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The familiar research methodology for mathematics

Advantages:

it’s familiar

it’s worked for centuries

Disadvantages:

need to be clever

might be preposterously difficult if sought description is complicated
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A new (?) research methodology for mathematics

Advantages:

don’t need to be very
clever

sometimes it
automatically
generates the
conjecture for you

Disadvantages:

decision procedures
don’t exist for most
of mathematics

sometimes they take
ridiculous amounts of
space and time
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Examples of this new approach

The Wilf-Zeilberger (WZ) approach to automatically prove
combinatorial identities, such as

∑
−n≤k≤n

(−1)k
(

2n

n + k

)3

=
(3n)!

n!3
.

Use of SAT solvers (e.g., the recent solution of the Boolean
pythagorean triples problem)

Proof assistants like Isabelle and Coq
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Hilbert’s dreams

David Hilbert
(1862–1943)

German mathematician.

To show that every true
statement is provable
(killed by Gödel)

To provide an algorithm to
decide if a given statement
is provable (killed by
Turing)

Nevertheless, some
subclasses of problems are
decidable — i.e., an
algorithm exists
guaranteed to prove or
disprove any statement in
the class
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First-order logic

Let 〈N,+〉 denote the set of all first-order logical formulas in the
natural numbers with addition.

Here we are allowed to use any number of variables, logical
connectives like “and”, “or”, “not”, etc., addition of natural numbers,
comparison of natural numbers, and quantifiers like “there exists” (∃)
and “for all” (∀).

This is sometimes called Presburger arithmetic.

Example: ∀x , y x + y = y + x . What does this assert?
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Another example: the Chicken McNuggets problem

A famous problem in elementary arithmetic books:

At McDonald’s, Chicken McNuggets are available in packs of either 6, 9,
or 20 nuggets. What is the largest number of McNuggets that one cannot
purchase?
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Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented as a
non-negative integer linear combination of 6, 9, and 20, as follows:

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧
¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z).

Here, of course, “6x” is shorthand for the expression
“x + x + x + x + x + x”, and similarly for 9y and 20z .
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Presburger’s theorem

Mojżesz Presburger
(1904–1943)

Murdered by the Nazis.

Presburger proved that
FO(N,+) is decidable: that is,
there exists an algorithm that,
given a sentence in 〈N,+〉 with
no free variables, will decide its
truth.

He used quantifier elimination.

His master’s thesis was one of
the most influential of all time
in mathematics.

Jeffrey Shallit Adventures in Automata Nk Kong Beng Pub Lec Ser 9 / 59



Büchi’s proof of Presburger’s theorem

Julius Richard Büchi
(1924–1984)
Swiss logician

Büchi found a completely
different proof of Presburger’s

theorem.
Numbers are represented in

base-k for some integer k ≥ 2.
And logical formulas are

implemented by means of finite
automata.
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What are finite automata?

Finite automata are a model of a very simple kind of computing machine,
having only finite memory (called the “states”).

Their inputs are strings of symbols (“words”) chosen from a finite
alphabet Σ.

As each letter is processed from left to right, the automaton looks up in a
table (the “transition function”) which state to go to, based on the
current state and current input letter.

Certain states are called “final”. If, after reading the entire input, the
automaton ends in a final state, the input is accepted ; otherwise it is
rejected . This is the basic automaton model.

In a variation of the model, we associate an output letter with each state,
and then the output corresponding to an input is the output associated
with the last state reached.
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Example of an automaton

Here is an automaton accepting those words over {1, 2, 3} whose first
symbol is the same as the last symbol:

start

1

1

22

3

3

1

1'
2,3

2

2'
1,3

3

3'
1,2

1

2,3

2

1,3

3

1,2

Double circle: indicates final state.
Jeffrey Shallit Adventures in Automata Nk Kong Beng Pub Lec Ser 12 / 59



Second example of an automaton

This automaton computes n modulo 3, where n is expressed in base 2:

0

0

11
1

20
0

1

Here the output associated with each state is the number of that state.
The meaning of state i is “number represented in binary by the word seen
so far is congruent to i (mod 3)”.
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Decidability of Presburger arithmetic: Büchi’s proof

Ideas:

represent integers in an integer base k ≥ 2 using the alphabet
Σk = {0, 1, . . . , k − 1}, most-significant-digit first.

represent t-tuples of integers as words over the alphabet Σt
k , padding

with leading zeroes, if necessary. This corresponds to reading the
base-k representations of the t-tuples in parallel.

For example, the pair of natural numbers (21, 7) can be represented
in base 2 by the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

First component spells out 10101, which is 21 in base 2
Second component spells out 00111, which is 7 in base 2
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Decidability of Presburger arithmetic: proof sketch

Given a formula ϕ with free variables x1, x2, . . . , xt , we inductively
construct an automaton accepting the base-k expansions of those
t-tuples (x1, . . . , xt) for which the formula evaluates to true.

For example, the relation x + y = z can be checked by a simple
2-state automaton depicted below, where transitions not depicted
lead to a nonaccepting “dead state”.

no
carry

{[a,b,c] : a+b=c}

carry{[a,b,c] : a+b+1=c}
{[a,b,c] : a+b=c+k}

{[a,b,c] : a+b+1=c+k}
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Decidability of Presburger arithmetic: proof sketch

Relations like x = y and x < y can be checked similarly.

If a formula is of the form ∃x1, x2, . . . xt p(x1, . . . , xt , . . . , xu), then we
use nondeterminism to “guess” the xi for 1 ≤ i ≤ t and check them.

This is done by “projecting” away the first t components of the
transitions.

If the formula is of the form ∀p, we use the equivalence

∀p ≡ ¬∃¬p;

this may require using something called the “subset construction”,
which can produce exponential blow-up in the size of the automaton.
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Decidability of Presburger arithmetic: proof sketch

We now parse the formula ϕ, applying well-known constructions on
automata to implement the operations in the formula.

At the end, if there are no free variables, eventually we get a 1-state
automaton that either accepts everything (“true”) or rejects
everything (“false”).

If there are t free variables left, at the end we get an automaton
taking t-tuples as input, and accepting those t-tuples of natural
numbers making the formula evaluate to “true”.
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The bad news

The worst-case running time of the algorithm above is bounded above
by

22..
.2p(N)

,

where the number of 2’s in the exponent is equal to the number of
quantifier alternations, p is a polynomial, and N is the size of the
logical formula.

This bound can be improved to double-exponential.
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The good news

With a small extension to Presburger’s logical theory — adding the
function Vk(n), the largest power of k dividing n — one can also
verify statements that are much more interesting! But then the
worst-case time bound returns to

22..
.2p(N)

.

Based on a beautiful logical theory due to Büchi, Bruyère, Hansel,
Michaux, Villemaire, etc.

Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the theory in
a reasonable amount of time and space.

Many old results from the literature can been verified with this
technique, and many new ones can be proved.
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What can we prove things about?

One large class of objects: the class of k-automatic sequences

These are infinite sequences

a = a0a1a2 · · ·

over a finite alphabet of letters, generated by a finite-state machine
(automaton)

The automaton, given n as input, computes an as follows:

n is represented in some fixed integer base k ≥ 2
The automaton moves from state to state according to this input
Each state has an output letter associated with it
The output on input n is the output associated with the last state
reached
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The canonical example of automatic sequence: the
Thue-Morse sequence

0 0

1

1

0 1

By determining the parity of the number of 1’s in the base-2 expansion of
the input n, this automaton generates the Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · · .
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Thue and Morse

Axel Thue (1863–1922)
Norwegian number theorist

Marston Morse (1892–1977)
American mathematician

Photo by Konrad Jacobs,

https://opc.mfo.de/detail?photo_id=2930, CC

BY-SA 2.0 de, https://commons.wikimedia.org/w/

index.php?curid=6090263
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What’s next?

My students built a program, called Walnut, that can prove or disprove
statements in the logical theory 〈N,+,Vk〉.

Now that we have such a decision procedure that works on a class of
mathematically-interesting objects, what can we∗ do with it?

1 Give new, almost trivial proofs of famous old results for which only
complicated and/or case-based proofs exist.

2 Check existing claims in the literature and fix wrong ones.

3 Improve previously-known results (e.g., turn an “if” into an “if and
only if”).

4 Explore new claims (and obtain new results “purely mechanically”,
just by stating the properties of the object we want!).

∗ That is, I and my co-authors (Émilie Charlier, Narad Rampersad, Hamoon Mousavi,
Daniel Gabric, Jason Bell, Aseem Baranwal, Thomas Lidbetter, Lucas Mol, Ramin Zarifi,
. . .) .
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Proving a famous old result: t is overlap-free

Probably the most famous result about the Thue-Morse sequence

t = t0t1t2 · · · = 0110100110010110 · · ·

is Thue’s 1912 theorem that t is overlap-free.

An overlap is a word of the form axaxa, where a is a single letter and x is
a (possibly empty) word, like the English word alfalfa.

When we say t is overlap-free, we mean it contains no contiguous block
that is an overlap.

Let us try to prove this by phrasing the existence of an overlap as a
first-order logic statement.
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Existence of overlap

If t had an overlap, this is what it would look like:

In other words, there would exist integers i , n with n ≥ 1, such that

ti ti+1 · · · ti+n = ti+nti+n+1 · · · ti+2n.

We can express this in the logical system 〈N,+, n→ tn〉 as follows:

∃i , n (n ≥ 1) ∧ ∀j (j ≤ n) =⇒ ti+j = ti+j+n.
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The Thue-Morse word is overlap-free

Now we can evaluate the assertion

∃i , n (n ≥ 1) ∧ ∀j (j ≤ n) =⇒ ti+j = ti+j+n

using our decision procedure, by translating it into the syntax of Walnut:

eval tmhasover "Ei,n (n>=1) & Aj (j<=n) => T[i+j]=T[i+j+n]":

Here

eval tells Walnut to evaluate the statement that follows

tmhasover is a filename where results will be stored

E means “∃” and A means “∀”

& means “logical and”; => means “logical implication”

T is Walnut’s way of writing the Thue-Morse sequence
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The output of Walnut

eval tmhasover "Ei,n (n>=1) & Aj (j<=n) => T[i+j]=T[i+j+n]":

computed ~:1 states - 288ms

computed ~:2 states - 3ms

n>=1:2 states - 389ms

j<=n:2 states - 1ms

T[(i+j)]=T[((i+j)+n)]:12 states - 15ms

(j<=n=>T[(i+j)]=T[((i+j)+n)]):25 states - 4ms

(A j (j<=n=>T[(i+j)]=T[((i+j)+n)])):1 states - 32ms

(n>=1&(A j (j<=n=>T[(i+j)]=T[((i+j)+n)]))):1 states - 1ms

(E i , n (n>=1&(A j (j<=n=>T[(i+j)]=T[((i+j)+n)])))):1 states - 0ms

Total computation time: 523ms.

_____

FALSE

and so we have proven that the Thue-Morse word t has no overlaps!
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Another example: Dejean’s ternary word

Let’s see another example of a much shorter proof of an existing theorem.

Françoise Dejean (1972), in a famous paper, gave an example of an infinite
ternary word with the property that it avoids (7/4 + ε)-powers, namely,

dej = 01202120121021202101201020 · · · ,

the fixed point, starting with 0, of the 19-uniform morphism

0→ 0120212012102120210

1→ 1201020120210201021

2→ 2012101201021012102 .

This means that the word dej has no factor of the form xx ′ with x ′ a
prefix of x and |xx ′|/|x | > 7/4.

Her proof was about 5 pages long and rather complicated.
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Excerpts from Dejean’s proof
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Another example: Dejean’s ternary word

But, using Walnut, we can verify her construction in 79 seconds, just by
building a formula asserting the existence of a (7/4 + ε)-power in dej:

eval dejean "?msd_19 Ei,n n>=1 & Aj (j>=i & 4*j<=4*i+3*n)

=> DEJ[j]=DEJ[j+n]":

eval dejean "?msd_19 Ei,n n>=1 & Aj (j>=i & 4*j<=4*i+3*n) => DEJ[j]=DEJ[j+n]":

computed ~:1 states - 2ms

computed ~:2 states - 1ms

n>=1:2 states - 36ms

j>=i:2 states - 4ms

(4*j)<=((4*i)+(3*n)):11 states - 10145ms

(j>=i&(4*j)<=((4*i)+(3*n))):14 states - 1164ms

DEJ[j]=DEJ[(j+n)]:6 states - 690ms

((j>=i&(4*j)<=((4*i)+(3*n)))=>DEJ[j]=DEJ[(j+n)]):79 states - 3146ms

(A j ((j>=i&(4*j)<=((4*i)+(3*n)))=>DEJ[j]=DEJ[(j+n)])):1 states - 5996ms

(n>=1&(A j ((j>=i&(4*j)<=((4*i)+(3*n)))=>DEJ[j]=DEJ[(j+n)]))):1 states - 2ms

(E i , n (n>=1&(A j ((j>=i&(4*j)<=((4*i)+(3*n)))=>DEJ[j]=DEJ[(j+n)])))):1 states - 1ms

Total computation time: 79365ms.

_____

FALSE
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Check existing claims in the literature

Example from a recent preprint:
“...it follows from Proposition 2.1 that every segment of length k of t is a
factor of every segment of length ` = 8k − 1 of t”.

Let’s check this:

eval checkclaim "Ai,j,k (k>=1) => Ep (p>=j) &

(p+k <= j+8*k-1) & As (s<k) => T[i+s]=T[p+s]":

Walnut returns FALSE, so the claim is wrong.

But we can do even more...

Let’s find those k for which the claim is true!
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Check existing claim in the literature

def whichright "Ai,j Ep (p>=j) & (p+k <= j+8*k-1) &

As (s<k) => T[i+s]=T[p+s]":

This produces an automaton, specifying those lengths k, represented in
base 2, for which the claim is true.

0

0

11

2

0

3

1

4

0

51
0, 1

0

61

1

7

0
1

8

0
91

1

0

So it’s wrong for (e.g.) k = 10 and infinitely many k .
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Improving previously-known results: unbordered factors

A word is bordered if it can be expressed as uvu for words u, v with u
nonempty, and otherwise it is unbordered.

Example: the English word ionization has border ion.

James Currie and Kalle Saari proved that t has an unbordered factor
of length n if n 6≡ 1 (mod 6).

However, these are not the only lengths with an unbordered factor;
for example,

0011010010110100110010110100101

is an unbordered factor of t of length 31.

Jeffrey Shallit Adventures in Automata Nk Kong Beng Pub Lec Ser 33 / 59



Unbordered factors

We can express the property that t has an unbordered factor of length n
as follows:

∃i ¬Bordered(i , n)

where

Bordered(i , n) := ∃j (1 ≤ j ≤ n/2) ∧ ∀k (k < j) =⇒ ti+k = ti+n+k−j

asserts that the length-n factor of t, starting at position i , has a border.
Let’s translate this to Walnut:

def bordered "Ej (j>=1) & (j<=n/2) &

Ak (k<j) => T[i+k]=T[(i+n+k)-j]":

# T[i..i+n-1] is bordered

def unbordlength "Ei ~$bordered(i,n)":
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Unbordered factors

Now we can verify the Currie-Saari theorem: if n 6≡ 1 (mod 6), then t has
an unbordered factor of length 6:

eval checkcs "An (1!=n-6*(n/6)) => $unbordlength(n)":

and Walnut returns TRUE.
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Unbordered factors

However, we can do much more!

Walnut compiles our unbordlength definition into an automaton that
recognizes the base-2 representation of all n for which t has a length-n
unbordered factor:

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

and so (by inspection of this automaton) we have improved the
Currie-Saari result as follows:

Theorem. The Thue-Morse sequence t has an unbordered factor of length
n if and only if (n)2 6∈ 1(01∗0)∗10∗1.
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Exploring new results: avoiding the pattern xxxR

Let’s look at how Walnut was used to prove a completely new result (for
which no other proof is currently known):

Recall that by xR we mean the reversal of the word x . For example,
(stressed)R = desserts.

We are interested in avoiding the pattern xxxR in binary words.

An example of the pattern xxxR in English is contained in the word
bepepper.

Are there infinite binary words avoiding this pattern?
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An extended example: avoiding the pattern xxxR

We start by trying depth-first search of the space of binary words

If there is a word avoiding the pattern, this procedure will give the
lexicographically least such sequence.

When we do, we get the word

(001)31(01)ω = 001001001101010 · · · .

So in particular the word (01)ω = 010101 · · · avoids the pattern.
(Easy proof!)

This suggests a question: are there any other periodic infinite words
avoiding xxxR?

Also: are there any aperiodic infinite words avoiding xxxR?
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An extended example: avoiding the pattern xxxR

When we search for other primitive words z such that zω avoids the
pattern, we find there are some of length 10:

0010011011

0011011001

0100110110

0110010011

0110110010

1001001101

1001101100

1011001001

1100100110

1101100100

We notice that each of these words is of the form ww .

This suggests looking at words of this form.

The next ones are w = 001001001101100100100, and its shifts and
complements.
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An extended example: avoiding the pattern xxxR

To summarize, here are the solutions we’ve found so far, (w w)ω

w length of w

0 1
00100 5

001001001101100100100 21

The presence of the numbers 1,5,21 suggests some connection with
the Fibonacci numbers: these are F2,F5,F8.
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An aperiodic word avoiding xxxR

Suppose we take the run-length encodings of the words of length 21.
One of them looks familiar: 2122121221221. This is a prefix of the
infinite Fibonacci word generated by iterating the morphism 2→ 21,
1→ 2.

This suggests the construction of an infinite aperiodic word avoiding
xxxR : take the infinite Fibonacci word, and use it as “repetition
factors” for 0 and 1 alternating. This gives the infinite word

rf = 001001101101100100110 · · ·

which we conjecture avoids xxxR .

Can we find an automaton generating this sequence? Yes, but now it
is not based on base-2 representations, but rather Fibonacci (or
“Zeckendorf”) representations.
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Fibonacci (Zeckendorf) representation

Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

In analogy with base-2 representation, we can represent every
non-negative integer in the form∑

0≤i≤t
εiFi+2 with εi ∈ {0, 1}.
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Fibonacci (Zeckendorf) representation

But then some integers have multiple representations, e.g.,
14 = 13 + 1 = 8 + 5 + 1 = 8 + 3 + 2 + 1
So we impose the additional condition that εiεi+1 = 0 for all i : never
use two adjacent Fibonacci numbers.
Usually we write the representation in the form

εtεt−1 · · · ε0,

with most significant digit first. So, for example, 19 is represented by
101001. This is called Fibonacci representation or Zeckendorf
representation.

Edouard Zeckendorf (1901–1983)
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Fibonacci-automatic infinite words

Consider a finite automaton that takes Fibonacci representation of n
as input

Outputs are associated with the last state reached

Invalid inputs (those with two consecutive 1’s) are rejected or not
considered

An infinite word results from feeding the canonical representation of
each n ≥ 0 into the automaton.
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The Fibonacci decision procedure

Exactly like before, except now all integers are represented in
Fibonacci representation

Comparison is easy

Addition is harder; need an adder

There is a 17-state automaton that on input (x , y , z) in Fibonacci
representation will determine whether x + y = z

Based on ideas originally due to Jean Berstel and since elaborated by
others: Frougny, Sakarovitch, etc.
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An aperiodic word avoiding xxxR

It turns out that our word

rf = 001001101101100100110 · · ·

is generated by a Fibonacci automaton of 8 states:

a/0

0

b1/0
1

a1/1
0 a0/0

0

b0/0
1

a2/1
0

b/1

1

0

0

b2/1
1

0

0
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Avoiding xxxR

So we can now prove that rf avoids the pattern xxxR :

To prove this we use the following Walnut code:

def rffactoreq "?msd_fib At t<n => RF[i+t]=RF[j+t]":

def rfrevcheck "?msd_fib As,t (s>=i & t>=j & s+t+1=i+j+n)

=> RF[s]=RF[t]":

eval rfprop "?msd_fib Ei,n n>=1 & $rffactoreq(i,i+n,n) &

$rfrevcheck(i,i+2*n,n)":

When we run this formula in Walnut it reports FALSE. So the pattern
xxxR doesn’t occur in rf !

Similarly, we can prove that rf is not ultimately periodic:

eval rfup "?msd_fib Ei,p (p>=1) & At (t>i) => RF[t]=RF[t+p]":
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The best possible (?) research methodology

Advantages:

no work at all: just state the desired properties of the object, and the
program finds an example and proves its correctness.

Disadvantages:

Having to explain why you should be paid for something that easy!
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Heuristics Plus Decision Procedures Provide Proofs

We can combine the depth-first or breadth-first search over a space with a
decision procedure to (a) figure out a good candidate for a solution and
then (b) prove it is correct.

Example: In 1965, Richard Dean studied the Dean words: squarefree
words over {x , y , x−1, y−1} that are not reducible (that is, there are no
occurrences of xx−1, x−1x , yy−1, y−1y).
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Heuristics Plus Decision Procedures Provide Proofs

Let us use the coding 0↔ x , 1↔ y , 2↔ x−1, 3↔ y−1.

We can use “automatic breadth-first search” to find a candidate for an
infinite Dean word.

In automatic breadth-first search, you guess that the infinite word you
want to construct is k-automatic for some integer k ≥ 2, and generated by
a DFAO of ≤ ` states.

You then use BFS to explore the tree of all words w obeying the particular
constraints, such that the smallest k-DFAO generating w has ≤ ` states.
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Heuristics Plus Decision Procedures Provide Proofs

If you are lucky, BFS will converge to the prefixes of a single k-automatic
infinite word (or small number of such words).

When implemented for Dean words, breadth-first search quickly converges
on the sequence

0121032101230321 · · · ,
which (using the Myhill-Nerode theorem) we can guess as generated by
the automaton below:

0

0
1

1

1

2

0

0 31
0

1
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Heuristics Plus Decision Procedures Provide Proofs

Then we carry out the following Walnut commands:

morphism d "0->01 1->21 2->03 3->23":

promote DE d:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]":

# check if there’s a square

eval dean02 "Ei DE[i]=@0 & DE[i+1]=@2":

eval dean20 "Ei DE[i]=@2 & DE[i+1]=@0":

eval dean13 "Ei DE[i]=@1 & DE[i+1]=@3":

eval dean31 "Ei DE[i]=@3 & DE[i+1]=@1":

# check for existence of factors 02, 20, 13, 31

All of these return FALSE, so this word is a Dean word. We have thus
proved the existence of Dean words with essentially no human intervention.
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What other properties of automatic sequences are
decidable?

A difficult candidate: abelian properties

We say that a nonempty word x is an abelian square if it of the form
ww ′ with |w | = |w ′| and w ′ a permutation of w . (An example in
English is the word reappear.)

Luke Schaeffer showed that the predicate for abelian squarefreeness is
indeed inexpressible in 〈N,+,Vk〉
However, for some sequences (e.g., Thue-Morse, Fibonacci,
Tribonacci) many abelian properties are decidable
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Tribonacci synchronization: a new result

With the same ideas we can write first-order formulas for properties of the
Tribonacci sequence tr = 0102010 · · · , defined as the fixed point of the
morphism 0→ 01, 1→ 02, 2→ 0.

An abelian cube is a word of the form w = x x ′ x ′′, where x ′, x ′′ are
permutations of x , like the English word deeded. The order of the abelian
cube w is defined to be |x |.

What are the orders of abelian cubes appearing in tr?

Answer: there is a Tribonacci automaton of 1169 states (!) recognizing
the set of all these orders (expressed in the Tribonacci numeration
system). Probably there is no simple description of what these orders are.
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Additive cubes

Similarly, one can study the additive cubes appearing in the Tribonacci
word tr.

These are factors of tr of the form xx ′x ′′, where
∑

x =
∑

x ′ =
∑

x ′′.

Theorem. There is a Tribonacci automaton with 4927 states (!)
recognizing the Tribonacci representation of the orders of additive cubes in
tr.

Once again, probably there is no simple description of these orders.

Jeffrey Shallit Adventures in Automata Nk Kong Beng Pub Lec Ser 55 / 59



Decision methods as a kind of powerful telescope

The use of the “light-year” as a yardstick strikes one with
a certain awe. This amounts to taking a distance of nearly
6,000,000,000,000 miles as the unit for the measurement of as-
tronomical distances; and in some of his calculations which have
to do with extra-galactic systems the astronomer has to apply this
little measuring rod thousands of times. These vast distances and
these vast numbers stagger the imagination, and yet the math-
ematician reaches out with his high-powered machines and his
high-powered theorems and investigates the internal structure of
his distant bodies much as the astronomer inquires into the struc-
ture of some distant star.

– D. N. Lehmer, “Hunting Big Game in the Theory of Numbers”, 1932
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Other limits to the approach

Consider the morphism a→ abcc, b → bcc, c → c .

The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

It encodes, in the positions of the b’s, the characteristic sequence of
the squares.

So the first-order theory FO(N,+, n→ s[n]) is powerful enough to
express the assertion that “n is a square”

With that, one can express multiplication, and so it is undecidable.
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The Walnut Prover

Our publicly-available prover, originally written by Hamoon Mousavi, is
called Walnut and can be downloaded from

https://cs.uwaterloo.ca/~shallit/walnut.html .

Jeffrey Shallit Adventures in Automata Nk Kong Beng Pub Lec Ser 58 / 59

https://cs.uwaterloo.ca/~shallit/walnut.html


Designer and Implementers of Walnut

Hamoon Mousavi—Designer and Implementer

Aseem Baranwal—implementer Laindon C. Burnett—implementer
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