Stein’s Method on Wiener Chaos, and Level Sets of Gaussian Fields

Giovanni Peccati (Luxembourg University)

Singapore — June 28, 2019
REFERENCES

Charles Stein and Paul Malliavin

In 2009, together with I. Nourdin, we discovered a connection between Stein’s method for probabilistic approximations (Stein, 1972) ...

... and the Malliavin calculus of variations on a Gaussian space (Malliavin, 1978).
THE CONNECTION

★ In the framework of normal approximations, Stein’s method requires indeed one to **uniformly bound** quantities such as

\[|\mathbb{E}[Fg(F)] - \mathbb{E}[g'(F)]|, \]

over some class of smooth mappings \(g \).

★ When \(F \) is a smooth functional of a Gaussian field, then one can **integrate by parts** and obtain that

\[\mathbb{E}[Fg(F)] = \mathbb{E}[g'(F) \langle DF, -DL^{-1}F \rangle], \]

where \(D \) is the **Malliavin derivative** and \(L^{-1} \) is the inverse of the generator of the Ornstein-Uhlenbeck semigroup.

★ Such a connection has been extremely useful for exploring the asymptotic structure of **Wiener chaos**.
The Connection

- In the framework of normal approximations, Stein’s method requires indeed one to **uniformly bound** quantities such as

\[\left| \mathbb{E}[Fg(F)] - \mathbb{E}[g'(F)] \right|, \]

over some class of smooth mappings \(g \).

- When \(F \) is a smooth functional of a Gaussian field, then one can **integrate by parts** and obtain that

\[\mathbb{E}[Fg(F)] = \mathbb{E}[g'(F)\langle DF, -DL^{-1}F \rangle], \]

where \(D \) is the **Malliavin derivative** and \(L^{-1} \) is the **inverse of the generator of the Ornstein-Uhlenbeck semigroup**.

- Such a connection has been extremely useful for exploring the asymptotic structure of **Wiener chaos**.
In the framework of normal approximations, Stein’s method requires indeed one to uniformly bound quantities such as

\[|\mathbb{E}[Fg(F)] - \mathbb{E}[g'(F)]|, \]

over some class of smooth mappings \(g \).

When \(F \) is a smooth functional of a Gaussian field, then one can integrate by parts and obtain that

\[\mathbb{E}[Fg(F)] = \mathbb{E}[g'(F)\langle DF, -DL^{-1}F \rangle], \]

where \(D \) is the Malliavin derivative and \(L^{-1} \) is the inverse of the generator of the Ornstein-Uhlenbeck semigroup.

Such a connection has been extremely useful for exploring the asymptotic structure of Wiener chaos.
Vignette: Wiener Chaos

★ Consider a generic separable Gaussian field $G = \{ G(u) : u \in U \}$.
★ For every $q = 0, 1, 2...$, set

$$P_q := \text{v.s.} \left\{ p(G(u_1), ..., G(u_r)) : d^o p \leq q \right\}.$$

Then: $P_q \subset P_{q+1}$.
★ Define the family of orthogonal spaces $\{C_q : q \geq 0\}$ as $C_0 = \mathbb{R}$ and $C_q := P_q \cap P_{q-1}^\perp$; one has

$$L^2(\sigma(G)) = \bigoplus_{q=0}^{\infty} C_q.$$

★ $C_q = \text{Ker} \ (L + q I) = q\text{th Wiener chaos of } G.$
VIGNETTE: WIENER CHAOS

★ Consider a generic separable Gaussian field $G = \{ G(u) : u \in \mathcal{U} \}$.
★ For every $q = 0, 1, 2..., \text{ set}$

$$P_q := \overline{\text{v.s.}}\{ p(G(u_1), ..., G(u_r)) : d^\circ p \leq q \}.$$

Then: $P_q \subset P_{q+1}$.
★ Define the family of orthogonal spaces $\{ C_q : q \geq 0 \}$ as $C_0 = \mathbb{R}$ and $C_q := P_q \cap P_{q-1}^\perp$; one has

$$L^2(\sigma(G)) = \bigoplus_{q=0}^{\infty} C_q.$$

★ $C_q = \ker (L + qI) = q\text{th Wiener chaos of } G.$
Consider a generic separable Gaussian field $G = \{G(u) : u \in \mathcal{U}\}$.

For every $q = 0, 1, 2..., set$

$$P_q := \overline{\text{v.s.}}\left\{p(G(u_1), ..., G(u_r)) : d^o p \leq q\right\}.$$ Then: $P_q \subset P_{q+1}$.

Define the family of orthogonal spaces $\{C_q : q \geq 0\}$ as $C_0 = \mathbb{R}$ and $C_q := P_q \cap P_{q-1}^\perp$; one has

$$L^2(\sigma(G)) = \bigoplus_{q=0}^{\infty} C_q.$$ $C_q = \text{Ker} (L + q I) = q\text{th Wiener chaos of } G.$
VIGNETTE: WIENER CHAOS

★ Consider a generic separable Gaussian field \(G = \{ G(u) : u \in \mathcal{U} \} \).
★ For every \(q = 0, 1, 2..., \) set

\[
P_q := \overline{\text{v.s.}} \left\{ p(G(u_1), ..., G(u_r)) : d^p \leq q \right\}.
\]

Then: \(P_q \subset P_{q+1} \).
★ Define the family of orthogonal spaces \(\{ C_q : q \geq 0 \} \) as
\(C_0 = \mathbb{R} \) and \(C_q := P_q \cap P_{q-1} \); one has

\[
L^2(\sigma(G)) = \bigoplus_{q=0}^{\infty} C_q.
\]
★ \(C_q = \text{Ker} (L + q I) = q\text{th Wiener chaos} \) of \(G \).
A RIGID ASYMPTOTIC STRUCTURE

For fixed $q \geq 2$, let $\{F_k : k \geq 1\} \subset C_q$ (with unit variance).

- **Nourdin and Poly (2013):** If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G).

- **Nualart and Peccati (2005):** $F_k \Rightarrow Z \sim \mathcal{N}(0, 1)$ if and only if $\mathbb{E}F_k^4 \to 3 (= \mathbb{E}Z^4)$.

- **Peccati and Tudor (2005):** Componentwise convergence to Gaussian implies joint convergence.

- **Nourdin, Nualart and Peccati (2015):** given $\{H_k\} \subset C_p$, then F_k, H_k are asymptotically independent if and only if $\text{Cov}(H_k^2, F_k^2) \to 0$.

- Nonetheless, there exists no full characterisation of the asymptotic structure of chaoses ≥ 3.

A Rigid Asymptotic Structure

For fixed $q \geq 2$, let $\{F_k : k \geq 1\} \subset C_q$ (with unit variance).

- **Nourdin and Poly (2013):** If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G).
- **Nualart and Peccati (2005):** $F_k \Rightarrow Z \sim \mathcal{N}(0, 1)$ if and only if $\mathbb{E}F_k^4 \to 3(= \mathbb{E}Z^4)$.
- **Peccati and Tudor (2005):** Componentwise convergence to Gaussian implies joint convergence.
- **Nourdin, Nualart and Peccati (2015):** given $\{H_k\} \subset C_p$, then F_k, H_k are asymptotically independent if and only if $\text{Cov}(H_k^2, F_k^2) \to 0$.
- Nonetheless, there exists no full characterisation of the asymptotic structure of chaoses ≥ 3.
For fixed $q \geq 2$, let $\{F_k : k \geq 1\} \subset C_q$ (with unit variance).

- **Nourdin and Poly (2013):** If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G).

- **Nualart and Peccati (2005):** $F_k \Rightarrow Z \sim \mathcal{N}(0, 1)$ if and only if $\mathbb{E}F_k^4 \to 3(= \mathbb{E}Z^4)$.

- **Peccati and Tudor (2005):** Componentwise convergence to Gaussian implies joint convergence.

- **Nourdin, Nualart and Peccati (2015):** given $\{H_k\} \subset C_p$, then F_k, H_k are asymptotically independent if and only if $\text{Cov}(H_k^2, F_k^2) \to 0$.

- Nonetheless, there exists no full characterisation of the asymptotic structure of chaoses ≥ 3.

A RIGID ASYMPTOTIC STRUCTURE
A RIGID ASYMPTOTIC STRUCTURE

For fixed $q \geq 2$, let $\{F_k : k \geq 1\} \subset C_q$ (with unit variance).

- *Nourdin and Poly (2013):* If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G).

- *Nualart and Peccati (2005):* $F_k \Rightarrow Z \sim \mathcal{N}(0, 1)$ if and only if $\mathbb{E}F_k^4 \to 3(= \mathbb{E}Z^4)$.

- *Peccati and Tudor (2005):* Componentwise convergence to Gaussian implies joint convergence.

- *Nourdin, Nualart and Peccati (2015):* given $\{H_k\} \subset C_p$, then F_k, H_k are asymptotically independent if and only if $\text{Cov}(H_k^2, F_k^2) \to 0$.

- Nonetheless, there exists no full characterisation of the asymptotic structure of chaoses ≥ 3.
For fixed $q \geq 2$, let $\{F_k : k \geq 1\} \subset C_q$ (with unit variance).

- **Nourdin and Poly (2013):** If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G).

- **Nualart and Peccati (2005):** $F_k \Rightarrow Z \sim \mathcal{N}(0, 1)$ if and only if $\mathbb{E}F_k^4 \to 3(= \mathbb{E}Z^4)$.

- **Peccati and Tudor (2005):** Componentwise convergence to Gaussian implies joint convergence.

- **Nourdin, Nualart and Peccati (2015):** given $\{H_k\} \subset C_p$, then F_k, H_k are asymptotically independent if and only if $\text{Cov}(H_k^2, F_k^2) \to 0$.

- Nonetheless, there exists no full characterisation of the asymptotic structure of chaoses ≥ 3.
Berry’s Random Waves (Berry, 1977)

★ Fix $E > 0$. The **Berry random wave model** on \mathbb{R}^2, with parameter E, written

$$B_E = \{ B_E(x) : x \in \mathbb{R}^2 \},$$

is the unique (in law) centred, isotropic Gaussian field on \mathbb{R}^2 such that

$$\Delta B_E + E \cdot B_E = 0,$$

where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$.

★ Equivalently,

$$\mathbb{E}[B_E(x)B_E(y)] = \int_{S^1} e^{i\sqrt{E}(x-y,z)} \, dz = J_0(\sqrt{E}\|x - y\|).$$

(this is an infinite-dimensional Gaussian object).

★ Think of B_E as a “canonical” Gaussian Laplace eigenfunction on \mathbb{R}^2, emerging as a universal local scaling limit for arithmetic and monochromatic RWs, random spherical harmonics... .
Berry’s Random Waves (Berry, 1977)

- Fix $E > 0$. The **Berry random wave model** on \mathbb{R}^2, with parameter E, written

 \[B_E = \{ B_E(x) : x \in \mathbb{R}^2 \}, \]

 is the unique (in law) centred, isotropic Gaussian field on \mathbb{R}^2 such that

 \[\Delta B_E + E \cdot B_E = 0, \text{ where } \Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}. \]

- Equivalently,

 \[\mathbb{E}[B_E(x)B_E(y)] = \int_{S_1} e^{i\sqrt{E}\langle x-y,z \rangle} \, dz = J_0(\sqrt{E}\|x-y\|). \]

 (this is an infinite-dimensional Gaussian object).

- Think of B_E as a “canonical” Gaussian Laplace eigenfunction on \mathbb{R}^2, emerging as a universal local scaling limit for arithmetic and monochromatic RWs, random spherical harmonics...
Berry’s Random Waves (Berry, 1977)

- Fix $E > 0$. The **Berry random wave model** on \mathbb{R}^2, with parameter E, written

$$B_E = \{ B_E(x) : x \in \mathbb{R}^2 \},$$

is the unique (in law) centred, isotropic Gaussian field on \mathbb{R}^2 such that

$$\Delta B_E + E \cdot B_E = 0,$$

where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$.

- Equivalently,

$$\mathbb{E}[B_E(x)B_E(y)] = \int_{S^1} e^{i\sqrt{E}\langle x-y, z \rangle} dz = J_0(\sqrt{E}\|x-y\|).$$

(this is an infinite-dimensional Gaussian object).

- Think of B_E as a “canonical” Gaussian Laplace eigenfunction on \mathbb{R}^2, emerging as a universal local scaling limit for arithmetic and monochromatic RWs, random spherical harmonics... .
Focus on the **length** L_E of the **nodal set**:

$$B_E^{-1}(\{0\}) \cap \mathcal{Q} := \{ x \in \mathcal{Q} : B_E(x) = 0 \},$$

where \mathcal{Q} is some fixed domain, as $E \to \infty$.

Images: D. Belyaev
A Cancellation Phenomenon

★ Berry (2002): an application of Kac-Rice formulae leads to

\[\mathbb{E}[L_E] = \text{area } Q \times \sqrt{\frac{E}{8}}, \]

and a legitimate guess for the order of the variance is

\[\text{Var}(L_E) \asymp \sqrt{E}. \]

★ However, Berry showed that

\[\text{Var}(L_E) \sim \frac{\text{area } Q}{512\pi} \log E, \]

whereas the length variances of non-zero level sets display the “correct” order of \(\sqrt{E} \).

★ Such a variance reduction “... results from a cancellation whose meaning is still obscure... ” (Berry (2002), p. 3032).
A CANCELLATION PHENOMENON

★ Berry (2002): an application of Kac-Rice formulae leads to

$$\mathbb{E}[L_E] = \text{area } Q \times \sqrt{\frac{E}{8}},$$

and a legitimate guess for the order of the variance is

$$\text{Var}(L_E) \asymp \sqrt{E}.$$

★ However, Berry showed that

$$\text{Var}(L_E) \sim \frac{\text{area } Q}{512\pi} \log E,$$

whereas the length variances of non-zero level sets display the “correct” order of \sqrt{E}.

★ Such a variance reduction “... results from a cancellation whose meaning is still obscure... ” (Berry (2002), p. 3032).
A Cancellation Phenomenon

★ Berry (2002): an application of Kac-Rice formulae leads to

$$\mathbb{E}[L_E] = \text{area } Q \times \sqrt{\frac{E}{8}},$$

and a legitimate guess for the order of the variance is

$$\text{Var}(L_E) \asymp \sqrt{E}.$$

★ However, Berry showed that

$$\text{Var}(L_E) \sim \frac{\text{area } Q}{512\pi} \log E,$$

whereas the length variances of non-zero level sets display the "correct" order of \sqrt{E}.

★ Such a variance reduction “... results from a cancellation whose meaning is still obscure...” (Berry (2002), p. 3032).
Spherical Case

- Berry’s constants were confirmed by I. Wigman (2010) in the related model of random spherical harmonics.

- Here, the Laplace eigenvalues are the integers \(n(n + 1) \), \(n \in \mathbb{N} \).

Picture: A. Barnett
Let $T = \mathbb{R}^2 / \mathbb{Z}^2 \simeq [0, 1)^2$ be the 2-dimensional flat torus.

We are again interested in real (random) eigenfunctions of Δ, that is, solutions of the Helmholtz equation

$$\Delta f + Ef = 0,$$

for some adequate $E > 0$ (eigenvalue).

A L^2-complete orthonormal set of eigenfunctions of Δ is obtained as:

$$(x_1, x_2) \mapsto \exp \left\{ 2i\pi(\lambda_1 x_1 + \lambda_2 x_2) \right\},$$

with $(\lambda_1, \lambda_2) \in \mathbb{Z}^2$. Each one is associated with the eigenvalue $E = 4\pi^2(\lambda_1^2 + \lambda_2^2)$.

ARITHMETIC RANDOM WAVES
(OravecZ, Rudnick and Wigman, 2007)
Let $\mathbb{T} = \mathbb{R}^2 / \mathbb{Z}^2 \simeq [0, 1)^2$ be the 2-dimensional flat torus.

We are again interested in real (random) eigenfunctions of Δ, that is, solutions of the Helmholtz equation

$$\Delta f + Ef = 0,$$

for some adequate $E > 0$ (eigenvalue).

A L^2-complete orthonormal set of eigenfunctions of Δ is obtained as:

$$(x_1, x_2) \mapsto \exp \left\{ 2i\pi (\lambda_1 x_1 + \lambda_2 x_2) \right\},$$

with $(\lambda_1, \lambda_2) \in \mathbb{Z}^2$. Each one is associated with the eigenvalue $E = 4\pi^2 (\lambda_1^2 + \lambda_2^2)$.

Arithmetic Random Waves
(OravecZ, Rudnick and Wigman, 2007)
Let $\mathbb{T} = \mathbb{R}^2 / \mathbb{Z}^2 \simeq [0, 1)^2$ be the 2-dimensional flat torus.

We are again interested in real (random) eigenfunctions of Δ, that is, solutions of the Helmholtz equation

$$\Delta f + Ef = 0,$$

for some adequate $E > 0$ (eigenvalue).

A L^2-complete orthonormal set of eigenfunctions of Δ is obtained as:

$$(x_1, x_2) \mapsto \exp \left\{ 2i\pi (\lambda_1 x_1 + \lambda_2 x_2) \right\},$$

with $(\lambda_1, \lambda_2) \in \mathbb{Z}^2$. Each one is associated with the eigenvalue $E = 4\pi^2(\lambda_1^2 + \lambda_2^2)$.
Let $T = \mathbb{R}^2 / \mathbb{Z}^2 \simeq [0, 1)^2$ be the 2-dimensional flat torus.

We are again interested in real (random) eigenfunctions of Δ, that is, solutions of the Helmholtz equation

$$\Delta f + Ef = 0,$$

for some adequate $E > 0$ (eigenvalue).

A L^2-complete orthonormal set of eigenfunctions of Δ is obtained as:

$$(x_1, x_2) \mapsto \exp \left\{ 2i\pi(\lambda_1 x_1 + \lambda_2 x_2) \right\},$$

with $(\lambda_1, \lambda_2) \in \mathbb{Z}^2$. Each one is associated with the eigenvalue $E = 4\pi^2(\lambda_1^2 + \lambda_2^2)$.
The eigenvalues of Δ are therefore given by the set

$$\{E_n := 4\pi^2 n : n \in S\},$$

where

$$S = \{n : n = a^2 + b^2; a, b \in \mathbb{Z}\}.$$

For $n \in S$, the dimension of the corresponding eigenspace is $\mathcal{N}_n = r_2(n) := \#\Lambda_n$, where $\Lambda_n := \{(\lambda_1, \lambda_2) : \lambda_1^2 + \lambda_2^2 = n\}$.

We know e.g. that $r_2(n) \ll n^\epsilon, \forall \epsilon > 0$, and “pathological” behaviours are possible.
The eigenvalues of Δ are therefore given by the set
\[\{ E_n := 4\pi^2 n : n \in S \}, \]
where
\[S = \{ n : n = a^2 + b^2 ; a, b \in \mathbb{Z} \}. \]

For $n \in S$, the dimension of the corresponding eigenspace is $N_n = r_2(n) := \# \Lambda_n$, where $\Lambda_n := \{ (\lambda_1, \lambda_2) : \lambda_1^2 + \lambda_2^2 = n \}$.

We know e.g. that $r_2(n) \ll n^\epsilon, \forall \epsilon > 0$, and “pathological” behaviours are possible.
The eigenvalues of Δ are therefore given by the set
\[\{ E_n := 4\pi^2 n : n \in S \}, \]
where
\[S = \{ n : n = a^2 + b^2 ; a, b \in \mathbb{Z} \}. \]

For $n \in S$, the dimension of the corresponding eigenspace is $N_n = r_2(n) := \#\Lambda_n$, where $\Lambda_n := \{ (\lambda_1, \lambda_2) : \lambda_1^2 + \lambda_2^2 = n \}$.

We know e.g. that $r_2(n) \ll n^\varepsilon$, $\forall \varepsilon > 0$, and “pathological” behaviours are possible.
We define the arithmetic random wave of order $n \in S$ as:

$$f_n(x) = \frac{1}{\sqrt{N_n}} \sum_{\lambda \in \Lambda_n} a_{\lambda} e^{2i\pi \langle \lambda, x \rangle}, \quad x \in \mathbb{T},$$

where the a_{λ} are i.i.d. complex standard Gaussian, except for the relation $a_{\lambda} = \overline{a_{-\lambda}}$.

We are interested in the behaviour, as $N_n \to \infty$, of the total nodal length

$$\mathcal{L}_n := \text{length } f_n^{-1}({\{0\}}).$$

Picture: J. Angst & G. Poly
NODAL LENGTHS AND SPECTRAL MEASURES

★ Crucial role played by the set of **spectral probability measures** on S^1

$$
\mu_n(dz) := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_{\lambda/\sqrt{n}}(dz), \quad n \in S
$$

(invariant with respect to $z \mapsto \bar{z}$ and $z \mapsto i \cdot z$.)

★ The set $\{\mu_n : n \in S\}$ is relatively compact and its adherent points are an **infinite strict subset** of the class of invariant probabilities on the circle (see Kurlberg and Wigman (2015)).

★ Quick demonstration (see Krishnapur, Kurlberg and Wigman (2013)): the adherent points of the set

$$
\hat{\mu}_n(4)^2 := \left(\int_{S^1} z^{-4} \mu_n(dz) \right)^2, \quad n \in S,
$$

are given by the whole interval $[0, 1]$.
NODAL LENGTHS AND SPECTRAL MEASURES

* Crucial role played by the set of spectral probability measures on S^1

$$\mu_n(dz) := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_{\lambda/\sqrt{n}}(dz), \quad n \in S$$

(invariant with respect to $z \mapsto \bar{z}$ and $z \mapsto i \cdot z$.)

* The set $\{\mu_n : n \in S\}$ is relatively compact and its adherent points are an infinite strict subset of the class of invariant probabilities on the circle (see Kurlberg and Wigman (2015)).

* Quick demonstration (see Krishnapur, Kurlberg and Wigman (2013)): the adherent points of the set

$$\hat{\mu}_n(4)^2 := \left(\int_{S^1} z^{-4} \mu_n(dz) \right)^2, \quad n \in S,$$

are given by the whole interval $[0, 1]$.
Nodal Lengths and Spectral Measures

- Crucial role played by the set of spectral probability measures on S^1

$$
\mu_n(dz) := \frac{1}{N_n} \sum_{\lambda \in \Lambda_n} \delta_{\lambda / \sqrt{n}}(dz), \quad n \in S
$$

(invariant with respect to $z \mapsto \bar{z}$ and $z \mapsto i \cdot z$.)

- The set $\{\mu_n : n \in S\}$ is relatively compact and its adherent points are an infinite strict subset of the class of invariant probabilities on the circle (see Kurlberg and Wigman (2015)).

- Quick demonstration (see Krishnapur, Kurlberg and Wigman (2013)): the adherent points of the set

$$
\hat{\mu}_n(4)^2 := \left(\int_{S^1} z^{-4} \mu_n(dz) \right)^2, \quad n \in S,
$$

are given by the whole interval $[0, 1]$.
Another Cancellation

★ Rudnick and Wigman (2008): For every \(n \in S \), \(\mathbb{E}[\mathcal{L}_n] = \frac{\sqrt{E_n}}{2\sqrt{2}} \).

Moreover, \(\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{N_n^{1/2}}\right) \). Conjecture: \(\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{N_n}\right) \).

★ Krishnapur, Kurlberg and Wigman (2013): if \(\{n_j\} \subset S \) is such that \(N_{n_j} \to \infty \), then

\[
\text{Var}(\mathcal{L}_{n_j}) = \frac{E_{n_j}}{N_{n_j}^2} \times c(n_j) + O(E_{n_j} R_5(n_j)),
\]

where

\[
c(n_j) = \frac{1 + \hat{\mu}_{n_j}(4)^2}{512}; \quad R_5(n_j) = \int_\mathbb{T} |r_{n_j}(x)|^5 dx = o\left(\frac{1}{N_{n_j}^2}\right).
\]

★ Two phenomena: (i) cancellation, and (ii) non-universality.
Another Cancellation

★ Rudnick and Wigman (2008): For every \(n \in S \), \(\mathbb{E}[\mathcal{L}_n] = \frac{\sqrt{E_n}}{2\sqrt{2}} \).

Moreover, \(\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{\mathcal{N}_n^{1/2}}\right) \). Conjecture: \(\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{\mathcal{N}_n}\right) \).

★ Krishnapur, Kurlberg and Wigman (2013): if \(\{n_j\} \subset S \) is such that \(\mathcal{N}_{n_j} \to \infty \), then

\[
\text{Var}(\mathcal{L}_{n_j}) = \frac{E_{n_j}}{\mathcal{N}_{n_j}^2} \times c(n_j) + O(E_{n_j}R_5(n_j)),
\]

where

\[
c(n_j) = \frac{1 + \hat{\mu}_{n_j}(4)^2}{512}; \quad R_5(n_j) = \int_{\mathbb{T}} |r_{n_j}(x)|^5 dx = o\left(\frac{1}{\mathcal{N}_{n_j}^2}\right).
\]

★ Two phenomena: (i) cancellation, and (ii) non-universality.
Another Cancellation

★ Rudnick and Wigman (2008): For every $n \in S$, $\mathbb{E}[\mathcal{L}_n] = \frac{\sqrt{E_n}}{2\sqrt{2}}$. Moreover, $\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{N_n^{1/2}}\right)$. Conjecture: $\text{Var}(\mathcal{L}_n) = O\left(\frac{E_n}{N_n}\right)$.

★ Krishnapur, Kurlberg and Wigman (2013): if $\{n_j\} \subset S$ is such that $N_{n_j} \to \infty$, then

$$\text{Var}(\mathcal{L}_{n_j}) = \frac{E_{n_j}}{N_{n_j}^2} \times c(n_j) + O\left(E_{n_j}R_5(n_j)\right),$$

where

$$c(n_j) = \frac{1 + \hat{\mu}_{n_j}(4)^2}{512}; \quad R_5(n_j) = \int_{\mathbb{T}} |r_{n_j}(x)|^5 dx = o\left(\frac{1}{N_{n_j}^2}\right).$$

★ Two phenomena: (i) **cancellation**, and (ii) **non-universality**.
INTERLUDE: CHLADNI PLATES (1787)
Next Step: Second Order Results

For $E > 0$ and $n \in S$, define the normalized quantities

$$\tilde{L}_E := \frac{L_E - \mathbb{E}(L_E)}{\text{Var}(L_E)^{1/2}} \quad \text{and} \quad \tilde{L}_n := \frac{L_n - \mathbb{E}(L_n)}{\text{Var}(L_n)^{1/2}}.$$

Question: Can we explain the above cancellation phenomena and, as $E, N_n \to \infty$, establish limit theorems of the type

$$\tilde{L}_E \xrightarrow{\text{LAW}} \gamma, \quad \text{and} \quad \tilde{L}_{n'} \xrightarrow{\text{LAW}} Z?$$

($\{n'_j\} \subset S$ is some subsequence)
For $E > 0$ and $n \in S$, define the normalized quantities

$$\tilde{L}_E := \frac{L_E - \mathbb{E}(L_E)}{\text{Var}(L_E)^{1/2}} \quad \text{and} \quad \tilde{L}_n := \frac{L_n - \mathbb{E}(L_n)}{\text{Var}(L_n)^{1/2}}.$$

Question: Can we explain the above cancellation phenomena and, as $E, N_n \to \infty$, establish limit theorems of the type

$$\tilde{L}_E \xrightarrow{\text{LAW}} \gamma, \quad \text{and} \quad \tilde{L}_{n_j} \xrightarrow{\text{LAW}} Z?$$

($\{n'_j\} \subset S$ is some subsequence)
Step 1. Let $V = f_n$ or B_E, and $L = L_E$ or L_n. Use the representation (based on the coarea formula)

$$L = \int \delta_0(V(x)) \|\nabla V(x)\| \, dx, \quad \text{in } L^2(\mathbb{P}),$$

to deduce the **Wiener chaos expansion** of L.

Step 2. Show that exactly one chaotic projection $L(4) := \text{proj}(L \mid C_4)$ dominates in the high-energy limit – thus accounting for the cancellation phenomenon.

Step 3. Study by “bare hands” the limit behaviour of $L(4)$.

A Common Strategy
A Common Strategy

★ Step 1. Let \(V = f_n \) or \(B_E \), and \(L = L_E \) or \(\mathcal{L}_n \). Use the representation (based on the coarea formula)

\[
L = \int \delta_0(V(x)) \| \nabla V(x) \| \, dx, \quad \text{in } L^2(\mathbb{P}),
\]

to deduce the Wiener chaos expansion of \(L \).

★ Step 2. Show that exactly one chaotic projection \(L(4) := \text{proj}(L | C_4) \) dominates in the high-energy limit – thus accounting for the cancellation phenomenon.

★ Step 3. Study by “bare hands” the limit behaviour of \(L(4) \).
A COMMON STRATEGY

⋆ Step 1. Let $V = f_n$ or B_E, and $L = L_E$ or \mathcal{L}_n. Use the representation (based on the coarea formula)

$$L = \int \delta_0(V(x)) \|\nabla V(x)\| \, dx, \quad \text{in } L^2(\mathbb{P}),$$

to deduce the **Wiener chaos expansion** of L.

⋆ Step 2. Show that exactly one chaotic projection $L(4) := \text{proj}(L \mid C_4)$ dominates in the high-energy limit – thus accounting for the cancellation phenomenon.

⋆ Step 3. Study by “bare hands” the limit behaviour of $L(4)$.
Fluctuations for Berry’s Model

Theorem (Nourdin, Peccati & Rossi, 2019)

1. **(Cancellation)** For every fixed $E > 0$,

$$\text{proj}(L_E \mid C_{2q+1}) = 0, \quad q \geq 0,$$

and $\text{proj}(\tilde{L}_E \mid C_2)$ reduces to a “negligible boundary term”, as $E \to \infty$.

2. **(4th chaos dominates)** Let $E \to \infty$. Then,

$$\tilde{L}_E = \text{proj}(\tilde{L}_E \mid C_4) + o_p(1).$$

3. **(CLT)** As $E \to \infty$,

$$\tilde{L}_E \Rightarrow Z \sim N(0,1).$$
Theorem (Nourdin, Peccati & Rossi, 2019)

1. **(Cancellation)** For every fixed $E > 0$,

 \[
 \text{proj}(L_E \mid C_{2q+1}) = 0, \quad q \geq 0,
 \]

 and \(\text{proj}(\tilde{L}_E \mid C_2) \) reduces to a “negligible boundary term”, as $E \to \infty$.

2. **(4th chaos dominates)** Let $E \to \infty$. Then,

 \[
 \tilde{L}_E = \text{proj}(\tilde{L}_E \mid C_4) + o_P(1).
 \]

3. **(CLT)** As $E \to \infty$,

 \[
 \tilde{L}_E \Rightarrow Z \sim N(0,1).
 \]
Theorem (Nourdin, Peccati & Rossi, 2019)

1. **(Cancellation)** For every fixed $E > 0$,

$$\text{proj}(L_E \mid C_{2q+1}) = 0, \quad q \geq 0,$$

and $\text{proj}(\tilde{L}_E \mid C_2)$ reduces to a “negligible boundary term”, as $E \to \infty$.

2. **(4th chaos dominates)** Let $E \to \infty$. Then,

$$\tilde{L}_E = \text{proj}(\tilde{L}_E \mid C_4) + o_P(1).$$

3. **(CLT)** As $E \to \infty$,

$$\tilde{L}_E \Rightarrow Z \sim N(0,1).$$
Theorem

Define, for $B = B_1$:

$$L_r := \text{length}(B^{-1}(\{0\}) \cap \text{Ball}(0, r)).$$

Then,

1. $\mathbb{E}[L_r] = \frac{\pi r^2}{2\sqrt{2}}$;
2. as $r \to \infty$, $\text{Var}(L_r) \sim \frac{r^2 \log r}{256}$;
3. as $r \to \infty$,
 $$\frac{L_r - \mathbb{E}[L_r]}{\text{Var}(L_r)^{1/2}} \Rightarrow Z \sim N(0, 1).$$
Theorem (Marinucci, P., Rossi & Wigman, 2016)

1. **(Exact Cancellation)** For every fixed $n \in S$,

$$\text{proj}(\mathscr{L}_n | C_2) = \text{proj}(\mathscr{L}_n | C_{2q+1}) = 0, \quad q \geq 0.$$

2. **(4th chaos dominates)** Let $\{n_j\} \subset S$ be such that $N_{n_j} \to \infty$. Then,

$$\tilde{\mathscr{L}}_{n_j} = \text{proj}(\tilde{L}_{n_j} | C_4) + o_\mathbb{P}(1).$$

3. **(Non-Universal/Non-Gaussian)** If $|\hat{\mu}_{n_j}(4)| \to \eta \in [0, 1]$, where $\hat{\mu}_n(4) = \int z^4 \mu_n(dz)$, then

$$\tilde{\mathscr{L}}_{n_j} \Rightarrow M(\eta) := \frac{1}{2 \sqrt{1 + \eta^2}} \left(2 - (1 - \eta)Z_1^2 - (1 + \eta)Z_2^2 \right),$$

where Z_1, Z_2 independent standard normal.
Theorem (Marinucci, P., Rossi & Wigman, 2016)

1. **(Exact Cancellation)** For every fixed $n \in S$,

$$\text{proj}(\mathcal{L}_n | C_2) = \text{proj}(\mathcal{L}_n | C_{2q+1}) = 0, \quad q \geq 0.$$

2. **(4^{th} chaos dominates)** Let $\{n_j\} \subset S$ be such that $N_{n_j} \to \infty$. Then,

$$\tilde{\mathcal{L}}_{n_j} = \text{proj}(\tilde{L}_{n_j} | C_4) + o_P(1).$$

3. **(Non-Universal/Non-Gaussian)** If $|\hat{\mu}_{n_j}(4)| \to \eta \in [0, 1]$, where $\hat{\mu}_n(4) = \int z^4 \mu_n(dz)$, then

$$\tilde{\mathcal{L}}_{n_j} \Rightarrow M(\eta) := \frac{1}{2\sqrt{1+\eta^2}} \left(2 - (1-\eta)Z_1^2 - (1+\eta)Z_2^2 \right),$$

where Z_1, Z_2 independent standard normal.
Theorem (Marinucci, P., Rossi & Wigman, 2016)

1. **(Exact Cancellation)** For every fixed $n \in S$,
 \[
 \text{proj}(L_n \mid C_2) = \text{proj}(L_n \mid C_{2q+1}) = 0, \quad q \geq 0.
 \]

2. **(4^{th} chaos dominates)** Let \(\{n_j\} \subset S \) be such that \(\mathcal{N}_{n_j} \to \infty \). Then,
 \[
 \tilde{L}_{n_j} = \text{proj}(\tilde{L}_{n_j} \mid C_4) + o_P(1).
 \]

3. **(Non-Universal/Non-Gaussian)** If \(|\hat{\mu}_{n_j}(4)| \to \eta \in [0, 1] \), where
 \[
 \hat{\mu}_{n}(4) = \int z^4 \mu_n(dz),
 \]
 then
 \[
 \tilde{L}_{n_j} \Rightarrow M(\eta) := \frac{1}{2\sqrt{1+\eta^2}} \left(2 - (1-\eta)Z_1^2 - (1+\eta)Z_2^2 \right),
 \]
 where \(Z_1, Z_2 \) independent standard normal.
PHASE SINGULARITIES

Theorem (Dalmao, Nourdin, P. & Rossi, 2016)

For \(\hat{T} \) an independent copy, consider

\[
I_n := \#[T_n^{-1}(\{0\}) \cap \hat{T}_n^{-1}(\{0\})].
\]

1. As \(N_n \to \infty \),

\[
\text{Var}(I_n) \sim \frac{E_n^2}{N_n^2} \frac{3\hat{\mu}_n(4)^2 + 5}{128\pi^2}
\]

2. If \(|\hat{\mu}_n(4)| \to \eta \in [0, 1] \), then

\[
\tilde{I}_{n_j} \Rightarrow J(\eta) := \frac{1}{2\sqrt{10 + 6\eta^2}} \left(\frac{1 + \eta}{2} A + \frac{1 - \eta}{2} B - 2(C - 2) \right)
\]

with \(A, B, C \) independent s.t. \(A \overset{\text{law}}{=} B \overset{\text{law}}{=} 2X_1^2 + 2X_2^2 - 4X_3^2 \) and \(C \overset{\text{law}}{=} X_1^2 + X_2^2 \), where \((X_1, X_2, X_3) \) is standard Gaussian.
Theorem (Dalmao, Nourdin, P. & Rossi, 2016)

For \(\hat{T} \) an independent copy, consider

\[I_n := \# [T_n^{-1}(\{0\}) \cap \hat{T}_n^{-1}(\{0\})]. \]

1. As \(N_n \to \infty \),

\[\text{Var}(I_n) \sim \frac{E_n^2}{N_n^2} \frac{3 \hat{\mu}_n(4)^2 + 5}{128 \pi^2} \]

2. If \(|\hat{\mu}_n(4)| \to \eta \in [0, 1] \), then

\[\tilde{I}_{n_j} \Rightarrow J(\eta) := \frac{1}{2 \sqrt{10 + 6 \eta^2}} \left(\frac{1 + \eta}{2} A + \frac{1 - \eta}{2} B - 2(C - 2) \right) \]

with \(A, B, C \) independent s.t. \(A \overset{\text{law}}{=} B \overset{\text{law}}{=} 2X_1^2 + 2X_2^2 - 4X_3^2 \) and \(C \overset{\text{law}}{=} X_1^2 + X_2^2 \), where \((X_1, X_2, X_3)\) is standard Gaussian.
EXPlicit Bounds by Stein’s Method

★ (Arithmetic Case) One has that, for \(\eta = \mu_n(4) \)

\[
\text{Wass}_1(\tilde{L}_n, M(\eta)) \leq \frac{C}{|\Lambda_n|^{1/4}}.
\]

★ (Planar case) For every \(E > 0 \),

\[
\text{Wass}_1(\tilde{L}_E, N) \leq \frac{C}{(\log E)^{1/4}}.
\]

★ Technically challenging point: \(\delta_0 \) is a generalized function.
\textbf{Explicit Bounds by Stein’s Method}

\begin{itemize}
 \item (Arithmetic Case) One has that, for \(\eta = \mu_n(4) \)
 \begin{equation*}
 \text{Wass}_1(\widetilde{L}_n, M(\eta)) \leq \frac{C}{|\Lambda_n|^{1/4}}.
 \end{equation*}
 \item (Planar case) For every \(E > 0 \),
 \begin{equation*}
 \text{Wass}_1(\widetilde{L}_E, N) \leq \frac{C}{(\log E)^{1/4}}.
 \end{equation*}
 \item Technically challenging point: \(\delta_0 \) is a generalized function.
\end{itemize}
Explicit Bounds by Stein’s Method

★ (Arithmetic Case) One has that, for \(\eta = \mu_n(4) \)

\[
\text{Wass}_1(\widetilde{\mathcal{L}}_n, M(\eta)) \leq \frac{C}{|\Lambda_n|^{1/4}}.
\]

★ (Planar case) For every \(E > 0 \),

\[
\text{Wass}_1(\widetilde{L}_E, N) \leq \frac{C}{(\log E)^{1/4}}.
\]

★ Technically challenging point: \(\delta_0 \) is a generalized function.
Elements of Proof (BRW)

★ In view of Green’s identity, one has that

\[
\text{proj}(L_E | C_2) = \frac{1}{2\sqrt{E}} \int_{\partial Q} B_E(x) \langle \nabla B_E(x), n(x) \rangle \, dx,
\]

where \(n(x) \) is the outward unit normal at \(x \) (variance bounded).

★ The term \(\text{proj}(\tilde{L}_E | C_4) \) is a l.c. of \(4^{\text{th}} \) order terms, among which

\[
V_E := \sqrt{E} \int_Q H_4(B_E(x)) \, dx,
\]

for which one has that

\[
\text{Var}(V_E) = \frac{24}{E} \int_{(\sqrt{E}Q)^2} J_0(||x - y||)^4 \, dx \, dy \sim \frac{18}{\pi^2} \log E,
\]

using e.g. \(J_0(r) \sim \sqrt{\frac{2}{\pi r}} \cos(r - \pi/4), r \to \infty. \)
In view of Green’s identity, one has that
\[
\text{proj}(L_E | C_2) = \frac{1}{2 \sqrt{E}} \int_{\partial Q} B_E(x) \langle \nabla B_E(x), n(x) \rangle \, dx,
\]
where \(n(x) \) is the outward unit normal at \(x \) (variance bounded).

The term \(\text{proj}(\tilde{L}_E | C_4) \) is a l.c. of 4\(^{th} \) order terms, among which
\[
V_E := \sqrt{E} \int_Q H_4(B_E(x)) \, dx,
\]
for which one has that
\[
\text{Var}(V_E) = \frac{24}{E} \int (\sqrt{E}Q)^2 J_0(\|x - y\|)^4 \, dx \, dy \sim \frac{18}{\pi^2} \log E,
\]
using e.g. \(J_0(r) \sim \sqrt{\frac{2}{\pi r}} \cos(r - \pi/4), r \to \infty. \)
Elements of Proof (ARW)

⋆ Write $\mathcal{L}_n(u) = \text{length } f_n^{-1}(u)$. One has that

$$\text{proj}(\mathcal{L}_n(u) \mid C_2) = ce^{-u^2/2}u^2 \int_T (f_n(x)^2 - 1)dx$$

$$= c \frac{e^{-u^2/2}u^2}{\mathcal{N}_n} \sum_{\lambda \in \Lambda^n} (|a_\lambda|^2 - 1)$$

(this is the dominating term for $u \neq 0$; it verifies a CLT).

⋆ Prove that proj$(\mathcal{L}_n \mid C_4)$ has the form

$$\sqrt{\frac{E_n}{\mathcal{N}_n^2}} \times Q_n,$$

where Q_n is a quadratic form, involving sums of the type

$$\sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)c(\lambda, n)$$

⋆ Characterise proj$(\mathcal{L}_n \mid C_4)$ as the dominating term, and compute the limit by Lindeberg and continuity.
Elements of Proof (ARW)

* Write $\mathcal{L}_n(u) = \text{length } f_n^{-1}(u)$. One has that

$$\text{proj}(\mathcal{L}_n(u) \mid C_2) = ce^{-u^2/2} u^2 \int_{\mathbb{T}} (f_n(x)^2 - 1) dx$$

$$= c \frac{e^{-u^2/2} u^2}{\mathcal{N}_n} \sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)$$

(this is the dominating term for $u \neq 0$; it verifies a CLT).

* Prove that $\text{proj}(\mathcal{L}_n \mid C_4)$ has the form

$$\sqrt{\frac{E_n}{\mathcal{N}_n^2}} \times Q_n,$$

where Q_n is a quadratic form, involving sums of the type

$$\sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)c(\lambda, n)$$

* Characterise $\text{proj}(\mathcal{L}_n \mid C_4)$ as the dominating term, and compute the limit by Lindeberg and continuity.
ELEMENTS OF PROOF (ARW)

* Write \(\mathcal{L}_n(u) = \text{length } f_n^{-1}(u) \). One has that

\[
\text{proj}(\mathcal{L}_n(u) \mid C_2) = c e^{-u^2/2} u^2 \int_T (f_n(x)^2 - 1) dx
\]

\[
= c \frac{e^{-u^2/2} u^2}{N_n} \sum_{\lambda \in \Lambda_n} (|a_{\lambda}|^2 - 1)
\]

(this is the dominating term for \(u \neq 0 \); it verifies a CLT).

* Prove that \(\text{proj}(\mathcal{L}_n \mid C_4) \) has the form

\[
\sqrt{\frac{E_n}{N_n^2}} \times Q_n,
\]

where \(Q_n \) is a quadratic form, involving sums of the type

\[
\sum_{\lambda \in \Lambda_n} (|a_{\lambda}|^2 - 1)c(\lambda, n)
\]

* Characterise \(\text{proj}(\mathcal{L}_n \mid C_4) \) as the dominating term, and compute the limit by Lindeberg and continuity.
Elements of Proof (ARW)

* Write $\mathcal{L}_n(u) = \text{length } f_n^{-1}(u)$. One has that

$$\text{proj}(\mathcal{L}_n(u) \mid C_2) = ce^{-u^2/2}u^2 \int_T (f_n(x)^2 - 1)dx$$

$$= ce^{-u^2/2}u^2 \frac{\sum_{\lambda \in \Lambda^n} (|a_\lambda|^2 - 1)}{N_n^2}$$

(this is the dominating term for $u \neq 0$; it verifies a CLT).

* Prove that $\text{proj}(\mathcal{L}_n \mid C_4)$ has the form

$$\sqrt{\frac{E_n}{N_n^2}} \times Q_n,$$

where Q_n is a quadratic form, involving sums of the type

$$\sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)c(\lambda, n)$$

* Characterise $\text{proj}(\mathcal{L}_n \mid C_4)$ as the dominating term, and compute the limit by Lindeberg and continuity.
Elements of Proof (ARW)

* Write $\mathcal{L}_n(u) = \text{length } f_n^{-1}(u)$. One has that

$$\text{proj}(\mathcal{L}_n(u) \mid C_2) = c e^{-u^2/2} u^2 \int_T (f_n(x)^2 - 1) dx$$

$$= c \frac{e^{-u^2/2} u^2}{\mathcal{N}_n} \sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)$$

(this is the dominating term for $u \neq 0$; it verifies a CLT).

* Prove that $\text{proj}(\mathcal{L}_n \mid C_4)$ has the form

$$\sqrt{\frac{E_n}{\mathcal{N}_n^2}} \times Q_n,$$

where Q_n is a quadratic form, involving sums of the type

$$\sum_{\lambda \in \Lambda_n} (|a_\lambda|^2 - 1)c(\lambda, n)$$

* Characterise $\text{proj}(\mathcal{L}_n \mid C_4)$ as the dominating term, and compute the limit by Lindeberg and continuity.
FURTHER RESULTS

★ Benatar and Maffucci (2017) and Cammarota (2017): fluctuations on nodal volumes for ARW on $\mathbb{R}^3 / \mathbb{Z}^3$.

★ The nodal length of random spherical harmonics verifies a Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

★ Analogous non-central results hold for nodal lengths on shrinking balls (Benatar, Marinucci and Wigman, 2017).
Further Results

- Benatar and Maffucci (2017) and Cammarota (2017): fluctuations on nodal volumes for ARW on $\mathbb{R}^3 / \mathbb{Z}^3$.

- The nodal length of random spherical harmonics verifies a Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

- Analogous non-central results hold for nodal lengths on shrinking balls (Benatar, Marinucci and Wigman, 2017).
FURTHER RESULTS

⋆ Benatar and Maffucci (2017) and Cammarota (2017): fluctuations on nodal volumes for ARW on $\mathbb{R}^3/\mathbb{Z}^3$.

⋆ The nodal length of random spherical harmonics verifies a Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

⋆ Analogous non-central results hold for nodal lengths on shrinking balls (Benatar, Marinucci and Wigman, 2017).
FURTHER RESULTS

★ Benatar and Maffucci (2017) and Cammarota (2017): fluctuations on nodal volumes for ARW on $\mathbb{R}^3/\mathbb{Z}^3$.

★ The nodal length of random spherical harmonics verifies a Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

★ Analogous non-central results hold for nodal lengths on shrinking balls (Benatar, Marinucci and Wigman, 2017).
Suppose \(\{ K_\lambda : \lambda > 0 \} \) is a collection of covariance kernels on \(\mathbb{R}^2 \) such that, for \(\lambda \to \infty \), some \(r_\lambda \to \infty \) and every \(\alpha, \beta \),

\[
\sup_{|x|,|y| \leq r_\lambda} \left| \partial^\alpha \partial^\beta (K_\lambda(x, y) - J_0(\|x - y\|)) \right| := \eta(\lambda) = o(1)
\]

Let \(Y_\lambda \sim K_\lambda \) and \(B \sim J_0 \).

Typical example: \(Y_\lambda = \frac{1}{\sqrt{2\pi}} \times \) Canzani-Hanin’s pullback random wave (dim. 2) at a point of isotropic scaling (needs \(r_\lambda = o(\lambda) \)).
Suppose \(\{K_\lambda : \lambda > 0\} \) is a collection of covariance kernels on \(\mathbb{R}^2 \) such that, for \(\lambda \to \infty \), some \(r_\lambda \to \infty \) and every \(\alpha, \beta \),

\[
\sup_{|x|, |y| \leq r_\lambda} \left| \partial^\alpha \partial^\beta (K_\lambda(x, y) - J_0(\|x - y\|)) \right| := \eta(\lambda) = o(1)
\]

Let \(Y_\lambda \sim K_\lambda \) and \(B \sim J_0 \).

Typical example: \(Y_\lambda = \frac{1}{\sqrt{2\pi}} \times \) Canzani-Hanin’s pullback random wave (dim. 2) at a point of isotropic scaling (needs \(r_\lambda = o(\lambda) \)).
Suppose \(\{ K_\lambda : \lambda > 0 \} \) is a collection of covariance kernels on \(\mathbb{R}^2 \) such that, for \(\lambda \to \infty \), some \(r_\lambda \to \infty \) and every \(\alpha, \beta \),

\[
\sup_{|x|,|y| \leq r_\lambda} \left| \partial^\alpha \partial^\beta (K_\lambda(x,y) - J_0(\|x - y\|)) \right| := \eta(\lambda) = o(1)
\]

Let \(Y_\lambda \sim K_\lambda \) and \(B \sim J_0 \).

Typical example: \(Y_\lambda = \frac{1}{\sqrt{2\pi}} \times \) Canzani-Hanin’s pullback random wave (dim. 2) at a point of isotropic scaling (needs \(r_\lambda = o(\lambda) \)).
Beyond Explicit Models (W.I.P.)

- Write $L(\lambda, r) := \text{length}\{\lambda^{-1}(\{0\}) \cap \text{Ball}(0, r)\}$, and $L_r := \text{length}(B_1 \cap \text{Ball}(0, r))$.

- Then, one can couple λ and B on the same probability space, in such a way that, if $r_{\lambda} \eta(\lambda)^{\beta} \to 0$ (say, $\beta \simeq 1/30$),

\[
\left| \frac{L(\lambda, r) - \mathbb{E}L(\lambda, r)}{\text{Var}(L_{r_{\lambda}})^{1/2}} - \frac{L_r - \mathbb{E}L_r}{\text{Var}(L_r)^{1/2}} \right| \to 0,
\]

in L^2.

- For instance, if $\eta(\lambda) = O(1/ \log \lambda)$ (expected for pullback waves coming from manifolds with no conjugate points), then the statement is true for $r_{\lambda} = (\log \lambda)^{\beta}$, $\beta \simeq 1/30$.
Beyond Explicit Models (W.I.P.)

★ Write $L(Y_\lambda, r_\lambda) := \text{length}\{Y_\lambda^{-1}(\{0\}) \cap \text{Ball}(0, r_\lambda)\}$, and $L_r := \text{length}(B_1 \cap \text{Ball}(0, r))$.

★ Then, one can couple Y_λ and B on the same probability space, in such a way that, if $r_\lambda \eta(\lambda)^\beta \to 0$ (say, $\beta \simeq 1/30$),

$$\left| \frac{L(Y_\lambda, r) - \mathbb{E}L(Y_\lambda, r)}{\text{Var}(L_{r_\lambda})^{1/2}} - \frac{L_{r_\lambda} - \mathbb{E}L_{r_\lambda}}{\text{Var}(L_{r_\lambda})^{1/2}} \right| \to 0,$$

in L^2.

★ For instance, if $\eta(\lambda) = O(1 / \log \lambda)$ (expected for pullback waves coming from manifolds with no conjugate points), then the statement is true for $r_\lambda = (\log \lambda)^\beta$, $\beta \simeq 1/30$.
Beyond Explicit Models (W.I.P.)

★ Write $L(Y_\lambda, r_\lambda) := \text{length}\{ Y_\lambda^{-1}(\{0\}) \cap \text{Ball}(0, r_\lambda) \}$, and $L_r := \text{length}(B_1 \cap \text{Ball}(0, r))$.

★ Then, one can couple Y_λ and B on the same probability space, in such a way that, if $r_\lambda \eta(\lambda)^\beta \to 0$ (say, $\beta \simeq 1/30$),

$$\left| \frac{L(Y_\lambda, r) - \mathbb{E}L(Y_\lambda, r)}{\text{Var}(L_{r_\lambda})^{1/2}} - \frac{L_{r_\lambda} - \mathbb{E}L_{r_\lambda}}{\text{Var}(L_{r_\lambda})^{1/2}} \right| \to 0,$$

in L^2.

★ For instance, if $\eta(\lambda) = O(1/ \log \lambda)$ (expected for pullback waves coming from manifolds with no conjugate points), then the statement is true for $r_\lambda = (\log \lambda)^\beta$, $\beta \simeq 1/30$.
THANK YOU FOR YOUR ATTENTION!