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Andrea Agazzi, 
Università di Pisa, Italy 

Wide neural networks for learning dynamical systems: a mean-field theory 
approach 

In this talk, I will build on groundbreaking results on wide, feedforward neural networks in the 
supervised learning setting to discuss the performance analogous models when learning 
dynamical systems. More specifically, I will discuss how, under an appropriate scaling of 
parameters at initialization, the training dynamics of these models converge towards a 
hydrodynamic, so-called “mean-field”, limit. This will be done first for feedforward neural 
networks in the reinforcement learning framework and then, coming back to the "original" 
supervised learning setting, for recurrent neural network architectures trained with gradient 
descent. 

Back to Table of Contents 
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Pierre Alquier, 
ESSEC Business School, Singapore 

Robust estimation and regression with MMD 

Maximum likelihood estimation (MLE) enjoys strong optimality properties for statistical 
estimation, under strong assumptions. However, when these assumptions are not satisfied, MLE 
can be extremely unreliable. In this talk, we will explore alternative estimators based on the 
minimization of well chosen distances. In particular, we will see that the Maximum Mean 
Discrepancy (MMD, based on suitable kernels) leads to estimation procedures that are consistent 
without any assumption on the model nor on the data-generating process. This leads to strong 
robustness properties in practice, and this method was already used in complex models with 
promising results: estimation of SDE coefficients, ccopulas, data compression, generative models 
in AI... 
 
In the second part of this talk, I will discuss the extension of this method to the estimation of 
conditional distributions, which allows to use MMD-estimators in various regression models. On 
the contrary to mean embeddings, very technical conditions are required for the existence of a 
conditional mean embedding that allows defining an estimator. In most papers, these conditions 
are often assumed, but rarely checked. It turns out that, in most generalized linear regression 
models, we proved that these conditions can be met, at the cost of more restrictions on the kernel 
choice. 
 
This is based on joint works with: Badr-Eddine Chérief-Abdellatif (CNRS, Paris), Mathieu Gerber 
(University of Bristol), Daniele Durante (Bocconi University), Sirio Legramanti (University of 
Bergamo), Jean-David Fermanian (ENSAE Paris), Alexis Derumigny (TU Delft), Geoffrey Wolfer 
(RIKEN-AIP, Tokyo). 
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Jason Altschuler, 
University of Pennsylvania, USA 

Acceleration by Stepsize Hedging 

Can we accelerate the convergence of gradient descent without changing the algorithm — just by 
optimizing stepsizes? Surprisingly, we show that the answer is yes. Our proposed Silver Stepsize 
Schedule optimizes strongly convex functions in $k^{\log_p 2} = k^{0.7864}$ iterations, where 
$p=1+\sqrt{2}$ is the silver ratio and $k$ is the condition number. This is intermediate between 
the textbook unaccelerated rate $k$ and the accelerated rate $\sqrt{k}$ due to Nesterov in 1983. 
The non-strongly convex setting is conceptually identical and leads to an analogously accelerated 
rate $\eps^{-\log_p 2} = \eps^{-0.7864}$. We conjecture and provide partial evidence that these 
rates are optimal among all possible stepsize schedules. 
 
The Silver Stepsize Schedule is an explicit non-monotonic fractal. Why should such stepsizes help? 
The core intuition is “hedging” between individually suboptimal strategies — short steps and long 
steps — since bad cases for the former are good cases for the latter, and vice versa. Properly 
combining these stepsizes yields faster convergence due to the misalignment of worst-case 
functions. This talk is based on a line of work with Pablo Parrilo that originates from my 2018 
Master’s Thesis — which established for the first time that judiciously chosen stepsizes can 
enable accelerated convex optimization. Prior to this thesis, the only such result was for the 
special case of quadratics, due to Young in 1953.  
 

Back to Table of Contents 
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Gerard Ben Arous, 
New York University, USA 

Distinguished Visitor Lecture Series 
Dynamical spectral transition for optimization in very high dimensions 

In recent work with Reza Gheissari (Northwestern), Aukosh Jagannath (Waterloo) we gave a 
general context for the existence of projected “effective dynamics” of SGD in very high dimensions, 
for "summary statistics” in much smaller dimensions. These effective dynamics (and, in particular, 
their so-called ‘critical regime”) define a dynamical system in finite dimensions which may be 
quite complex, and rules the performance of the learning algorithm. 
 
The next step is to understand how the system finds these “summary statistics”.  This is done in 
the last work with the same authors and with Jiaoyang Huang (Wharton, U-Penn). This is based 
on a dynamical spectral transition of Random Matrix Theory: along the trajectory of the 
optimization path, the Gram matrix or the Hessian matrix develop outliers which carry these 
effective dynamics. 
 
I will naturally first come back to the Random Matrix Tools needed here (the behaviour of the 
edge of the spectrum and the BBP transition). And then illustrate the use of this point of view on 
a few central examples of ML: multilayer neural nets for classification (of Gaussian mixtures), and 
the XOR task. 
 

Ng Kong Beng Public Lecture Series 
Beating the odds: Learning or hallucinating?  

What is the science of data doing today? 

The science of data, from its beginnings in classical probability in the 17th century, to statistics 
and to machine learning today, has been a constant driver of human progress and a tool of enquiry 
for the human mind. It has constantly aimed at helping us get information, observing and 
estimating the world around us; that is, learning. The recent explosion of uses of Artificial 
Intelligence is obviously a major step to quench the thirst and the need for learning.  
 
But what about the recent fear of “hallucinations” in so-called generative AI? Is that a natural part 
of this long path of discovery -- is this to be expected, or feared as a new and fatal twist?  
 
This talk will be geared to a general audience with an interest in science, and will try to introduce 
this debate lightly, from the point of view of a mathematician. 

 
 

Back to Table of Contents 
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Arnab Bhattacharyya, 
National University of Singapore, Singapore 

Learning bounded-degree polytrees with samples 

We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees, 
a rich class of high-dimensional probability distributions and a subclass of Bayesian networks, a 
widely-studied type of graphical models. Very recently, Bhattacharyya-Gayen-Price-
Vinodchandran (STOC '21) obtained finite-sample guarantees for recovering tree-structured 
Bayesian networks, i.e., 1-polytrees. We considerably extend their results by providing an 
efficient algorithm which learns d-polytrees in polynomial time and sample complexity when the 
in-degree d is constant, provided that the underlying undirected graph (skeleton) is known. We 
complement our algorithm with an information-theoretic lower bound, showing that the 
dependence of our sample complexity is nearly tight in both the dimension and target accuracy 
parameters. 
 
Joint work with Clément Canonne, Davin Choo, and Joy Yang 

Back to Table of Contents 
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Xavier Bresson, 
National University of Singapore, Singapore 

Graph Transformers and Developments 

Graph Neural Networks (GNNs) have shown great potential in the field of graph representation 
learning. Standard GNNs define a local message-passing mechanism which propagates 
information over the whole graph domain by stacking multiple layers. This paradigm suffers from 
two major limitations, over-squashing and poor long-range dependencies, that can be solved 
using global attention but significantly increases the computational cost to quadratic complexity. 
In this work, we propose an alternative approach to overcome these structural limitations by 
leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new 
class of GNNs, called Graph MLP-Mixer/ViT, that holds three key properties. First, they capture 
long-range dependency as demonstrated on the long-range LRGB datasets and mitigate the over-
squashing issue on the TreeNeighbour dataset. Second, they offer memory and speed efficiency, 
surpassing related techniques. Third, they show high expressivity in terms of graph isomorphism 
as they can distinguish at least 3-WL isomorphic graphs. As a result, this novel architecture 
provides significantly better results over standard message-passing GNNs for molecular datasets. 
 

Back to Table of Contents 
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Caroline Chaux, 
CNRS@CREATE, Singapore 

Formulation and resolution of inverse problems in signal and image 
processing - From classical methods to hybrid AI 

In this talk, we will be interested in inverse problems arising in the signal and image processing 
field. 
 
Solving such problems imply in a fist time to formalise the direct problem by understanding the 
physics behind and in a second time, to solve the associated inverse problem, through a 
variational formulation, that is, solving an optimization problem. Such issues are encountered in 
many areas such as biology, medical imaging, chemistry, audio signal processing, ... for which, 
different tasks have to be tackled such as deconvolution, restoration, unmixing, missing data 
reconstruction, ... 
 
Classical optimization-based approaches consist in, once the optimization problem has been 
formulated, proposing iterative procedures (e.g. proximal algorithms) converging to a solution of 
the considered inverse problem. More recently, unrolled or unfolded neural networks have been 
proposed. They combine optimization and learning, constitute interpretable networks and 
integrate information about the direct model. We will study and describe such networks for the 
resolution of two inverse problems: image deconvolution and robust PCA. 
 
Collaborations: this work has been done in collaboration with Vincent Tan, Emmanuel Soubiès, 
Pascal Nguyen and Elisabeth Tan. 

 
Back to Table of Contents 
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Sinho Chewi, 
Massachusetts Institute of Technology, USA 

Mini Course 
Optimal transport and high-dimensional probability 

Optimal transport, which began with the work of Gaspard Monge in the eighteenth century, has 
developed into a rich mathematical theory with applications to geometry, PDEs, physics, high-
dimensional probability, and statistics and machine learning. In this minicourse, we will 
introduce the theory and its applications to topics such as concentration inequalities, gradient 
flows, and sampling. 

Back to Table of Contents 
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Alexandre d’Aspremont, 
École Normale Supérieure, France 

Approximation Bounds for Sparse Programs 

We show that sparsity-constrained optimization problems over low dimensional spaces tend to 
have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds 
on the duality gap, and an efficient primalization procedure to recover feasible points satisfying 
these bounds. These error bounds are proportional to the rate of growth of the objective with the 
target cardinality k, which means in particular that the relaxation is nearly tight as soon as k is 
large enough so that only uninformative features are added. 
 
This is joint work with Armin Askari and Laurent El Ghaoui. 
 

Back to Table of Contents 
  



The Mathematics of Data (02–26 Jan 2024) 
 

Page | 12  
 

Zhou Fan, 
Yale University, USA 

Gradient flows for empirical Bayes in high-dimensional linear models 

Empirical Bayes provides a powerful approach to learning and adapting to latent structure in data. 
Theory and algorithms for empirical Bayes have a rich literature for sequence models, but are 
less understood in settings where latent variables and data interact through more complex 
designs. 
 
In this work, we study empirical Bayes estimation of an i.i.d.\ prior in Bayesian linear models, via 
the nonparametric maximum likelihood estimator (NPMLE). We introduce and study a system of 
gradient flow equations for optimizing the marginal log-likelihood, jointly over the prior and 
posterior measures in its Gibbs variational representation using a smoothed reparametrization 
of the regression coefficients. A diffusion-based implementation yields a Langevin dynamics 
MCEM algorithm, where the prior law evolves continuously over time to optimize a sequence-
model log-likelihood defined by the coordinates of the current Langevin iterate. 
 
We show consistency of the NPMLE as $n,p \to \infty$ under mild conditions, including settings 
of random sub-Gaussian designs when $n \asymp p$. In high noise, we prove a uniform log-
Sobolev inequality for the mixing of Langevin dynamics, for possibly misspecified priors and non-
log-concave posteriors. We then establish polynomial-time convergence of the joint gradient flow 
to a near-NPMLE if the marginal negative log-likelihood is convex in a sub-level set of the 
initialization. 
 
Joint work with Leying Guan, Yandi Shen, and Yihong Wu. 
 

Back to Table of Contents 
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Borjan Geshkovski, 
Massachusetts Institute of Technology, USA 

A mathematical perspective on Transformers 

This talk will report on several results, insights and perspectives Cyril Letrouit, Yury Polyanskiy, 
Philippe Rigollet and I have found regarding Transformers. We model Transformers as 
interacting particle systems (each particle representing a token), with a non-linear coupling 
called self-attention. When considering pure self-attention Transformers, we show that trained 
representations cluster in long time to different geometric configurations determined by spectral 
properties of the model weights. We also cover Transformers with layer-normalisation, which 
amounts to considering the interacting particle system on the sphere. On high-dimensional 
spheres, we prove that all randomly initialized particles converge to a single cluster. The result is 
made more precise by describing the precise phase transition between the clustering and non-
clustering regimes. The appearance of metastability, and ideas for the low-dimensional regime, 
will be discussed. 
 

Back to Table of Contents 
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Jeremy Heng, 
ESSEC Business School, Singapore 

Diffusion Schrödinger Bridge with Applications to Score-Based Generative 
Modelling 

Progressively applying Gaussian noise transforms complex data distributions to approximately 
Gaussian. Reversing this dynamic defines a generative model. When the forward noising process 
is given by a Stochastic Differential Equation (SDE), Song et al. (2021) demonstrate how the time 
inhomogeneous drift of the associated reverse-time SDE may be estimated using score-matching. 
A limitation of this approach is that the forward-time SDE must be run for a sufficiently long time 
for the final distribution to be approximately Gaussian. In contrast, solving the Schrödinger 
Bridge problem (SB), i.e. an entropy-regularized optimal transport problem on path spaces, 
yields diffusions which generate samples from the data distribution in finite time. We present 
Diffusion SB (DSB), an original approximation of the Iterative Proportional Fitting (IPF) 
procedure to solve the SB problem, and provide theoretical analysis along with generative 
modeling experiments. The first DSB iteration recovers the methodology proposed by Song et al. 
(2021), with the flexibility of using shorter time intervals, as subsequent DSB iterations reduce 
the discrepancy between the final-time marginal of the forward (resp. backward) SDE with 
respect to the prior (resp. data) distribution. Beyond generative modeling, DSB offers a widely 
applicable computational optimal transport tool as the continuous state-space analogue of the 
popular Sinkhorn algorithm (Cuturi, 2013). 

 
Back to Table of Contents 
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Masaaki Imaizumi, 
The University of Tokyo, Japan 

Statistical Analysis on Generalization Ability of In-Context Learning 

In this study, we analyze sample complexity in in-context learning, a type of meta-learning. In-
context learning is a framework that consists of an identical learner capable of handling multiple 
tasks and has attracted strong attention in recent artificial intelligence technologies. As an 
approach to understanding this learning framework, several studies have raised a hypothesis that 
the learner learns an algorithm itself. In this study, we study this hypothesis of algorithmic 
learning through statistical sample complexity analysis. Specifically, we evaluate the 
generalization ability of in-context learning using task selection and prompt length, as well as the 
complexity of the mapping on an empirical distribution. Through these quantitative assessments, 
we try to gain a better understanding of in-context learning. 
 

Back to Table of Contents 
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Aukosh Jagannath, 
University of Waterloo, Canada 

Spectral alignment for high-dimensional SGD 

Over the last decade, a body of rich predictions has been made about the spectra of empirical 
Hessian and information matrices over the course of training (via SGD) in overparametrized 
networks.  I'll present a recent work, in collaboration with G. Ben Arous (NYU Courant), 
R.Ghessari (Northwestern U.), and J. Huang (U. Penn), where we rigorously establish some of 
these predictions. We prove that in two canonical classification tasks for multi-class high-
dimensional mixtures and either 1 or 2-layer neural networks, the SGD trajectory rapidly aligns 
with emerging low-rank outlier eigenspaces of the Hessian and gradient matrices. Moreover, in 
multi-layer settings this alignment occurs per layer, with the final layer's outlier eigenspace 
evolving over the course of training and exhibiting rank deficiency when the SGD converges to 
sub-optimal classifiers.  

Back to Table of Contents 
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Kengo Kato, 
Cornell University, USA 

Semidiscrete optimal transport maps: stability, limit theorems, and 
asymptotic efficiency 

We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) 
from a known absolutely continuous reference distribution onto an unknown finitely discrete 
target distribution. We derive limit distributions for the integral and linear functionals of the 
empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, 
whose explicit density is derived, while the latter attains asymptotic normality. For both cases, 
we also establish consistency of the nonparametric bootstrap. The derivation of our limit 
theorems relies on new stability estimates of functionals of the OT map with respect to the dual 
potential vector, which may be of independent interest. We also discuss applications of our limit 
theorems to the construction of confidence sets for the OT map and inference for a maximum tail 
correlation. Finally, we discuss asymptotic efficiency of the empirical OT map in an infinite 
dimensional setting.  
 

Back to Table of Contents 
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Anya Katsevich, 
Massachusetts Institute of Technology, USA 

(Skew) Gaussian surrogates for high-dimensional posteriors: from tighter 
bounds to tighter approximations 

Computing integrals against a high-dimensional posterior is the major computational bottleneck 
in Bayesian inference. A popular technique to reduce this computational burden is to use the 
Laplace approximation, a Gaussian distribution, in place of the true posterior. Despite its 
widespread use, the Laplace approximation's accuracy in high dimensions is not well 
understood.  The body of existing results does not form a cohesive theory, leaving open important 
questions e.g. on the dimension dependence of the approximation rate. We address many of these 
questions through the unified framework of a new, leading order asymptotic decomposition of 
high-dimensional Laplace integrals. In particular, we (1) determine the tight dimension 
dependence of the approximation error, leading to the tightest known Bernstein von Mises result 
on the asymptotic normality of the posterior, and (2) derive a simple correction to this Gaussian 
distribution to obtain a higher-order accurate approximation to the posterior. 

Back to Table of Contents 
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Yuehaw Khoo, 
University of Chicago, USA 
 

Randomized tensor-network algorithms for random data in high-dimensions 

Tensor-network ansatz has long been employed to solve the high-dimensional Schrödinger 
equation, demonstrating linear complexity scaling with respect to dimensionality. Recently, this 
ansatz has found applications in various machine learning scenarios, including supervised 
learning and generative modeling, where the data originates from a random process. In this talk, 
we present a new perspective on randomized linear algebra, showcasing its usage in estimating 
a density as a tensor-network from i.i.d. samples of a distribution, without the curse of 
dimensionality, and without the use of optimization techniques. Moreover, we illustrate how this 
concept can combine the strengths of particle and tensor-network methods for solving high-
dimensional PDEs, resulting in enhanced flexibility for both approaches.  
 

Back to Table of Contents 
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Tam Le, 
The Institute of Statistical Mathematics, Japan 

Local Structures for Large-Scale Optimal Transport 

Optimal transport (OT) theory provides a set of powerful tools to compare measures. OT has a 
wide range of applications, e.g., computer vision, natural language processing and machine 
learning. However, OT has a high computational complexity (i.e., super-cubic) which hinders its 
applications in large-scale settings. One of popular approaches is to exploit local structure of 
supports in measures, e.g., one-dimensional structure in sliced-Wasserstein (SW). The SW 
projects supports into a random one-dimensional space and relies on the closed-form solution of 
the univariate OT. However, SW suffers a curse of dimensionality since using one-dimensional 
projection limits its ability to capture topological structures of measures in high-dimensional 
settings. In this talk, I will show that we can leverage more general structures such as tree and 
graph over supports to alleviate the curse of dimensionality in SW and scale up OT and its variant 
problems, especially for large-scale applications. 

Back to Table of Contents 
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Qianxiao Li, 
National University of Singapore, Singapore 

Approximation Theory of Deep Learning for Sequence Modelling 

In this talk, we present some recent results on the approximation theory of deep learning 
architectures for sequence modelling. In particular, we formulate a basic mathematical 
framework, under which different popular architectures such as recurrent neural networks, 
dilated convolutional networks (e.g. WaveNet), encoder-decoder structures, and most recently - 
transformers - can be rigorously compared. These analyses reveal some interesting connections 
between approximation, memory, sparsity/low-rank, graphical structures that may guide the 
practical selection and design of these network architectures. 

 
Back to Table of Contents 
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Qin Li, 
University of Wisconsin-Madison, USA 

The perfect diffusion model does not generate 

The diffusion model has emerged as a highly successful strategy in generative modeling. A 
beautiful set of theory based on the application of Girsanov theorem shows that a model with 
well-learned score function can generate samples from a distribution that approximates the 
ground truth, achieving the task of ``generation.” It is tempting to draw the conclusion from here 
that the success of generation is equivalent to that of learning. 
 
However, we aim to sound a cautionary note – perfection in learning, as evidenced by a 
straightforward proof and a very simple simulation, actually leads to memorization and shying 
the system away from true generative capabilities. 
 
This is light hearted talk. Please join me in the discussion on the nuances between learning and 
generation in the context of diffusion model. 

 
Back to Table of Contents 
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Cheng Mao, 
Georgia Institute of Technology, USA 

Information-Theoretic Thresholds for Planted Dense Cycles 

We study a random graph model for small-world networks which are ubiquitous in social and 
biological sciences. In this model, a dense cycle of expected bandwidth $n \tau$, representing the 
hidden one-dimensional geometry of vertices, is planted in an ambient random graph on 
$n$ vertices. For both detection and recovery of the planted dense cycle, we characterize the 
information-theoretic thresholds in terms of $n$, $\tau$, and an edge-wise signal-to-noise ratio 
$\lambda$. The information-theoretic thresholds differ from the computational thresholds 
established in an earlier companion work for low-degree polynomial algorithms, thereby 
justifying the existence of statistical-to-computational gaps for this problem.  
 
The talk is based on joint work with Alex Wein and Shenduo Zhang. 
 

Back to Table of Contents 
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Robert McCann, 
University of Toronto, Canada 

A geometric approach to apriori estimates for optimal transport maps 

A key inequality which underpins the regularity theory of optimal transport for costs satisfying 
the Ma-Trudinger-Wang condition is the Pogorelov second derivative bound.  This translates to 
an apriori interior $C^1$ estimate for smooth optimal maps. 
 
Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren's 
observation that the graph of an optimal map becomes a volume maximizing spacelike 
submanifold when the product of the source and target domains is endowed with a suitable 
pseudo-Riemannian geometry that combines both the marginal densities and the cost. 
 

Back to Table of Contents 
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Govind Menon, 
Brown University, USA 

Mini Course 
The geometry of the deep linear network 

The deep linear network (DLN) is a phenomenological model for deep learning introduced by 
Arora, Cohen and Hazan. These two lectures will provide an introduction to the surprising 
geometric structure of this model and its interplay with training dynamics. 
 

Back to Table of Contents 
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Marco Mondelli, 
Institute of Science and Technology Austria, Austria 

From Spectral Estimators to Approximate Message Passing… And Back 

In a generalized linear model (GLM), the goal is to estimate a d-dimensional signal x from an n-
dimensional observation of the form f(Ax, w), where A is a design matrix and w is a noise vector. 
Well-known examples of GLMs include linear regression, phase retrieval, 1-bit compressed 
sensing, and logistic regression. We focus on the high-dimensional setting in which both the 
number of measurements n and the signal dimension d diverge, with their ratio tending to a fixed 
constant. Spectral methods provide a popular solution to obtain an initial estimate, and they are 
also commonly used as a ‘warm start’ for other algorithms. In particular, the spectral estimator is 
the principal eigenvector of a data-dependent matrix, whose spectrum exhibits a phase transition. 
 
In the talk, I will start by (i) discussing the emergence of this phase transition for an i.i.d. Gaussian 
design A, and (ii) combining spectral methods with Approximate Message Passing (AMP) 
algorithms, thus solving a key problem related to their initialization. I will then focus on two 
instances of GLMs that capture the heterogeneous and structured nature of practical data models: 
(i) a mixed GLM with multiple signals to recover, and (ii) a GLM with a correlated design matrix. 
To study spectral estimators in these challenging settings, the plan is to go back to Approximate 
Message Passing: I will demonstrate that the AMP framework not only gives Bayes-optimal 
algorithms, but it also unveils phase transitions in the spectrum of random matrices, thus leading 
to a precise asymptotic characterisation of spectral estimators.  
 
Based on a series of joint works with Hong Chang Ji, Andrea Montanari, Ramji Venkataramanan, 
and Yihan Zhang. 
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Jaouad Mourtada, 
ENSAE/CREST, France 

Finite-sample performance of the maximum likelihood estimator in logistic 
regression 

The logistic model is a classical linear model to describe the probabilistic dependence of binary 
responses to multivariate features. We consider the predictive performance of the maximum 
likelihood estimator (MLE) for logistic regression, assessed in terms of the logistic loss of its 
probabilistic forecasts. We consider two questions: first, that of existence of the MLE (which 
occurs when the data is not linearly separated), and second that of its accuracy when it exists. 
These properties depend on both the dimension of covariates and on the signal strength. 
 
In the case of Gaussian covariates and a well-specified logistic model, we obtain sharp non-
asymptotic guarantees for the existence and excess prediction error of the MLE. This 
complements asymptotic results of Sur and Candès, and refines non-asymptotic upper bounds of 
Ostrovskii and Bach and Chinot, Lecué and Lerasle. It also complements independent recent 
results by Kuchelmeister and van de Geer. We then extend these results in two directions: first, 
to non-Gaussian covariates satisfying a certain regularity condition, and second to the case of a 
misspecified logistic model. 
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Somabha Mukherjee, 
National University of Singapore, Singapore 

Least Squares Estimation of a Multivariate Quasiconvex Regression Function 

Nonparametric least squares estimation of a multivariate function based on the economic axiom 
of quasiconvexity is fundamentally different from least-squares estimation under the classical 
shape constraints of monotonicity and convexity, because unlike the latter two shape constraint 
problems, the least squares constraint space for the former problem is not convex. In this talk, I 
will show how to construct a quasiconvex function estimate through a mixed integer quadratic 
optimization technique, and discuss about the consistency and finite sample risk bounds of the 
proposed estimate. Towards the end, I will also illustrate the performance of this method on two 
real life datasets. 
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Soumendu Sundar Mukherjee, 
Indian Statistical Institute, Kolkata, India 

Learning under latent group sparsity via heat flow dynamics on networks 

In this talk, we will consider the problem of variable selection in high-dimensional regression 
under latent group sparsity. We will present a new penalty that automatically selects variables in 
groups without being explicitly told what those groups are. This will be done by incorporating 
into the penalty a suitable Laplacian matrix (containing group information) in the form of a heat 
flow. At equilibrium, the proposed penalty coincides with the classical group lasso penalty. We 
will present some numerical and theoretical results on the performance of the proposed penalty. 
This is based on joint work with Subhroshekhar Ghosh. 
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Praneeth Netrapalli, 
Google Research, India 

Steering Deep Feature Learning with Backward Aligned Feature Updates 

Deep learning succeeds by doing hierarchical feature learning, yet tuning Hyper-Parameters (HP) 
such as initialization scales, learning rates etc., only give indirect control over this behavior. In 
this paper, we propose the alignment between the feature updates and the backward pass as a 
key notion to predict, measure and control feature learning. On the one hand, we show that when 
alignment holds, the magnitude of feature updates after one SGD step is related to the magnitude 
of the forward and backward passes by a simple and general formula. This leads to techniques to 
automatically adjust HPs (initialization scales and learning rates) at initialization and throughout 
training to attain a desired feature learning behavior. On the other hand, we show that, at random 
initialization, this alignment is determined by the spectrum of a certain kernel, and that well-
conditioned layer-to-layer Jacobians (aka dynamical isometry) implies alignment. Finally, we 
investigate ReLU MLPs and ResNets in the large width-then-depth limit. Combining hints from 
random matrix theory and numerical experiments, we show that (i) in MLP with iid initializations, 
alignment degenerates with depth, making it impossible to start training, and that (ii) in ResNets, 
the branch scale 1/\sqrt{depth} is the only one maintaining non-trivial alignment at infinite 
depth. 
 
Joint work with Lenaic Chizat (EPFL). 
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Ariel Neufeld, 
Nanyang Technological University, Singapore 

Deep Learning based algorithm for nonlinear PDEs in finance and gradient 
descent type algorithm for non-convex stochastic optimization problems with 

ReLU neural networks 

In this talk, we first present a deep-learning based algorithm which can solve nonlinear parabolic 
PDEs in up to 10’000 dimensions with short run times, and apply it to price high-dimensional 
financial derivatives under default risk. Then, we discuss a general problem when training neural 
networks, namely that it typically involves non-convex stochastic optimization. To that end, we 
present TUSLA, a gradient descent type algorithm (or more precisely : stochastic gradient 
Langevin dynamics algorithm) for which we can prove that it can solve non-convex stochastic 
optimization problems involving ReLU neural networks. 
 
This talk is based on joint works with C. Beck, S. Becker, P. Cheridito, A. Jentzen, and  D.-Y. Lim, S. 
Sabanis, Y. Zhang, respectively. 
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Tan Minh Nguyen, 
National University of Singapore, Singapore 

Transformers Meet Image Denoising: Mitigating Over-smoothing in 
Transformers via Regularized Nonlocal Functionals 

Transformers have achieved remarkable success in a wide range of natural language processing 
and computer vision applications. However, the representation capacity of a deep transformer 
model is degraded due to the over-smoothing issue in which the token representations become 
identical when the model’s depth grows. In this work, we show that self-attention layers in 
transformers minimize a functional which promotes smoothness, thereby causing token 
uniformity. We then propose a novel regularizer that penalizes the norm of the difference 
between the smooth output tokens from self-attention and the input tokens to preserve the 
fidelity of the tokens. Minimizing the resulting regularized energy functional, we derive the 
Neural Transformer with a Regularized Nonlocal Functional (NeuTRENO), a novel class of 
transformer models that can mitigate the over-smoothing issue. We empirically demonstrate the 
advantages of NeuTRENO over the baseline transformers and state-of-the-art methods in 
reducing the over-smoothing of token representations on various practical tasks, including object 
classification, image segmentation, and language modelling. 
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Jonathan Niles-Weed, 
New York University, USA 

Optimal transport map estimation in general function spaces 

We present a unified methodology for obtaining rates of estimation of optimal transport maps in 
general function spaces. Our assumptions are significantly weaker than those appearing in the 
literature: we require only that the source measure P satisfy a Poincare inequality and that the 
optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy 
can be controlled. As a special case, we recover known estimation rates for Holder transport maps, 
but also obtain nearly sharp results in many settings not covered by prior work. For example, we 
provide the first statistical rates of estimation when P is the normal distribution, between log-
smooth and strongly log-concave distributions, and when the transport map is given by an 
infinite-width shallow neural network.  
 
Joint with Vincent Divol and Aram-Alexandre Pooladian. 
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Soumik Pal, 
University of Washington, USA 

Mirror gradient flows in the Wasserstein space 

The Sinkhorn algorithm is a widely popular iterative algorithm to approximately compute an 
optimal transport coupling between two probability measures. However, much of its behaviour 
is still shrouded in mystery. We will talk about scaling limit of the iterates as it converges to an 
absolutely continuous curve on the Wasserstein space. This curve can be described as a 
Wasserstein counterpart of the Euclidean mirror gradient flow. An equivalent description of this 
flow is provided by the parabolic Monge-Ampere PDE. We will introduce this novel family of flows 
and talk about its properties including the hidden Hessian geometry that controls their rates to 
equilibrium. 
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Courtney Paquette, 
McGill University, Canada 

Hitting the High-D(imensional) Notes: SGD learning dynamics 

In this talk, I will present a framework, inspired by random matrix theory, for analyzing the 
dynamics of stochastic optimization algorithms (e.g., stochastic gradient descent (SGD) and 
momentum (SGD + M)) when both the number of samples and dimensions are large. Using this 
new framework, we show that the dynamics of optimization algorithms on generalized linear 
models and multi-index problems with random data become deterministic in the large sample 
and dimensional limit. In particular, the limiting dynamics for stochastic algorithms are governed 
by an ODE. From this model, we identify a stability measurement, the implicit conditioning ratio 
(ICR), which regulates the ability of SGD+M to accelerate the algorithm. When the batch size 
exceeds this ICR, SGD+M converges linearly at a rate of O(1/ κ), matching optimal full-batch 
momentum (in particular performing as well as a full-batch but with a fraction of the size). For 
batch sizes smaller than the ICR, in contrast, SGD+M has rates that scale like a multiple of the 
single batch SGD rate. We give explicit choices for the learning rate and momentum parameter in 
terms of the Hessian spectra that achieve this performance. Finally we show this model matches 
performances on real data sets.  
 
This is joint with the talk by Elliot Paquette.  
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Elliot Paquette, 
McGill University, Canada 

High-dimensional limits of streaming and multi-pass SGD on least squares 

Traditional complexity analysis of SGD is formulated in terms of minimax optimality, wherein 
tight upper and lower bounds for complexity are given over a class of objective functions.  Often 
these bounds are pessimistic, even for strongly convex quadratic objectives, and they often do not 
consider speedups that can occur in high-dimensional settings. We show here a different analysis, 
for both streaming and multi-pass (aka random shuffle) SGD, leveraging simplifications that 
occur in high-dimensional random settings.  This leads to sharp complexity estimates for single 
problems, up to error terms that are small with dimension.  We also give a sketch of the 
mathematical differences between the multi-pass and streaming analyses.   
  
This is based on joint works with Ben Adlam, Elizabeth Collins—Woodfin, Kiwon Lee, Courtney 
Paquette, Fabian Pedregosa and Jeffrey Pennington. 
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Vianney Perchet, 
ENSAE/CREST, France 

On Preemption and Learning in Stochastic Scheduling 

We study single-machine scheduling of jobs, each belonging to a job type that determines its 
duration distribution. We start by analyzing the scenario where the type characteristics are 
known and then move to two learning scenarios where the types are unknown: non-preemptive 
problems, where each started job must be completed before moving to another job; and 
preemptive problems, where job execution can be paused in the favor of moving to a different job. 
In both cases, we design algorithms that achieve sublinear excess cost, compared to the 
performance with known types, and prove lower bounds for the non-preemptive case. Notably, 
we demonstrate, both theoretically and through simulations, how preemptive algorithms can 
greatly outperform non-preemptive ones when the durations of different job types are far from 
one another, a phenomenon that does not occur when the type durations are known. 
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Andrej Risteski, 
Carnegie Mellon University, USA 

Neural Networks for PDEs: Representational Power and Inductive Biases 

Following breakthroughs in using deep learning in such diverse domains as computer vision and 
natural language processing, a burgeoning line of research leverages deep learning for scientific 
applications. Partial differential equations (PDEs) are a key primitive in many scientific 
applications, motivating a rapidly growing area of research in data-driven approaches to solving 
PDEs. The talk will survey several recent works on understanding PDEs for which neural 
networks constitute a good choice of a parametric family: in particular, in terms of 
representational strength, they circumvent "curse of dimensionality" style bounds. We will also 
show how theoretical insights can be used to elucidate and guide architectural design for neural 
operators.  
 
Based on the works:  
https://arxiv.org/abs/2103.02138  
https://arxiv.org/abs/2210.12101 
https://arxiv.org/abs/2312.00234 
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Mark Rudelson, 
University of Michigan, USA 

Mini Course 1 
How to check when a system of real quadratic equations has a solution 

The existence and the number of solutions of a system of polynomial equations in n variables over 
an algebraically closed field is a classical topic in algebraic geometry. Much less is known about 
the existence of solutions of a system of polynomial equations over reals. Any such problem can 
be reduced to a system of quadratic equations by introducing auxiliary variables. Due to the 
generality of the problem, a computationally efficient algorithm for determining whether a real 
solution of a system of quadratic equations exists is believed to be impossible. We will discuss a 
simple  sufficient condition for the existence of a solution which can be efficiently checked. While 
the problem and the condition are of algebraic nature, the approach lies entirely within the 
analysis/probability realm and relies on tools from Fourier analysis and concentration of 
measure. 
 
Joint work with Alexander Barvinok. 
 

Mini Course 2 
Approximately Hadamard matrices and random frames 

We will discuss a problem concerning random frames which arises in signal processing. A frame 
is an overcomplete set of vectors in the n-dimensional linear space which allows a robust 
decomposition of any vector in this space as a linear combination of these vectors. Random 
frames are used in signal processing as a means of encoding since the loss of a fraction of 
coordinates does not prevent the recovery. We will discuss a question when a random frame 
contains a copy of a nice (almost orthogonal) basis. 
 
Despite the probabilistic nature of this problem it reduces to a completely deterministic question 
of existence of approximately Hadamard matrices.  An n by n matrix with plus-minus 1 entries is 
called Hadamard if it acts on the space as a scaled isometry. Such matrices exist in some, but not 
in all dimensions. Nevertheless, we will construct plus-minus 1 matrices of every size which act 
as approximate scaled isometries. This construction will bring us back to probability as we will 
have to combine number-theoretic and probabilistic methods. 
 
Joint work with Xiaoyu Dong. 
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Jonathan Scarlett, 
National University of Singapore, Singapore 

Recent Developments in Group Testing: Fundamental Limits and Algorithms 

The group testing problem concerns discovering a small number of defective items within 
a large population by performing tests on pools of items.  A test is positive if the pool 
contains at least one defective, and negative if it contains no defectives. This is a sparse 
inference problem with a combinatorial flavour, with applications in medical testing, 
biology, multi-access communication, database systems, and more.  I will review recent 
advances in the mathematics of group testing, including both information-theoretic limits 
and performance bounds for practical algorithms, with an emphasis on the following 
defining features: 
 
- Non-adaptive testing (all tests must be designed in advance) vs. adaptive testing 

(tests are designed sequentially based on previous outcomes) 
- Noiseless testing (tests are perfectly reliable) vs. noisy tests (some test outcomes 

are corrupted) 
 

Most of this talk is loosely based on a survey monograph available at 
https://arxiv.org/abs/1902.06002 
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Bodhisattva Sen, 
Columbia University, USA 

A New Perspective On Denoising Based On Optimal Transport 

In the standard formulation of the denoising problem, one is given a probabilistic model relating 
a latent variable and an observation Z, and the goal is to construct a map to recover the latent 
variable from Z. The posterior mean, a natural candidate for estimating the latent variable from 
observation, attains the minimum Bayes risk (under the squared error loss) but at the expense of 
over-shrinking the Z, and in general may fail to capture the geometric features of the prior 
distribution (e.g., low dimensionality, discreteness, sparsity, etc.). To rectify these drawbacks, we 
take a new perspective on this denoising problem that is inspired by optimal transport (OT) 
theory and use it to propose a new OT-based denoiser at the population level setting. We 
rigorously prove that, under general assumptions on the model, our OT-based denoiser is well-
defined and unique, and is closely connected to solutions to a Monge OT problem. 
 
We then prove that, under appropriate identifiability assumptions on the model, our OT-based 
denoiser can be recovered solely from information of the marginal distribution of Z and the 
posterior mean of the model, after solving a linear relaxation problem over a suitable space of 
couplings that is reminiscent of a standard multi-marginal OT (MOT) problem. In particular, 
thanks to Tweedie's formula, when the likelihood model is an exponential family of distributions, 
the OT-based denoiser can be recovered solely from the marginal distribution of Z. In general, our 
family of OT-like relaxations is of interest in its own right and for the denoising problem suggests 
alternative numerical methods inspired by the rich literature on computational OT. 
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Yair Shenfeld, 
Brown University, USA 

Mini Course 
Optimal transport and high-dimensional probability 

Optimal transport, which began with the work of Gaspard Monge in the eighteenth century, has 
developed into a rich mathematical theory with applications to geometry, PDEs, physics, high-
dimensional probability, and statistics and machine learning. In this minicourse, we will 
introduce the theory and its applications to topics such as concentration inequalities, gradient 
flows, and sampling. 
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Yong Sheng Soh, 
National University of Singapore, Singapore 

Optimal Regularization for a Data Source 

In optimization-based approaches to inverse problems and to statistical estimation, it is common 
to augment criteria that enforce data fidelity with a regularizer that promotes desired structural 
properties in the solution.  The choice of a suitable regularizer is typically driven by a combination 
of prior domain information and computational considerations.   
 
In this talk, we seek a systematic understanding of the power and the limitations of convex 
regularization by investigating the following questions: Given a distribution, what is the optimal 
regularizer for data drawn from the distribution?  What properties of a data source govern 
whether the optimal regularizer is convex?    
 
We will show that it suffices to parameterize the family of regularizers one considers with the 
collection of star bodies.  Using ideas from dual Brunn-Minkowski theory as well as gamma-
convergence from variational analysis, we will characterize these optimal regularizers and 
describe its behaviour with respect to the data source. 
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Vladimir Spokoiny, 
Weierstrass Institute for Applied Analysis and Stochastics, 
Germany 

Inference for nonlinear inverse problems 

Assume that a solution to a nonlinear inverse problem given e.g. by PDE is observed with noise. 
The target of analysis is typically a set of model parameters describing the corresponding forward 
operator and the corresponding denoised solution. The classical least squares approach faces 
several challenges and obstacles for theoretical study and numerically efficient implementation, 
especially if the parameter space is large and the observation noise is not negligible. 
 
We propose a new approach that provides rather precise finite sample results about the accuracy 
of estimation and quantification of uncertainty and allows us to avoid any stability analysis of the 
inverse operator and advanced results from empirical processes theory.  The approach is based 
on extending the parameter space by introducing a set of «observables» and careful treatment of 
the arising semiparametric problem. 
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Piyush Srivastava, 
Tata Institute of Fundamental Research, India 

Sampling from convex bodies using multiscale decompositions 

Sampling from convex bodies is a fundamental and widely-studied algorithmic primitive.  
We propose a new family of Markov chains based on lazily computed Whitney 
decompositions of convex bodies. 
  
Aside from giving new algorithms for sampling from convex bodies, these new Markov 
chains also serve as a tool for mathematical analysis: 
we use them to give the first polynomial-in-dimension mixing time bound for the often 
used coordinate hit-and-run chain when started from any interior point sufficiently far 
from the boundary of the body. 
 
Joint work with Hariharan Narayanan (TIFR) and Amit Rajaraman (MIT). 
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Austin Stromme, 
Massachusetts Institute of Technology, USA 

New statistical phenomena for entropic optimal transport 

Optimal transport (OT) suffers from a well-known and severse statistical curse of 
dimensionality, obstructing its direct use in even moderate dimension. In practice, 
however, the OT problem is typically regularized with an entropic penalty term to afford 
the use of simpler and more scalable algorithms, forming entropic optimal transport 
(entropic OT). The ubiquity of entropic OT in practice, as well as the curse of 
dimensionality for un-regularized OT, motivates the statistical study of entropic OT. In 
this talk, we identify two novel statistical phenomena for entropic OT in the form of non-
asymptotic bounds for various entropic OT quantities such as values, maps, and densities. 
Our first set of bounds are for high-dimensional settings, and give totally dimension-free 
rates of convergence, albeit with exponential dependence on the regularization 
parameter. And our second set of bounds identify a refined form of intrinsic dimension-
dependence, which we call Minimum Intrinsic Dimension scaling (MID scaling), where the 
effective dimension is the minimum of the single-scale dimensions of the distributions. Our 
simple proof techniques are inspired by convex optimization, and notably avoid empirical 
process theory almost entirely. 
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Taiji Suzuki,  
The University of Tokyo, Japan 

Convergence of mean field Langevin dynamics and its application to neural 
network optimization 

The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the gradient Langevin 
dynamics (GLD) that minimizes an entropy regularized convex function defined on the space of 
probability distributions, and it naturally arises from the optimization of two-layer neural 
networks via (noisy) gradient descent. In this talk, I will present the convergence result of MFLD 
and explain how the convergence of MFLD is characterized by the log-Sobolev inequality of the 
so-called proximal Gibbs measure corresponding to the current solution. Moreover, I will provide 
a general framework to prove a uniform-in-time propagation of chaos for MFLD that takes into 
account the errors due to finite-particle approximation, time-discretization, and stochastic 
gradient approximation. 
 
In the latter half, I will discuss the generalization error analysis of neural networks trained by 
MFLD. Addressing a binary classification problem, we have a general form of a test classification 
error bound that provides a fast learning rate based on a local Rademacher complexity analysis. 
By applying this general framework to the k-sparse parity problem, we demonstrate how the 
feature learning helps its sample complexity compared with the kernel methods. 
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Yanshuo Tan, 
National University of Singapore, Singapore 

The Computational Curse of Big Data for Bayesian Additive Regression Trees: 
A Hitting Time Analysis 

In this talk, we will be interested in inverse problems arising in the signal and image processing 
field. 
 
Solving such problems imply in a fist time to formalise the direct problem by understanding the 
physics behind and in a second time, to solve the associated inverse problem, through a 
variational formulation, that is, solving an optimization problem. Such issues are encountered in 
many areas such as biology, medical imaging, chemistry, audio signal processing, ... for which, 
different tasks have to be tackled such as deconvolution, restoration, unmixing, missing data 
reconstruction, ... 
 
Classical optimization-based approaches consist in, once the optimization problem has been 
formulated, proposing iterative procedures (e.g. proximal algorithms) converging to a solution of 
the considered inverse problem. More recently, unrolled or unfolded neural networks have been 
proposed. They combine optimization and learning, constitute interpretable networks and 
integrate information about the direct model. We will study and describe such networks for the 
resolution of two inverse problems: image deconvolution and robust PCA. 
 
Collaborations: this work has been done in collaboration with Vincent Tan, Emmanuel Soubiès, 
Pascal Nguyen and Elisabeth Tan. 
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Vincent Y. F. Tan, 
National University of Singapore, Singapore 

Multi-Armed Bandits with Abstention 

We introduce a novel extension of the canonical multi-armed bandit problem that incorporates 
an additional strategic element: abstention. In this enhanced framework, the agent is not only 
tasked with selecting an arm at each time step, but also has the option to abstain from accepting 
the stochastic instantaneous reward before observing it. When opting for abstention, the agent 
either suffers a fixed regret or gains a guaranteed reward. Given this added layer of complexity, 
we ask whether we can develop efficient algorithms that are both asymptotically and minimax 
optimal. We answer this question affirmatively by designing and analyzing algorithms whose 
regrets meet their corresponding information-theoretic lower bounds. Our results offer valuable 
quantitative insights into the benefits of the abstention option, laying the groundwork for further 
exploration in other online decision-making problems with such an option. Numerical results 
further corroborate our theoretical findings. 
 
This is joint work with Junwen Yang and Tianyuan Jin. 
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Kim-Chuan Toh, 
National University of Singapore, Singapore 

Convex Clustering: Theoretical Guarantee and Efficient Computations 
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Xin Tong, 
National University of Singapore, Singapore 

Gradient flow for fairness in real and virtual worlds 

Fairness is an important topic for modern day machine learning (ML). In the real world, social 
welfare applications often require the solution from ML to meet certain fairness constraints. In 
the virtual world applications like video game matching, fairness is essential for customer 
retention.  These fairness requirements impose new and challenging problems for Bayesian ML.  
In particular, the target densities are defined implicitly as solution to different constrained 
density optimization problems. This makes classical sampling methods such as MCMC difficult to 
implement. We will discuss the constrained control gradient flow, which can be used to solve the 
aforementioned problems. 
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Eric Vanden-Eijnden, 
Courant Institute, New York University, USA 

Stochastic Interpolants: A Unifying Framework for Flows and Diffusions 

Stochastic interpolants are a class of generative models that unifies flow-based and diffusion-
based methods and allow one to bridge any two arbitrary probability density functions exactly in 
finite time. These interpolants are built by combining data from the two prescribed densities with 
an additional latent variable that shapes the bridge in a flexible way. The time-dependent 
probability density function of the stochastic interpolant can be shown to satisfy a first-order 
transport equation as well as a family of forward and backward Fokker-Planck equations with 
tunable diffusion. Upon consideration of the time evolution of an individual sample, this 
viewpoint immediately leads to both deterministic and stochastic generative models based on 
probability flow equations or stochastic differential equations with an adjustable level of noise. 
The drift coefficients entering these models are time-dependent velocity fields characterized as 
the unique minimizers of simple quadratic objective functions, one of which is a new objective for 
the score of the interpolant density. Remarkably, minimization of these quadratic objectives leads 
to control of the likelihood for any of our generative models built upon stochastic dynamics. By 
contrast,  generative models based upon a deterministic dynamics must, in addition, control the 
Fisher divergence between the target and the model. Connections with diffusion based models, 
other stochastic bridges will also be discussed, in particular to show that such models recover the 
Schrödinger bridge between the two target densities when explicitly optimizing over the 
interpolant. 
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Ke Wang, 
The Hong Kong University of Science and Technology, China 

Random perturbation of low-rank matrices 

The analysis of large matrices is a key aspect of high-dimensional data analysis, with computing 
the singular values and vectors of a matrix being a central task. However, real-world data is often 
disturbed by noise, which affects the essential spectral parameters of the matrix. While classical 
deterministic theorems can provide accurate estimates for the worst-case scenario, this talk will 
focus on the case when the perturbation is random. By assuming that the data matrix has a low 
rank, optimal subspace perturbation bounds can be achieved under mild assumptions.  
 
This talk is based on joint works with Sean O'Rourke and Van Vu. 
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Wanjie Wang, 
National University of Singapore, Singapore 

Network-Adjusted Covariates for Community Detection 

Community detection is a crucial task in network analysis that can be significantly improved by 
incorporating subject-level information, i.e. covariates. Existing methods have shown the 
effectiveness of using covariates on the low-degree nodes, but rarely discuss the case where 
communities have significantly different density levels, i.e. multiscale networks.  
 
In this work, we introduce a novel method that addresses this challenge by constructing network-
adjusted covariates, which leverage the network connections and covariates with a node-specific 
weight to each node. This weight can be calculated without tuning parameters.  
We present novel theoretical results on the strong consistency of our method under degree-
corrected stochastic blockmodels with covariates, even in the presence of mis-specification and 
multiple sparse communities. Additionally, we establish a general lower bound for the 
community detection problem when both network and covariates are present, and it shows our 
method is optimal for connection intensity up to a constant factor.  
 
Our method outperforms existing approaches in simulations and a LastFM app user network. We 
then compare our method with others on a statistics publication citation network where 30% of 
nodes are isolated, and our method produces reasonable and balanced results. 
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Bregman-Wasserstein divergence and a modified JKO scheme 

Current applications of optimal transport are often based on the quadratic Wasserstein distance 
on Euclidean space. In a Riemannian setting the Riemannian distance, and hence the Wasserstein 
distance, are usually computationally intractable. We show that when the Riemannian metric is 
Hessian, the Bregman-Wasserstein divergence - the optimal transport cost with respect to a 
Bregman divergence - provides a useful alternative. After giving some of its properties, we show 
that it leads to a modified JKO scheme which converges to the associated Fokker-Planck equation. 
In fact, modified JKO schemes can be formulated for any cost whose Hessian agrees with the 
metric.  
 
Based on joint works with Cale Rankin. 
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Feature Learning in Two-layer Neural Networks under Structured Data 

Real-world learning problems are often high-dimensional but also exhibit certain low-
dimensional structures. We study the performance of (i) kernel methods, (ii) neural networks 
optimized via gradient descent, when the low-dimensionality is encoded in two ways: 1. the target 
function is a single-index model defined by an unknown link function applied to a one-
dimensional projection of the input; 2. the input features are drawn from a spiked covariance 
model which describes a low-dimensional signal (spike) "hidden" in high-dimensional noise 
(bulk). We characterize the interplay between structured data (the extent of input anisotropy, as 
well as the overlap between the input spike and the target direction) and the sample complexity 
of the learning algorithms, and show that both kernel ridge regression and neural network benefit 
from low-dimensional structure, but GD-trained neural network can adapt to such a structure 
more effectively due to feature learning.  
 
Based on joint works with Jimmy Ba, Murat A. Erdogdu, Alireza Mousavi-Hosseini, Taiji Suzuki, 
and Zhichao Wang. 
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Approximation and Kernelization of Gradient Flow Geometry: Fisher-Rao and 
Wasserstein 

Motivated by numerous machine learning applications of Wassersetin and Fisher-Rao gradient 
flows, we present an investigation of the approximation and kernelization of dissipation 
geometries. We apply our framework to a few concrete gradient systems of interest, including the 
Fisher-Rao, Wasserstein, and Wasserstein-Fisher-Rao type gradient flows, and uncover a few 
surprising connections between those gradient flows.  
 
Joint work with Alexander Mielke. 
 

Back to Table of Contents 
 


	Andrea Agazzi, Università di Pisa, Italy
	Pierre Alquier, ESSEC Business School, Singapore
	Jason Altschuler, University of Pennsylvania, USA
	Gerard Ben Arous, New York University, USA
	Arnab Bhattacharyya, National University of Singapore, Singapore
	Xavier Bresson, National University of Singapore, Singapore
	Caroline Chaux, CNRS@CREATE, Singapore
	Sinho Chewi, Massachusetts Institute of Technology, USA
	Alexandre d’Aspremont, École Normale Supérieure, France
	Zhou Fan, Yale University, USA
	Borjan Geshkovski, Massachusetts Institute of Technology, USA
	Jeremy Heng, ESSEC Business School, Singapore
	Masaaki Imaizumi, The University of Tokyo, Japan
	Aukosh Jagannath, University of Waterloo, Canada
	Kengo Kato, Cornell University, USA
	Anya Katsevich, Massachusetts Institute of Technology, USA
	Yuehaw Khoo, University of Chicago, USA
	Tam Le, The Institute of Statistical Mathematics, Japan
	Qianxiao Li, National University of Singapore, Singapore
	Qin Li, University of Wisconsin-Madison, USA
	Cheng Mao, Georgia Institute of Technology, USA
	Robert McCann, University of Toronto, Canada
	Govind Menon, Brown University, USA
	Marco Mondelli, Institute of Science and Technology Austria, Austria
	Jaouad Mourtada, ENSAE/CREST, France
	Somabha Mukherjee, National University of Singapore, Singapore
	Soumendu Sundar Mukherjee, Indian Statistical Institute, Kolkata, India
	Ariel Neufeld, Nanyang Technological University, Singapore
	Tan Minh Nguyen, National University of Singapore, Singapore
	Jonathan Niles-Weed, New York University, USA
	Soumik Pal, University of Washington, USA
	Courtney Paquette, McGill University, Canada
	Elliot Paquette, McGill University, Canada
	Vianney Perchet, ENSAE/CREST, France
	Andrej Risteski, Carnegie Mellon University, USA
	Mark Rudelson, University of Michigan, USA
	Jonathan Scarlett, National University of Singapore, Singapore
	Bodhisattva Sen, Columbia University, USA
	Yair Shenfeld, Brown University, USA
	Yong Sheng Soh, National University of Singapore, Singapore
	Vladimir Spokoiny, Weierstrass Institute for Applied Analysis and Stochastics, Germany
	Piyush Srivastava, Tata Institute of Fundamental Research, India
	Austin Stromme, Massachusetts Institute of Technology, USA
	Taiji Suzuki,  The University of Tokyo, Japan
	Yanshuo Tan, National University of Singapore, Singapore
	Vincent Y. F. Tan, National University of Singapore, Singapore
	Kim-Chuan Toh, National University of Singapore, Singapore
	Xin Tong, National University of Singapore, Singapore
	Eric Vanden-Eijnden, Courant Institute, New York University, USA
	Ke Wang, The Hong Kong University of Science and Technology, China
	Wanjie Wang, National University of Singapore, Singapore
	Ting-Kam Leonard Wong, University of Toronto, Canada
	Denny Wu, University of Toronto, Canada
	Jia-Jie Zhu, Weierstrass Institute for Applied Analysis and Stochastics, Germany

