., (4) 21, 455-475, 1988.
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MINIMAL RATIONAL CURVES WHOSE VMRT AT A GENERAL POINT IS AN
ADJOINT VARIETY

JUN-MUK HWANG

Classification AMS 2020: 53C35, 14M27

Keywords: Minimal rational curves, adjoint variety, Variety of minimal rational tangents

A minimal rational curve on a projective manifold X is a rational curve through a
general point x ∈ X such that the family of all deformations of the rational curve passing
through x is a projective family. We say that two minimal rational curves C ⊂ X and C̃ ⊂
X̃ have biholomorphic germs, if there are open neighborhoods in Euclidean topology, say,
C ⊂ U ⊂ X and C̃ ⊂ Ũ ⊂ X̃, with a biholomorphic map ϕ : U → Ũ satisfying ϕ(C) = C̃.
The question we are interested in is how to check whether two minimal rational curves
have biholomorphic germs.

One of the basic invariants of the germ of a minimal rational curve C ⊂ X is its variety
of minimal rational tangents. Pick a point x ∈ C such that the family of all deformations
of C fixing x is a projective family. Then the subset Cx ⊂ PTxX consisting of tangent
directions to deformations of C fixing x is a projective subvariety called the variety of
minimal rational tangents (abbr. VMRT) of C at x. If ϕ : U → Ũ is a biholomorphic
map of germs of minimal rational curves C ⊂ X and C̃ ⊂ X̃, then the VMRT of C and
C̃ at points related by ϕ must be isomorphic as projective subvarieties. Thus VMRT is an
invariant of the biholomorphic equivalence of germs.

We are interested in the cases when the isomorphism type of the VMRT at a general
point of a minimal rational curve C ⊂ X determines the germs. First we have the
following example of germs whose VMRT at a general point is an arbitrarily given smooth
projective variety Z ⊂ Pn−1.

Example 1 Let Pn−1 ⊂ Pn be a hyperplane in the n-dimensional projective space and
fix a submanifold Z ⊂ Pn−1. Let XZ be the blowup of Pn along Z. There is a family
of minimal rational curves on XZ whose general members are proper transformations
of lines on Pn intersecting Z. Then its VMRT at any point on the open subset of XZ

corresponding to Pn \Pn−1 is isomorphic to Z ⊂ Pn−1.

The most interesting cases are when Z ⊂ Pn−1 is a homogeneous projective
submanifold. Then the germs of all general minimal rational curves in the above
example are biholomorphic to one another. We have the following rigidity results for
some classes of homogeneous submanifolds.

Theorem 1 [3] Let Z ⊂ Pn−1 be the VMRT at a point of minimal rational curves on
an irreducible Hermitian symmetric space of compact type. Suppose C ⊂ X is a minimal
rational curve in a projective manifold X of dimension n such that the VMRT at a general

Date: September 25, 2023.
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point of C is isomorphic to Z as projective submanifolds. Then the germ of C in X is
biholomorphic to the germ of a general line in XZ .

Theorem 2 [2] Let Z ⊂ P2n−1 be a homogeneous Legendrian submanifold. Suppose
C ⊂ X is a minimal rational curve in a projective manifold X of dimension 2n such that
the VMRT at a general point of C is isomorphic to Z as projective submanifolds. Then
the germ of C in X is biholomorphic to the germ of a general line in XZ .

In a recent joint work with Qifeng Li, we studied the case when Z ⊂ Pn−1 is an adjoint
variety, namely, the unique closed orbit in Pg of the adjoint representation on a complex
simple Lie algebra g. In this case, we have the following examples in addition to Example
1.

Example 2 The VMRT at a general point of a general line on a smooth hyperplane
section of the Grassmannian Gr(3;C6) ⊂ P(∧3C6) is isomorphic to the adjoint variety
for g of type A2.

Example 3 [1] The VMRT at a general point of a general minimal rational curve on
the wonderful group compactification for g of type different from A` is isomorphic to the
adjoint variety for g.

The main result in the joint work with Qifeng Li is the following.

Theorem 3 Let Z ⊂ Pg be the adjoint variety of a complex simple Lie algebra g of type
different from A`≥3. Suppose C ⊂ X is a minimal rational curve in a projective manifold
X of dimension equal to dim g such that the VMRT at a general point of C is isomorphic
to Z as projective submanifolds. Then the germ of C in X is biholomorphic to the germ
of a general line in Examples 1, 2, or 3.

The proofs of Theorems 1, 2 and 3 use differential geometric techniques. In particular,
for Theorem 3, the classical theory of G-structures and affine symmetric spaces plays an
essential role.
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WILD AUTOMORPHISMS OF COMPACT COMPLEX SPACES OF LOWER
DIMENSIONS
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This presentation is based on the paper [6].
Let X be a compact complex space. We will use the analytic Zariski topology on X

whose closed sets are all analytic sets (cf. [4, Page 211]). An automorphism σ ∈ Aut(X) is
called wild in the sense of Reichstein–Rogalski–Zhang ([9]) if for any non-empty analytic
subset Z of X satisfying σ(Z) = Z, we have Z = X; or equivalently, for every point x ∈ X,
its orbit {σn(x) | n ≥ 0} is Zariski dense in X.

The following two conjectures generalise [9, Conjecture 0.3] and [8, Conjecture 1.4] from
the projective case to the Kähler case.

Conjecture 0.1 (cf. [9, Conjecture 0.3]). Assume that a compact Kähler space X admits a
wild automorphism. Then X is isomorphic to a complex torus.

Conjecture 0.2 (cf. [8, Conjecture 1.4]). Every wild automorphism σ of a compact Kähler
space X has zero entropy.

When X is a projective variety, wild automorphisms are related with the twisted
homogeneous coordinate rings, which play a role in noncommutative algebraic geometry
(see [9]). The study of wild automorphisms is also of interest from the viewpoint of
dynamical systems (see [1]).

For a compact Kähler surface X with a wild automorphism σ, it is well-known that X is
a complex torus, and σ is of the certain form, a priori, of zero entropy (see [9, Theorem 6.5]
and [1, Theorem 6.10]).

In this article, we consider compact complex surfaces (not necessarily Kähler) with a
wild automorphism. We give a characterisation of such surfaces and show that there do
exist examples of non-Kähler surfaces that admit a wild automorphism.

Theorem 0.3. Let X be a compact complex space of dimension ≤ 2. Assume that X admits
a wild automorphism σ. Then we have:

(1) X is either a complex torus or an Inoue surface of type S(+)
M , and σ has zero entropy.

(2) Both cases in (1) occur: there are pairs (X ′, σ′) where X ′ is a complex torus or an
Inoue surface of type S

(+)
M and σ′ acts on X ′ as a wild automorphism.

We refer to §6 for the definition and the constructions of Inoue surfaces. In §6, we will
construct examples of wild automorphisms of Inoue surfaces of type S

(+)
M . We remark that

there are examples of wild automorphisms of complex abelian surfaces. More strongly,
there are complex abelian surfaces with an automorphism of which all orbits are Euclidean
dense (see [1, Example 6.6 and Lemma 6.7]).

1
Page 30



2

Question 0.4 (cf. [2, Section 4.2]). Are there Inoue surfaces of type S
(+)
M with an

automorphism of which all orbits are Euclidean dense?

As a by-product of our argument, we obtain new results about the automorphism groups
of Inoue surfaces, which might be of independent interest. Theorem 0.5 below gives a more
refined structure than [5, Section 6]. We remark that Inoue surfaces are divided into three
different types: SM , S(+)

M and S
(−)
M .

Theorem 0.5. Let X be an Inoue surface.
(1) If X is either of type SM or S

(−)
M , then the (biholomorphic) automorphism group

Aut(X) is finite.
(2) If X is of type S

(+)
M , the neutral connected component Aut0(X) ≃ C∗ and

Aut(X)/Aut0(X) is finite.

Fujiki [3] has studied the automorphism groups of parabolic Inoue surfaces. It is worth
noting that a parabolic Inoue surface has positive second Betti number, which distinguishes
it from the usual Inoue surfaces.

We propose the following questions rather than conjectures due to the lack of evidence.

Question 0.6.
(1) Is a compact complex space in Fujiki’s class C admitting a wild automorphism a

complex torus?
(2) Does every wild automorphism of a compact complex space have zero entropy?

A compact complex space is called in Fujiki’s class C if it is bimeromorphic to a compact
Kähler manifold. In dimension two, a compact complex manifold is in Fujiki’s class C if
and only if it is Kähler, while starting from dimension three, the category of Fujiki’s class
C is strictly larger. In particular, the answers to both two questions are affirmative in
dimension two due to Theorem 0.3.

In the rest of this article, we study Conjectures 0.1 and 0.2 in dimension three and four.

Theorem 0.7. Let X be a compact Kähler space of dimension three, and let σ be a wild
automorphism of X. Then

(1) X is either a complex torus or a weak Calabi–Yau threefold;
(2) σ has zero entropy.

Here a smooth complex projective variety V is called
(1) a weak Calabi–Yau manifold, if KV ∼Q 0 and π1(V ) is finite;
(2) a Calabi–Yau manifold in the strict sense, if V is simply connected, KV ∼ 0 and

Hj(V,OV ) = 0 for 0 < j < dimV .
Let us remark that, X in Theorem 0.7 could not be a weak Calabi–Yau threefold if

one assumes the generalised non-vanishing conjecture which predicts that any nef Cartier
divisor on a Calabi–Yau threefold is effective ([8, Theorem 7.4], see also [7, Theorem 4.7]).
The following proposition provides further evidence.

Proposition 0.8. Let X be a weak Calabi–Yau threefold, and let c2(X) be the second Chern
class of X. Assume that either

(1) c2(X) ·D > 0 for every non-torsion nef Cartier divisor D on X; or
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(2) there exists a non-torsion semi-ample Cartier divisor D on X such that c2(X) ·D =
0.

Then X has no wild automorphism.

Theorem 0.9. Conjecture 0.2 is true in all three cases below.
(1) dimX ≤ 3.
(2) dimX = 4, and the Kodaira dimension κ(X) ≥ 0,
(3) dimX = 4, and the irregularity q(X) ̸= 1, 2.

References
[1] Serge Cantat and Olga Paris-Romaskevich, Automorphisms of compact Kähler manifolds with slow

dynamics, Trans. Amer. Math. Soc. 374, no. 2, 1351-1389, 2020.
[2] Serge Cantat, Olga Paris-Romaskevich, and Junyi Xie, Free actions of large groups on complex

threefolds, Bulletin of the London Mathematical Society 54, no. 5, 1791-1803, 2022.
[3] Akira Fujiki, Automorphisms of parabolic Inoue surfaces, arXiv, 2009.
[4] Hans Grauert and Reinhold Remmert, Coherent Analytic Sheaves, Grundlehren Der Mathematischen

Wissenschaften, vol. 265, Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.
[5] Jia Jia, Automorphism groups of compact complex surfaces: T-Jordan property, Tits alternative and

solvability, J. Geom. Anal. 33, no. 219, 2023.
[6] Jia Jia, Wang Long, Wild automorphisms of compact complex spaces of lower dimensions, Proceedings

of the American Mathematical Society, 2023.
[7] Antonio Kirson, Wild automorphisms of varieties with Kodaira dimension 0, Ann. Univ. Ferrara 56,

no. 2, 327-333, 2010.
[8] Keiji Oguiso and De-Qi Zhang, Wild automorphisms of projective varieties, the maps which have no

invariant proper subsets, Advances in Mathematics 396, 108173, 2022.
[9] Zinovy Reichstein, Daniel Rogalski, and James J. Zhang, Projectively simple rings, Advances in

Mathematics, vol. 203, no. 2, 365-407, 2006.

Shuqngqing Complex Building A515, Tsinghua University, Beijing 100084, China
Email address: jia_jia@u.nus.edu,mathjiajia@tsinghua.edu.cn

Page 32



AN EFFECTIVE UPPER BOUND FOR ANTI-CANONICAL VOLUMES OF SINGULAR
FANO 3-FOLDS

CHEN JIANG

Classification AMS 2020: 14J45, 14J30, 14J17.

Keywords: Fano threefolds, anti-canonical volumes, log canonical thresholds,
boundedness

This report is an extended abstract of my talk at IMS. I will discuss my recent joint
work with Yu Zou (Tsinghua University).

We work over the field of complex numbers C.
A normal projective variety X is a Fano variety if −KX is ample. According to the

minimal model program, Fano varieties form a fundamental class in the birational
classification of algebraic varieties.

One recent breakthrough in birational geometry is the proof of the Borisov–Alexeev–
Borisov conjecture by Birkar [2, 3], which states that for a fixed positive integer d and
a positive real number ϵ, the set of d-dimensional Fano varieties with ϵ-klt singularities
forms a bounded family. During the proof, one important step is to establish the upper
bound for the anti-canonical volume (−KX)

d for an ϵ-klt Fano variety X of dimension d
([2, Theorem 1.6]).

Motivated by the explicit classification theory of algebraic varieties, we are interested
in finding the explicit bound depending on d and ϵ for (−KX)

d for an ϵ-klt Fano variety
X of dimension d.

When d = 2, we have a satisfactory answer.

Theorem 0.1 ([5]). Fix a real number ϵ > 0. Let X be an ϵ-klt Fano variety of dimension
2. Then

(−KX)
2 < max

{
9, ⌊2/ϵ⌋+ 4 +

4

⌊2/ϵ⌋

}
.

When d = 3 and ϵ = 1, we have a recent progress.

Theorem 0.2 ([7]). Let X be a canonical Fano 3-fold. Then (−KX)
3 ≤ 324.

In the above theorem, conjecturally the upper bound should be 72, but this is the first
effective upper bound.

Finally, let us consider the case when d = 3 and ϵ is abitrary. In this direction, Lai [8]
gave an upper bound for those X which are Q-factorial and of Picard rank 1, which is
over O((4

ϵ
)384/ϵ

5
); later, the first author [6] showed the existence of a non-explicit upper

bound; recently, Birkar [4] gave the first explicit upper bound, which is about O(2
1536/ϵ3

ϵ9
).

In the recent joint work with Yu Zou, we provide a reasonably small explicit upper bound
with a sharp order, for the anti-canonical volume of an ϵ-klt Fano 3-fold.
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Theorem 0.3. Fix a real number 0 < ϵ < 1
3
. Let X be an ϵ-klt Fano variety of dimension 3.

Then
(−KX)

3 <
3200

ϵ4
.

The following example shows that the order O( 1
ϵ4
) in Theorem 0.2 is sharp. In fact,

Ambro [1, Example 6.3] showed that for each positive integer q, there exists a projective
toric 3-fold X such that X is 1

q
-lc Fano and (−KX)

3 > u4,q

q4
= O(q4).

According to Ambro’s example, we may hope that the following conjecture is true.

Conjecture 0.4. Fix a real number ϵ > 0. Let X be an ϵ-klt Fano variety of dimension d.
Then

(−KX)
d < O(ϵ2

d−d−1).

Unfortunately, very few is known in dimension at least 4 due to the lack of effective
methods. See [4] for the case when d = 4 and ϵ = 1.
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EISENSTEIN K3 SURFACES AND ANALYTIC TORSION

(JOINT WORK WITH KEN-ICHI YOSHIKAWA)

SHU KAWAGUCHI

This is joint work with Ken-Ichi Yoshikawa [9].

Let ρ = −1+
√
−3

2 be a cubic root of unity. An Eisenstein K3 surface is a pair
(X,σ) such that X is a K3 surface and σ is an automorphism of X with σ∗(η) = ρ η
for η ̸= 0 ∈ H0(X,KX). An Eisenstein lattice is a pair (T, g) such that T is an
even lattice and g : T → T is an isometry with g2 + g + 1T = 0. If (X,σ) is an
Eisenstein K3 surface, then ((H2(X,Z)σ)⊥, σ∗) is an Eisenstein lattice, which we
call the Eisenstein lattice of (X,σ). We write T = (H2(X,Z)σ)⊥ and g = σ∗.

Let T ⊗C = TC(ρ)⊕ TC(ρ
2) be the eigenspace decomposition with respect to g.

We set BT := {[η] ∈ P(T (ρ)) | (η, η) > 0}, which is a complex ball of dimension
rk(T )

2 − 1. Let U(T ) be the group of isometries of T whose element commutes with
g. Let HT ⊂ BT denote the discriminant locus.

By the type of an Eisenstein K3 surface (X,σ), we mean the isometry class of
its Eisenstein lattice. Artebani–Sarti [3] and Taki [14] show that there are 24 types
of Eisenstein K3 surfaces and that such an Eisenstein lattice (T, g) is determined
by (r, a) := (rk(T ), dimF3 AT ), where AT is the discriminant group. Let Xσ be
the fixed locus of X for σ. Then the 1-dimensional component Xσ

(1) is the union

of P1’s and a smooth projective curve Cg with g ≥ 0, and g is determined by
(r, a). Also, Artebani–Sarti [3], Taki [14], Dolgachev–Kondo [7], Ma–Ohashi–Taki
[10] show that, via the period mapping, the coarse moduli space of Eisenstein K3
surfaces of type T is given byM◦

T := (BT \ HT )/U(T ).
In general, for a compact Kähler manifold Y with a Kähler form κ and a fi-

nite group G acting on (Y, κ) holomorphically and isometrically, one can define
G-equivariant analytic torsions τG(Y, κ)(g) ∈ R>0 for each g ∈ G. When g = 1,
τG(Y, κ)(1) is equal to the Ray–Singer analytic torsion τ(Y, κ) of (Y, κ). Ray–
Singer analytic torsions and equivariant analytic torsions have been deeply studied
by various authors such as Ray–Singer [13], Bismut–Gillet–Soulé [6], Bismut [4],
Bismut–Lebeau [5], and Ma [11].

Let (X,σ) be an Eisenstein K3 surface of type T , and let κ be a σ-invariant
Kähler form on X. Using the volumes of X and Xσ with respect to κ, ⟨σ⟩-
equivariant analytic torsions, the Ray–Singer analytic torsion on the 1-dimensional
component of Xσ with respect to κ, and some quantity related to κ that becomes
1 if κ is Ricci-flat, we introduce a quantity τT (X,σ) ∈ R>0. Explicitly,

τT (X,σ) := Vol(X,κ)5−
rank(T )

2

2∏
k=1

τµ3
(X,κ)(σk)

·Vol(Xσ
(1), κ|Xσ

(1)
)3τ(Xσ

(1), κ|Xσ
(1)
)3 ·AT (X,σ, κ),

1
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where µ3
∼= ⟨σ⟩, Xσ

(1) denotes the 1-dimensional component of Xσ, and AT (X,σ, κ)

is the quantity that becomes 1 if κ is Ricci-flat. We remark that for a K3 surface
with non-symplectic involution, such a quantity was constructed and deeply studied
by Yoshikawa [15, 16, 17] and Ma–Yoshikawa [12].

We show that τT (X,σ) is independent of the choice of κ. It follows that τT is
viewed as a function on the moduli spaceM◦

T of Eisenstein K3 surfaces of type T .
By the pull-back of the projection BT \ HT → M◦

T , we obtain a function τBT
on

BT \ HT .
Studying behaviors of τBT

near the discriminant locus HT and the Torelli map
M◦

T ∈ (X,σ)→ Jac(Xσ
(1)) ∈ Ag in detail, we obtain from τBT

an automorphic form

ΨT on BT for U(T ). In many cases, we show that ΨT is a reflective modular form.
As a corollary, in many cases, the moduli spaceM◦

T is quasi-affine.
For several Eisenstein lattices T , we obtain an explicit form of ΨT . Arguably

the most interesting case is when T = A+
2 ⊕ A2

⊕5, where A2 =
(−2 1

1 −2

)
and A+

2 =
A2(−1). In this case, Allcock–Carlson–Toledo [1] and Dolgachev–van Geemen–
Kondo [8] show that M◦

T is isomorphic to the moduli space of cubic surfaces.
Further, Borcherds shows that there is an automorphic form χ4 on BT for U(T )
vanishing exactly on the discriminant locus HT of order 1. In this case, we show
that ΨT is equal to χ4 up to a universal constant.
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lag, Basel, 2007.

[8] I. Dolgachev, B. van Geemen, and S. Kondō, A complex ball uniformization of the moduli
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1. ON DEFORMATIONS OVER NON-COMMUTATIVE BASE

2. ON NON-COMMUTATIVE DEFORMATIONS OF COMPLEX MANIFOLDS
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1. On deformations over non-commutative base

We write “NC” for the abbreviation of “not necessarily commutative”.
Let X be a fixed algebraic variety over a field k. We consider deformations of a coherent

sheaf F on X over a parameter ring R which is not necessarily commutative (NC). In general,
deformations of F are described by a differential graded algebra A = RHom(F, F ); the tangent
space of the deformation functor is identified as H1(A) = Ext1(F, F ) and the obstruction space
for extending infinitesimal deformations is as H2(A) = Ext2(F, F ). Since A is naturally NC, it is
natural to consider deformations over an NC base ring.

We assume that F has a proper support, and R is a finite dimensional associative algebra with
a two sided ideal M such that R/M ∼= k, or an inverse limit of such rings R̂ = lim←− R̂/M̂n.

The following definition is the same as the commutative case except that the base ring R is
NC:

Definition 1.1. A deformation (F̃ , ϕ) of F over R is a pair consisting of a coherent sheaf on
X, or an inverse limit of those, with a left R-module structure which is flat over R, and an
isomorphism ϕ : k ⊗R F̃ → F . The deformation functor DefF of F sends R to the set of
isomorphism classes of deformations of F over R.

The existence of the versal deformation is proved in the same way as in the commutative case.

Theorem 1.2. Let ni = dimExti(F, F ) for i = 1, 2. Then the parameter ring R of the versal NC
deformation of F is described in the form

R = k⟨⟨x1, . . . , xn1⟩⟩/(f1, . . . , fn2)

where the fi are possibly trivial NC formal power series of order at least 2.

The abelianization Rab = R/[R,R] = k[[x1, . . . , xn1 ]]/(f1, . . . , fn2) is the parameter algebra for
commutative deformations.

More generally, we can consider multi-pointed NC deformations for a sheaf which has a direct
sum decomposition such as F =

⊕r
i=1 Fi.

The commutative deformations yield a moduli spaceM for F , and the NC deformations give
additional formal structure onM.

2. On non-commutative deformations of complex manifolds

If we allow the base variety X to be deformed to an NC object, then it turns out that the base
ring should be automatically commutative. Let X be a compact complex manifold and let R be a
finite dimensional commutative local algebra with the maximal ideal M such that R/M = k = C,

or an inverse limit of such rings R̂ = lim←− R̂/M̂n.
1

Page 38



2 YUJIRO KAWAMATA

Definition 2.1. An NC deformation X̃ of X over R is a pair (A, ϕ) consisting of a sheaf of
NC associative algebras A on X which has a structure of a flat R-module and an isomorphism of
sheaves of algebras ϕ : k ⊗R A → OX . The deformation functor DefX of X sends R to the set of
isomorphism classes of deformations of X over R.

The tangent space and the obstruction space for commutative deformations of X are given by
H i(X,TX) for i = 1, 2. There are more NC deformations than commutative ones, and the
corresponding spaces are given by T i = Ker(HH i+1(X) → H i+1(X,OX)), where HH denotes
the Hochschild cohomology. By Rosenberg-Hochschild-Kostant isomorphism
HHn(X) ∼=

⊕
p+q=nH

q(X,
∧p TX), we have T 1 ∼= H0(X,

∧2 TX) ⊕ H1(X,TX) and

T 2 ∼= H0(X,
∧3 TX)⊕H1(X,

∧2 TX)⊕H2(X,TX).

Theorem 2.2. There exists a versal NC deformation of X whose parameter algebra is of the
form

R = k[[x1, . . . , xn1 ]]/(f1, . . . , fn2)

for ni = dimT i, where the fi are possibly trivial formal power series of order at least 2.

We consider a special case where X is the minimal resolution of a surface quotient singularity
of type An. We can construct an NC deformation of X over an algebraic ring instead of a formal
ring in this case.

Let G = Z/(n+ 1) be a cyclic group which acts on an affine plane C2 by the action g(x, y) =
(ζx, ζ−1y) for generators g ∈ G and ζ ∈ µn+1, where (x, y) are coordinates. The quotient space
Y = C2/G has an isolated singularity. Let p : X → Y be the minimal resolution. There is also a
non-commutative resolution π : [C2/G]→ Y from a quotient stack.

The set of simple objects in the abelian category of coherent sheaves Coh(X) on X over the
singular point y0 ∈ Y corresponds bijectively to the exceptional set p−1(y0), which is an infinite
set. But the set of simple objects in the category of coherent sheaves Coh([C2/G]) over y0 ∈ Y is
a finite set of order n+ 1. In this sense, X is more geometric and [C2/G] is more algebraic. The
categories Coh(X) and Coh([C2/G]) are quite different, but their derived categories Db(Coh(X))
and Db(Coh([C2/G])) are equivalent (derived McKay correspondence).

Let S = k[x, y]#G be the twisted group ring, where the multiplication is given by a1g1 ·a2g2 =
a1g1(a2)g1g2 for ai ∈ k[x, y] and gi ∈ G. S can be regarded as a coordinate ring of the quotient
stack [C2/G]. The coordinate ring of Y is given by OY = eSe for e =

∑
g∈G g/(n+ 1).

The versal algebraic NC deformations S̃ and ÕY of S and OY , respectively, are given by [2]:

S̃ = k[s0, . . . , sn]⟨x, y⟩#G/(xy − yx−
∑

sig
i), ÕY = eS̃e.

On the other hand, the geometric resolution X is covered by open subsets Ui = Spec k[xi, yi]
for i = 0, . . . , n with gluing transformations xi = x2i−1yi−1 and yi = x−1

i−1. Let
Ai = k[t0, . . . , tn]⟨xi, yi⟩/(xiyi − yixi − t0) be associative algebras with gluing
xi = x2i−1yi−1 + sixi−1 and yi = x−1

i−1.

Then we can think that the algebras A = (Ai) give an algebraic deformation X̃ of X over

Spec k[t0, . . . , tn]. We calculate the set of global functions Γ(X̃,A) on X̃ and prove that

Γ(X̃,A) ∼= ÕY .

Moreover we can define an abelian category of coherent sheaves Coh(A) on X̃ and extend the
derived McKay correspondence:

Theorem 2.3. There is an equivalence of triangulated categories Db(Coh(A)) ∼= Db(mod-S̃)
under the linear change of coordinates t0 = (n+ 1)s0 and t0 + ti = sn+1−i for i = 1, . . . , n.
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1. LINEAR ALGEBRA

Any matrix A ∈ SLn(C) is a product of elementary matrices of the form

Id+ aijEij =


1 0

. . .
0 aij 1 0
...

... . . .
0 0 1


or equivalently a product of upper and lower triangular unipotent matrices.

A =

(
1 0
G1 1

)(
1 G2

0 1

)
. . .

(
1 GN

0 1

)
, where Gi ∈ Cn(n−1)/2

Proof: Gauss elimination, it requires:
1.) Adding multiples of a row to another row
2.) Interchange of rows :(

0 −1
1 0

)
=

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
3.) multiplication of rows by constants:(

a 0
0 a−1

)
=

(
1 0
−a−1 1

)(
1 a− 1
0 1

)(
1 0
1 1

)(
1 a−1 − 1
0 1

)
(Whitehead lemma)

What if the matrix A depends on a parameter x (continuously, polynomially,
holomorphically)? Can the upper and lower triangular unipotent matrices be chosen
depending well on the parameter?

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GN(x)
0 1

)
Now the Gi are maps Gi : X → Cn(n−1)/2.

• Let R = {f : X → C} denote the ring of continuous/ polynomial /holomorphic
functions on a topological space/ algebraic variety / complex space X.
• In the language of K-theory we are asking about factorization of SLn(R) (special

linear group over the ring R) as product of elementary matrices over that ring.

1
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• Given m ≥ 2 and an associative, commutative, unital ring R, let En(R) denote
the set of those n× n matrices which are representable as products of unipotent
matrices with entries in R. We ask about the relation of En(R) and SLn(R).
• The obstruction to this factorization is called the special K1-group of the ring R,

(more precise the n-th, where n is the size of the matrices).

1.1. Symplectic Notation. Let In denote the (n× n) identity matrix and 0n the (n× n)
zero matrix.

Recall Sp2n(C) := {A ∈ Gl2n(C) : ATJA = J}, where J =

(
0n In
−In 0n

)
is the standard

symplectic form.
In the block notation

M =

(
A B
C D

)
∈ Sp2n(C),

the symplectic condition MJMT = J gives rise to three simple types of J-symplectic
matrices:

• (i):
(
I B
0 I

)
, upper triangular with symmetric B = BT .

• (ii):
(
I 0
C I

)
, lower triangular with symmetric C = CT .

• (iii):
(
A 0
0 D

)
, block diagonal with invertible A ∈ GLn(C) and D = (A−1)T .

We call those matrices of type (i) and (ii) elementary symplectic matrices.

2. HISTORY OF THE FACTORIZATION PROBLEM

2.1. Algebraic results.

• SLn(C[z1]) factorizes, more generally for Euclidean rings R SLn(R) factorizes
• SL2(C[z1, z2, . . . , zn]) does not factorize for n ≥ 2 counterexample found by Cohn

[1] (
1− z1z2 z21
−z22 1 + z1z2

)
∈ SL2(C[z1, z2])

• Suslin [9] proved that SLn(C[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 3

2.2. Algebraic symplectic results.

• Sp2n(Z[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 2, [2]
• Sp2n(C[z1, z2, . . . , zm]) does factorize for all m and all n ≥ 2, [6], [7]

2.3. Topological results.

• SLn(Cont(R3)) factorizes, [10]
• A general observation:

At(x) =

(
1 0

tG1(x) 1

)(
1 tG2(x)
0 1

)
. . .

(
1 tGN(x)
0 1

)
t ∈ [0, 1]
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gives a homotopy of the map A : X → SLm(C) to a constant map. Such
maps are called null-homotopic. If a map factorizes, then it is necessarily
null-homotopic.

2.4. Continuous result.

Theorem 2.1 (Vaserstein, [11]). For any natural number n and an integer d ≥ 0 there
is a natural number K such that for any finite dimensional normal topological space X of
dimension d and null-homotopic continuous mapping A : X → SLn(C) the mapping can be
written as a finite product of no more than K = K(d, n) unipotent matrices. That is, one
can find continuous mappings Gl : X → Cn(n−1)/2, 1 ≤ l ≤ K such that

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GK(x)
0 1

)
for every x ∈ X.

L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc.

103 (1988), no. 3, 741–746

Let

Un(x1, . . . , xn(n+1)/2) =


x1 x2 . . . xn

x2 xn+1 . . . x2n−1
...

... . . . ...
xn x2n−1 . . . xn(n+1)/2

 .

Given a map G : X → Cn(n+1)/2 let Un(G(x)) = Un(G1(x), . . . , Gn(n+1)/2(x)) where the
Gj ’s are components of the map G.

2.5. Symplectic continous result.

Theorem 2.2. [5] Let X be a d-dimensional normal topological space and f : X → Sp2n(C)
be a continuous mapping that is null-homotopic. Then there exist a natural number K =
Kcont(n, d) and continuous mappings G1, . . . , GK : X → Cn(n+1)/2 such that

f(x) =

(
In 0n

Un(G1(x)) In

)(
In Un(G2(x))
0n In

)
. . .

(
In Un(GK(x))
0n In

)
3. THE MAIN RESULTS

Theorem 3.1. [4] Let X be a finite dimensional reduced Stein space and A : X → SLn(C)
be a holomorphic mapping that is null-homotopic. Then there exist a natural number K =
K(dimX, n) and holomorphic mappings G1, . . . , GK : X → Cn(n−1)/2 such that A can be
written as a product of upper and lower diagonal unipotent matrices

A(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GK(x)
0 1

)
for every x ∈ X.

Theorem 3.2. [8], [5] Let X be a d-dimensional reduced Stein space and f : X → Sp2n(C)
be a holomorphic mapping that is null-homotopic. Then there exist a natural number
Ksymp = Ksymp(n, d) and holomorphic mappings G1, . . . , GK : X → Cn(n−1) such that

f(x) =

(
In 0n

Un(G1(x)) In

)(
In Un(G2(x))
0n In

)
. . .

(
In Un(GK(x))
0n In

)
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3.1. K-theorists use another symplectic form. If block A in type (iii)
(
A 0
0 D

)
, block

diagonal with invertible A ∈ GLn(C) and D = (A−1)T is upper triangular, then D =
(A−1)T is lower triangular. In fact, A and D are simultaneously upper or lower triangular
in another basis.

This new basis can be obtained from the old one by reversing the order of the last n
basis elements, giving a Gramian matrix

J̃ =

(
0 L
−L 0

)
,(3.1)

where L is the n × n matrix with 1 along the skew-diagonal. Notice that symplectic
matrices of type (i) and (ii) remain upper or lower triangular with respect to J̃ ,
respectively.

If we allow these matrices too the number of factors will be denoted by K̃symp(n, d)

3.2. Number of factors. Analytic techniques (Ivarsson-K.) can be used to show:

K(2, 1) = 4 and K(2, 2) = 5

K-theory arguments (due to Dennis, Vaserstein, Vavilov, Smolenskii, Sury, generalized
by Huang, Kutzschebauch, Schott [3] guarantee K(n, d) ≥ K(n + 1, d), K̃symp(n, d) ≥
K̃symp(n+ 1, d) and one can prove that the optimal numbers satisfy

K(n, 1) = 4 for all n,

4 ≤ K(n, 2) ≤ 5 = K(2, 2) for all n, and

for each d, there exists n(d) such that K(n, d) ≤ 6 for all n ≥ n(d)

K̃symp(n, 1) = 4 for all n,

4 ≤ K̃symp(n, 2) ≤ 5 = K̃symp(1, 2)∀n
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POSITIVITY OF THE TANGENT BUNDLE OF SMOOTH PROJECTIVE SURFACES
AND FANO THREEFOLDS

YONGNAM LEE

Classification AMS 2020: 14J45, 14J30, 14J40, 14E30

Keywords: tangent bundle, pseudo-effective, total dual VMR, Fano threefold,
projective surface

Throughout this talk we will work over the field of complex numbers. This
presentation is based on two joint works, a joint work with Hosung Kim and Jeong-Seop
Kim, a joint work with Jia Jia and Guolei Zhong.

A well-known theorem of Mori [8] asserts that if the tangent bundle of a smooth
projective variety is ample, then it is a projective space, which gives a solution to
Hartshorne’s conjecture. Since then, the study of smooth projective varieties whose
tangent bundles admit some positivity properties has attracted a lot of attention and
such properties are usually expected to impose strong restrictions on the geometry of
the underlying varieties.

Definition 0.1. Let X be a smooth projective variety. Given a vector bundle E on X, we
denote by P(E) the Grothendieck projectivisation of E with OP(E)(1) denoting the relative
hyperplane section bundle. Recall that E is ample (resp. nef, big, pseudo-effective) ifOP(E)(1)
is ample (resp. nef, big, pseudo-effective) on P(E).

Following the program of Campana and Peternell [1], a smooth Fano variety with nef
tangent bundle is conjectured to be a rational homogeneous space, and this conjecture
has been intensively studied. Starting from this aspect, it is natural to classify smooth
projective varieties with other positivity properties, e.g., with big or pseudo-effective
tangent bundles. In general it is difficult to give a numerical characterization for pseudo-
effective or bigness of the tangent bundle, even in low dimension with low rank of Picard
group.

It has been shown by Hsiao [4] that the tangent bundle of a toric variety is big, and
this result is generalized by Liu [7] when an algebraic group G acts on X with a dense
orbit. In the past few years, there are also many results in this direction, especially when
X is a Fano manifold. For example, Höring, Liu and Shao [3] shows that the tangent
bundle of a smooth del Pezzo surface of degree d is big (resp. pseudo-effective) if and
only if d ≥ 5 (resp. d ≥ 4). Also in the paper [3], they solve these problems for del Pezzo
threefolds. In [2], Höring and Liu consider Fano manifolds X with Picard number one,
and they prove that if X admits a rational curve with trivial normal bundle and with big
TX then X is isomorphic to the del Pezzo threefold of degree five.

These all results indicate that assuming bigness should lead to strong restrictions on
Fano manifolds, and lead us to consider naturally Fano threefolds with Picard number 2.
In [6] we prove the following main theorem.
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Theorem 0.2. [6] We determine the bigness of the tangent bundle TX of whole 36
deformation types of Fano threefolds X with Picard number 2. In particular, the tangent
bundle TX is big if and only if (−KX)3 ≥ 34.

We note that Fano threefolds of (−KX)3 ≥ 34 (No. 26-36 in [9, Table 2]) have infinite
automorphism groups.

Besides our main theorem, we also obtain the following.

Theorem 0.3. [6] Let X be the blow-up of P3 along a smooth curve Γ. If Γ is a degenerate
curve then TX is big, and if Γ is a nondegenerate curve then TX is big if and only if Γ is a
twisted cubic curve.

As smooth projective varieties with big tangent bundles are known to be uniruled,
one may ask if there exist many non-uniruled projective varieties sitting in the
“boundary”, i.e., admitting a pseudo-effective but non-big tangent bundle. When X is
smooth projective variety of general type, then by the semi-stability of the tangent sheaf
TX with respect to the canonical divisor KX , TX is not pseudo-effective. Apart from the
trivial example of abelian varieties, a product of an abelian variety and any smooth
projective variety becomes another example coming to our mind. To the best knowledge
of ourselves, up to a finite étale cover, there seems no more other example which has
been explored before.

In [5], we complete determine non-uniruled surfaces whose tangent bundle is pseudo-
effective

Theorem 0.4. [5] Let S be a non-uniruled smooth projective surface. Then the following
assertions are equivalent.

(1) The tangent bundle TS is pseudo-effective;
(2) S is minimal and the second Chern class vanishes, i.e., c2(S) = 0.

Moreover, if one of the above equivalent conditions holds, then the Kodaria dimension
κ(P(TS),O(1)) = 1− κ(S), and there is a finite étale cover S ′ → S such that S ′ is either an
abelian surface or a product E × F where E is an elliptic curve and F is a smooth curve of
genus ≥ 2.

From the above theroem, the pseudo-effectiveness of the tangent bundle forces the
surface to be minimal, i.e., the canonical divisor is nef. However, this is no longer true in
the higher dimensional case.

Further, as a consequence of the above theorem, we obtain the following corollary.

Corollary 0.5. [5] Let S be a non-uniruled smooth projective surface. If the tangent
bundle TS is pseudo-effective, then there is some integer m such that H0(S, SymmTS) 6= 0;
in particular, the tautological line bundle of P(TS) is Q-linearly equivalent to an effective
divisor.
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ZARISKI DENSE ORBIT CONJECTURE ON AUTOMORPHISMS OF PROJECTIVE
THREEFOLDS

SICHEN LI

Classification AMS 2020: 37P55, 14E30, 08A35.

Keywords: Zariski dense orbit conjecture, weak Calabi-Yau, rationally connected, special
MRC fibration, Zariski dense of periodic points.

Let X be a projective variety over an algebraically field k of characteristic zero and
f : X  X be a dominant rational self-map. Denote by k(X)f the field of f -invariant
rational functions on X. Let Xf (k) be the set of x ∈ X(k) whose orbit Of (x) is well-
defined.

The following Zariski dense orbit conjecture (ZDO for short) was proposed by
Medvedev and Scanlon [5, Conjecture 5.10], by Amerik, Bogomolov and Rovinsky [1]
and strengthens a conjecture of S.-W. Zhang [9].

Conjecture 0.1. Let X be a projective variety over an algebraically closed field k of
characteristic zero and f : X  X a dominant rational self-map. Then either k(X)f ∕= k
or there is a point x ∈ Xf (k) whose orbit Of (x) is Zariski dense in X(k).

Remark 0.2. For the historical note of ZDO, we refer to [8, Section 1.1.1] or [4, Section
1.2].

Below is our main result of ZDO for automorphisms of projective threefolds.

Theorem 0.3. Let f be an automorphism of a normal projective threefold X with only klt
singularities. Suppose KX ∼Q 0 or κ(X) = −∞. Then we may reduce ZDO for (X, f) to the
following three cases:

(1) X is weak Calabi-Yau and f is primitive;
(2) X is a rationally connected threefold;
(3) X is a uniruled threefold admitting a special MRC fibration over an elliptic curve.

Note that a birational automorphism f on a minimal Calabi-Yau threefold X of Picard
number ρ(X) ≥ 2 is primitive if the action f ∗|NSQ(X) is irreducible over Q (cf. [6, Corollary
1.3]). This motivates the following question.

Question 0.4. Let f be a birational automorphism of a weak Calabi-Yau variety X with
ρ(X) ≥ 2. Suppose that f ∗|NSQ(X) is irreducible over Q. Then is ZDO true for (X, f)?

Motivated by Chen, Lin and Oguiso’s explicit examples of Zariski dense orbits on
irregular smooth varieties (cf. [2, Theorem 1.6]), we show the following result.

Theorem 0.5. Let f be an automorphism of a normal projective variety X with positive
dimension. Then ZDO is true for (X, f) if q(X) ≥ dimX − 1.
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In [3, Theorem 5.1], Fakhruddin proved the Zariski density of periodic points if f is a
polarized endomorphism of a projective variety. Notice that Xie proved in [7, Proposition
6.2] that an automorphism f of a projective variety X has finite order if f∗|NSR(X) = id
and the periodic points of f are Zariski dense. We may extend his result as follows.

Theorem 0.6. Let f be an automorphism of a projective variety X with positive dimension.
If the periodic points are Zariski dense and f ∗D ≡ D for some big R-divisor D. Then f is of
finite order. In particular, f does not have any Zariski dense orbit.

The following proposition is noticed by Sheng Meng.

Proposition 0.7. Let f be an automorphism of a projective variety X with positive
dimension and d1(f) = 1. Suppose the periodic points of f are Zariski dense and the
pseduoeffective cone PEC(X) is polyhedral. Then f is of finite order.

Finally, we give a result of projective varieties X with Picard number ρ(X) = 1 as
follows.

Proposition 0.8. Let f be a surjective endomorphism of a normal projective variety X in
dimension ≥ 1 with at most klt singularities dimX ≥ 1 and ρ(X) = 1. Then the following
statements hold.

(1) If d1(f) = 1 and the periodic points of f are Zariski dense, then f is of finite order.
(2) Suppose d1(f) > 1. Then to prove ZDO, we may assume that X is Fano.
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DYNAMICAL FILTRATIONS – BEYOND ZERO ENTROPY

HSUEH-YUNG LIN

Classification AMS 2020: 14J50, 32M05, 32H50, 37B40.

Keywords: Automorphisms of compact Kähler manifolds, Tits alternative, virtually
solvable groups, zero entropy automorphisms.

Let X be a compact Kähler manifold of dimension d ≥ 1, endowed with a holomorphic
group action G 	 X. The induced action G 	 H•(X,C) preserves the grading and the
Hodge decomposition of the cohomology of X. As a consequence of Tits alternative, the
image G|H1,1(X) of G→ GL(H1,1(X)) satisfies one of the following properties:

• either G|H1,1(X) contains a non-abelian free group;
• or G|H1,1(X) is virtually solvable.

Our work concerns the study of the group actions G 	 H•(X,C) and G 	 X when
G|H1,1(X) is virtually solvable. Such a study was initiated by Dinh–Sibony [4], D.-Q.
Zhang [6], and continued by many others (e.g. [5, 1, 2]).

1. DYNAMICAL RANK

One of the starting points is the following structural theorem.

Theorem 1.1 (D.-Q. Zhang [6]). Assume that G|H1,1(X) is virtually solvable. Then there
exists a finite-index subgroup G′ ≤ G such that:

(1) The subset N(G′) of zero-entropy elements of G′ is a normal subgroup of G′.
(2) G′/N(G′) ' Zr for some integer r ≤ dimX − 1.

In the statement, we recall that as a consequence of the Gromov–Yomdin theorem,
zero-entropy automorphisms (i.e. biholomprhic maps) f : X 	 are characterized by the
property that for all p = 0, . . . , dimX, the spectral radii of f ∗ : Hp,p(X) 	 are all equal to
1. We also recall that in general, the subset N(G) of zero-entropy elements of G 	 X is
not a subgroup of G.

The integer r in Theroem 1.1 is independent of the choice of the subgroup G′ ≤ G; we
call it the dynamical rank of G 	 X and set r(G) := r.

2. POLYNOMIAL GROWTH RATE OF ZERO-ENTROPY AUTOMORPHISM ACTION

Let f : X 	 be a zero-entropy automorphism. We have

‖f ∗ : H1,1(X) 	 ‖ � nk(f)

for some k(f) ∈ Z≥0. Together with T.-C. Dinh, K. Oguiso, and D.-Q. Zhang, we prove
the following result.

Theorem 2.1 ([2]). The integer k(f) is even and satisfies

k(f) ≤ 2 dimX − 2.
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Such an upper bound is optimal, in the sense that for each integer d ≥ 1, there exsits a
zero-entropy automorphism f : X 	 of a compact Kähler manifold of dimension d which
satisfies k(f) = 2d− 2.

For every G 	 X, we define

k(G) = max { k(g) | g ∈ N(G) } ∈ 2Z≥0.

This could serve as a measure of the size of N(G). For instance, suppose that N(G) is a
subgroup of G, then one can show that k(G) = 0 if and only if N(G)|H1,1(X) is finite. We
also note that for any finite-index subgroup G′ ≤ G, we have k(G′) = k(G).

3. COMPENSATION BETWEEN r(G) AND k(G)

From now on, we assume that G|H1,1(X) is virtually solvable and that N(G) is a
subgroup of G.

The first compensation phenomenon between r(G) and k(G) was discoverd by Dinh–
Hu–Zhang in [1], where they show that r(G) = dimX − 1 implies that N(G)|H1,1(X) is
finite, or equivalently, k(G) = 0. We generalize this statement in a work in progress as
follows.

Theorem 3.1. We have
r(G) +

k(G)

2
≤ dimX − 1.

Note that Theorem 3.1 also generalizes the upper bounds in Theorems 1.1 and 2.1.
The main inputs we need to prove Theorem 3.1 (as well as Theorems 1.1 and 2.1) are

the fact that G 	 H•(X) preserves various positive cones (e.g. the nef cone, the
pseudoeffective cone, and their analogues in higher codimension), and the mixed
Hodge–Riemann theorem [3]. The proof of each of these theorems unveils new
structures of G 	 H•(X), which we can forumulate in terms of quasi-nef sequences (for
Theorem 1.1), dynamical filtrations (for Theorems 2.1), and dynamical towers (for
Theorem 3.1) as we presented in the talk.
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THE AMPLENESS CONJECTURE ON K-TRIVIAL FOURFOLDS

HAIDONG LIU

Classification AMS 2020: Primary 14J32; Secondary 14E30, 14J35, 14J42.

Keywords: strictly nef divisors, Calabi–Yau manifolds, hyperkähler manifolds, K-trivial
fourfolds, the abundance conjecture, the ampleness conjecture, Serrano’s conjecture.

K-trivial manifolds are projective manifolds with linearly trivial canonical divisors and
without irregularity. Two typical examples are strict Calabi–Yau manifolds and simple
hyperkähler manifolds. The ampleness conjecture predicts that any strictly nef divisors
on K-trivial manifolds are ample.

Conjecture 0.1 (Ampleness conjecture). Let X be a K-trivial manifold. Then, any strictly
nef divisor L on X is ample.

A Q-Cartier divisor L on a normal projective variety X is called strictly nef if L · C > 0
for any curve C on X. In general, a strictly nef divisor is not necessarily ample.
However, as Serrano’s conjecture and generalized abundance conjecture predicted,
strictly nef divisors should be ample on projective varieties with numerically trivial
divisors. By the Beauville–Bogomorov–Yau decomposition, this prediction can be
reduced to our ampleness conjecture 0.1 and is essentially equivalent.

It is well known that the ampleness conjecture holds in dimension 2. In dimension 3,
it is also proved for most of the cases by Wilson, Peternell, Oguiso, Serrano, Campana–
Chen–Peternell and so on, except the case that L3 = c2(X) · L = 0. Recently, Svaldi
and the speaker improved their results a little bit in [3]. In this workshop, the speaker
presented a result jointed work with Shin-ichi Matsumura that the ampleness conjecture
holds in dimension 4:

Theorem 0.2 ([2, Theorem 1.2]). Let X be a K-trivial fourfold. Then, any strictly nef
divisor L on X is ample.

This theorem is divided into the abundance part and the non-vanishing part. For the
abundance part, there is a more general log version result:

Theorem 0.3 ([2, Theorem 1.6]). Let X be a K-trivial manifold of dimension ≤ 4. Let ∆
be a non-zero effective divisor and L be a strictly nef divisor on X. Then, ∆ + tL is ample
for t ≫ 1.

Its proof uses the log minimal model program and induction of dimension. After
sacrificing strict nefness, we can reduce the problem to the surface:

Theorem 0.4 ([2, Theorem 3.1]). Let (S,∆) be a log canonical pair of dimension 2 and
L be an almost strictly nef divisor on S, i.e., there exists a birational morphism f : S → S∗

and a strictly nef divisor L∗ on S∗ such that L = f ∗L∗. Then, KX +∆+ tL is big for t > 3.

For the non-vanishing part, the proof is again divided into two parts according to the
numerical dimension ν(L) of L.
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Theorem 0.5 ([2, Theorem 4.1]). Let X be a K-trivial fourfold and L be a nef Cartier
divisor with ν(L) = 3. Then κ(L) = ν(L) = 3. In particular, ν(L) ̸= 3 if L is strictly nef.

Theorem 0.6 ([2, Theorem 4.7]). Let X be a K-trivial fourfold and L be a strictly nef
divisor with ν(L) ≤ 2. Then κ(L) ≥ 0.

The proof of Theorem 0.5 is standard by using the Kawamata–Viehweg vanishing and
the Riemann–Roch formula; the proof of Theorem 0.6 uses analytic methods introduced
and developed by Demailly [1], Lazić, Oguiso, Peternell [4, 5] and so on.

Finally, we proposed some related questions as follows:

Question 0.7. Does Serrano’s conjecture hold in positive characteristic?

Question 0.8. Does Serrano’s conjecture hold for algebraic integrable foliation?
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THE STRICT ARAKELOV INEQUALITIES FOR A

SEMI-STABLE FIBRATION

XIN LU

Abstract. In this note, we briefly review the Arakelov inequality for a semi-

stable family over a smooth projective curve as well as its generalizations.

Moreover, we try to understand the equality or the strictness of these Arakelov
type inequalities.

We work over the complex number C. The study of the Arakelov inequality
goes back to the conjecture of Shafarevich [Sha63] for fibrations of curves of genus
g ≥ 2. The proof of Shafarevich’s conjecture given by Parshin [Par68] and Arakelov
[Ara71] consists of two parts: ‘boundedness’ and ‘rigidity’. The Arakelov inequality
aims to the boundedness. Roughly speaking, it gives an upper bound on the degree
of the Hodge bundle in terms of the base space.

Theorem 0.1 (classical Arakelov inequality). Let f : S → B be a semi-stable
surface fibration of genus g ≥ 1 and Υ → ∆ be the singular locus. Then

deg f∗ωS/B ≤ g

2

(
2g(B)− 2 + #∆

)
. (0-1)

The above classical Arakelov inequality can be improved and generalized to
families of higher dimensional varieties (e.g., abelian varieties) using the Hodge
theory. We refer to [Vie09] and the references therein for a beautiful introduction
to this subject. We briefly summarize as follows.

Theorem 0.2 (Arakelov type inequalities). Let f : X → B be a semi-stable
fibration of varieties of dimension n ≥ 1. Assume that Υ → ∆ is the singular locus
with 2g(B)− 2 +#∆ > 0. Then for any non-zero subsheaf E ⊆ f∗

(
ω⊗ν
X/B

)
, it holds

µ(E) ≤ nν

2

(
2g(B)− 2 + #∆

)
, (0-2)

where µ(E) := deg E
rank E is the slope of E. If n = 1 and 0 ̸= E ⊆ f∗ωX/B, then

µ(E) ≤ 1

2

(
2g(B)− 2 + #∆nc

)
, (0-3)

where Υnc → ∆nc is the locus of singular fibers with non-compact Jacobians.

The above theorems are mainly due to Deligne, Faltings, and Viehweg-Zuo. It
is a natural question to ask whether the above Arakelov inequalities strict or not.
It is generally believed that any of the above Arakelov equalities would give a very
strong restriction on the geometry of the fibrations. In the case when f is a surface
fibration, we have

Theorem 0.3. Let f : S → B be a semi-stable surface fibration of genus g ≥ 1.

This work was supported by National Natural Science Foundation of China.
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(1) (Beauville [Bea81]) Suppose g = 1, and the equality holds in (0-1). Then
the family f is modular.

(2) (Tan [Tan95]) Suppose g ≥ 2. Then the Araklelov inequality (0-1) is strict.
(3) (Möller [Mol06]) Suppose g ≥ 2, and the equality holds in (0-2) for ν = 1.

Then the subsheaf E is an invertible subsheaf and the family f is Te-
ichmüller.

(4) (Lu-Zuo [LZ19]) Suppose the equality holds in (0-3) for E = f∗ωS/B. Then
g < 12 and the family f is Shimura.

Recall that the Hodge bundle f∗ωS/B admits a so-called Fujita decomposition
[Fuj78]

f∗ωS/B = A⊕ U ,
where A is ample while U is unitary. It is conjectured that, if the genus g ≫ 0,
the Arakelov type inequality (0-3) should be strict for E = A ⊆ f∗ωS/B being the
ample part in the Fujita decomposition. In fact, this is related to the Coleman-
Oort conjecture, which predicts that there exists no positive dimensional Shimura
subvariety contained generically in the Torelli locus of smooth curves of genus g
when g is sufficiently large. We refer to [MO13] (and the references therein) for a
thorough discussion on the Coleman-Oort conjecture. In [CLZ21], when the general
fiber is superelliptic (including the hyperelliptic case), it is proved that the Arakelov
type inequality (0-3) is strict for E = A ⊆ f∗ωS/B being the ample part if g ≥ 8.

When the fiber is of higher dimension, no two much is known. Most are restricted
to the cases when the Kodaira dimension of the general fiber equals zero or n.

Theorem 0.4. Let f : X → B be as in Theorem 0.2.

(1) (Sun-Tan-Zuo [STZ03]) If the general fiber is a K3 surface, and the equality
holds in (0-2) for E = f∗ωX/B, then the family f is Shimura.

(2) (Viehweg-Zuo [VZ04]) If the general fiber is an abelian varieties, and the
equality holds in (0-2) for E = f∗

(
ω⊗ν
X/B

)
, then the family f is Shimura of

Mumford type.
(3) (Viehweg-Zuo [VZ06] for ν = 1, Lu-Yang-Zuo [LYZ22] for the general case)

If the general fiber is of general type, and the subsheaf E ⊆ f∗
(
ω⊗ν
X/B

)
de-

fines a birational B-map X 99K PB(E) for some ν ≥ 1, then the Arakelov
inequality (0-2) is strict.

Remark that the Simpson correspondence [Sim90] is a key point in the proofs.
To end this note, we would like propose the following conjecture

Conjecture 0.5 ([LYZ22]). Let f : X → B be as in Theorem 0.2.

(1) If the equality holds in (0-2) for 0 ̸= E = f∗
(
ω⊗ν
X/B

)
for some ν ≥ 1, then

the general fiber is of Kodaira dimension zero.
(2) Suppose that the general fiber is of general type. Then for any subsheaf

E ⊆ f∗
(
ω⊗ν
X/B

)
with rank E ≥ 2, the Arakelov inequality (0-2) is strict.
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The minimal log discrepancy (MLD) is an invariant of singularity defined in the context
of the minimal model program. In this talk, we discussed the minimal log discrepancies
of quotient singularities:

• ACC conjecture for quotient singularities (0.1.5).
• LSC conjecture for hyper-quotient singularities (0.2.5).
• PIA conjecture for quotient singularities (0.3.3).
• Shokurov’s index conjecture for quotient singularities (0.4.8).

This is joint work with Kohsuke Shibata (see [24, 25, 26, 27]).

Conjecture 0.1 (ACC conjecture, Shokurov). Let d be a positive integer and I ⊂ [0, 1] a
DCC set. Then, the set

{mldx(X,∆) | dimX = d,∆ ∈ I, x ∈ X}
satisfies the ACC.

The ACC conjecture is known to be true in the following cases:
(0.1.1) When d ≤ 2 [1, 29].
(0.1.2) When X is smooth three-fold and the mld is in the interval [1, 3] [14, 13].
(0.1.3) When the Gorenstein index of X is bounded and I is a finite set [23].
(0.1.4) When X is a canonical three-folds and I is a finite set [23].
(0.1.5) When X has only quotient singularities and I = {0} [24].
(0.1.6) See [3, 18, 16, 9, 11, 19, 21, 10] for other developments related to the ACC

conjecture

Conjecture 0.2 (LSC conjecture, Ambro). Let (X,∆) be a log pair. Then, the function

|X| → R≥0 ∪ {∞}; x 7→ mldx(X,∆)

is lower-semi-continuous.

The LSC conjecture is known to be true in the following cases:
(0.2.1) When dimX ≤ 3 [2].
(0.2.2) When X is smooth [6].
(0.2.3) More generally, when X is a normal local complete intersection variety [7].
(0.2.4) When X has only quotient singularities [22].
(0.2.5) When X has only hyper-quotient singularities [24, 25, 27].

Conjecture 0.3 (PIA conjecture). Let (X,∆) be a log pair and S ⊂ X a normal Cartier
divisor such that S 6⊂ Supp(∆). Then, for a closed point x ∈ S, it follows that

mldx(X,∆ + S) = mldx(S,∆|S).
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The PIA conjecture is known to be true in the following cases:
(0.3.1) When X is smooth [6].
(0.3.2) More generally, when X is a normal local complete intersection variety [7].
(0.3.3) When X has only quotient singularities [24, 25, 27].

Conjecture 0.4 (Shokurov’s index conjecture, cf. [15, Question 5.2]). For any n ∈ Z>0

and a ∈ R≥0, there exists a positive integer r(n, a) with the following condition.
• If an n-dimensional Q-Gorenstein variety X and a closed point p ∈ X satisfy

mldp(X) = a, then the Cartier index of KX at p is at most r(n, a).

Conjecture 0.4 is known to be true in the following cases:
(0.4.1) When (n, a) = (2, 0) [28].
(0.4.2) When n = 2 [5]. They proved Conjecture 0.4 for pairs (see [5, Conjecture 6.3]

for the generalized formulation).
(0.4.3) When (n, a) = (3, 0) [12, 8].
(0.4.4) When X is a terminal threefold [17, 10].
(0.4.5) When X is a canonical threefold [15].
(0.4.6) When X has toric singularities [4].
(0.4.7) When X has only quotient singularity and a is sufficiently small [20].
(0.4.8) When X has only quotient singularity (without any assumption on a) [26].
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For a finite group G and an integer g ≥ 2, the locus Mg(G) (in the moduli space Mg)
of smooth curves that have an effective action by G plays an important role in several
fields, for example: in the description of the singularities of Mg ([12], [5]), in the study
of Shimura varieties ([18], [11]), of totally geodesic subvarieties of Mg [15], and also in
the classification of higher dimensional varieties ([16], [6], [17]).

For several purposes it is more natural to consider the stackMg(G) of genus g compact
Riemann surfaces with an effective action by G. Then Mg(G) can be obtained as the
image of a natural morphism Mg(G) → Mg. We refer to [20] for the definition and
some properties of Mg(G). The connected components of Mg(G) are in one-to-one
correspondence with the topological types of G-actions on compact oriented surfaces of
genus g ([5]). These topological types have been investigated and classified, by means
of certain numerical invariants, since the work of Nielsen [19], for more recent results
we refer to [14], [21], [13], [7], [8], [9].

The seminar was based on the work [3], where we consider the compactification of the
stackMg(G) given by admissible covers. The aim of our work is to describe the motivic
class (in the Grothendieck group) of the stack of admissible covers in order to compute
their topological invariants, e.g. their Betti numbers.

Let us recall the following definition from [1].

Definition 0.1. An admissible G-cover is given by the following data:
• an n-pointed nodal curve of genus g, (C, p1, . . . , pn);
• a finite morphism φ : D → C, where D is a nodal curve, φ maps every node of D to

a node of C and it is étale over Cgen := C \ {nodes and marked points};
• locally over a node of C, φ is given by φ| : SpecC[ξ,η]

(ξη)
→ SpecC[x,y]

(xy)
, φ∗| (x) = ξe,

φ∗| (y) = ηe, for some e ≥ 1;
locally over a marked point of C, φ is given by φ| : SpecC[ξ]→ C[x], φ∗| (x) = ξe, for
some e ≥ 1;
• an action of G on D that commutes with φ and such that φ| : Dgen → Cgen is a

principal G-bundle, where Dgen = φ−1(Cgen).
The admissible G-cover is called balanced if, at each node q ∈ D, the action of Stabq(G) on
TqD is balanced, i.e. ζ(ξ, η) = (ζξ, ζ−1η).

In our work we consider only balanced admissible G-covers, so from now on by an
admissible G-cover we mean a balanced one. Admissible G-covers of n-pointed nodal
curves of genus g form a stack, which is denoted Admg,n(G).

Admissible G-covers can be described in terms of (balanced) twisted stable maps
(C,Σ1, . . . ,Σn, f : C → BG), where (C,Σ1, . . . ,Σn) is a twisted nodal n-pointed curve
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and f is a stable representable map to the classifying stack BG of G. For more details
on twisted stable maps we refer to [10], [2]. The stack of twisted n-pointed stable maps
from curves of genus g to BG is denoted Bbal

g,n(G), it is a Deligne-Mumford stack with
projective coarse moduli space, furthermore it is isomorphic to Admg,n(G) [1].

In the following we will denote with Bsm
g,n(G) ⊆ Bbal

g,n(G) the open locus of twisted
n-pointed stable maps from smooth curves C.

For each twisted stable map (C,Σ1, . . . ,Σn, f : C → BG), the restriction of f to Σi

(which is a gerbe structure at the i-th marked point) yields an object of
Īµ(BG) := trĪµr(BG), the stack of cyclotomic gerbes in BG ([2, Definition 3.3.6]). In
this way we obtain a morphism evin : Bbal

g,n(G) → Īµ(BG), which is called the i-th
evaluation map. Notice that evin restricts to a morphism from Bsm

g,n(G) to Īµ(BG). To
simplify the notation, in the following we will denote Īµ(BG) with Īµ.

To state out main result we need the following definition.

Definition 0.2 (Ekedahl). For any positive integer n, let Sn be the symmetric group of degree
n. The Grothendieck group KSn

0 (AlgStC) is the abelian group generated by the isomorphism
classes {X} of algebraic C-stacks with an action of Sn subject to the relations

(1) {X} = {Y} + {X r Y} if Y is a closed substack of X invariant under the action of
Sn, and

(2) {E} = {Ar × X} if π : E → X is an Sn-equivariant vector bundle of rank r, where
the Sn-action on Ar ×X is the extension of the given one on X by the trivial action.

The ring structure on KSn
0 (AlgStC) is given by defining {X} · {Y} := {X × Y}.

Remark 0.3. For any algebraic C-stack X , with an action of Sn, the class
{X} ∈ KSn

0 (AlgStC) is called the motivic class of X . The Betti numbers of X are
determined by {X} via the Hodge-Poincaré characteristic [4].

The following result is our main theorem, for any n ≥ 3, it expresses {Bbal
0,n(G)} in

terms of {Bsm
0,n(G)} and {Bbal

0,k(G)}, where 3 ≤ k ≤ n − 1. Since {Bbal
0,3(G)} = {Bsm

0,3(G)},
we deduce a recursive procedure to compute {Bbal

0,n(G)} in terms of {Bsm
0,k(G)}, for k =

3, . . . , n. Notice also that Bbal
0,n(G) = ∅, if n < 3.

Theorem 0.4 ([3]). Let n ≥ 3, then the following relation holds true in KSn
0 (AlgStC):

{Bbal
0,n(G)} =

n∑
m=3


Bsm

0,m(G)×Īmµ
∐
k∈Nm
|k|=n

Sh(k)×mi=1

(
(Īµ)ki

∐
Bbal

0,ki+1(G)
) /Sm


+


∐
k∈N2

|k|=n

Sh(k)× Bbal
0,k1+1(G)×Ī2µ B

bal
0,k2+1(G)

 /S2


−


∐
k∈N2

|k|=n

Sh(k)× Bbal
0,k1+1(G)×Ī2µ B

bal
0,k2+1(G)
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where, for a multi-index k = (k1, . . . , km) ∈ Nm of modul |k| =
∑m

i=1 ki = n, Sh(k) ⊂ Sn is
the set of shuffles. In the first summand: (Īµ)ki = ∅, if ki > 1 or ki = 0, and (Īµ)1 = Īµ; the
fibered product is with respect to the evaluation maps on the first factor, and the identity on
(Īµ)1 or the evaluation map at the last marked point on Bbal

0,ki+1(G). In the second and third
summands the fibered product is with respect to the evaluation map on Bbal

0,k1+1(G) and the
composition of the involution Īµ → Īµ induced by the map G→ G that sends x 7→ x−1 with
the evaluation map on Bbal

0,k2+1(G).
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Medd., 15, 1–77, 1937.
[20] Fabio Perroni. Smooth covers of moduli stacks of Riemann surfaces with symmetry. Boll. Unione Mat.

Ital., 15, no. 1-2, 333–342, 2022.
[21] Bruno Zimmermann. Surfaces and the second homology of a group. Monatsh. Math., 104, 1987.

UNIVERSITY OF TRIESTE

Email address: fperroni@units.it

Page 63



FINITE TORSORS ON PROJECTIVE SCHEMES DEFINED OVER A DISCRETE
VALUATION RING

HO HAI PHUNG

Classification AMS 2020: 14F06, 14F35, 14L15, 14G20, 14L30.

Keywords: discrete valuation rings, group schemes, Tannakian categories, coherent
sheaves.

Given a Henselian and Japanese discrete valuation ring A and a flat and projective
A-scheme X, we follow the approach of Biswas and dos Santos [3] to introduce a full
subcategory of coherent modules on X which is then shown to be Tannakian. We then
prove that, under normality of the generic fibre, the associated affine and flat group is
pro-finite in a strong sense (so that its ring of functions is a Mittag-Leffler A-module)
and that it classifies finite torsors Q −→ X. This establishes an analogy to Noris theory
of the essentially finite funda- mental group. In addition, we compare our theory with
the ones recently developed by MehtaSubramanian and AnteiEmsalemGasbarri. Using
the comparison with the former, we show that any quasi-finite torsor Q −→ X has a
reduction of the structure group to a finite one.
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We fix a complex projective manifold X of dimension n and an ample line bundle L
over X. Denote by R(X,L) the section ring, defined as follows

R(X,L) := ⊕∞k=1H
0(X,Lk).

A graded norm N =
∑
Nk, Nk = ‖ · ‖k, over R(X,L) is called submultiplicative if for

any k, l ∈ N∗, f ∈ H0(X,Lk), g ∈ H0(X,Ll), we have ‖f · g‖k+l ≤ ‖f‖k · ‖g‖l.
For a metric hL on L, denote the induced graded L∞-norm on R(X,L) by

Ban∞(hL) =
∑

Ban∞k (hL). This norm, ‖ · ‖L∞(hL) := Ban∞(hL), defined as
‖f‖L∞(hL) := supx∈X |f(x)|hL, f ∈ H0(X,Lk), is clearly submultiplicative. The main
result of this report says that all submultiplicative norms are essentially of this form.

In order to state the result precisely, we associate for any norm Nk on H0(X,Lk) a
metric FS(Nk) on Lk as follows: for any x ∈ X, l ∈ Lkx, we put |l|FS(Nk) = inf ‖s‖k,
where the infimum is taken over all s ∈ H0(X,Lk), verifying s(x) = l (the set of such
sections s is non-empty for k big enough by the ampleness of L). Clearly, if N =

∑
Nk

is submultiplicative, FS(Nk), k ∈ N∗, is submultiplicative as well, i.e. for any k, l ∈ N∗,
FS(Nk+l) ≤ FS(Nk) ·FS(Nl). By Fekete’s lemma, the sequence of metrics FS(Nk)

1
k on L

converges, as k → ∞, to an upper semi-continuous metric (possibly only bounded from
above and even null), which we denote by FS(N).

Theorem [7, Theorem 1.1] Assume that a graded norm N =
∑
Nk over R(X,L) is

submultiplicative, and FS(N) is continuous and non-null everywhere. Then
N ∼ Ban∞(FS(N)), where the latter equivalence means that for any ε > 0, there is
k0 ∈ N, such that for any k ≥ k0, we have Ban∞k (FS(N)) ≤ Nk ≤ exp(εk) ·Ban∞k (FS(N)).

This result is a projective analogue of Gelfand representation theorem for
commutative Banach algebras. It is also a complex-geometric analogue of a theorem
from non-Archimedean geometry due to Boucksom-Jonsson [3, Theorem D]. Below we
explain some of the consequences of the Theorem and highlight the role of
submultiplicative norms in functional analysis and complex/algebraic geometry.

Example 1. We denote by O(1) the hyperplane bundle over the projective space Pn−1.
Then R(Pn−1,O(1)) is the symmetric tensor algebra SymCn =

∑
SymkCn, and we can

identify it with the algebra of complex polynomials in n variables graded by the
homogeneous degree. For P ∈ SymkCn, P (x1, · · · , xn) =

∑
|α|=k aαx

α, we define the
norm ‖P‖k :=

∑
|α|=k |aα|. The induced norm on R(Pn−1,O(1)) is clearly

submultiplicative. It satisfies the assumptions of the Theorem, and the Theorem
specializes to the following statement: for any ε > 0, there is k0 ∈ N, such that for any
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k ≥ k0, aα ∈ C, α ∈ Nn, |α| = k, we have

exp(−εk) ·
∑
|α|=k

|aα| ≤ sup
x1,...,xn∈C
|x1|,...,|xn|≤1

∣∣∣ ∑
|α|=k

aαx
α
∣∣∣ ≤ ∑

|α|=k

|aα|.

The study of general projective tensor norms on symmetric algebras also falls into the
scope of the Theorem, see [7, Theorem 3.13 and Remark 3.14].

Example 2. Consider an embedding Y ↪→ X of a compact complex manifold Y . The
restriction operator Res : R(X,L) → R(Y, L) for any norm NX = ‖ · ‖X on R(X,L)
induces a norm NY = ‖ · ‖Y on H0(Y, Lk) 3 q by ‖q‖Y := inf

{
‖f‖X : Res(f) = q

}
for

big k (by ampleness, such sections f exist for big k, so the norm NY is well-defined on
elements of high degree). If NX is submultiplicative, then NY is clearly submultiplicative
as well. We use this observation for NX = Ban∞(hL) for some smooth positive metric
hL. Then Theorem for NY gives us that for any ε > 0, there is k0 ∈ N, such that for any
k ≥ k0, f ∈ H0(Y, Lk), there is a holomorphic extension f̃ of f to X, such that

exp(−εk) · sup
x∈X
|f̃(x)|hL ≤ sup

y∈Y
|f(y)|hL ≤ sup

x∈X
|f̃(x)|hL .

This result was previously established by Zhang [19], Bost [2] and Randriambololona
[14] in various degrees of generality. In [5, Theorems 1.1 and 1.10], author refined
these statements by giving an explicit asymptotic formula for the extension f̃ , which
implied that one can replace exp(−εk) by 1− C√

k
for some C > 0 in the estimate above.

We note that we use Examples 1, 2 in our proof of the Theorem, and so stricto sensu
both examples should not be considered as consequences of the Theorem.

Example 3. We fix two graded norms Ni =
∑
N i
k, ‖ · ‖i := Ni, i = 0, 1, over the section

ring R(X,L). One can then define the complex interpolation Nt =
∑
N t
k, t ∈ [0, 1],

between N0 and N1 in the following manner. We let f ∈ H0(X,Lk) and define its norm,
‖f‖t, ‖ · ‖t = N t

k, as ‖f‖t := sup{‖g(iθ)‖0, ‖g(1 + iθ)‖1, θ ∈ R}, where the supremum is
taken over all holomorphic functions g : {z ∈ C : 0 < <z < 1} → H0(X,Lk), g(t) = f ,
continuous over {z ∈ C : 0 ≤ <z ≤ 1}.

A trivial verification shows that if both Ni, i = 0, 1, are submultiplicative, then for any
t ∈ [0, 1], the norm Nt is submultiplicative. In particular, for any smooth positive metrics
hLi , i = 0, 1, the above construction for Ni := Ban∞(hLi ) yields a submultiplicative norm
Nt, t ∈ [0, 1]. The results of Phong-Sturm [11] and Berndtrsson [1] show that FS(Nt) is
continuous and can be identified with the Mabuchi geodesic hLt connecting hL0 and hL1 , see
Mabuchi [10]. When the Theorem is applied for Nt, it refines the results of Phong-Sturm
and Berndtrsson by proving Nt ∼ Ban∞(hLt ), see [6, Theorem 1.8].

Example 4. We fix a graded decreasing filtration F on R(X,L), Z 3 λ 7→ FλR(X,L) ⊂
R(X,L), which is submultiplicative, i.e. for any λ, µ ∈ Z, we have

FλR(X,L) · FµR(X,L) ⊂ Fλ+µR(X,L).
For example, F might be associated with a divisor D ⊂ X, where FλR(X,L) consists of
sections vanishing up to order at least λ along D. Define a ray of norms Nt = ‖ · ‖t,
t ∈ [0,+∞[, as ‖f‖t = inf{

∑
‖fi‖ · exp(−tλi)}, where the infimum is taken over all

possible decompositions f =
∑
fi, fi ∈ FλiR(X,L). If both N and F are

submultiplicative, then Nt, t ∈ [0,+∞[, is clearly submultiplicative. From the work of
Phong-Sturm [13], when the filtration F is finitely generated and N = Ban∞(hL) for
some smooth positive metric hL, the lower-semicontinuous regularization of the ray of
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metrics FS(Nt) on L coincides with the Mabuchi geodesic ray hLt , hL0 = hL, associated
with the test configuration induced by F . See Witt Nyström [17] and Székelyhidi [16]
for the correspondence between test configurations and filtrations; see Phong-Sturm
[12] for the correspondence between test configurations and Mabuchi geodesic rays.

In [8, Theorem 4.1], author proved the uniform version (in t) of the Theorem for
Nt. As a consequence of it, the above works of Phong-Sturm and the uniform version
of Tian-Bouche-Catlin-Zelditch asymptotic expansion of Bergman kernel, in [8, Theorem
1.1] author established a relation between the geometry at infinity of the space of positive
metrics on L and the asymptotic properties of submultiplicative filtrations on R(X,L),
conjectured by Darvas-Lu [4, p. 3 and 7] and Zhang [18, Remark 6.12]. The latter result
refines some previous results of Witt Nyström [17], Hisamoto [9] and Reboulet [15].
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While numerical invariants play a central role in classification in all fields of
mathematics, it is often very difficult to compute their exact value. As a result we opt
for the next best thing: try to give estimates by finding upper or lower bounds. In
algebraic geometry, and in particular in the construction of moduli spaces, giving
bounds for certain invariants provides a fundamnatal tool. Without such bounds it
would be extremely difficult to find reasonably-behaved moduli spaces; for example, we
could not even hope for such spaces to be of finite type.

One of the early examples of such bounds, with an eye towards the construction of
moduli spaces of higher dimensional varieties, is Matsusaka’s Big Theorem.
Boundedness questions are present in many other more or less related questions, such
as Mordell’s Conjecture, Lang’s Conjecture, or Shafarevich’s Conjecture. The latter, and
its more modern generalizations, are the most relevant to the present work.

Shafarevich conjectured that there are only finitely many non-isotrivial families of
smooth projective curves of fixed genus (≥ 2) over a fixed curve. Parshin [5] and
Arakelov [1] proved this conjecture in two steps: boundedness, that is, there are only
finitely many deformation types of such families, and rigidity; those families are actually
rigid, so each one is the only one in its deformation type.

Boundedness can be roughly translated to some associated parameter scheme being
of finite type. These parameter spaces are often constructed via an appropriate Hilbert
scheme and hence being of finite type is closely related to bounding the degree of an
ample line bundle. In fact, already Arakelov used this idea to prove boundedness in
order to prove Shafarevich’s conjecture in the curve case.

More generally, we consider a smooth projective family of canonically polarized
varieties π : U → V . Then V maps to a moduli space parametrizing the fibers. This
target moduli space is equipped with an ample line bundle. The pullback of this line
bundle to V is detπ∗ω

m
U/V (for some well-chosen m > 0 and up to a suitable power).

Therefore, in order to carry out the above sketched plan for the boundedness problem,
one would need to uniformly bound the degree of this line bundle.

This is exactly what Arakelov did. He established such a universal bound for all families
of curves of genus at least 2 over base spaces of dimension one [1]. More precisely, he
showed that, for every sufficiently large m ∈ N, there is a polynomial function bm,g ∈
Z>0[x1, x2], depending only onm and a fixed integer g ∈ N, g ≥ 2, such that the inequality

(?) deg(det f∗ω
m
X/B) ≤ bm,g

(
g(B), deg(D)

)
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holds for any smooth compactification f : X → B of any non-isotrivial smooth projective
family fU : U → V of curves of genus g over a one dimensional base V , whereD := B\V .
In fact Arakelov showed that the coefficients of bm,g are themselves purely g-dependent
functions of m and rm := rank(f∗ω

m
X/B).

Bedulev and Viehweg [2] proved a generalization of Arakelov’s inequality for families
of canonically polarized manifolds, still over curves. Other, more Hodge theoretic
analogues of (?) were also established by Deligne and Peters.

The equation (?) became known as Arakelov’s inequality. Based on [3], Viehweg and
others speculated that the inequality (?) should have analogues over higher
dimensional base spaces. In fact, at the end of his survey [6] Viehweg explains how a
higher dimensional Arakelov inequality would be useful.

Definition 0.1 (Higher dimensional Arakelov type inequalities). Let V be a smooth quasi-
projective variety of dimension d and B a smooth compactification of V such that B\D ' V ,
with D being a reduced divisor on B having simple normal crossing support. Further let fU :
U → V be a smooth family of projective varieties and let X be a smooth compactification
of U such that there exists a projective morphism f : X → B with f |U = fU . We will
refer to these by saying that (the pair) (B,D) is a smooth compactification of V and that
f : X → B is a smooth compactification of fU : U → V .

Still working with the above notations, let H be an ample Cartier divisor on B and set
Smn,ν to denote the class of smooth projective families, fU : U → V , of canonically polarized
varieties of dimension n and canonical volume ν = vol(KUt) := Kn

Ut
over V . Members of

a subclass of S ⊆ Smn,ν will be said to satisfy an Arakelov inequality, if for all sufficiently
large and divisible m ∈ N, there exists a function bm,n,ν ∈ Z>0[x1, x2], depending only on m,
n, and ν, for which the inequality

(0.1) degH
(

det f∗ω
m
X/B

)
≤ bm,n,ν (degH(KB +D), degH(D))

holds for any smooth compactification f : X → B of any family (fU : U → V ) ∈ S.
Here for any divisor ∆ and line bundle L on B, we define degH(∆) := ∆ · Hd−1 and
degH(L ) := c1(L ) ·Hd−1.

Theorem 0.2 (cf. [4]). In the setting of 0.1, if KB +D is pseudo-effective, then all members
of Smn,ν(V ) satisfy an Arakelov inequality.

We note that when d = 1, this higher dimensional Arakelov-type inequality fully recovers
the original one for curves in (?).
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Let X be a smooth projective variety and let f : X 99K X be a dominant rational self-
map, defined over an algebraically closed field of characteristic 0. The k-th dynamical
degree of f is defined as

δk(f) = lim
i→∞

(
(f i)∗(Hk) ·HdimX−k)1/i .

where H is an ample line bundle on X. This limit exists and is independent of the choice
of ample line bundle H by the works of Dinh–Sibony, Truong, Dang. In general, there
are p and q such that

1 = δ0(f) < · · · < δp(f) = · · · = δq(f) > · · · > δdimX(f).

Definition 0.1. We say that f is (p-)cohomologically hyperbolic, if there is a positive integer
1 ≤ p ≤ dimX such that

δp(f) > δi(f) for all i ∈ {1, 2, . . . , dimX} \ {p}.

Cohomologically hyperbolic maps have been investigated extensively from the
viewpoint of complex dynamics. In this talk, I will present the study joint with Yohsuke
Matsuzawa on the arithmetic degrees of cohomologically hyperbolic maps ([MW22]).

Let X be a smooth projective variety and let f : X 99K X be a dominant rational self-
map, defined over Q. Let Xf (Q) be the set of points x ∈ X(Q) whose f -orbit Of (x) =

{f i(x)}i≥0 is well-defined. For x ∈ Xf (Q), we define the lower and the upper arithmetic
degree of f at x by

αf (x) = lim inf
i→∞

max
{
hH(f

i(x)), 1
}1/i

,

αf (x) = lim sup
i→∞

max
{
hH(f

i(x)), 1
}1/i

,

where H is an ample line bundle on X and hH is a Weil height function associated with
H. These quantities are independent of the choice of ample line bundle H and height
function hH . We also write

αf (x) = lim
i→∞

max
{
hH(f

i(x)), 1
}1/i

if the limit exists, and call it the arithmetic degree of f at x.

Conjecture 0.2 (Kawaguchi–Silverman, [KS16a]). Let X be a smooth projective variety
over Q. Let f : X 99K X be a dominant rational self-map and x ∈ Xf (Q).

(a) We have αf (x) = αf (x). In other words, the following limit exists:

αf (x) = lim
i→∞

max
{
hH(f

i(x)), 1
}1/i

.
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(b) The arithmetic degree αf (x) is an algebraic integer.
(c) The collection of arithmetic degrees {αf (y) : y ∈ Xf (Q)} is a finite set.
(d) If the forward f -orbit Of (x) is Zariski dense in X, then

αf (x) = δ1(f).

When f : X → X is a surjective morphism, the first three claims (a), (b) and (c) were
shown in [KS16b], while the last one (d) is still open. We refer to [MZ23] and references
therein for known results.

When f : X 99K X is an arbitrary dominant rational self-map, the problem is much
more complicated, because of the deficiency of functoriality of height functions. Part (c)
is not true due to [LS20]. Part (b) is not true either; see Corollary 0.6 below. Part (a)
and part (d) are still open for birational self-maps of P2, or self-morphisms of A2.

Let us now state our main results ([MW22]). Recall that an orbit Of (x) is called
generic, if it is infinite and the intersection with any proper Zariski closed subset is finite.
Equivalently, Of (x) is infinite and any infinite subsequence of Of (x) is Zariski dense.
Clearly “generic” implies “Zariski dense”, while the converse is predicted by the
dynamical Mordell–Lang conjecture (see e.g., [Xie22, Conjecture 2.5]).

Theorem 0.3. Let f : X 99K X be a dominant rational self-map of a smooth projective
variety X defined over Q. Assume that f is p-cohomologically hyperbolic.

(1) For every x ∈ Xf (Q) with generic orbit Of (x), we have

αf (x) ≥
δp(f)

δp−1(f)
.

(2) There is a sequence {xi}i≥1 ⊂ Xf (Q) of Q-points, such that

lim
i→+∞

αf (xi) ≥
δp(f)

δp−1(f)
.

As a direct corollary, we have

Corollary 0.4. Assume that f is 1-cohomologically hyperbolic.

(1) For every x ∈ Xf (Q) with generic orbit Of (x), αf (x) exists and αf (x) = δ1(f).
(2) There is a sequence {xi}i≥1 ⊂ Xf (Q) of Q-points, such that lim

i→+∞
αf (xi) = δ1(f).

As an application of the study of arithmetic degrees, we show the existence of Zariski
dense orbits following an idea from [JSXZ21].

Theorem 0.5. Let X be a smooth projective variety defined over Q. Let f : X 99K X be
a 1-cohomologically hyperbolic dominant rational self-map. Then there is x ∈ Xf (Q) such
that the f -orbit Of (x) is Zariski dense in X. Moreover, we can take such x so that αf (x)
exists and αf (x) = δ1(f).

For the background about the above result, we refer to [Xie22]. Combining with
[BDJ20], we obtain the first example of transcendental arithmetic degree.

Corollary 0.6. There is a dominant rational self-map f : P2 99K P2 defined over Q and a
Q-point x ∈ P2

f (Q) such that αf (x) exists and αf (x) = δ1(f) is a transcendental number.
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In the paper, we work over an algebraically closed field k in characteristic p ≥ 0.
First, I introduce polarized endomorphism and a generalization of polarized

endomorphism.

Definition 0.1. Let X be a projective variety over k and f : X → X a finite endomorphism.
• We say that f is polarized if there exists an ample line bundle L and an integer q ≥ 2

such that f ∗L ≃ L⊗q.
• We say that f is int-amplified if there exists an ample line bundle L such that fL ⊗
L−1 is also ample.

Polarized endomorphism is a classical and natural notion, which is deeply related to
dynamics of endomorphisms of a projective space. Furthermore, int-amplified
endomorphism is a natural generalization from the viewpoint of classification theory in
algebraic geometry. We are interested in a classification of smooth projective varieties
admitting an int-amplified endomorphism. The related result is in [3], [4], [5].

In characteristic zero, it is known that if a smooth projective variety has an étale int-
amplified endomorphism, then it is an étale quotient of an Abelian variety by [2]. The
main result of the talk is an analog of such result in positive characteristic as follows.

Theorem 0.2. Let X be a smooth projective variety over k. We assume that p is positive
and X is F -split, that is, the homomorphism OX → F∗OX induced by the Frobenius
morphism on X splits as OX-modules. We further assume that X has an étale
int-amplified endomorphism f : X → X. Then X is an étale quotient of an Abelian variety.

In the situation of the above theorem, we can see that the tangent bundle TX of X is
numerically flat. Therefore, it is a corollary of the following result.

Theorem 0.3. [1] Let X be a smooth projective variety over k with numerically flat tangent
bundle. We assume that p is positive and X is F -split. Then X is an étale quotient of an
Abelian variety.
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AUTOMORPHISM GROUPS OF SMOOTH HYPERSURFACES
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Classification AMS 2020: 14J50, 14J70, 20E99.

Keywords: automorphisms, hypersurfaces, finite groups.

In this talk, I discuss some recent results about classifying automorphism groups of
smooth hypersurfaces in the projective space over the complex number field C. This talk
is based on joint works with Keiji Oguiso, Li Wei, Song Yang, and Zigang Zhu.

Let (n, d) be a pair of integers satisfying n ≥ 2, d ≥ 3, and (n, d) 6= (2, 4). We say a
finite group G is an (n, d)-group if G is isomorphic to a subgroup of the automorphism
group of a smooth hypersurface in Pn+1 of degree d. Matsumura–Monsky [7] proved that
for a smooth hypersurface Xn,d ⊂ Pn+1 of degree d, its automorphism group Aut(Xn,d) is
a finite group, and

Aut(Xn,d) = {φ ∈ PGL(n+ 2,C) | φ(Xn,d) = Xn,d}.
Two smooth hypersurfaces of dimension n and degree d are isomorphic if and only if they
are projectively equivalent, that is, their defining equations are the same up to linear
change of coordinates. Therefore, classifying all (n, d)-groups is equivalent to classifying
all finite subgroups of PGL(n + 2,C) preserving smooth homogeneous polynomials of
degree d. By solving the latter problem in the classical invariant theory, Oguiso–Yu [8]
classified all possible groups acting faithfully on a smooth quintic threefold, a most basic
example of Calabi-Yau threefolds.

Theorem 0.1 ([8]). For a finite group G, the following two conditions are equivalent to
each other:

(i) G has a faithful action on a smooth quintic threefold, and
(ii) G is isomorphic to a subgroup of one of the 22 groups below:

C4
5 oS5, C4× (C3

5 oS3), (C2
5 ×C2

4)oC2, C16× (C2
5 oC2), S3× (C3

5 oS3), C5×C16×C4,
C64×C5, C2

5 ×C4×S3, (C2
5 oC2)× (C13oC3), C16× (C5×S3), C256, C4×C5× (C13oC3),

C5× (C51oC4), (C2
5 ×C2

3)oD8, C205oC5, C5×S3× (C13oC3), C5× ((SL(2, 3).C2)oC2),
SL(2, 3)o C4, C5 × (C3 oQ8), C5 ×D24, C5 × S5, C32 × C2.

The work of Oguiso–Yu [8] gives a systematic (and computer-aided) method for
classifying all possible (n, d)-groups for prescribed integers n and d. Based on this
method, Wei–Yu [10] completed the classification of all possible groups acting faithfully
on a smooth cubic threefold, an important counterexample to the three-dimensional
Lüroth problem ([1]).

Theorem 0.2 ([10]). For a finite group G, the following two conditions are equivalent to
each other:

(i) G has a faithful action on a smooth cubic threefold, and
(ii) G is isomorphic to a subgroup of one of the 6 groups below:

C4
3 o S5, ((C2

3 o C3)o C4)× S3, C24, C16, PSL(2, 11), S5 × C3.
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Following the approach of Oguiso–Yu’s work, Yang–Yu–Zhu [11] complete the
classification of all (5, 3)-groups and (4, 3)-groups by introducing two new notions,
partitionability and characteristic sets of homogeneous polynomials.

Theorem 0.3 ([11]). A finite group G can act faithfully on a smooth cubic fivefold if and
only if G is isomorphic to a subgroup of one of the following 20 groups:
C6

3 o S7, ((C2
3 o C3) o C4) × (C3

3 o S4), C8 × (C3
3 o S3), S5 × (C3

3 o S3), C48 × S3,
PSL(2, 11)×(C2

3oC2), ((C2
3oC3)oC4)

2oC2, ((C2
3oC3)oC4)×C8, S5×((C2

3oC3)oC4), C96,
C63oC6, C3.M10, S7×C3, C3×((C8×C2)oC2), C3×(PSL(3, 2)oC2), C3.A7, C3×GL(2, 3),
((C2

3 o C3)oQ8)o C3, C64, C43 o C7.

Theorem 0.4 ([11]). A finite group G can act faithfully on a smooth cubic fourfold if and
only if G is isomorphic to a subgroup of one of the following 15 groups:
C5

3 o S6, ((C3 × (C3
3 o C3)) o C3) o (C4 × C2), C8 × (C2

3 o C2), S5 × (C2
3 o C2), C48,

PSL(2, 11)×C3, ((C3×(C2
3 oC3))oC3)o(C2

4 oC2), C32, C21oC6, M10, S7, (C8×C2)oC2,
PSL(3, 2)o C2, GL(2, 3), (C2

3 oQ8)o C3.

Remark 0.5. Explicit examples of smooth hypersurfaces acted on by the maximal groups in
the classifications in Theorems 0.1, 0.2, 0.3-0.4 are given in [8], [10], [11] respectively.

Remark 0.6. The study of the automorphism groups Aut(X) of smooth cubic hypersurfaces
X has a long and rich history. All possible groups acting faithfully on cubic surfaces have
been classified (see [9], [5], [2]). For dim(X) = 4, recently Laza–Zheng [6] classified
the symplectic automorphism groups Auts(X) of cubic fourfolds and proved that the Fermat
cubic fourfold has the largest possible order for |Aut(X)|. For some partial results on abelian
subgroups of automorphism groups of smooth cubic hypersurfaces of arbitrary dimension,
see [3], [12], [4].
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NOETHER INEQUALITY FOR IRREGULAR THREEFOLDS OF GENERAL TYPE
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Throughout this extended abstract, we work over an algebraically closed field of
characteristic zero, and all varieties are projective.

1. Motivation

Classifying algebraic varieties is a central problem in algebraic geometry. One way
to attack this problem, especially for varieties of general type, is to study the relation
among their birational invariants first, and then to obtain explicit classifications using
these numerical information. This is often refered as the geography of algebraic varieties
in the literature.

It is via this approach that many classification results for varieties of general type have
been proved. As a typical example, it was proved by M. Noether that every minimal surface
S of general type satisfies the following optimal inequality:
(1.1) K2

S ≥ 2pg(S)− 4,

which is now called the Noether inequality. In [8], Horikawa completely classified surfaces
of general type attaining the Noether equality.

The Noether inequality problem in dimension three also has attracted lots of attentions
(e.g. [13, 2, 4]). Recently, J. Chen, M. Chen and Jiang [5] proved that every minimal 3-fold
X of general type with pg(X) ≥ 11 satisfies the following optimal Noether inequality:

(1.2) K3
X ≥

4

3
pg(X)− 10

3
.

They also asked [loc. cit.] whether 3-folds attaining the equality can be classified, and this
question has been solved by the authors in a recent work [11].

It is a fundamental question to what extent does the irregularity have an influence on the
distribution of birational invariants. In fact, if a minimal surface S of general type satisfies
the equality in (1.1), then q(S) = 0 [1]. Therefore, there must be a sharper Noether
inequality for irregular surfaces of general type. This problem was studied extensively
by Bombieri [1, §10] and later solved by Debarre [7]. More precisely, Debarre [loc. cit.]
proved that every minimal irregular surface S of general type satisfies the following optimal
Noether inequality:
(1.3) K2

S ≥ 2pg(S).

Moreover, he proved that if the equality holds, then 1 ≤ q(S) ≤ 4. Based on the work
of Horikawa [9], Debarre [loc. cit.], Catanese-Ciliberto-Mendes Lopes [3] and Ciliberto-
Mendes Lopes-Pardini [6], a complete classification of irregular surfaces of general type
attaining the equality has been established.
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Very similar to the surface case, it is proved recently that if a 3-fold X of general type
satisfies the Noether equality in (1.2), then q(X) = 0 [10]. Thus it is natural to ask:

Question. What is the optimal Noether inequality for irregular 3-folds of general type?
Once the desired inequality is obtained, can one classify the 3-folds attaining the equality?

2. Main results

Our main results give an answer to the above question for “almost all” irregular 3-folds
of general type.

Theorem 2.1. [12, Theorem 1.1] Let X be a minimal irregular 3-fold of general type. Then
we have the following optimal Noether inequality:

(2.1) K3
X ≥

4

3
pg(X),

provided one of the following conditions holds:
(1) X is Gorenstein;
(2) q(X) = 1 and pg(X) ≥ 17;
(3) q(X) ≥ 2.

Moreover, if the equality in (2.1) holds for X which satisfies any of the above three
conditions (1)–(3), then 1 ≤ q(X) ≤ 2.

Note that minimal 3-folds X with vol(X) < 4
3
pg(X) ≤ 64

3
form a bounded family [14,

Corollary 2]. Thus Theorem 2.1 shows that the Noether inequality (2.1) holds for all
minimal and irregular 3-folds of general type except possibly finitely many families.

We would like to remark on the optimality of the Noether inequality (2.1). Indeed, the
authors in [10] classified all minimal irregular 3-folds X of general type with vol(X) =
4
3
χ(ωX) and showed that these 3-folds must satisfy q(X) = 1 and h2(X,OX) = 0. Thus we

deduce that
K3

X =
4

3

(
pg(X)− h2(X,OX) + q(X)− 1

)
=

4

3
pg(X)

for any such 3-fold X.
The next theorem shows that “almost” all minimal irregular 3-folds attaining the equality

(2.1) are of the above form.

Theorem 2.2. [12, Theorem 1.2] Let X be a minimal irregular 3-fold of general type with
pg(X) ≥ 17. Then K3

X = 4
3
pg(X) if and only if K3

X = 4
3
χ(ωX). As a result, minimal

irregular 3-folds X of general type with pg(X) ≥ 17 and K3
X = 4

3
pg(X) can be explicitly

classified.
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ABSTRACT. Positivities of tangent sheaves are expected to impose rather restrictive
geometry on the underlying space. In this talk, we consider a projective klt variety X

with an almost nef tangent sheaf TX , i.e., TX |C is nef for any curve C ⊆ X not lying in a
given countable union of proper closed subvarieties. We establish a structure theorem
towards the fundamental building blocks of such varieties. Then we apply this structure
to the classification of surfaces and threefolds with certain positive tangent sheaves.
Furthermore, we will discuss a few questions on the equivariant minimal model program
with respect to certain positive tangent sheaves. This is based on some part of my joint
work [IMZ23] with Masataka Iwai and Shin-ichi Matsumura.

First of all, we review some basic definitions and after that we will summarize our
main results in this talk.

For a normal projective variety X, its tangent sheaf TX of X is defined by the reflexive
hull TX := (j∗TXreg)

∨∨ of the direct image sheaf j∗TXreg, where j : Xreg → X is the natural
inclusion and TXreg is the tangent bundle on Xreg. Similarly, the reflexive cotangent
sheaves of degree p is defined by Ω

[p]
X := (j∗Ω

p
Xreg

)∨∨.

Definition 0.1. Let X be a normal projective variety of dimension n and E be a sheaf on X.

(1) E is said to be ample (resp. strictly nef, nef) if the tautological line bundle OPX(E)(1)
is ample (resp. strictly nef, nef) on the projectivization PX(E) := Proj(Sym•E).

(2) E is said to be almost nef if there exist countably many proper subvarieties Zi ⊆
X ensuring that the sheaf E|C := E ⊗ OC is nef for any curve C ̸⊆ ∪iZi (see
[DPS01, Definition 6.4] and [LOY20, Definition 3.6]). The notation S(E) denotes
the smallest countable union ∪iZi with the above property.

Henceforth, we further assume that E is torsion-free.

(3) E is said to be pseudo-effective if for any a ∈ Z+ and any ample Cartier divisor
A on X, there exists b ∈ Z+ such that Sym[ab](E) ⊗ Ab is globally generated at a
general point of X (see [Nak04, Definition 3.20] and [BDPP13, Definition 7.1];
cf. [Vie83]).

(4) E is said to be generically ample (resp. generically nef) if µmin
H1···Hn−1

(E) > 0 (resp.≥
0) holds for any ample Cartier divisors H1, . . . , Hn−1 on X (see [Miy87]).

Our definition of the pseudo-effectivity of E differs from the pseudo-effectivity of
OPX(E)(1) even when E is locally free. For torsion-free sheaves, we can summarize
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relations among the above-mentioned notions by the following table:

ample +3

��

strictly nef +3
nef

+3

��

almost nef

��

pseudo-effective

%-
generically ample +3 generically nef

We refer to [IMZ23, Section 2] for more information and the proofs; moreover, other
implications do not hold.

Now, we will state our main results discussed in this talk. We note that in our joint
paper [IMZ23], we also establish another structure theorem for projective klt varieties
with positively curved tangent sheaf [IMZ23, Theorem 1.1], while this theorem was not
contained in this talk due to the organization.

Theorem 0.2 (=[IMZ23, Theorem 1.2]). Let X be a projective klt variety with almost nef
tangent sheaf. Then, there exists a fibration α : X → Y satisfying the following properties:

(1) The fibration α : X → Y is flat, and every irreducible component of the singular
locus of X dominates Y .

(2) The base variety Y is an étale quotient of an abelian variety (i.e., there exists a finite
étale cover A → Y from an abelian variety A).

(3) Any fiber of α : X → Y is an irreducible and reduced rationally connected klt variety,
and a very general fiber has almost nef tangent sheaf.

The following are some applications to the above structure theorem.

Theorem 0.3 (=[IMZ23, Corollary 1.3]). Let X be a projective klt variety with almost nef
tangent sheaf. If the canonical divisor KX is numerically trivial, then X is an étale quotient
of an abelian variety (in particular, it is smooth).

Theorem 0.4 (cf. [IMZ23, Theorem 1.4]). Let X be a projective klt variety with almost
nef tangent sheaf. After we replace X with an appropriate quasi-étale cover, there exists a
fibration α : X → A onto an abelian variety A of dimension q̂(X) satisfying the following
properties:

(1) The pullback α∗TA of the tangent bundle TA coincides with the reflexive hull of the
flat part of the Fujita decomposition of TX . In particular, the augmented irregularity
q̂(X) is equal to the rank of the flat part of TX .

(2) Any fiber of α : X → A is maximally quasi-étale, i.e., any quasi-étale cover of a fibre
has to be étale, and a very general fiber F has vanishing augmented irregularity
q̂(F ) = 0.

Theorem 0.5 (cf. [IMZ23, Corollary 1.5]). Let X be a projective klt variety with almost
nef tangent sheaf. Then, the following conditions are equivalent.

(1) The tangent sheaf TX is generically ample.
(2) The augmented irregularity q̂(X) is zero.
(3) Any finite quasi-étale cover of X is rationally connected.

We propose the question below at the end of the talk.
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Question 0.6 (=[IMZ23, Question 7.4]; cf. [HIM22, Problem 3.12]). Let X be a
rationally connected projective klt variety with almost nef tangent sheaf. Is the augmented
irregularity of X zero? Is X even of Fano type?
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