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Borel (1919) defined a subset A of R to have strong measure zero if for every sequence of positive 
numbers pϵi : i P ωq there is an open cover of A pUi : i P ωq such that for each i, the diameter of Ui is 
less than ϵi. Besicovitch (1956) showed that A has strong measure zero if and only if A has strong 
dimension zero, which means that for every gauge function f , A is null for its associated measure Hf . 
We say that A Ă RN has strong dimension f if and only if Hf pAq ą 0 and for every gauge function g 
of higher order HgpAq “ 0. Here, g has higher order than f when limtÑ0` gptq{fptq “ 0.

Borel conjectured that a set of strong measure zero must be countable. This conjecture naturally 
extends to the assertion that a set has strong dimension f if and only if it is σ-finite for Hf . Sierpinski 
(1928) used the continuum hypothesis to give a counterexample to Borel’s conjecture and 
Besicovitch (1963) did the same for its generalization. Laver (1976) showed that Borel’s conjecture is 
relatively consistent with consistent with ZFC, the conventional axioms of set theory including the 
axiom of choice. Recently, we showed that its generalization to strong dimension is also relatively 
consistent with ZFC.

We will give an exposition of these results, along with developing the additional background 
material needed for their proofs.
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