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A Probability-Rich ICM and Wendelin Werner’s Work >>>

[Editor‘s Note: This article appeared in the March 2007 issue 
of the IMS Bulletin published by the Institute of Mathematical 
Statistics under the title “A Probability-Rich ICM Reviewed”. 
Imprints is grateful to the editors of the IMS Bulletin for 
permission to reproduce it here.]

The 2006 International Congress of Mathematicians in 
Madrid was exceptionally rich in probability theory. Not 
only was the Fields Medal awarded for the first time to a 
probabilist, namely Wendelin Werner, it was also awarded 
to Andrei Okounkov whose work bridges probability with 
other branches of mathematics. Both Okounkov and Werner 
had been invited to give a 45-minute lecture each in the 
probability and statistics section before their Fields Medal 
awards were announced.

The newly created Gauss Prize (in full, the Carl Friedrich 
Gauss Prize) for applications of mathematics was awarded 
to Kiyosi Itô, another probabilist whom we all know. 
The objective of the Gauss Prize is to honor scientists 

whose mathematical research has had an impact outside 
mathematics, such as in technology, in business, or simply 
in people‘s everyday lives. A presentation of Itô‘s work 
was made by Hans Föllmer in a plenary address to the 
audience of the congress, in the presence of Itô‘s daughter, 
who received the prize and gave a speech on behalf of her 
90-year-old father who was prevented by ill health from 
attending. 

The Nevanlinna Prize was awarded to Jon Kleinberg who 
uses probability in his work. Much of his lecture was about 
small worlds for which probability was used to formulate 
the model.

Among the plenary lectures, apart from those delivered by 
probabilist Oded Schramm and statistician Iain Johnstone 
(on the use of random matrices in statistics), Percy Deift‘s 
lecture on “Universality for mathematical and physical 
systems” was about random matrices and Avi Wigderson‘s 
lecture “P, NP and mathematics” was in part about 
probabilistic algorithms. Richard Stanley‘s plenary lecture 
elaborated on the famous Baik-Deift-Johansson result on the 
longest increasing sequence in a random permutation (which 
incidentally has been connected by Andrei Okounkov 
to another famous result about the largest eigenvalue of 
random matrices). Even the plenary lecture of Terence Tao, 
another Fields Medalist at this same congress, was entitled 
“The dichotomy between structure and randomness” and 
contained several examples from probability. Finally, in 
the logic session Rod Downey‘s 45-minute talk was about 
algorithmic randomness and computability. These were just 
a sample of lectures we attended and there could be more 
talks that reflected the growing importance of probability 
theory in science and mathematics.

Although the Fields Medal was awarded to a probabilist for 
the first time, it was not surprising that Wendelin Werner 
was the one. Werner was born in Germany in 1968, but 
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his parents settled in France when he was one year old, 
and he acquired the French nationality a few years later. 
After studying at the Ecole Normale Supérieure de Paris, 
he defended his PhD thesis in Paris in 1993, shortly after 
getting a permanent research position at the CNRS. He 
became a Professor at University Paris-Sud Orsay in 1997. 
Before winning the Fields Medal, he had received many 
other awards, including the 2000 Prize of the European 
Mathematical Society, the 2001 Fermat Prize, the 2005 
Loève Prize and the 2006 Pólya Prize.

Wendelin Werner's work lies at the interface between 
probability theory and statistical physics. The fact that 
the models in consideration enjoy asymptotic conformal 
invariance properties also leads to using sophisticated 
tools from complex analysis. Werner's most famous results 
come from his collaboration with Greg Lawler and Oded 
Schramm on applications of the so-called SLE (stochastic 
Loewner evolution) processes. SLE processes are obtained 
by introducing in Loewner's equation of complex analysis 
a random driving function which is just a scaled linear 
Brownian motion. The work of Werner and his co-authors 
has produced extraordinary applications of SLE processes 
to long-standing open problems, such as the rigorous 
calculation of the non-intersection exponents for random 
walk or Brownian motion. 

Continued from page 1
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[Editor‘s Note: In May and June of 2006, the Institute hosted 
a program on “Random Graphs and Large-Scale Real-
World Networks”, of which Béla Bollobás was the chair 
of the Organizing Committee. In this article, he gives his 
perspectives on the field of random graphs as well as the 
program organized at IMS.]

The classical theory of random graphs was founded by Erdõs 
and Rényi almost fifty years ago. Erdõs and Rényi studied 
random graphs as fascinating and intricate objects in pure 
mathematics, and used their theory to show the existence of 
graphs with paradoxical properties. Since then, this theory 
has gone from strength to strength, with thousands of papers 
written on the topic. 

Not surprisingly, although the theory of random graphs is an 
area of pure mathematics, possible applications have never 
been far away — after all, many large-scale graphs occur in 
real life. For example, the World Wide Web can be viewed 
as a graph, and so can metabolic and protein networks, 
food webs, the system of telephone calls, the network in the 
brain, traffic flows, acquaintances in a society, economic 
networks, and so on. These graphs resemble the classical 
binomial random graphs in the sense that they do not seem 
to have clear-cut structures that are easy to describe — at 

Random Graphs and Large-Scale Real-World Networks >>>

Such exponents govern, for instance, the asymptotic behavior 
of the probability that two independent planar random walk 
paths up to time n will have no intersection point.

Another remarkable application was the proof that the 
Hausdorff dimension of the exterior frontier of a planar 
Brownian path is equal to 4/3. This fact, which had been 
conjectured by Mandelbrot more than 20 years ago, was one 
of the most fascinating open problems of probability theory. 
SLE processes have many other spectacular applications to 
different models of statistical physics, such as percolation, 
self-avoiding random walks or spanning trees on the lattice. 
The development of these applications, by Wendelin 
Werner and his co-authors, represents a giant step in the 
mathematical understanding of these models.

Louis Chen 
National University of Singapore
and 
Jean-François Le Gall
Ecole Normale Supérieure

29 January 2007

a glance, the connections seem to be ‘random‘. However, 
they are unlike any of the random graphs of the classical 
models: most networks occurring in the world are far from 
homogeneous; in particular, their degree distributions 
are rather different from those in the classical models. 
Also, real-world networks do not tend to be chosen from 
reasonably well-defined distributions, but arise as the result 
of dynamical processes that add and remove vertices and 
edges from the network.

Although a fair amount of empirical work had been done 
on real-world graphs for many decades, in particular, on 
acquaintance and citation networks, mathematical work on 
them started only in the last decade. For instance, Watts and 
Strogatz drew attention to the ‘small-world phenomenon‘, 
and Barabási and Albert noted the ‘scale-free‘ nature of many 
of the networks concerned, evidenced by, for example, 
power-law degree distributions. They suggested that such 
distributions arise in a graph growing by acquiring more and 
more vertices and edges if the newly arrived vertices get 
joined to old ones according to some preferential attachment 
rule. Thus, for example, the World Wide Web seems to 
be essentially scale free: viewed as a directed graph, the 
distributions of the in-degrees and out-degrees are well 
approximated by power law distributions.
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Direct studies of real-world networks themselves (measuring 
various properties such as degree-distribution, diameter, 
clustering, etc.) have led to suggestions for mathematical 
models of these networks. These new models are often 
rather far from the standard models of random graphs, and 
are easiest studied by computer simulations and heuristic 
analysis.

Of necessity, the rigorous mathematical study of these 
new models lags behind the empirical observations and 
computer experiments: although over the decades many 
tools and methods have been invented to tackle random 
graph problems, the new models often need very different 
methods.

The aim of the program “Random Graphs and Large-Scale 
Real-World Networks” was to bring together many of 
the foremost experts on the new random graph models: 
combinatorialists, probabilists, computer scientists, and 
physicists. The excellent facilities at the Institute and the 
friendly and helpful staff were instrumental in creating an 
inspiring atmosphere; all the participants were delighted to 
take part in the Program and benefited greatly from their 
stay in Singapore.

Béla Bollobás
University of Cambridge and 
University of Memphis

New Deputy Director
Denny Leung, who served as the Institute‘s Deputy Director 
from 1 August 2004 to 31 December 2006, relinquished 
his position to resume full-time duties at the Department 
of Mathematics. He had contributed much to the institute 
during his service and will remain as an editor of Imprints. 
He is succeeded by Ka Hin Leung from the Department of 
Mathematics.

The latest addition to the IMS extended family is baby Lee 
Zi Jun, born to the Institute‘s Lab Officer, Jolyn Wong, on 
14 February 2007.

Programs & Activities >>>

Past Program in Brief

Geophysical Fluid Dynamics and Scalar Transport in the 
Tropics (13 November–8 December 2006, Special Lectures 
18–22 December 2006)
Website: http://www.ims.nus.edu.sg/Programs/geophysical/index.htm

Chair
Tieh-Yong Koh, Nanyang Technological University

Members
Peter Haynes, University of Cambridge
Pavel Tkalich, National University of Singapore
Hock Lim, National University of Singapore

The program addressed the dearth of knowledge in tropical 
dynamics. Over two workshops and one lecture-tutorial 
series, an international gathering of scientists and applied 
mathematicians reviewed the recent theoretical ideas on 
geophysical fluid dynamics (GFD) and scalar transport 
within the tropics. The ideas reviewed had helped to 
organize and elucidate information in datasets generated 
by weather or sea-state forecast and pollutant dispersion 
analysis in Southeast Asia. Thus, the program benefited 
participating applied meteorologists and oceanographers 
who handle datasets on a day-to-day basis.

A good atmosphere for discussion: (from left) Jun-Ichi 
Yano, Martin Skote, Rogerio Manica

A group transported by turbulence

Baby Zi Jun



Newsletter of Institute for Mathematical Sciences, NUS 2007ISSUE 10

4

Newsletter of Institute for Mathematical Sciences, NUS 2007

Continued on page 5

Continued from page 3

Bernard Legras: Mastering chaos and turbulence

Intent on modeling the tropical atmosphere

Ready to interface

Current Program

Moving Interface Problems and Applications in Fluid 
Dynamics (8 January–31 March 2007)
Website: http://www.ims.nus.edu.sg/Programs/fluiddynamic/index.htm

Chair
Boo Cheong Khoo, National University of Singapore

Members
Weizhu Bao, National University of Singapore
Zhilin Li, North Carolina State University
Ping Lin, National University of Singapore
Tiegang Liu, Institute of High Performance Computing
Le Duc Vinh, Singapore-MIT Alliance

The program discusses recent developments in the 
modeling and simulations of biological flow coupled to 
deformable tissue/elastic structure, shock wave and bubble 
dynamics in biological treatment (occurring in shock 
lithotripsy, lipoplasty, phacoemulsification and others) with 
experimental verification, multi-medium flow or multi-phase 
flow involving cavitation/supercavitation (arising from large 
pressure changes) and detonation problems. It addresses 
(mathematical) issues arising from these areas, including

i. how to efficiently deal with interfacial topological 
change, 

ii. how to overcome the unphysical oscillations, 

iii. how to suppress the numerical instability when a fluid 
coupled to a stiff material or when the density ratio of 
two media is very large,

iv. how to efficiently deal with stiff chemical reactions in 
computations,

v. whether and when one should consider using isotropic 
or anisotropic models, considerations of thermal and 
friction effect, and other factors during the modeling of 
multi-phase flows with relevance to the bio-medical field 
and physical environment. 

This three-month program brings together leading physicists, 
computational scientists and applied mathematicians 
internationally, and local experts from NUS, NTU, A*STAR 
institutes and local hospitals to discuss and interact as well 
as collaborate. The program consists of two workshops, four 
tutorial sessions, and collaborative research. 

As part of the program, a joint Department of Mathematics/
IMS Winter School took place from 8–26 January 2007. 
Twelve students from the ASEAN region were offered 
financial support to take part in the Winter School.

Next Program

BRAIDS (14 May–13 July 2007)
Website: http://www.ims.nus.edu.sg/Programs/braids/index.htm

Co-chairs
Jon Berrick, National University of Singapore
Fred R. Cohen, University of Rochester

Members
Mitch Berger, University College London 
Joan S. Birman, Columbia University
Toshitake Kohno, University of Tokyo
Yan-Loi Wong, National University of Singapore
Jie Wu, National University of Singapore



Newsletter of Institute for Mathematical Sciences, NUS 2007

5

Newsletter of Institute for Mathematical Sciences, NUS 2007 Newsletter of Institute for Mathematical Sciences, NUS 2007ISSUE 10

Continued from page 4

Continued on page 6

To date, most mathematical interest in braids has come 
from algebraists, topologists and mathematical physicists. 
As well, braids are also engaging the attention of computer 
scientists, as a basis for public-key cryptosystems. 
Probabilistic algorithms are being employed to search for 
solutions to word problems in the braid group. Relevance 
to robotics, cryptography and to magnetohydrodynamics 
is also to be explored during the program. The main theme 
of the program is the mathematical structure of the braid 
group, together with applications arising from this structure 
both within mathematics, and outside of mathematics 
such as (a) magnetohydrodynamics, (b) robotics and (c) 
cryptography. 

Activities
· PRIMA Summer School: 4–29 June 2007 
... Jointly organized with Department of Mathematics 

(PRIMA = Pacific Rim Mathematical Association)

· Tutorials: 
 Week 1: 4–8 June 2007 
 (a) Preliminaries in topology and algebra, by E-Jay Ng: 

4 hours 
 (b) Braids — definitions and braid groups, by Dale 

Rolfsen: 4 hours

 Week 2: 11–15 June 2007 
 (a) Simplicial objects and homotopy groups, by Jie Wu: 

4 hours 
 (b) Configuration spaces, by Fred Cohen: 2 hours 

 Week 3: 18–22 June 2007 
 (a) Magnetohydrodynamics, by Mitch Berger: 4 hours 
 (b) Configuration spaces and robotics, by Robert Ghrist: 

2 hours 
 (c) Braid groups and cryptography, by David Garber: 2 

hours

· Conference: 25–29 June 2007

· Public Lecture: Braids and robotics by Robert Ghrist 
(University of Illinois, Urbana-Champaign), 26 June 
2007 

Programs & Activities in the Pipeline

Summer School in Logic (1–31 July 2007) 
... Jointly organized with Department of Mathematics
Website: http://www.ims.nus.edu.sg/activities/logicss07/index.htm

Organizing Committee
Chi Tat Chong, National University of Singapore
Qi Feng, Chinese Academy of Sciences, China and National 
University of Singapore
Yue Yang, National University of Singapore

Invited Speakers
Theodore A. Slaman, University of California at Berkeley
W. Hugh Woodin, University of California at Berkeley

The 2007 Logic Summer School will consist of two parts, 
one in recursion (computability) theory and the other in set 
theory, running in parallel. The lectures will be conducted 
by Professors Theodore A Slaman and W Hugh Woodin 
of the University of California at Berkeley. In addition to 
lectures, there will be classroom discussions of mathematical 
problems for participants led by senior graduate students. The 
Logic Summer School is a collaboration between researchers 
at the University of California, Berkeley, Chinese Academy 
of Sciences and the National University of Singapore.

Computational Methods in Biomolecular Structures and 
Interaction Networks (9 July–3 August 2007)
Website: http://www.ims.nus.edu.sg/Programs/biomolecular07/index.htm

Co-chairs
Yu Zong Chen, National University of Singapore
Vladimir Kuznetsov, Genome Institute of Singapore

Members
Xiang Yang Liu, National University of Singapore
Boon Chuan Low, National University of Singapore
Louxin Zhang, National University of Singapore

This program will discuss recent progress and facilitate the 
exchange of new ideas in the development and application 
of mathematical algorithms and computational methods 
for studying biomolecular structures, their interactions 
and networks. It is also intended to promote stronger 
communication and collaboration among mathematical, 
computational and biological scientists in order to examine 
essential and unsolved mathematical problems arising 
from structural and network biology. The program will be 
structured around two workshops and two tutorials designed 
to bring together researchers from a wide spectrum of 
mathematical and computational biology. 

Activities
· Workshops: 
 I. Probabilistic and deterministic models of structure 

and complexity dynamics of large-scale biomolecular 
interaction networks: From concept to analysis and 
validation, 16–20 July 2007 

 II. Data analysis and modeling of protein-DNA, protein-
RNA, protein-protein and RNA-DNA interactions: 
identification and prediction of molecular structures 
and their biological functions, 30 July–3 August 
2007
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· Tutorials: 
 I. New approaches to mathematical modeling, 

simulation and analysis of biomolecular interaction 
networks, 9–13 July 2007 

 II. Models and computational algorithms of structural 
determination of macromolecules, their interactions 
and bio-imaging, 23–27 July 2007 

Bose-Einstein Condensation and Quantized Vortices in 
Superfluidity and Superconductivity (1 November–31 
December 2007)
Website: http://www.ims.nus.edu.sg/Programs/bose07/index.htm

Co-chairs
Weizhu Bao, National University of Singapore
Fanghua Lin, Courant Institute, New York University

Members
Jiangbin Gong, National University of Singapore
Dieter Jaksch, University of Oxford
Baowen Li, National University of Singapore
Peter Markowich, University of Vienna

This two-month program will bring together leading 
international applied and pure mathematicians, theoretical 
and experimental physicists, computational scientists, and 
researchers from NUS Departments of Mathematics, Physics, 
Material Sciences and Mechanical Engineering, and from 
A*STAR institutes IHPC and IMRE, to review, develop 
and promote interdisciplinary research on Bose-Einstein 
condensation and quantized vortex states and dynamics in 
superfluidity and superconductivity. 

The program participants will:
i. review the most recent and advanced developments in 

research on Bose-Einstein condensation and quantized 
vortices in superfluidity and superconductivity, from 
experiment to theory, simulation and application; 

ii. present recently developed mathematical theories, 
including modeling, analysis and computational 
techniques, that are relevant to BEC and quantized 
vortices; 

iii. discuss and compare different recently proposed 
scientific models for BEC, especially for BEC at finite 
temperatures, and fermion condensation; 

iv. identify critical scientific issues in the understanding of 
BEC and quantized vortices and the difficulties that are 
common to both disciplines; 

v. accelerate the interaction of applied and computational 
mathematics with physics and materials science, and 
promote this highly interdisciplinary research that has 
emerging applications; 

vi. develop and foster international collaborations in a new 
era of scientific research.

Activities
1. Collaborative research: 1 November – 31 December, 

2007
2. Workshop 1: 12–16 November, 2007 
 Title: Bose-Einstein condensation: modeling, analysis, 

computation and applications
3. Workshop 2: 10–14 December, 2007
 Title: Quantized vortices in superfluidity and supercon-

ductivity and kinetic theory

Highlights of Other Activities

Biostatistics Workshop (25 October 2006) 
... Jointly organized with Department of Statistics and 
Applied Probability
Website: http://www.ims.nus.edu.sg/activities/wkbiostatistics/index.htm

Organizing Committee
Anthony Kuk, National University of Singapore 
Kwok Pui Choi, National University of Singapore

This one-day workshop was a sequel to the Biostatistics 
Workshop held at the Department of Statistics and Applied 
Probability, NUS, on 18 August 2006. It was a forum for 
working biostatisticians to share experiences on the practical 
applications of biostatistics in their work (including the 
modes of interface with clinicians and biomedical scientists), 
to discuss the challenges and opportunities that lie ahead 
for the profession, and to formulate strategies to increase the 
effectiveness and impact of biostatistics. A total of 3 overseas 
and 4 local speakers delivered lectures. The workshop was 
attended by 51 participants.

Biostatisticians enjoying a workshop

Talking shop, biostatistically

Continued on page 7
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Public Lectures
The Institute organized two public lectures in February and 
March.

Hans Föllmer of Humboldt University 
lectured on “Mathematical Aspects 
of Financial Risk”. The lecture 
was jointly organized by IMS and 
the Risk Management Institute in 
conjunction with the Department 
of Mathematics. 

Hans Föllmer: Efficient Markets, Random Paths >>>

Mathematical Conversations

Continued on page 8

Interview of Hans Föllmer by Y.K. Leong (matlyk@nus.edu.
sg)

Hans Föllmer

Continued from page 6

Hans Föllmer is renowned for fundamental contributions to 
statistical mechanics, stochastic analysis and mathematical 
finance. He is also known for his indefatigable energy 
and enthusiasm in actively promoting the applications of 
mathematics, especially to financial markets.

Having undertaken a broad education in philosophy, 
languages, physics and mathematics in four European 
universities, he obtained his doctorate (Dr. rer. Nat.) from 
University of Erlangen under the supervision of Konrad 
Jacobs. Except for a 3-year stint in the U.S. at MIT and 
Dartmouth College, his career was essentially cultivated to 
fruition in Europe — at University of Erlangen, University 
of Frankfurt, University of Bonn, ETH Zurich and Humboldt 
University in Berlin. At Bonn, he was professor twice, first 
at the Department of Economics and later, after a period of 
eleven years in Zurich, at the Department of Mathematics. 
Since 1994, he has been Professor of Mathematics at 
Humboldt University, Berlin.

His extensive publications cover several interdisciplinary 
areas. In addition to the influence of his pioneering research, 
he has made numerous contributions to the scientific 
communities in Europe and elsewhere through his active 
involvement in scientific committees and advisory boards. 
For his deep and wide-ranging contributions, he received the 
following awards: Emmy Noether award of the University 
of Erlangen, Science Prize of the GMÖOR (Gesellschaft 
für Mathematik, Õkonomie und Operations Research), 
Prix Gay-Lussac/Humboldt, the Georg Cantor Medal of the 
German Mathematical Society and an honorary doctorate 
from the University Paris-Dauphine. 

He was also elected as member of the following scientific 
bodies: Academia Europaea, Deutsche Akademie der 
Naturforscher Leopoldina, and Berlin-Brandenburgische 
Akademie der Wissenschaften.

Besides giving invited lectures at major scientific meetings 
and universities throughout the world, he is actively engaged 
in the training of scientists and mathematicians both inside 
and outside of Europe. Among other activities, he is involved 
in the International Research Training Group (IRTG) Berlin-
Zurich and the DFG Research Center “Mathematics for key 
technologies”. 

Since 2000, Föllmer is a regular visitor to NUS and has 
rendered valuable service to the Department of Mathematics 
and the Institute. He is a founder member of the Institute‘s 
Scientific Advisory Board (SAB) which successfully charted 
the direction of the Institute during its first five years. During 
a 3-year period in 2000-2003, he helped to develop the 

Hans Föllmer: Analyzing risky 
business?

Michael Waterman: 
Computation is in his genes

The second lecture, on “Computers 
and Genomes”, was delivered by 
Michael Waterman of the University 
of Southern California. It was 
organized in conjunction with the 
Bioinformatics Institute.
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Department‘s new financial mathematics program, and 
visited the department for short periods of 4 to 8 weeks to 
advise and give courses on the subject.

It was during his visit to the Institute as a member of the SAB 
that Y.K. Leong interviewed him on behalf of Imprints on 
4 January 2006. The following is an edited and enhanced 
account of this interview, in which he spoke with passion 
about his intellectual path from philosophy to mathematics, 
and gave us a rare glimpse, from the view of a pioneer at 
the interface of probability and finance, of the somewhat 
unexpected impact of stochastic analysis (an esoteric branch 
of mathematics) on stock markets (one of the most practical 
activities of an industrial society). 

Imprints: Your university education seems to have been 
rather unusual in the sense that it was taken in many places 
in Germany and France. Please tell us something about it and 
about how you became interested in stochastic analysis.

Hans Föllmer: In the German tradition, the fact that I went 
to several universities is not unusual but it‘s quite normal 
and even expected traditionally. My father, for example, as 
a student, went to four different universities. The idea was 
to get to know different schools of thought in different parts 
of the country. In that sense, I did the normal thing. I started 
out in Cologne, then I went to Göttingen, and the reason that 
I went to France was that at that time I had already focused 
on one special area, and my advisor for the diploma thesis 
asked me to go to Paris for a year in order to learn more 
about it. In the meantime, he had moved from Göttingen to 
Erlangen, and then I joined him in Erlangen, and that was 
university number four - just like my father.

I: Who was your supervisor?

F: My supervisor was Konrad Jakobs. He was working in 
ergodic theory, and the reason that he went to Erlangen 
was that he wanted to establish a joint center in probability 
with Hans Bauer who had at the same time moved from 
Hamburg to Erlangen. Bauer and his students were working 
on the potential theory of Markov processes, and my own 
interest then was, in fact, closer to Bauer‘s than to Jakobs‘. 
The reason I went to Paris in 1965 was that I was supposed 
to learn some potential theory from the sources in France 
— Choquet and Brelot, for example. Of course I also took 
other courses, and I particularly enjoyed the lectures of 
Laurent Schwartz and Jacques Neveu. After my year in Paris 
I went to Erlangen for three years. During that time there was 
a lot of activity in probability. Robert Blumenthal came for 
a year and gave a graduate course on the book on Markov 
processes which he was writing with Ron Getoor. There 
were visitors such as Paul-André Meyer, Joe Doob, Shizuo 

Kakutani, Alexandr Borovkov, Kiyosi Itô and Kai Lai Chung. 
For us graduate students that was an exciting time.

I: Were you interested in stochastic analysis right from the 
beginning?

F: No, I even didn‘t start in mathematics at the beginning. I 
first started to study philosophy and literature. Then I became 
interested in the philosophy of language, linguistics, and I 
thought it would be good for me to understand how formal 
languages like mathematics work. So I thought I would sit 
in on mathematics classes, and then I got interested, and 
slowly I got drawn into the subject. One reason was that 
mathematics was much better organized as a curriculum 
than philosophy. Philosophy was very free floating. So I got 
sucked into the mathematics program and started to enjoy 
it. There were several occasions that I thought of going 
back to my original interest, but I stayed on. The reason I 
got interested in probability rather early, in my third year of 
study of mathematics, may have something to do with my 
original motivation in philosophy because I was intrigued 
by the notions of probability, entropy and uncertainty. That 
probably played some role in my decision.

I: Was there any single person who was quite decisive in 
making you work in probability?

F: The reason that I decided to specialize in probability 
had certainly something to do with my teacher at that time, 
Konrad Jakobs. He is a very impressive person and has very 
wide interests in mathematics and beyond. I liked him a lot 
as a teacher, and he immediately helped me and supported 
me. That probably played a role, too. 

I: Was it a tradition to have broad interests?

F: Yes, that was the intellectual tradition. You were 
encouraged to take a broad approach and I liked that. 
Nowadays, it is much more focused. In retrospect, it was 
a luxury spending time on philosophy and so on. It would 
be harder to do the same thing now, also in Germany, 
because now there is more pressure on students to proceed 
quickly.

I: You taught briefly for three years in the United States 
immediately after your doctorate. Was it a cultural or 
intellectual pull that made you return to Europe to establish 
your career in Germany?

F: That was a very difficult decision. After one year in the 
States, I thought, “Okay, it was all very interesting, but, no, 
I really want to go back to Europe.” After the second year, 
I was no longer so sure, and in the third year I was strongly 
tempted to stay. Clearly the scientific situation in the United 
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States was very attractive. But I was already married and we 
had a child, and finally we decided to go back to Germany, 
mainly for cultural reasons. Soon after, I had another option 
to go back to North America, but I also had attractive offers 
in Germany, and so we decided to stay. But it was more the 
cultural pull, not so much the intellectual in the professional 
sense.

I: Your research work was initially in stochastic processes, 
which is theoretical probability theory, and you soon 
began to work on stochastic problems in other fields. Why 
mathematical finance and not other areas like biology?

F: My research was primarily in stochastic processes for 
30 years, not only initially. But I had one first contact 
with mathematical finance already in 1971 when I was at 
Dartmouth. At that time, I had an undergraduate student 
who wanted to write a senior thesis in probability, and he 
proposed to work on an optimal stopping problem related to 
insider information in finance. This was David Kreps, who 
went on to become professor of economics at Harvard and 
Stanford and to receive the Clark medal in 1989, and who 
is now dean of the business school at Stanford. I learned 
from him what an option is. That was my first contact with 
mathematical finance. But for a long time I continued to 
work in probability, on problems in martingale theory, 
in interacting particle systems, and in stochastic analysis. 
For several years, I worked on questions motivated by the 
interface between probability and statistical mechanics, 
especially probabilistic approaches to phase transitions, 
Gibbs measures, and large deviations. My interest in 
mathematical finance became more systematic only much 
later, in the mid-80s. Actually, it was again triggered off 
by David Kreps. David spent a sabbatical in Cambridge 
and he came over to ETH Zurich, where I was teaching at 
that time, and gave a seminar related to the Black-Scholes 
pricing formula for options. I got intrigued and started to 
think about it. Then Dieter Sondermann, a colleague from 
Germany, visited ETH Zurich for a month. At the same time, 
he was doing consulting work with a major Swiss bank, 
and we started to work together on some mathematical 
aspects of option pricing. From that time on, I took a more 
systematic interest. 

I: Did you work on a specific problem with this colleague 
of yours?

F: Yes, we looked at the problem of hedging financial 
derivatives in situations where the Black-Scholes paradigm 
of a perfect hedge breaks down, and we used arguments 
from martingale theory. By the way, Dieter Sondermann 
was professor of statistics in the economics department at 
the University of Bonn. He was holding the same position 
that I had held from 1974 to 1977 before I went to ETH 

Zurich. At that time, I had a position as professor of statistics 
at the economics department of the University of Bonn. 
That was from 1974 to 1977. In 1974, I had three options 
— two offers for positions in mathematics and one from 
the economics department. At that time, I decided to take 
the economics offer because I wanted to learn what those 
guys were doing. The experience of three years in the 
economics department was probably responsible for my 
later decision to pursue questions in mathematical finance. 
After three years, however, I had an offer from ETH Zurich 
and I thought it was a good time to go back to mathematics. 
One aspect of this was that in doing research with students 
on questions which I liked, the conditions were better in the 
mathematics department than in the economics department. 
But I never regretted the decision to go to the economics 
department for some time because it was a very enriching 
experience to get to know this other culture. At that time, 
Gerard Debreu (who later received the Nobel Prize in 
economics for work in microeconomic equilibrium theory) 
was visiting the economics department in Bonn for a year 
to work with Werner Hildenbrand. He came with a strong 
group of young economists from Berkeley which included 
Truman Bewley (later at Yale), Mukul Majumdar (later at 
Cornell), Alan Kirman (later at Marseille) and Andreu Mas-
Collel (for a long time at Harvard before he became minister 
of universities and research in Catalunya). That was a very 
stimulating environment, and I enjoyed that a lot.

I: How much of the field of mathematical finance has been 
accepted as an integral part of economics?

F: The fact that some of the Nobel prizes have been awarded 
to work in quantitative and even mathematical finance 
shows that the field has a lot of acceptance within the 
community of economists. I was more concerned with the 
other side — how well accepted is mathematical finance 
as a part of mathematics? My main interest was always in 
questions which are motivated by the financial applications, 
but which also have some intrinsic mathematical interest 
and can be treated as research problems in their own right 
from the mathematical point of view.

I: Decades ago, the general public would associate 
financial mathematics with more commercial activities 
like accounting and book-keeping. Do you think that this 
general public perception has been significantly raised to 
a higher level?

F: Several decades ago, before the early 70s, I would have 
had the same perception. Since then there has been really a 
spectacular change and a dramatic increase in mathematical 
sophistication. Mathematical finance has become a new 
source of appreciation and esteem for mathematics in the 
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eyes of the general public. In the financial industry, the 
number of professional mathematicians working there has 
become much higher than what it used to be. I think that 
has generated a lot of respect for mathematics within that 
community and also in a wider public. When the Nobel 
Prize was given to Mertens and Scholes for their famous 
option pricing formula, this was one of the rare occasions 
where a mathematical formula appeared on page 1 of the 
New York Times. Yes, public perception of mathematics has 
been significantly raised.

I: If I‘m not mistaken, some kind of empirical stochastic 
studies of the stock market were actually carried out before 
probability theory was rigorously established. We know 
that sophisticated mathematical tools are now used to deal 
with problems of the stock market. Have those problems 
also contributed to and possibly influenced the theoretical 
development of probability theory? If so, could you give us 
some examples?

F: I think there is an interplay between direct concerns 
with the stock market and the development of probabilistic 
concepts and methods. One very basic mathematical object 
in probability theory is Brownian motion, which plays a 
fundamental role for a number of reasons. Brownian motion 
was proposed (not under that name) in 1900 by Bachelier 
in his thesis with Poincaré in Paris as a model for price 
fluctuations in the stock market. Thus the aim to describe 
price fluctuation in mathematical terms has motivated a very 
important step in the development of the theory of stochastic 
processes. From then on, the original financial input to the 
theory of Brownian motion was for a long time forgotten. 
The theory of Brownian motion was developed on its own 
for intrinsic mathematical reasons and it was only in the 
60s that the original work of Bachelier was taken seriously 
again from the financial point of view. The group of Paul 
Samuelson at MIT started to use it systematically in the mid-
sixties, and since then Brownian motion (on the logarithmic 
scale) serves as a benchmark model in finance. 

I: Was it at a rigorous level?

F: The original work of Bachelier contained a number of 
important ideas. From the modern point of view, it was 
not as rigorous as what you would like to see nowadays. 
The fundamental mathematical problem of constructing 
Brownian motion rigorously as a measure on the space of 
continuous paths was only solved 23 years later by Norbert 
Wiener. But on the more qualitative level, some very 
important ideas, for example the reflection principle for 
Brownian motion, already appeared in Bachelier‘s work. It 
also contained a formula for option pricing. It‘s not the one 

which later became the canonical pricing formula because it 
was based not on a logarithmic Brownian motion but on the 
original Brownian motion itself, and one crucial argument 
for the Black-Scholes formula was missing, namely the 
construction of a perfect hedge. 

You asked whether those problems contributed to and 
possibly influenced the theoretical development of 
probability. My answer would be “yes”. I have already given 
the first example. The introduction of Brownian motion 
was motivated by the financial interpretation. Another 
example is the revival of martingale theory in the late 80s. 
Martingale theory had flourished in the 60s and 70s. The 
financial interpretation suddenly provided a fresh look and 
new questions. Several theoretical developments are due 
to that financial interpretation. One example is the pricing 
theory in incomplete financial markets. Let me explain. From 
the mathematical point of view, the Black-Scholes formula 
simply reduces to the following basic fact about non-linear 
functionals of Brownian motion. A fundamental theorem of 
Kiyosi Itô says that such a functional can be represented as 
a stochastic integral of Brownian motion. In the financial 
interpretation, the integrand can be interpreted as a trading 
strategy. The non-linear functional describes the payoff of 
a financial derivative, for example a call option. Thus Itô‘s 
representation theorem shows how to represent the payoff 
as a result of a trading strategy involving the underlying 
financial assets. This leads to a recipe for pricing. The 
initial constant which generates, using the trading strategy, 
the payoff may be viewed as the cost of replicating the 
financial derivative. This implies that the initial cost is the 
right price for that option. Otherwise there would be an 
arbitrage opportunity. That is the key to what is known as 
the Black-Scholes formula. From the mathematical point of 
view, one could say that it is simply an application of a basic 
representation theorem in stochastic analysis for functionals 
of Brownian motion.

I: Who was the first to make this observation?

F: Originally, the Black-Scholes formula was not derived 
by a representation theorem. It was derived by a direct 
argument using the Itô calculus and the solution of an 
appropriate partial differential equation. The full power of 
the representation theorem is needed if you pass from simple 
financial derivatives such as call options to more exotic 
options. Then you need the functional on the full path space. 
The connection to the representation theorem was clarified 
by David Kreps, whom I‘ve mentioned earlier, Michael 
Harrison and Stan Pliska in the 80s. They recognized the 
relevance of previous work on the representation problem 
which had been done in martingale theory. It is known that 
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the representation theorem holds if and only if there is a 
unique martingale measure. How to explain a martingale 
measure? Typically one fixes a probabilistic model for the 
price process, for example, a geometric Brownian motion. 
Such a model is specified by a probability measure on path 
space. If you now change the model by switching to another 
probability measure which is equivalent to the original one 
such that the given process becomes a martingale under 
that new measure, then that measure is called a martingale 
measure. To be a martingale means to behave like a fair game 
with respect to that measure. This notion of a martingale 
measure is very fundamental in mathematical finance. That 
the representation theorem holds is equivalent to uniqueness 
of the equivalent martingale measure. This had been shown, 
quite independently of the financial interpretation, already 
in the 70s and early 80s in the French school of probability; 
in particular by Jean Jacod and Marc Yor. 

New questions which arose had to do with the fact that the 
martingale measure may not be unique. Then the situation 
becomes more complicated. The question arises: which 
martingale measure should one choose as the pricing 
mechanism. How should one construct a reasonable 
hedging strategy? This question leads to a projection problem 
for martingales and, more generally, for semi-martingales. It 
triggered off a new development in probability theory where 
the projection theory of Kunita-Watanabe for martingales 
was extended to semi-martingales. So that was a new version 
of a basic projection problem in probability which was 
motivated by finance.

Another example is the following. If you want to hedge the 
financial derivative, you may insist on staying on the safe 
side and make sure that there is no shortfall at the end of 
the day. Mathematically, this leads to the theory of super-
hedging which can be seen as a new generalization of the 
classical Doob-Meyer decomposition for supermartingales, a 
fundamental theorem in martingale theory. This new version, 
now often called the optional decomposition theorem, was 
developed first, in a special context, by Nicole El Karoui 
and then in full generality by Dima Kramkov, a former 
student of Albert Shiryaev in Moscow, at that time a postdoc 
in Bonn, and now professor at Carnegie-Mellon. For this 
work he received a prize of the European Mathematical 
Society for junior mathematicians in 1996. This is another 
example where a question in finance led to a new problem 
in probability and triggered off a significant advance on the 
theoretical level.

I: The concepts and ideas are totally new?

F: The optional decomposition is definitely a new step. It 
is not a straightforward generalization. You can see that in 

discrete time. There the Doob-Meyer decomposition can be 
written down in three lines, but the extension to the optional 
decomposition, even in discrete time, takes several pages. 
It involves a new combination of martingale arguments and 
arguments from convex analysis. It is not just a technical 
refinement; it is a conceptual advance.

I will give you a third example. In applying arguments from 
mathematical finance, you usually fix a probabilistic model. 
Typically, there is a significant amount of model uncertainty. 
You cannot be sure that the chosen probability measure 
really describes the objective situation. One way of dealing 
with that is to take into account a whole class of possible 
probability measures. Then many new problems arise. For 
example, the classical problem of optimal portfolio choice 
translates into a new projection problem. You have to project 
the whole class of model measures on the class of martingale 
measures. In the usual case, you would simply project one 
single measure on a given convex class of measures. This 
problem is well understood, especially if the projection 
problem is formulated in terms of relative entropy. The 
question of model uncertainty leads to a new robust version 
of the classical projection problem, which has been treated 
only recently. It has been solved last year in joint work with 
Anne Gundel while we were both at the IMA in Minneapolis 
for a program in financial engineering.

I: Does the computer play a significant role in your work 
on stochastic finance? Do you rely on the empirical data to 
shape your ideas?

F: I am staying on the theoretical side. I do not work myself 
on the computer or use simulations, but I follow some of 
the developments on the empirical side. Some of my own 
work is motivated by empirical work on the microstructure 
of financial time series. There are new modeling issues which 
arise. For example, if you look at financial data on a tick by 
tick basis, it provides the motivation to model the dynamics 
of an order book. So you do not immediately switch to the 
mesoscopic level of description by means of stochastic 
differential equations but you try to model the dynamics of 
the market microstructure. That also raises the question of 
how do you model in mathematical terms the interaction of 
many agents who trade and place their orders. To develop 
mathematical models for the microstructure of financial 
markets is a very challenging research program which calls 
for methods developed in the theory of interacting particle 
systems. I‘ve recently been involved in some related issues in 
joint work with Ulrich Horst, a former PhD student in Berlin 
who is now at UBC in Vancouver, and with Alan Kirman, 
whom I have already mentioned before.
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I: It seems that mathematical finance is built on axiomatic 
and abstract principles (like the efficient market principle). 
Have these principles been tested and verified? 

F: The efficient market hypothesis comes in different forms. 
In its strong form, it says that the price fluctuation you 
observe behaves like a martingale. As a special case, it 
would be the random walk hypothesis, which assumes that 
price moves like a random walk. What you see is usually 
not so far from the martingale property, but there is a lot of 
evidence that you should not take it literally. In fact, that form 
of the hypothesis is too strong. If you move away from that 
hypothesis, it means that due to a basic systems theorem of 
Doob there are strategies that generate a positive expected 
gain. But there is a weaker form of the hypothesis which 
is much more flexible. It says the following. There may be 
strategies with positive expected gain but it is not possible 
to have positive expected gain and zero downside risk. In 
other words, there are no free lunches. That makes economic 
sense because if free lunches were available, there are 
enough clever people around to seize the opportunity and 
to wipe them out. In this more flexible form, the hypothesis 
is widely accepted. There is a broad consensus that you 
don‘t find free lunches even though you may be able to 
make profits with positive expected gain accepting some 
downside risk. In this weaker form, the hypothesis has been 
a rich source of interesting mathematical developments. It 
has been shown that the absence of arbitrage opportunities is 
mathematically equivalent to the fact that there are equivalent 
martingale measures. That is an existence theorem. Modern 
mathematical finance starts on that basis.

I: Can mathematical finance be considered a science?

F: If you translate the question into German, the answer would 
be clearly “yes”. In German, “science” is “Wissenschaft” and 
“Wissenschaft” is rather broad. It‘s not just natural science, 
it also includes the social sciences, economics, and finance 
as well. 

I: If it is a science, one should be able to falsify principles 
or hypotheses in mathematical finance.

F: Yes. For example, there is a lot of empirical evidence that 
the efficient market principle in its strong form does not hold. 
Personally, I do not work under that strong hypothesis. I do 
work under the weaker one. There is no significant evidence 
that I know of which would refute it. 

I: Does it mean that in finance there are such things as laws 
that govern the behavior of stock markets?

F: I do believe in the relevance of probabilistic laws in 
finance. It‘s reasonable to describe price fluctuations in terms 
of probability measures on certain path spaces. The absence 
of free lunches amounts to the existence of an equivalent 
martingale measure, and this implies that continuous price 
fluctuations are nowhere differentiable. This can be viewed 
as a law which explains the erratic price behavior of a liquid 
stock which you actually see on a mesoscopic time scale. 
If you take the problem of pricing financial derivatives, you 
can show that a price must satisfy certain bounds if it does 
not create arbitrage opportunities. Such arbitrage bounds 
can be seen as a law, too. Mathematical finance is certainly 
a science, by my understanding of science.

I: Have you done consultation work for any financial 
organization?

F: No, I have not done that personally. But some of my co-
authors have been involved in that. I have former students 
who are involved in that. I am following some of their 
activities, but I try not to get involved myself.

I: It‘s very lucrative.

F: It may be lucrative, but it also may change your life. I had 
occasion to watch while working on a joint paper how my 
co-author was, every once in a while, called to the phone 
because the program had to be urgently modified in some 
bank where his ideas were being implemented. I would not 
like that kind of pressure.

I: What is your advice to graduate students who are keen 
on a career in mathematical finance?

F: My advice to my own students is to get a broad and 
solid education in mathematics and not to specialize too 
early. Even if you decide to work in this area of finance, 
either in academia or the financial industry, it‘s a field that 
evolves rather fast. You need a lot of flexibility, also on a 
mathematical level. It‘s not clear that it will be enough to 
know the tools, for example, needed to understand the 
Black-Scholes formula. Other challenges may come up 
which may require very different techniques. I already 
gave you one example — the microstructure of financial 
markets. You have to be a good probabilist to react efficiently 
and to use other methods as well. To my own students, 
I recommend them not to narrow down too early but to 
make sure that they are comfortable with a wide range of 
techniques in probability and analysis.

Continued from page 11
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Avner Friedman

Avner Friedman: Mathematician in Control >>>

Interview of Avner Friedman by Y.K. Leong (matlyk@nus.
edu.sg)

Avner Friedman has made important contributions, both 
in theory and applications, to partial differential equations, 
stochastic differential equations and control theory. His 
career, especially during the past two decades, epitomizes 
a personal mission and relentless drive in bringing the tools 
of modern analysis to bear in the service of industry and 
science.

His distinguished career began at the Hebrew University, 
Israel and weaved, in a somewhat colorful way, through 
Kansas, Indiana, Berkeley, Minnesota, Stanford, Northwestern 
and Purdue, culminating in the directorship of the Institute 
for Mathematics and its Applications (IMA) , Minnesota 
(1987–97), Minnesota Center for Industrial Mathematics 
(MCIM) (1994–2002) and Mathematical Biosciences 
Institute (MBI) of the Ohio State University (2001–). He 
is also the Distinguished Professor of Mathematical and 
Physical Sciences at Ohio State University, the latest in 
a chain of numerous distinguished professorships in the 
universities he has passed through.

His service on many U.S. national boards and advisory 
committees is an indication of his boundless energy and 
selfless efforts in promoting the applications of mathematics 
and advancing the mathematical sciences. Among the 
honors and awards he received for his wide-ranging 
contributions are the Stampacchia Prize, NSF Special 
Creativity Award, and membership of American Academy 
of Arts and Sciences and of the U.S. National Academy 
of Sciences, He has served and continues to serve on the 

Continued on page 14

editorial boards of numerous leading journals in analysis, 
applied mathematics and mathematical physics. His prolific 
research and scholarly output has resulted in more than 
400 publications, written singly and jointly, and 20 books. 
He has always been in demand for invited lectures in and 
outside the U.S. Even at the biblical age of three score 
and ten and beyond, he is directing a concerted effort to 
bring problems of the biosciences within the reach of the 
mathematical sciences.

As a founding member of the Scientific Advisory Board 
(SAB) of IMS since 2000, Friedman has contributed to the 
development and success of the Institute in its first five years. 
On his annual visit to the Institute, he was interviewed by 
Y.K. Leong on behalf of Imprints on 6 January 2006. In the 
following edited and vetted account of the interview, one 
can feel the palpable excitement of applying mathematics to 
the real world and of being drawn into the personal world 
of a creative and gregarious personality. 

Acknowledgment. Imprints would like to thank Dr Lynn 
Friedman for assistance in the preparation of this version.

Imprints: What was the topic of your Ph D thesis? Did it set 
the general direction of your future research?

Avner Friedman: My thesis was in partial differential 
equations. It dealt with several different subjects. I have been 
involved in differential equations my entire career, but have 
also diversified to other areas.

I: You didn‘t change fields?

F: I didn‘t change fields in the sense of going from partial 
differential equations to algebra. But within partial 
differential equations, I diversified to a number of areas. 
Partial differential equations are used in, for example, control 
theory, applications to industry and, recently, mathematical 
biology.

I: You went to University of Kansas immediately after your 
doctorate. Was there any specific reason for this decision?

F: One chapter in my thesis dealt with the so-called problem 
of unique continuation. Professor Nachman Aronszjan, at 
the University of Kansas, had done some very important 
work on unique continuation. I wrote him about my results, 
and, soon afterward, he invited me to come as a research 
associate to his department. I was there for one year.

I: From your publications, it seems that initially you were 
primarily interested in the theoretical aspects (analysis) of 
partial differential equations but very soon afterwards, you 
also did and continue to do a lot of work in applied areas 
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like control theory and stochastic differential equations. 
When and how did that happen?

F: I have always worked on partial differential equations, and 
I have looked for areas where they can be applied. That‘s 
why I started to migrate into areas of applications such as 
control theory. For a while, I went completely into stochastic 
differential equations because there were interesting 
problems in game theory, that is, stochastic games: problems 
of pursuit of objects when only partial information is known. 
It turned out that this topic was very well connected with 
partial differential equations, and I came back to doing 
partial differential equations through stochastic differential 
equations. By exploring these applications, I enriched my 
areas of knowledge and research.

I: Did those applied problems contribute new insights or 
new developments in partial differential equations?

F: Absolutely. They were very exciting problems. I started 
to be interested in real applications in the late 1980s when 
I was exposed to problems in industry that some of my 
colleagues, especially in England, were tackling. Later on, I 
moved from Northwestern to Purdue and then to Minnesota 
to be the director of IMA (Institute for Mathematics and its 
Applications). By that time I was completely immersed in 
problems from industry, and I found out that a large number 
of theoretical problems in partial differential equations came 
out of industrial problems.

I: From your large number of publications, it seems that not 
only are you prolific in writing papers on your own but you 
also enjoy collaborating with a lot of people. How much of 
this is due to your own personal temperament and how much 
to a research philosophy that is consciously pursued?

F: I think that if you look at the trend in mathematics, you will 
see that increasing numbers of papers are co-authored by two, 
sometimes three people. More and more, mathematicians 
and mathematical scientists are talking among themselves. 
It is extremely stimulating to do so, especially in applied 
areas. Many of my first papers were done alone, but most 
of my work now is joint. I often collaborate with others, 
particularly my former students.

I: Unlike the term “applied mathematics,” the term 
“industrial mathematics” is a relatively new one. Could you 
tell us briefly what exactly is “industrial mathematics”?

F: In applied mathematics, you pick up problems from the 
sciences, engineering and other academic disciplines; you 
may look at the literature to find out where the problems 
are and try to solve them using mathematical tools. You 
may discover new mathematics. In industrial mathematics, 

by contrast, you go to industry to find the problems. The 
problems are not usually published, and you have to talk 
to people. You have to find out what those in industry 
are interested in today, because tomorrow they may be 
interested in something else — or they may be out of job. 
Find out what they are doing now, what is interesting to 
them and what the time horizon is for solving the problems. 
Then you may talk to them, or to your colleagues, or simply 
think by yourself to come up with suggestions for a solution. 
You don‘t necessarily need to find complete solutions. If you 
publish a paper in mathematics, you must present complete 
proofs. In industrial mathematics, you may get a 90 percent 
instead of 100 percent solution, but you must get it in a 
timely fashion. 

I: Is work in industrial mathematics usually acceptable to 
journals in mathematics for publication?

F: Oh, yes. In the IMA, we had a seminar for industrial 
mathematics, and we had about 25 speakers every year 
coming from industry. Each one came with a different set of 
problems. I wrote up, and sometimes rewrote, the problems. 
There are 10 volumes of these, each containing about 25 sets 
of problems in a particular subject. About 50 publications 
were based directly on these problems. There are another 50 
papers that might be called second-generation. For example, 
there was a lot of work done in optics, in scattering, that 
came from my contacts with Honeywell and some other 
companies. This has been pursued by some of the people 
at the IMA, some of my students and postdocs, and they are 
still working on them with Maxwell‘s equations. There is a 
stream of papers that has come out of industry.

I: You mentioned that you published a series of volumes 
on industrial mathematics. They are not papers but actually 
books.

F: Yes, in each chapter, there is an introduction to the 
industrial problem, and then I formulate open problems for 
mathematicians.

I: It‘s quite encyclopedic in scope, isn‘t it? This must have 
required tremendous energy.

F: Yes, but energy is a function of enthusiasm.

I: Has any of your applied research been used in industry?

F: Absolutely. Work that we have done in optics, called 
“diffractive grading,” was used by Honeywell in order to get 
grants from the defense department. Also in collaboration 
with postdocs, I did some work that led to patents at 
Ford Motor Company. Work that I did myself involving 
semiconductors and modeling was used by Motorola in chip 
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design for instrumental control to control the acceleration 
of a car.

I: You are also working on problems in biology?

F: Well, that‘s what we do at the MBI. I am personally 
fascinated by the mathematics of cancer, which happens 
once again to involve partial differential equations.

I: What is your most satisfying piece of applied research 
work?

F: Well, I think the most satisfying piece of research is 
whatever I‘m working on now. Whenever you work on 
a problem, it is the most exciting thing in your life for the 
time you are working on it. If you work in a field that is 
rapidly developing, it‘s not just one paper but a sequence 
of papers. Right now, we have a very interesting line of 
research that is motivated by cancer, but is nonetheless 
pure partial differential equations. This is the question 
of bifurcation problems in free boundary problems. The 
solid tumor is a moving region, and you don‘t know how 
it‘s going to move and grow. It develops fingering and so 
on. We try to prove theorems for moving boundaries with 
fingers, developing fingers as bifurcations. This is really an 
open area of problems.

I: Do you have to talk to other people like biologists?

F: I would say that I get to talk to biologists, specifically to 
experimentalists who work as oncologists. Of course, I also 
talk to other mathematicians working in partial differential 
equations.

I: Do the biologists seek you out to solve their problems?

F: At first, I go to them. When they are convinced that we 
are actually useful to them, then they also come to us. That 
has been my experience.

I: But it‘s not very easy to convince a pure mathematician 
to go and solve those problems.

F: It‘s not easy at first, because you have to do a lot of 
work before you can be useful to the biologists. You have 
to learn a lot. But I started the MBI because I was certain 
that mathematicians could make key contributions in the 
biosciences. Now, it‘s my personal research interest and my 
administrative role combined. And we have 14 postdocs 
involved in different fields of the biosciences. Some of them 
work on cancer and others on neuroscience, physiology, 
ecology, genomics, etc.

I: Can you tell us something about the IMA and MBI?

F: The IMA was started in 1982. There was a national 
competition for mathematical institutes. The NSF decided to 
have two — one in Berkeley in core mathematics, and the 
other in Minnesota in more applied work. Hans Weinberger 
was the director of the Minnesota institute for its first five 
years. I succeeded him as director. At that time I started to 
emphasize interaction with industry in addition to general 
applied mathematics. My point of view was that applied 
mathematics could only gain wide acceptance, say, in 
industry, if those doing mathematical research in industry 
knew you actually could connect with and care about 
the problems with which they were dealing. In addition, I 
thought you would find very interesting problems in industry, 
so I started to visit companies. Typically, I would spend two 
days in one company and talk to about 20 people. Out of 
these, I would identify one or two people whose problems 
might benefit from mathematical input. I would then invite 
them to talk in my seminar.

After 10 years, I stepped down from IMA, and started the 
Center for Industrial Mathematics in University of Minnesota. 
It is a degree program. Graduate students who want degrees 
in applied and industrial mathematics spend a summer 
internship in a company and come back to author a masters 
thesis. Some of them continue to write PhD theses supported 
by industry.

When NSF called for new proposals, I was already interested 
in the opportunities biology was bringing to mathematics. 
I was in Minnesota at that time, and you can‘t expect NSF 
to support two institutes in one department, so I worked 
together with people at Ohio State University to write a 
proposal in mathematical biosciences. It was a good time 
for OSU: the medical school was hiring many new people in 
biological sciences, and people in statistics were very active 
in biology. Our proposal was successful, and I became the 
first director of the MBI.

I: What is generally understood as “applied mathematics” 
in the United States?

F: Keith Moffat and I have talked about the fact the “English 
applied mathematics” has a different flavor from “US 
applied mathematics.” To give you a flavor of US applied 
mathematics, materials science is an important area of 
applied math in the United States. You can use mathematics 
in the modeling of it. For example, car companies want to 
increase mileage per gallon — it‘s a government requirement. 
To do so, they want to replace steel with lighter material, 
say aluminum. But aluminum is not strong enough, so they 
add carbon particles to make it stronger, and it turns out 
that partial differential equations can be used to predict 
how this new material will behave. Ford Motor Company 
actually came up with a problem and we did some work 
on it at the IMA.
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Michael Todd: Optimization, an Interior Point of View >>>

Interview of Michael Todd by Y.K. Leong (matlyk@nus.
edu.sg)

Michael Todd is well-known for his fundamental contributions 
to continuous optimization, both in the theoretical domain 
and in the development of widely-used software for 
semidefinite programming.

Michael Todd

His research work has left a deep impact on the analysis 
and development of algorithms in linear, semidefinite 
and convex programming; in particular, on interior-point 
methods, homotopy methods, probabilistic analysis of 
pivoting methods and extensions of complementary pivoting 
ideas to oriented matroids. 

He did his B.A. at Cambridge University and Ph.D. at Yale 
University. Except for a two-year stint at the University of 
Ottawa, his scientific career began and developed into 
prominence within Cornell University, where he is now 
the Leon C. Welch Professor in the School of Operations 
Research and Industrial Engineering.

He has been invited to give talks at major scientific 
meetings and universities throughout the world. He held 
special appointments at leading universities and centers of 
research in economics and operations research, such as the 
Fields Institute (Toronto), Carnegie-Mellon University, the 
Cowles Foundation for Research in Economics (Yale), the 
OR Center (MIT), the University of Washington, BellCore 
(US), Cambridge University and the Center for Operations 
Research and Econometrics (CORE, Leuven, Belgium). He 
has served, and continues to do so, on the editorial boards 
of leading journals on optimization, operations research 
and computational mathematics. Among the honors and 
awards given in recognition of his important research 
are Guggenheim and Sloan Fellowships, the George B. 

Continued from page 15

I: Are these predictions successful mathematically?

F: Yes, it turns out that the predictions have been very 
useful to the engineers. As a result, the field has completely 
changed since our first materials science program in 1985. 
The mathematical community of people working in materials 
science has increased tremendously. Other examples of US 
applied mathematics come from applications in control 
theory, computational science, applied linear algebra, fluid 
dynamics, scattering theory, nonlinear waves in oceans and 
materials, polymeric materials and polymers.

I: What about operations research?

F: Operations research applications have ranged from 
manufacturing to finance, and there is so much more. 
Imaging has developed rapidly in many aspects: imaging 
distant targets is a different problem than imaging at the 

molecular level. Speech recognition — we have a volume 
at the IMA in speech recognition — involves Markov 
processes. Applications even come in from traditionally 
pure mathematics. The field of U.S. applied mathematics 
is vast and diverse. We had programs in applied number 
theory, in coding, communications, graph theory, scientific 
computation as well as fluid dynamics.

In England, by contrast, fluid dynamics used to be the 
crowning theme, because England is surrounded by water. 
Traditionally, England is very strong in computational fluid 
dynamics, and they are looking at all kinds of phenomena 
in waves and fluids. Many of the mathematicians working 
on these problems inspired me to get involved in applied 
mathematics in the first place and ultimately to bring industry 
to the table to expand the kinds of problems mathematicians 
are involved in solving. 
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Dantzig Prize of the Mathematical Programming Society and 
SIAM, the John von Neumann Theory Prize of the Institute 
for Operations Research and the Management Sciences 
(INFORMS) and INFORMS Fellow. 

Todd has close research links with NUS faculty in the 
Department of Mathematics and was Chair of the Organizing 
Committee of the Institute‘s program on “Semidefinite 
programming and its applications” held in 21 December 
2005–31 January 2006. During his visit for this program, Y.K. 
Leong interviewed him on behalf of Imprints on 9 January 
2006. The following is an edited version of the interview in 
which he gives us a stimulating glimpse of the theoretical 
insights behind one of the most important applications of the 
mathematical sciences to operations research, engineering, 
economics and industry. 

Imprints: You did a B.A. in mathematics at Cambridge and 
went to Yale to do a Ph.D. in administrative sciences. Was 
the thesis topic a mathematical one?

Michael Todd: Yes. I took a course from Herbert Scarf in 
mathematical economics at Yale. He described his recent 
work in computing approximate fixed points, and I got very 
fascinated by his work and, in general, by complementary 
pivot algorithms which use purely combinatorial arguments 
to solve optimization problems. I wanted to understand 
the combinatorial background to these methods. That was 
the basis of my thesis. It was indeed a mathematical one. 
“Administrative sciences” is a strange name. There aren‘t 
too many departments of administrative science, and they 
chose it so that it didn‘t sound too much industrial, too 
much business school. Basically, it‘s about the science and 
mathematics of decision-making.

I: Why didn‘t you go to the mathematics department 
instead?

T: I had been supported in Cambridge by Shell. They had 
a fellowship for me and they suggested that I go abroad for 
a couple of years to a business school. With a fellowship 
between my college in Cambridge and Yale, I went there 
mainly to see America for a couple of years and then 
I decided to stay because it was fascinating. Choosing 
the department was sort of difficult, and it was really an 
accident. 

I: Were you interested in pure or applied mathematics right 
at the beginning?

T: At Cambridge, my work was basically in pure mathematics, 
but towards the end of it — and especially when I was at 
Yale — I decided that the applications were interesting. I got 

fascinated by the applications, in particular, by algorithmic 
questions. 

I: Is semidefinite programming a generalization of linear 
and convex programming?

T: Semidefinite programming is a generalization of linear 
programming. In linear programming the variable is a 
vector whose components all have to be non-negative. In 
semidefinite programming, you have a symmetric matrix 
and all its eigenvalues have to be non-negative, so it has to 
be positive semidefinite. So it is more general than linear 
programming but it is a subclass of problems in convex 
programming.

I: Could you give us some examples of problems that involve 
semidefinite programming?

T: One of the nicest things about semidefinite programming 
is the wide range of areas in which it has been applied. I 
think that the first interest probably came from people in 
control theory who wanted to study ways of controlling 
dynamical systems optimally and making sure that they were 
stable. That led to inequalities that required certain matrices 
to be positive semidefinite. There are also applications 
in a completely different area related to combinatorial 
optimization problems connected with graph partitioning. 
Another source of semidefinite programming is robust 
optimization, which has been a hot topic recently. All of 
these different areas lead to an interest in efficient algorithms 
for semidefinite programming.

I: Is there an optimally efficient algorithm for solving linear 
programming problems?

T: That‘s the holy grail of linear programming research. 
It‘s a very intriguing situation. Now we have two different 
classes of algorithms — simplex algorithms and interior-
point methods, and there is wide disparity between them on 
some classes of problems — sometimes one is much faster 
than the other. They are very different theoretically. The 
simplex method in the worst case is exponential but seems 
to perform very well in practice. Interior-point methods have 
a polynomial time bound and they perform much better than 
that bound in practice. For large-scale problems, it is not 
clear which one is the more efficient. There may be some 
new methods that will do even better. We‘re still waiting 
to hear about that.

I: Are these two methods connected?

T: Not very closely. They are based on very different 
geometric views of linear programming. The set of feasible 
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solutions in linear programming is a polyhedron and the 
optimal solution always lies at a vertex. So it‘s natural to 
consider algorithms that just go from vertex to vertex and 
that‘s what the simplex method is based on — an algorithm 
that traces the skeleton of this polyhedron. Interior-point 
methods move through the interior and make smooth 
approximations. So they ignore much of the combinatorial 
structure and look at the analytic structure.

I: So one is discrete and the other is continuous.

T: Exactly. Interior-point methods never get an exact solution 
unless you do a special rounding procedure, but they get 
very, very close, and incredibly fast: you have to solve a 
very small number of systems of equations which are more 
complex than the equations in the simplex method.

I: How do you know which method to use?

T: It could be based on the software that you have. Most 
efficient commercial software allows you the option to use 
either one. I think people look at their class of problems and 
decide which one works better for their problems.

I: Which one is more popular?

T: I think for historical reasons the simplex method is more 
popular, but if you want something jazzy, the interior-point 
method is certainly a wonderfully efficient method for 
solving these problems.

I: Are there any probabilistic methods?

T: There are but we should distinguish two viewpoints. First 
of all, some algorithms make random choices and there 
are some very interesting theoretical ideas that have been 
used in low-dimensional problems that have much better 
computational complexity on certain classes of problems 
than the more usual ones. But there are also probabilistic 
analyses of the deterministic algorithms that people typically 
use on large-scale problems. Simplex and interior-point 
methods work in practice much, much better than their 
worst-case bounds. We would really like to understand that. 
One way to do it is to assume that the problem is random 
and to understand the average behavior of the algorithm on 
random problems. Some very interesting results have been 
obtained along those lines.

I: I noticed that there is a mention of homotopy in one of 
your papers. Is there something topological about it?

T: I think it is more a question of how the methods are based 
on different geometric views, and earlier I described a little 
bit how the simplex method is based on the combinatorial 

geometry and the interior-point method on the convex 
geometry. My earlier work was related to algorithms for 
computing approximate fixed points: homotopy ideas come 
up, but also the combinatorial topology and geometry of 
triangulations. Those algorithms were very interesting but not 
too much can be said about their computational complexity. 
They tend to be useful for small dimensions, up to maybe 
50, on very nasty nonlinear problems, whereas linear 
programming and semidefinite programming problems are 
often much, much larger and more highly structured.

I: Is the software for implementing the algorithms freely 
available?

T: That really depends on whether you are talking about 
linear programming or semidefinite programming. Linear 
programming is very widely applicable and has huge 
commercial implications. So the very best codes cost you 
some money, but there are some very good codes that you 
can obtain freely. There are a couple of websites where 
you can get some good codes for linear programming. 
But for semidefinite programming, the market is probably 
more in the scientific and engineering community; so you 
can‘t charge them a lot of money. Most of the algorithms 
are freely available, and several of those are available 
on the web. A good starting point is the NEOS Solver for 
Optimization site.

I: Have you written some of those yourself?

T: Yes, actually with one of my National University of 
Singapore colleagues and another colleague: Kim-Chuan 
Toh, who‘s in the Mathematics Department here, and Reha 
Tütüncü of Carnegie-Mellon University. We have a package 
for semidefinite programming, and it can also be used for 
linear programming.

I: Could you give us an idea of the complexity involved in 
semidefinite programming?

T: I‘ll give you some sort of an idea. First of all, these 
interior-point methods have been extended from linear 
programming to semidefinite programming. They typically 
take a very small number of iterations, perhaps 10 to 50, 
but each iteration involves a lot of work. Even if you have a 
problem with sparse data, in the semidefinite case you have 
to solve a generally dense large linear system of equations 
and that can be very costly. So these methods are typically 
very computationally burdensome, and the number of linear 
constraints can only get up to a thousand or two. These 
algorithms can give very accurate solutions. Other classes 
of algorithms, based more on first-order methods, can solve 
much larger problems with tens of thousands of constraints. 
They get much less accurate answers and don‘t have such 
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good complexity bounds, but can be quite fast in practice. 
I‘d say a thousand to ten thousand is the order of the matrices 
involved and the number of constraints that you can handle 
with these methods.

I: Can all linear programming problems be solved in 
principle by quantum computers or a theoretically most 
powerful computer?

T: I don‘t know a huge amount about quantum computers. 
From what I understand, I think it is possible to solve linear 
programming problems in one step. There‘s only a finite 
number of possible options, the vertices of the polyhedron, 
and the quantum computer is allowed to examine them all 
simultaneously and pick out the best. Similarly for biological 
computers based on DNA and so forth. I don‘t know how 
practical these methods are. For semidefinite programming, 
I don‘t see that you can get an immediate solution, but it 
will be interesting to find out.

I: What happens if one day we really get quantum computers? 
Will linear programming problems be trivialized?

T: Yes, but maybe also all NP-complete problems too. It‘s 
not clear that these methods can really push all problems 
that are currently considered interesting to become totally 
trivial. I don‘t know whether such computers will really ever 
become that practical.

I: Do you believe in quantum computers?

T: I think it is a nice theoretical concept to consider, but I‘m 
not expert enough on computers to comment on that.

I: Do you consider yourself to be an applied mathematician 
or a pure mathematician?

T: I‘d say applied mathematician — that‘s what I say to 
people I meet on the plane. But just as with pure mathematics 
this generally gets the same response, “That was my 
worst subject. I don‘t understand it at all,” which is very 
unfortunate. Sometimes I try to explain some of the nice 
things that mathematics can do.

I: Do you think algorithmically or geometrically?

T: I think geometrically a lot of the time. There are so many 
different ways of looking at optimization problems, from 
optimality conditions, to the theory of the algorithms and 
the modeling. I try to keep computational concerns in the 
back of my mind, but I‘m still very interested in the theory 
as well. The geometric viewpoint on optimization problems 
really attracts me.

I: But at the end of the day, you still have to do the 
computations.

T: Yes, you do, and it‘s nice to be within, say, six degrees 
of separation, or fewer, from people who are actually 
practically solving applied problems. Even if you are not 
producing the software, you are motivated by improving 
the algorithms so that people can actually solve larger 
problems faster.

I: Except for two years in Canada, you have been at Cornell 
right from the beginning of your career. Have you ever 
thought of moving to other universities?

T: There have been a few times when I thought about it. 
But overall, Cornell has been a very attractive environment 
for me. The School of Operations Research and Industrial 
Engineering has some wonderful colleagues, both in 
optimization and more generally in operations research. The 
university as a whole, and mathematics and engineering, 
have wonderful people, and the quality of the graduate 
students has been terrific. I really enjoy working with the 
students in operations research and applied mathematics. 
It‘s also a wonderful place to live and very naturally 
beautiful.

I: Do you talk to people in economics?

T: Economics, once in a while, probably less than people 
in engineering, computer science, mathematics, but still 
occasionally, yes. My interest in economics was more during 
the 70s, a long, long time ago. I have sort of lost touch with 
the latest things that have been done now.

I: What advice would you give to a graduate student who 
is interested in applied mathematics?

T: You really need to find a problem where you feel so 
excited about it that you have a fire in your belly to keep 
working on it. You should look at all options, keep your 
options as open as possible, find an advisor to help you see 
the right approach at the right time and to let you do what 
inspired you to work in the area, and hope you find the 
way ahead of you.

I: Have you gone back to Britain?

T: I‘ve gone back socially, for family reasons or whatever, 
every year or so. I spent one sabbatical back there and 
I‘ve been back for several conferences. I find in the area 
I‘m working in there are interesting people in many places 
in the world: in England, but also in Belgium, France, 
Germany, Japan and Singapore besides the US that I work 
with as well.
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I: The name of the school you are in — “School of 
Operations Research and Industrial Engineering” — seems 
to give people the impression that it has very little to do 
with mathematics.

T: It‘s more of a question of how it evolved. We have 
people who are much more involved with practical work 
and consulting, but I think many of us regard ourselves as a 
mathematical sciences department within engineering. We 
have people working in applied probability, statistics, and 
optimization, from quite a theoretical viewpoint to a more 
practical viewpoint. It‘s nice to have that full spectrum, but 
many of the faculty were very well-trained mathematically. 
A lot of us have appointments also in the Center for Applied 
Mathematics, and some people have appointments in 
mathematics as well.

I: How is your relation with the engineers?

T: Pretty good. Some fields of engineering are closer than 
others. We are not too much involved in the experimental 
side, but for example our relations with electrical engineering 
and computer science are very good. 

I: Do you try to educate the engineers mathematically?

T: I try. I very often have students from other parts of 
engineering taking my classes. Along with the modeling 
and computation involved, I try to make them understand 
that the abstract viewpoint can be valuable. I hope they 
appreciate the beauty of mathematics. I think that in a strong 
engineering college, the students are pretty much aware 
of the advantages of having good mathematical training, 
particularly the graduate students.
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