
 
Summer School in conjunction with SciCADE  08–12 July 2024 
  

Updated: June 19, 2024 

Abstracts 
Contents 
 

Elena Celledoni Norwegian University of Science and Technology, Norway ............................. 2 

Qiang Du Columbia University, USA ......................................................................................................... 5 

Shi Jin Shanghai Jiao Tong University, China ........................................................................................ 6 

Alexander Ostermann University of Innsbruck, Austria ................................................................... 7 

 

  



Summer School in conjunction with SciCADE  08–12 July 2024 

Page | 2  
 

Elena Celledoni 
Norwegian University of Science and Technology, Norway 

Deep learning from the point of view of numerical analysis 

Deep learning neural networks have recently been interpreted as discretisations of an 
optimal control problem subject to an ordinary differential equation constraint. A large 
amount of progress made in deep learning has been based on heuristic explorations, but 
there is a growing effort to mathematically understand the structure in existing deep 
learning methods and to design new approaches preserving (geometric) structure in 
neural networks. The (discrete) optimal control point of view to neural networks offers 
an interpretation of deep learning from a numerical analysis perspective and opens 
the way to mathematical insight [10, 9, 2].  
 
We discuss a number of interesting directions of current and future research in structure 
preserving deep learning [3]. Some deep neural networks can be designed to have 
desirable properties such as invertibility and group equivariance or can be adapted to 
problems of manifold value data. Equivariant neural networks are effective in reducing 
the amount of data for solving certain imaging problems [4].  
 
We show how classical results of stability of ODEs are useful to construct contractive 
neural networks architectures. Thus, neural networks can be designed with guaranteed 
stability properties. This can be used to ensure robustness against adversarial attacks and 
to obtain converging “Plug-and-Play” algorithms for inverse problems in imaging [3, 7, 
12]. We consider extensions of these ideas to the manifold valued case and we discuss B-
stability on manifolds [1].  
 
We also consider applications of deep learning to mechanical systems, for learning 
Hamiltonians on manifolds and from noisy data [6, 11] and for learn-1ing PDE solutions 
[8]. We show how similar ideas can be used to compute optimal parametrisations in shape 
analysis [5].  
 

• Lecture 1: introduction, deep learning as optimal control, dynamical systems and 
deep neural networks. Equivariant neural networks. 

 
• Lecture 2: Adversarial attacks, stability of ODEs and applications to 1-Lipschitz 

networks and converging “Plug-and-Play” algorithms for imaging. B-stability on 
manifolds and applications. 

 
• Lecture 3: Deep learning of diffeomorphisms for optimal shape reparametrization. 

Applications of deep learning to mechanical systems. 
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• Lecture 4: Learning Hamiltonians on manifolds, from noisy data and learning PDEs 

form pixel data. 
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Qiang Du 
Columbia University, USA 

Nonlocal modeling, analysis and computation 

The world is becoming more and more nonlocal. Nonlocal models expressed as integral 
equations or integral-differential equations can account for nonlocal interactions and 
take on more general forms than discrete models, classical/local continuum models 
(PDEs), and fractional differential equations. Nonlocal models provide effective bridges 
between the discrete, local, or fractional PDE counterparts. By allowing for solutions with 
possibly more singular and anomalous behavior, they are well-suited for simulations of 
complex processes and multiscale phenomena. 
 
Studies on Nonlocal continuum models have gained popularity in recent years with 
applications ranging from nonlocal diffusion and mechanics, traf�ic �lows, pattern 
formation, geometric analysis of big data, and deep learning. In our lectures, we plan to 
brie�ly introduce nonlocal continuum models, their mathematical foundation and 
numerical discretization. The lectures are designed to contain balanced discussions on 
theoretical and practical issues, including illustrations of simple and motivational 
examples and descriptions of the state-of-art and open questions. The lectures intend to 
offer applied mathematicians, computational scientists, young researchers, and graduate 
students in many application areas a glimpse into nonlocal models' broad applicability 
and rich mathematics of representations. 
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Shi Jin 
Shanghai Jiao Tong University, China 

Quantum Computation of partial differential equations and related 
problems 

Quantum computers have the potential to gain algebraic and even up to exponential speed 
up compared with its classical counterparts, and can lead to technology revolution in the 
21st century. Despite its success in many areas, developing quantum algorithms for 
solving scienti�ic and engineering problems remains at very early stage and many issues 
remain to be resolved and new mathematical thinkings are needed.  

This mini-course will concentrate on quantum algorithms for solving ordinary and partial 
differential equations and related problems.  Since quantum computers are designed 
based on quantum mechanics principle, they are most suitable to solve the Schrodinger 
equation, and linear PDEs (and ODEs) evolved by unitary operators.  Other problems need 
to be reformulated into a form of discrete or continuous Schrodinger equation, or more 
speci�ically, into the form of unitary matrices of operators operating on quantum states.  

In this mini-course, we will start with the basic knowledge about quantum computing and 
Schrodinger equation, and its numerical approximations. We then introduce some 
quantum algorithms for linear ODEs and PDEs, and related linear algebra problems. 
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Alexander Ostermann 
University of Innsbruck, Austria 

Time integration strategies for PDEs 

The numerical integration of partial differential equations is often performed in two steps: 
the spatial derivatives are discretized by an appropriate numerical method (�inite 
differences, �inite elements, �inite volumes, spectral methods, ...) and the resulting 
(non)linear system of stiff ordinary differential equations is then integrated in time. 
Classical time integration methods include implicit Runge-Kutta methods, implicit 
multistep methods, linearly implicit methods, IMEX methods, and many others. In this 
series of four lectures, we will focus on two widely used time integration schemes: 
exponential integrators and splitting methods. We will discuss the basic ideas of their 
construction, their numerical analysis, and their practical ef�iciency. 

1. Exponential integrators: basics and limits 

Exponential integrators are effective time integration schemes for evolution 
equations and their spatial discretizations. They solve the linear part exactly and 
discretize the nonlinearity explicitly, resulting in high accuracy and stability when the 
nonlinearity is small. Exponential integrators are widely used for stiff problems 
arising from semilinear parabolic equations and highly oscillatory problems arising 
from wave or dispersive equations such as Schrödinger-type equations. The idea of 
exponential integrators can be traced back to the late 1950s. Their development has 
proceeded in several steps and has always been closely related to the possibility of 
ef�iciently computing the action of the exponential and related matrix functions. This 
lecture will focus on the following topics: construction, strengths and pitfalls of 
exponential integrators; the zoo of different methods; basic error analysis. 

2. Accelerating exponential integrators 

Exponential integrators require computing the action of certain matrix functions 
(such as exponential and trigonometric functions) on vectors. This task is by no 
means independent of the chosen approximation for the vector �ield. Fast 
computations often require a particular form of the matrix, which may con�lict with 
local linearization, often used to control the Lipschitz constant of the nonlinearity. For 
small problems, matrix functions are often computed explicitly, but for large 
problems, iterative methods such as Krylov subspace methods or Lagrange 
interpolation at Leja points are used. When these operations are computed ef�iciently, 
exponential integrators perform well. In important situations, acceleration 
techniques can be used to improve performance on modern HPC systems. This talk 
introduces two recent approaches: μ-mode integrators for evolution equations in 
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Kronecker form and accelerated methods using simpli�ied linearization. A general 
strategy for selecting the appropriate integrator will also be discussed. 

3. Splitting methods: basics, limits, applications 

The basic idea behind splitting methods is to divide the vector �ield into disjoint 
components, integrate them separately, and combine the results after a time step. 
This is a simple and often ef�icient procedure. However, splitting methods require 
careful handling of non-trivial boundary conditions. Adaptations to the integrators 
are necessary to address these issues. The lecture will focus on the following topics: 
construction and numerical analysis of splitting methods; order reduction due to 
non-trivial boundary conditions; an ef�icient combination of splitting with 
exponential integration in a sonic boom calculation. 

4. Low regularity integration  

Standard numerical integrators such as Lie or Strang splitting and exponential 
integrators experience order reduction when applied to semilinear dispersive 
problems with non-smooth initial data. To mitigate these challenges, a recent 
development introduces a new class of integrators known as low-regularity 
integrators. These integrators use the variation-of-constants formula and employ 
resonance-based approximations in Fourier space, demonstrating improved 
convergence rates at low regularity. However, the estimation of nonlinear terms in 
the global error still relies on classical bilinear estimates derived from the Sobolev 
embedding. At very low regularity, traditional error analysis in Sobolev spaces is 
hampered by the lack of suitable embeddings. A novel framework, inspired by 
Bourgain's techniques, is developed that allows the analysis of methods applicable to 
very low regularity initial data. This approach is illustrated for Lie splitting applied 
to the `good' Boussinesq equation. 
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