Some applications of Stein’s method

A.D. Barbour, Universität Zürich

Symposium in memory of Charles Stein
Singapore, 2019
A BOUND FOR THE ERROR IN THE NORMAL APPROXIMATION TO THE DISTRIBUTION OF A SUM OF DEPENDENT RANDOM VARIABLES

CHARLES STEIN
Stanford University
Corollary 3.1. If X_1, X_2, \cdots is a stationary m-dependent sequence of random variables satisfying (3.1), (3.2), and (3.3), there exists a constant A (depending on the distribution of the sequence X_1, X_2, \cdots but not on n) such that for all n and all real a

$$\left| P \left\{ \frac{\sum_{i=1}^{n} X_i}{\sqrt{nC}} \leq a \right\} - \Phi(a) \right| \leq An^{-1/2}.$$
Example. Let Y_1, Y_2, \ldots be i.i.d. continuous r.v.'s.

Set $Z_{ij} := I \left[Y_i = \max \{ Y_{i-j}, Y_{i-j+1}, \ldots, Y_{i-j+k-1} \} \right], \quad 0 \leq j \leq k-1$.

$Z_i := \max_{0 \leq j \leq k-1} Z_{ij} = I \left["Y_i \text{ is a } k\text{-maximal element}" \right].$

Then $X_i := Z_i - EZ_i$ has mean zero, finite moments, and $(X_i, i \geq k)$ form a stationary, $2k-1$ dependent sequence.

Write $S_n := \sum_{i=k}^{n+k-1} X_i$: What about its distribution?
It is easy to check that $n^{-1} \text{var} S_n \to \sigma^2 > 0$ as $n \to \infty$. Hence Corollary 3.1 of Stein's paper immediately gives a normal approximation, with error of order $n^{-1/2}$.

This problem was investigated using recurrence relations in Austin, Fegan, Lehrer and Penney, Ann. Math. Stat. 1957.
Chen, Louis H. Y.:
Poisson approximation for dependent trials.

The author applies an ingenious technique of Ch. Stein [Proc. 6th
Zbl. 278,60026)] to estimating the error involved in approximating the distribu-
tion of a sum of weakly dependent Bernoulli random variables by a Poisson dis-
tribution. The method, described below in the Poisson context, is applicable
to other distributions: Stein considered approximation to the normal law. The
first step is to find a difference operator for which the Poisson distribution
with given parameter is an integrating factor: an obvious choice is indicated
by the identity (for any $x(\cdot)$)

$$
\sum_{j=0}^{n} e^{-\lambda} \frac{\lambda^j}{j!} \{ \lambda x(j+1) - j x(j) \} = x(n+1) e^{-\lambda} \frac{\lambda^{n+1}}{n+1!}
$$

Thus if W is distributed as Poisson with parameter λ,

$$
E[\lambda x(W+1) - W x(W)] = 0
$$

for any bounded $x(\cdot)$. Since (1) also gives a bounded solution $x(\cdot)$ if, for any
r, we choose $\lambda x(j+1) - j x(j) = I[j < r] - \sum_{k=0}^{r} e^{-\lambda} \frac{\lambda^k}{k!}$, it follows that (2) char-
acterises the Poisson distribution P_λ, and that, if W has some other distribu-

Equilibria of Markov population processes.

Generator

$$A h(x) = x(1+\Theta x/N)(h(x-1)-h(x)) + \lambda x \sum_{r \geq 1} \phi_r (h(x+r)-h(x))$$

$$+ \varepsilon \sum_{x_0} (h(1)-h(0))$$

Drift: $$-x(1+\Theta x/N) + \lambda x \mu$$, where $$\mu = \sum_{r \geq 1} \phi_r$$
So drift is zero for $\bar{X} = N \bar{x}$, where $\bar{x} = (\mu - 1)/\sigma$.

- Now write $Y = (X - \bar{X})/\sqrt{N}$, or $X = \bar{X} + Y\sqrt{N}$.

Generator for Y acting on $\hat{h}(Y) = h(\bar{X} + Y\sqrt{N})$:

$$(\bar{X} + Y\sqrt{N}) (1 + \frac{\Theta}{N}(\bar{X} + Y\sqrt{N})) (\hat{h}(Y - \frac{1}{\sqrt{N}}) - \hat{h}(Y))$$

$$+ \lambda (\bar{X} + Y\sqrt{N}) \sum_{n=1}^{\infty} \frac{\Theta}{n} (\hat{h}(Y + \frac{n}{\sqrt{N}}) - \hat{h}(Y))$$

- Expand in powers of \sqrt{N}, using

$$\hat{h}(Y + \frac{n}{\sqrt{N}}) - \hat{h}(Y) = \frac{n}{\sqrt{N}} \hat{h}'(Y) + \frac{1}{2} \frac{n^2}{N} \hat{h}''(Y) + \ldots.$$
The $N^{1/2}$ terms cancel.

Constant terms:

$$Y\sqrt{N} (1 + \Theta^2 + \Theta^2) (-\frac{1}{N} \hat{h}'(Y)) + \frac{1}{2} \frac{\Sigma}{N} (1 + \Theta^2) \hat{h}''(Y)$$

$$+ \frac{\Sigma}{\sqrt{N}} \sum_{i \geq 1} \frac{\hat{h}'(Y)}{\sqrt{N}} + \frac{1}{2} \frac{\Sigma}{N} \sum_{i \geq 1} r_i^2 \hat{h}''(Y)$$

$$= -\Theta \bar{Y} \hat{h}'(Y) + \frac{1}{2} 2 \bar{Y} (\mu + m_2) \hat{h}''(Y)$$

remainder of order $N^{-1/2}$.

and $E(\hat{h}(Y)) = 0$ in equilibrium.
Here, the operator A is the Q-matrix of a Markov process, and its equilibrium distribution π satisfies

$$\pi^T Q = 0.$$

If $\varepsilon = 0$, the equilibrium distribution is concentrated on 0. Darroch and Seneta: the limiting conditional distribution π describes the 'long-term' distribution on N, before reaching 0: a 'Quasi-Stationary' distribution.

Q^N has largest eigenvalue $-\lambda < 0$, and

$$\pi^T Q^N = -\lambda \pi^T$$
For $\varepsilon > 0$, we have $\Pi_{\varepsilon} (A_2 h) = 0$ for all h. We can solve the Stein equation

$$A_2 h = f - \Pi_{\varepsilon} (f)$$

to give h_ε, for any bounded f, and

$$\|h_\varepsilon\|_{L^2} \leq C \|f\|_{L^2} \left(\frac{1}{\varepsilon} + \log N \right).$$

So

$$\Pi_{\varepsilon} (f) - \Pi_{\varepsilon} (f) = \Pi_{\varepsilon} (A_2 h_\varepsilon)$$

and

$$\Pi_{\varepsilon} (A_2 h) = 0 \text{ for all } h.$$

Hence

$$\Pi_{\varepsilon} (f) - \Pi_{\varepsilon} (f) = \Pi_{\varepsilon} ((A_2 - A_2') h_\varepsilon).$$
Analytic arithmetic of algebraic function fields: a probabilistic approach.

"Analytic and algebraic topology of locally Euclidean metrizations of infinitely differentiable Riemannian manifolds." Lehner, 1953.
An additive arithmetic semigroup G is a free commutative semigroup with identity, having countable free generating set \mathcal{P} of primes, and a degree mapping $\mathcal{D} : G \to \mathbb{N}$ such that

1. $\mathcal{D}(gh) = \mathcal{D}(g) + \mathcal{D}(h)$ for all $g, h \in G$;

2. for $G_n := \{ g \in G : \mathcal{D}(g) = n \}$, $G(n) := |G_n| < \infty$.

$f : G \to \mathbb{R}$ is additive if $f(gh) = f(g) + f(h)$ when g, h are coprime.

Strongly additive if $f(p^k) = f(p) \cdot p^k$ when p is prime.

Completely additive if $f(p^k) = k f(p)$ when p is prime.
Knopfmacher's Axiom A^*: \(G(n) = K e^n \xi 1 + O(e^{-\alpha n}) \), for some \(\alpha > 0, \xi > 1 \).

Zhang allows \(K = k(n) = \sum_{\substack{i \geq 1 \\ \sigma(j) \leq n \\ \sigma(j) \leq \sum_{i=1}^{j} \sigma(i) \leq \sum_{i=1}^{j+1} \sigma(i) \leq n}} 1/j \), with \(\sigma(j) \leq j < j+1 \) and \(k_r > 0 \).

Under these global assumptions, they deduce information about \(m_n := \# \{ p \in G_n : p \text{ prime} \} \), a "prime number theorem." Typically, \(nm_n e^{-n} \rightarrow \infty \) as \(n \rightarrow \infty \). Monic polynomials: \(G(n) = e^n, nm_n e^{-n} \rightarrow 1 \).
Example.

monic polynomials over finite fields.

\[g = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0, \]

with \(a_0, \ldots, a_{n-1} \in \text{GF}(q) \):

\[\deg(g) = \text{degree of } g = n \]

\(g \) is prime if it is irreducible.
Now let S_n' be uniformly distributed on G_n. What is the distribution of $f(S_n')$, where f is additive?

For $g \in \mathfrak{S}_n$, let $c_j(g)$ denote the number of primes of degree j in its representation. Then $f(g)$ is a sum of contributions from the primes of degree $j = 1, 2, \ldots, n$, and these depend on the choice of primes, and on the values $f(p^k)$, for $p \in \mathfrak{P}$ and $k \geq 1$.

Define \(C^{(n)} := (c_1(S^n), \ldots, c_n(S^n)) \).

Then the distribution of \(f(S^n) \) is that of

\[
X_n := \sum_{j=1}^{n} I [C_j^{(n)} \geq 1] U_j(C_j^{(n)}),
\]

where \(\{U_j(l); j, l \geq 1\} \) are independent of each other and of \(C^{(n)} \). \(U_j(l) \) has the distribution of \(f \) applied to a random selection of \(l \) primes of degree \(j \), chosen with replacement.

So the distribution of the vector \(C^{(n)} \) is key.
Assume that $\gamma_m \equiv j^{-\beta} \rightarrow 0 > 0$ as $j \rightarrow \infty$.

For $w \in \mathbb{Z}_+^n$ and $0 \leq a < b$, define

$$T_{ab}(w) := \sum_{j=a+1}^{b} j^{m_j} w_j.$$

Fact: $L(C^n) = L(Z_1, \ldots, Z_n \mid T_{0n}(Z) = n)$, where Z_1, Z_2, \ldots are independent, and

$$Z_j \sim \text{NB}(m_j, \phi) \text{ for any choice of } 0 < \phi < 1.$$

.$
Choose p to make $P[T_{on}(z) = n]$ not too small.

$$T_{on}(z) = \sum_{j=1}^{n} j m_j \frac{p^j}{(1-p)^j}$$

$$\sim \sum_{j=1}^{n} \Theta \left(q \frac{p^j}{(1-p)^j} \right) \sim n \Theta \text{ as } n \to \infty,$$

if $p = \frac{1}{q}$.

With this choice of p, as $j \to \infty$,

$$P[Z_j = 1] = m_j q^{-j} (1-q^{-j})^{m_j} \sim \Theta \frac{q^{m_j}}{j} =: P[Z_j = 1]$$

$$P[Z_j = 0] \sim 1 - P[Z_j = 1].$$
We find two approximations of $L(C^{(n)})$ that are useful:

1. $L(C^{(n)} [1, b_n]) \sim L(Z [1, b_n])$ if $b_n = o(n)$ as $n \to \infty$;

2. $L(C^{(n)} [b_n, n]) \sim L(C^{(n)} [1, b_n])$ if $b_n \to \infty$ as $n \to \infty$.

Here, $L(C^{(n)}):= L(\mathbb{Z}_n^*, \ldots, \mathbb{Z}_n^* | T_{\text{on}}(\mathbb{Z}_n^*) = n)$, and $Z_j^* \sim \text{Po}(\theta/1_j)$ are independent.

Both approximations need to be quantified in terms of (total variation) error.
For (1).

Note that, by independence of Ξ_1, Ξ_2, \ldots,

$$L\left(C^n \mid T_{ob}(C^n) = k\right) = L\left(Z \mid T_{ob}(Z) = k\right),$$

for any $k \geq 0$. Hence

$$D_{wb} := d_{TV}(L(C^n | C), L(Z | C))$$

$$= d_{TV}(L(T_{ob}(C^n)), L(T_{ob}(Z))).$$

NB

As before, $E T_{ob}(Z) \sim b \Theta$, as $b \to \infty$, whereas

$$\text{var } T_{ob}(Z) = \sum_{j=1}^{b} j^2 \text{var } (Z_j) \sim \frac{b}{\sum_{j=1}^{b} j^2} \frac{\Theta}{\Theta} e^{-\Theta j} \frac{1}{2} \Theta b^2,$$

so $T_{ob}(Z) \geq 0$ and $E T_{ob}(Z) = SD(T_{ob}(Z))$ as $b \to \infty$.
Now

\[\Delta_n = \sum_{k>0} \left| \frac{P[T_{ob} = k \text{ and } T_{on} = n]}{P[T_{on} = n]} - P[T_{ob} = k] \right| \]

\[= \sum_{k>0} P[T_{ob} = k] \left| \frac{P[T_{bn} = n-k]}{P[T_{on} = n]} - 1 \right| . \]

Strategy:

(a) Show that

\[\left| \frac{P[T_{bn}(Z) = n-k]}{P[T_{bn}(Z^*) = n-k]} - 1 \right| = O\left(\frac{k}{n}\right) . \]

(b) Show that

\[\left| \frac{P[T_{bn}(Z^*) = n-k]}{P[T_{on}(Z^*) = n]} - 1 \right| = O\left(\frac{k+b}{n}\right) . \]
For (2):

\[P \left[C^{(n)} [b+1, n] = x [b+1, n] \right] \]

\[= \frac{P \left[Z [b+1, n] = x [b+1, n] \right] \cdot P \left[T_{ab} (Z) = n - T_{bn} (x) \right]}{P \left[T_{on} (Z) = n \right]} \]

Now \[\left| \frac{P \left[Z [b+1, n] = x [b+1, n] \right]}{P \left[Z^* [b+1, n] = x [b+1, n] \right]} - 1 \right| = O(b^{-1} n \theta) \],

directly. Hence

\[\left| \frac{P \left[C^{(n)} [b+1, n] = x [b+1, n] \right]}{P \left[C^{(n)*} [b+1, n] = x [b+1, n] \right]} - 1 \right| \]

is small, if we have solved (17, part 6).
Part (a) of (1) is a local estimate. Try Stein’s method for
\[
L(T_{\mathbb{N}}(Z^*)) = L(\sum_{j=1}^{n} \xi_j Z_j) = CP(\Theta \phi(n+1) \mu_{n+1}),
\]
where \(\mu_{n+1} := \frac{1}{j \phi(n+1)} \) and \(\phi(n+1) := \sum_{j=1}^{n} \frac{1}{j} \sim \log n. \)

Stein operator:
\[
\sum_{j=1}^{n} j \cdot \Theta \phi(n+1) \mu_{n+1} g(w+j) - wg(w)
= \Theta \sum_{j=1}^{n} g(w+j) - wg(w), \quad w \in \mathbb{Z}_+.\]
So, for $W^*_n := T_{on}(\mathbb{Z}^*)$, taking $g := \sum_{k \geq 1} k^2$, we have

$$\Theta \mathbb{P}\big[(k-n)_+ \leq W^*_n \leq k-1 \big] = k \mathbb{P}\big[W^*_n = k \big];$$

hence point probabilities are implied by interval probabilities. Similarly, if $W_n := T_{on}(\mathbb{Z})$ is such that

$$\mathbf{(*)} \quad \mathbb{E}\left[\Theta \sum_{j=1}^{n} g(W_n+j) - W_n g(W_n) \right] = \varepsilon_n(g),$$

with $|\varepsilon_n(\mathbb{Z}^*)|$ small, then we can approximate

$$k \mathbb{P}\big[T_{on}(\mathbb{Z}) = k \big] \mathbf{(*)} \mathbb{P}\big[(k-n)_+ \leq T_{on}(\mathbb{Z}) \leq k-1 \big].$$
Finally, we can use (\ref{eq:xxx}) to show that
\[
d_{TV}(L(Torn(Z^k)), L(Torn(Z^k)))
\]
is small. We just need to control the solution g_A to
\[
\sum_{j=1}^{n} g(w+j) - wg(w) = A_A^i(w) - P[W^eA].
\]

- general CP bound for g has factor $e^{O(n^{1+})} \sim n^\theta$.
- $\mu_{ij}^{(n)}$ is decreasing in j, but $\mu_1^{(n)} - 2\mu_2^{(n)} = 0$.
Hence we need to derive bounds particular to the example.

Writing \(h(w) := g(w) - g(w-1) \) gives the generator version of the Stein operator

\[
\Theta \left\{ h(w+n) - h(w) \right\} + w \left\{ h(w-1) - h(w) \right\},
\]

an immigration - death process with unit per capita death rate and immigration in batches of \(n \).

Analogously, \(L_n \) \(\lambda \) \(\text{Ton}(Z^n) \) can be approximated by \(P_0 \) on \(R_+ \), with operator \(\Theta \left\{ h(x+1) - h(x) \right\} - \lambda h'(x), x > 0 \).
Small worlds models

Circle C of circumference $N \sim Po \left(\frac{1}{2} P \right)$ randomly chosen chords as short cuts;

P a tuning parameter.

Distribution of distance between two randomly chosen points

Interval branching process.

Intervals grow at unit rate at each end. If number of intervals is \(M \), branching rate is \(2\lambda M \). Centres of new intervals are \(Y_0, Y_1, Y_2, \ldots \) i.i.d. uniform on \(C \); birth times \(0 = T_0 < T_1 < \ldots \) such that \(T_j - T_{j-1} \sim \text{Exp}(2\lambda j) \).

Covered set at time \(t \) is

\[
\mathcal{C}(t) = \bigcup_{j: T_j \leq t} \left[Y_j - (t - T_j), Y_j + (t - T_j) \right]
\]
M is a Yule process with birth rate $2p$, so

$E M(t) = e^{2pt}$ and $M(t) e^{-2pt} \rightarrow W \sim \text{Exp}(1)$ a.s.

Also 'total length' $s(t) = \int_0^t 2M(u) du$, so

$E s(t) = \beta^t (e^{2pt} - 1)$ and $s(t) e^{-2pt} \rightarrow \beta^t W$ a.s.

If, at time t, the intervals have lengths $l_1, ..., l_{M(t)}$, then the expected number of overlaps is

$$\sum_{1 \leq i < j \leq M(t)} (l_i + l_j)/L = \frac{(M(t) - 1)s(t)}{L} \sim \frac{W e^{2pt}}{4p}$$
Now consider two independent processes starting at y_0 and y'_0, each running for time $t_v := \frac{1}{4p} \log (4p) + \frac{v}{p}$.

$$d(y_0, y'_0) > \frac{1}{2p} \log (4p) + \frac{2v}{p}$$ if they have no intersection. The expected number of intersections is

$$\frac{M'(t_v) s(t_v) + M(t_v) s'(t_v)}{L} \sim \frac{2W^4 e^{4pt_v}}{4p} = 2W^4 e^{4v}.$$
But now the Stein–Chen method easily gives a distributional approximation:

$$P \left[d(Y_0, Y_1) > \frac{1}{2p} \log(2p) + \frac{2r}{p} \right]$$

$$\sim \mathbb{E} \left\{ e^{-2WW'Ve^{4r}} \right\} .$$

[All the errors in the approximations can be explicitly controlled.]