Mean-Risk Portfolio Selection
with Law-Invariant Coherent Risk Measure

Hanqing Jin

A Joint work with Xuedong He and Xun Yu Zhou

Workshop on Asset Pricing and Risk Management
IMS, National University of Singapore 26–30 Aug 2019
Mean-risk preference

- Any financial decision should be based on some *preference* / comparison rule.
Mean-risk preference

- Any financial decision should be based on some *preference* / comparison rule.

- Two concerns for financial investment: *mean* and *risk*.
 - Average: the higher the better, relatively objective, easy to measure.
Mean-risk preference

• Any financial decision should be based on some preference/comparison rule.

• Two concerns for financial investment: mean and risk.
 ◦ Average: the higher the better, relatively objective, easy to measure.
 ◦ Risk: the lower the better, very subjective, hard to measure.
Mean-risk preference

- Any financial decision should be based on some preference/comparison rule.

- Two concerns for financial investment: mean and risk.
 - Average: the higher the better, relatively objective, easy to measure.
 - Risk: the lower the better, very subjective, hard to measure.

- Different ways to deal with mean & risk.
 - Implicitly by expected utility;
Mean-risk preference

- Any financial decision should be based on some preference/comparison rule.

- Two concerns for financial investment: mean and risk.
 - Average: the higher the better, relatively objective, easy to measure.
 - Risk: the lower the better, very subjective, hard to measure.

- Different ways to deal with mean & risk.
 - Implicitly by expected utility;
 - Explicitly by mean and risk
 - mean-variance, mean-semi variance, mean-lower side risk.
Mean-risk preference

• Any financial decision should be based on some preference / comparison rule.

• Two concerns for financial investment: mean and risk.
 ◦ Average: the higher the better, relatively objective, easy to measure.
 ◦ Risk: the lower the better, very subjective, hard to measure.

• Different ways to deal with mean & risk.
 ◦ Implicitly by expected utility;
 ◦ Explicitly by mean and risk
 • mean-variance, mean-semi variance, mean-lower side risk.
 • the measure of risk is critical.
Mean-risk preference

• Any financial decision should be based on some preference/comparison rule.

• Two concerns for financial investment: mean and risk.
 ◦ Average: the higher the better, relatively objective, easy to measure.
 ◦ Risk: the lower the better, very subjective, hard to measure.

• Different ways to deal with mean & risk.
 ◦ Implicitly by expected utility;
 ◦ Explicitly by mean and risk
 • mean-variance, mean-semi variance, mean-lower side risk.
 • the measure of risk is critical.
 • the preference is not a total order.
Mean-risk preference

- Any financial decision should be based on some *preference* / comparison rule.
- Two concerns for financial investment: *mean* and *risk*.
 - Average: the higher the better, relatively objective, easy to measure.
 - Risk: the lower the better, very subjective, hard to measure.
- Different ways to deal with mean & risk.
 - Implicitly by *expected utility*;
 - Explicitly by mean and risk
 - mean-variance, mean-semi variance, mean-lower side risk.
 - the measure of risk is critical.
 - the preference is not a *total order*.
- We study the explicit way, which is more intuitive.
Mean-risk portfolio selection in continuous-time market

- We consider our mean-risk problem in a continuous-time, *arbitrage-free*, and *complete* financial market, with interest rate $r \equiv 0$.
 - A standard Black-Scholes market is an often-used example.
 - Here we do not need many details of the market other than the unique *pricing kernel*, denoted as ξ, which satisfies $\mathbb{E}[\xi] = 1$.
 - For any terminal wealth X_T, we have $X_0 = \mathbb{E}[\xi X_T]$.
- Assumption: $\xi > 0$ admits *no atom*, i.e., $P(\xi = x) = 0$ for $\forall x \in \mathbb{R}$.

Mean-risk portfolio selection in continuous-time market

- We consider our mean-risk problem in a continuous-time, *arbitrage-free*, and *complete* financial market, with interest rate $r \equiv 0$.
 - A standard Black-Scholes market is an often-used example.
 - Here we do not need many details of the market other than the unique *pricing kernel*, denoted as ξ, which satisfies $\mathbb{E}[\xi] = 1$.
 - For any terminal wealth X_T, we have $X_0 = \mathbb{E}[\xi X_T]$.

- Assumption: $\xi > 0$ admits no atom, i.e., $P(\xi = x) = 0$ for $\forall x \in \mathbb{R}$.

- For an investor with initial wealth $x > 0$, the mean-risk portfolio selection in the time period $[0, T]$ can be formulated as

$$
\begin{align*}
\text{Min} & \quad \rho(X_T) \\
\text{s.t.} & \quad (X, \pi) \text{ is a wealth-portfolio process with } X_0 = x, \\
& \quad \mathbb{E}X_T \geq l.
\end{align*}
$$

where ρ is the investor’s sense on the risk, $l > x$ is a target level.
Risk Measures

- Many different definitions for risk.
Risk Measures

- Many different definitions for risk.
- In quantitative finance, risk is modeled as a mapping ρ from random variables to \mathbb{R}, called *risk measure*, satisfying
Risk Measures

- Many different definitions for risk.
- In quantitative finance, risk is modeled as a mapping ρ from random variables to \mathbb{R}, called risk measure, satisfying
 - *monotonicity*: $\rho(X) \geq \rho(Y)$ for $\forall X \leq Y$.
Risk Measures

- Many different definitions for risk.

- In quantitative finance, risk is modeled as a mapping ρ from random variables to \mathbb{R}, called risk measure, satisfying

 - *monotonicity*: $\rho(X) \geq \rho(Y)$ for $\forall X \leq Y$;

 - *cash invariance*: $\rho(X + c) = \rho(X) - c \text{ for any } c \in \mathbb{R}$;
Risk Measures

- Many different definitions for risk.

- In quantitative finance, risk is modeled as a mapping \(\rho \) from random variables to \(\mathbb{R} \), called risk measure, satisfying

 - \textit{monotonicity}: \(\rho(X) \geq \rho(Y) \) for \(\forall X \leq Y \);

 - \textit{cash invariance}: \(\rho(X + c) = \rho(X) - c \) for any \(c \in \mathbb{R} \);

 - \textit{truncation continuity}: \(\lim_{c \downarrow +\infty} \rho(X \wedge c) = \rho(X) \).

- Not all risk measure are reasonable or mathematically tractable.
Risk Measures

- Many different definitions for risk.

- In quantitative finance, risk is modeled as a mapping \(\rho \) from random variables to \(\mathbb{R} \), called risk measure, satisfying
 - **monotonicity**: \(\rho(X) \geq \rho(Y) \) for \(\forall X \leq Y \);
 - **cash invariance**: \(\rho(X + c) = \rho(X) - c \) for any \(c \in \mathbb{R} \);
 - **truncation continuity**: \(\lim_{c \downarrow +\infty} \rho(X \wedge c) = \rho(X) \).

- Not all risk measure are reasonable or mathematically tractable.

- **Coherence** risk measure is a class of our interests:
 - convex and positive homogeneous.
Risk Measures

- Many different definitions for risk.

- In quantitative finance, risk is modeled as a mapping ρ from random variables to \mathbb{R}, called risk measure, satisfying
 - *monotonicity*: $\rho(X) \geq \rho(Y)$ for $\forall X \leq Y$;
 - *cash invariance*: $\rho(X + c) = \rho(X) - c$ for any $c \in \mathbb{R}$;
 - *truncation continuity*: $\lim_{c \downarrow +\infty} \rho(X \wedge c) = \rho(X)$.

- Not all risk measure are reasonable or mathematically tractable.

- *Coherence* risk measure is a class of our interests:
 - convex and positive homogeneous.

- *Comonotonic additive risk measure*: $\rho(X) + \rho(Y) = \rho(X + Y)$ for any comonotonic X and Y.
Risk Measures

• Many different definitions for risk.

• In quantitative finance, risk is modeled as a mapping ρ from random variables to \mathbb{R}, called risk measure, satisfying

 ◦ **monotonicity**: $\rho(X) \geq \rho(Y)$ for $\forall X \leq Y$;

 ◦ **cash invariance**: $\rho(X + c) = \rho(X) - c$ for any $c \in \mathbb{R}$;

 ◦ **truncation continuity**: $\lim_{c \downarrow +\infty} \rho(X \wedge c) = \rho(X)$.

• Not all risk measure are reasonable or mathematically tractable.

• **Coherence** risk measure is a class of our interests:

 ◦ convex and positive homogeneous.

• **Comonotonic additive** risk measure: $\rho(X) + \rho(Y) = \rho(X + Y)$ for any comonotonic X and Y.

• **Law-invariant** risk measure: risk is fully described by distribution.
Examples of law-invariant risk measures

- Variance $\text{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2$.
 - $\text{Var}(X)$ is NOT a risk measure!
Examples of law-invariant risk measures

- **Variance** $\text{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2$.
 - $\text{Var}(X)$ is **NOT** a risk measure!

- **Value-at-risk** $\text{VaR}_\alpha(X) = -\inf\{l \in \mathbb{R} : P(X \leq l) \geq \alpha\}$.
 - $P(X \leq -\text{VaR}_\alpha(X)) \leq \alpha$.
Examples of law-invariant risk measures

- Variance: \(\text{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2 \).
 - \(\text{Var}(X) \) is NOT a risk measure!

- Value-at-risk: \(\text{V@R}_\alpha(X) = -\inf\{l \in \mathbb{R} : P(X \leq l) \geq \alpha\} \).
 - \(P(X \leq -\text{V@R}_\alpha(X)) \leq \alpha \).
 - \(\text{V@R}_\alpha(X) \) is a risk measure, law-invariant, but not coherent because of convexity.
Examples of law-invariant risk measures

- **Variance** $\text{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2$.
 - $\text{Var}(X)$ is **NOT** a risk measure!

- **Value-at-risk**: $\text{V@R}_\alpha(X) = -\inf\{l \in \mathbb{R} : P(X \leq l) \geq \alpha\}$.
 - $P(X \leq -\text{V@R}_\alpha(X)) \leq \alpha$.
 - $\text{V@R}_\alpha(X)$ is a risk measure, law-invariant, but **not coherent** because of convexity.

- **Conditional Value-at-risk**: $\text{CV@R}_\alpha(X) = \frac{1}{\alpha} \int_0^\alpha \text{V@R}_\beta(X) d\beta$.
 - CV@R_α is a risk measure. It is law-invariant, coherent, and comonotonic additive.
Examples of law-invariant risk measures

- Variance: $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$.
 - $Var(X)$ is NOT a risk measure!

- Value-at-risk: $V@R_\alpha(X) = - \inf \{l \in \mathbb{R} : P(X \leq l) \geq \alpha \}$.
 - $P(X \leq -V@R_\alpha(X)) \leq \alpha$.
 - $V@R_\alpha(X)$ is a risk measure, law-invariant, but not coherent because of convexity.

- Conditional Value-at-risk: $CV@R_\alpha(X) = \frac{1}{\alpha} \int_0^\alpha V@R_\beta(X) d\beta$.
 - $CV@R$ is a risk measure. It is law-invariant, coherent, and comonotonic additive.

- Any convex combination of $CV@R$ is law-invariant, coherent, and comonotonic.
Examples of law-invariant risk measures

- Variance $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$.
 - $Var(X)$ is NOT a risk measure!

- Value-at-risk: $V@R_\alpha(X) = -\inf\{l \in \mathbb{R} : P(X \leq l) \geq \alpha\}$.
 - $P(X \leq -V@R_\alpha(X)) \leq \alpha$.
 - $V@R_\alpha(X)$ is a risk measure, law-invariant, but not coherent because of convexity.

- Conditional $V@R$: $CV@R_\alpha(X) = \frac{1}{\alpha} \int_0^\alpha V@R_\beta(X) d\beta$.
 - $CV@R$ is a risk measure. It is law-invariant, coherent, and comonotonic additive.

- Any convex combination of $CV@R$ is law-invariant, coherent, and comonotonic.

- We aim at the mean-risk portfolio selection with law-invariant coherent risk measure.
Representation of law-invariant coherent risk measures

Theorem 1: Denote $\mathcal{P}([0, 1])$ as the set of probability measure on $[0, 1]$. With some regularity condition, ρ is a law-invariant convex risk measure if and only if

$$\rho(X) = \sup_{\mu \in \mathcal{A}} \left\{ \int_{[0,1]} CV@R_z(X) \mu(dz) \right\}$$

for some closed set $\mathcal{A} \subset \mathcal{P}([0, 1])$.
Theorem 1: Denote $\mathcal{P}([0,1])$ as the set of probability measure on $[0,1]$. With some regularity condition, ρ is a law-invariant convex risk measure if and only if

$$\rho(X) = \sup_{\mu \in \mathcal{A}} \left\{ \int_{[0,1]} CV@R_z(X) \mu(dz) \right\}$$

for some closed set $\mathcal{A} \subset \mathcal{P}([0,1])$.

ρ is furthermore comonotonic if and only if

$$\rho(X) = \int_{[0,1]} CV@R_z(X) \mu(dz)$$

for some $\mu \in \mathcal{P}([0,1])$.
Weighted V@R

- Law-invariant coherent risk measures are generated by $CV@R$.
Weighted V@R

• Law-invariant coherent risk measures are generated by $CV@R$.

• Recall that $CV@R$ is an average of $V@R$, we have

$$\int_0^1 CV@R_z(X) \mu(dz) = \int_0^1 V@R_z(X) m(dz)$$

for $m(dz) = \int_z^1 \frac{1}{\beta} \mu(d\beta)$ is a probability measure on $[0, 1]$.
Weighted V@R

- Law-invariant coherent risk measures are generated by $CV@R$.
- Recall that $CV@R$ is an average of $V@R$, we have
 \[\int_0^1 CV@R_z(X) \mu(dz) = \int_0^1 V@R_z(X)m(dz) \]
 for $m(dz) = \int_z^1 \frac{1}{\beta} \mu(d\beta)$ is a probability measure on $[0, 1]$.
- For $m \in \mathcal{P}([0, 1])$, define the weighted $V@R$ by
 \[WV@R_m(X) = \int_0^1 V@R_z(X)m(dz), \]
 then a law-invariant coherent risk measure can be written as
 \[\sup_{\mu \in \mathcal{B}} WV@R_{\varphi(\mu)}(X), \]
 where $\varphi(\mu)$ is defined as the probability measure
 \[\varphi(\mu)(dz) = \int_z^1 \frac{1}{\beta} \mu(d\beta). \]
Weighted V@R

- Law-invariant coherent risk measures are generated by $CV@R$.
- Recall that $CV@R$ is an average of $V@R$, we have
 \[
 \int_0^1 CV@R_z(X) \mu(dz) = \int_0^1 V@R_z(X) m(dz)
 \]
 for $m(dz) = \int_z^1 \frac{1}{\beta} \mu(d\beta)$ is a probability measure on $[0, 1]$.
- For $m \in \mathcal{P}([0, 1])$, define the weighted V@R by
 \[
 WV@R_m(X) = \int_0^1 V@R_z(X) m(dz),
 \]
 then a law-invariant coherent risk measure can be written as
 \[
 \sup_{\mu \in \mathcal{B}} WV@R_{\varphi(\mu)}(X),
 \]
 where $\varphi(\mu)$ is defined as the probability measure
 \[
 \varphi(\mu)(dz) = \int_z^1 \frac{1}{\beta} \mu(d\beta).
 \]
- $WV@R$ is the building block for law-invariant coherent risk measure.
Martingale approach

- By the **completeness** of the market, any random payoff X at time T can be replicated by some portfolio π. starting from initial wealth $\mathbb{E}[\xi X]$.
Martingale approach

By the completeness of the market, any random payoff X at time T can be replicated by some portfolio π starting from initial wealth $\mathbb{E}[\xi X]$.

For the portfolio selection problem (1), we can firstly solve the optimal terminal wealth X^* by

$$\begin{align*}
\text{Min} & \quad \rho(X) \\
\text{s.t.} & \quad \mathbb{E}[\xi X] = x_0, \\
& \quad \mathbb{E}[X] \geq l.
\end{align*}$$ (2)
Martingale approach

• By the completeness of the market, any random payoff X at time T can be replicated by some portfolio π. starting from initial wealth $\mathbb{E}[\xi X]$.

• For the portfolio selection problem (1), we can firstly solve the optimal terminal wealth X^* by

$$\begin{align*}
\text{Min} & \quad \rho(X) \\
\text{s.t.} & \quad \mathbb{E}[\xi X] = x_0, \\
& \quad \mathbb{E}[X] \geq l.
\end{align*}$$

(2)

and then replicate the optimal terminal wealth X^*.

Mean-Risk Portfolio Selection with Law-Invariant Coherent Risk Measure – p. 8/14
Martingale approach

• By the completeness of the market, any random payoff X at time T can be replicated by some portfolio π. starting from initial wealth $E[\xi X]$.

• For the portfolio selection problem (1), we can firstly solve the optimal terminal wealth X^* by

\[
\begin{align*}
\underset{\pi}{\text{Min}} \quad & \rho(X) \\
\text{s.t.} \quad & E[\xi X] = x_0, \\
& E[X] \geq l.
\end{align*}
\]

and then replicate the optimal terminal wealth X^*.

• Since replication in a complete market is theoretically easy by, e.g., martingale representation, we focus the first step for optimal terminal wealth X^*.
Quantile formulation

• From now on, we assume ρ is law-invariant.
Quantile formulation

• From now on, we assume ρ is law-invariant.

• If X is optimal (2) with distribution function F, then for any other random variable $Y \sim F$, we should have $\mathbb{E}[\xi X] \leq \mathbb{E}[\xi Y]$.

• Hence X also solves $\min_{Y \sim F} \mathbb{E}[\xi Y]$.
Quantile formulation

- From now on, we assume ρ is law-invariant.

- If X is optimal (2) with distribution function F, then for any other random variable $Y \sim F$, we should have $\mathbb{E}[\xi X] \leq \mathbb{E}[\xi Y]$.

- Hence X also solves $\min_{Y \sim F} \mathbb{E}[\xi Y]$.

Proposition 1: If X is optimal for (2) with distribution function F, then $X = G(1 - F_\xi(\xi))$, where $G = F^{-1}$ is quantile function of F, F_ξ is the distribution function of ξ.
Quantile formulation

- From now on, we assume ρ is law-invariant.
- If X is optimal (2) with distribution function F, then for any other random variable $Y \sim F$, we should have $E[\xi X] \leq E[\xi Y]$.
- Hence X also solves $\min_{Y \sim F} E[\xi Y]$.

Proposition 1: If X is optimal for (2) with distribution function F, then $X = G(1 - F_\xi(\xi))$, where $G = F^{-1}$ is quantile function of F, F_ξ is the distribution function of ξ.

- Redefine $\rho(G) := \rho(X)$ with $G = F_X^{-1}$, and denote $Z = F_\xi(\xi)$.
- Then (2) can be reformulated into

$$\begin{align*}
\operatorname{Min} & \quad \rho(G) \\
\text{s.t.} & \quad E[\xi G(1 - Z)] = x_0, \\
& \quad E[G(1 - Z)] \geq l.
\end{align*}$$

(3)
When ρ is a weighted V@R

- Consider (3) when $\rho(X) = WV@R_\mu(X)$, which means

$$\rho(G) = - \int_0^1 G(z) \mu(dz).$$
When ρ is a weighted V@R

- Consider (3) when $\rho(X) = WV@R_{\mu}(X)$, which means

$$\rho(G) = -\int_0^1 G(z)\mu(dz).$$

- The following quantity is critical

$$\gamma^* := \sup_{0 < c < 1} \frac{\mu((c, 1])}{\int_c^1 F_{\xi}^{-1}(1 - z)dz}. $$
When ρ is a weighted V@R

- Consider (3) when $\rho(X) = W V \hat{R}_\mu(X)$, which means

$$\rho(G) = -\int_0^1 G(z) \mu(dz).$$

- The following quantity is critical

$$\gamma^* := \sup_{0 < c < 1} \frac{\mu((c,1])}{\int_c^1 F_\xi^{-1}(1 - z) dz}.$$

Theorem 2: Denote V as the optimal value for problem (3), and suppose $\text{essinf } \xi = 0$. Then

(i) If $\gamma^* > 1$, then $V = -\infty$; If $\gamma^* \leq 1$, then $V = -x$.

(ii) If $\gamma^* < 1$, there exists a sequence of $X_n = a_n + b_n 1_{\xi \leq c_n}$ asymptotically optimal, where $c_n \downarrow 0$, $b_n \uparrow +\infty$ and $a_n \to x$.

(iii) If $\gamma^* = 1$ and achieved by c^*, then $X^* = a + b 1_{\xi \leq F_\xi^{-1}(1-c^*)}$ for some $a \in \mathbb{R}$, $b > 0$.
Weighted V@R with no-bankruptcy

- In (3), The optimal value does neither depend on \(m \) nor \(l \).
- The no bankruptcy constraint \(X \geq 0 \) makes the trade-off better.
Weighted V@R with no-bankruptcy

- In (3), The optimal value does *neither depend on* m *nor* l.
- The *no bankruptcy* constraint $X \geq 0$ makes the trade-off better.
- In terms of quantile function G, $X \geq 0$ is equivalent to $G(0) = 0$.
Weighted V@R with no-bankruptcy

- In (3), the optimal value does *neither depend on* \(m \) *nor* \(l \).
- The *no bankruptcy* constraint \(X \geq 0 \) makes the trade-off better.
- In terms of quantile function \(G \), \(X \geq 0 \) is equivalent to \(G(0) = 0 \).
- Denote \(\hat{\nu} \) as the optimal value for the problem with no-bankruptcy constraint.
Weighted V@R with no-bankruptcy

- In (3), The optimal value does neither depend on m nor l.
- The no bankruptcy constraint $X \geq 0$ makes the trade-off better.
- In terms of quantile function G, $X \geq 0$ is equivalent to $G(0) = 0$.
- Denote \hat{V} as the optimal value for the problem with no-bankruptcy constraint.

Theorem 3: Suppose $\text{essinf} \xi = 0$. Then

(i') If $\gamma^* \leq 1$, then $\hat{V} = -x$. If $\gamma^* \in (1, +\infty)$, then $\hat{V} = -\gamma^* x$.

(ii') There exists an optimal solution X^* iff $V > -\infty$ and γ^* is obtained by some $c^* \in (0, 1)$, in which case $X^* = b1_{\xi \leq F_\xi^{-1}(1-c^*)}$ for some b.
Weighted V@R with no-bankruptcy

• In (3), The optimal value does neither depend on m nor l.
• The no bankruptcy constraint $X \geq 0$ makes the trade-off better.
• In terms of quantile function G, $X \geq 0$ is equivalent to $G(0) = 0$.
• Denote \hat{V} as the optimal value for the problem with no-bankruptcy constraint.

Theorem 3: Suppose $\text{essinf} \xi = 0$. Then

(i') If $\gamma^* \leq 1$, then $\hat{V} = -x$. If $\gamma^* \in (1, +\infty)$, then $\hat{V} = -\gamma^* x$.

(ii') There exists an optimal solution X^* iff $V > -\infty$ and γ^* is obtained by some $c^* \in (0, 1)$, in which case $X^* = b1_{\xi \leq F^{-1}_\xi (1-c^*)}$ for some b.

• The optimal value \hat{V} does not depend on l, but does depend on μ.
• \hat{V} may not be asymptotically approached by $X_n = a_n + b_n 1_{\xi \leq c_n}$.

Mean-Risk Portfolio Selection with Law-Invariant Coherent Risk Measure – p. 11/14
When ρ is coherent and law-invariant

- If ρ is coherent and law-invariant, then

$$\rho(G) = \sup_{\mu \in A} \int_{0}^{1} G(z) \varphi(\mu) (dz)$$

for some closed $A \subset \mathcal{P}([0, 1])$.
When ρ is coherent and law-invariant

- If ρ is coherent and law-invariant, then
 \[
 \rho(G) = \sup_{\mu \in A} \int_0^1 G(z) \varphi(\mu)(dz)
 \]
 for some closed $A \subset \mathcal{P}([0, 1])$.

- The optimal terminal wealth problem turns into
 \[
 \text{Min} \quad \sup_{\mu \in A} \int_0^1 G(z) \varphi(\mu)(dz)
 \\
 \text{s.t.} \quad \mathbb{E}[\xi G(1 - Z)] = x_0, \\
 \quad \mathbb{E}[G(1 - Z)] \geq l.
 \]
When ρ is coherent and law-invariant

- If ρ is coherent and law-invariant, then

$$\rho(G) = \sup_{\mu \in \mathcal{A}} \int_0^1 G(z) \varphi(\mu)(dz)$$

for some closed $\mathcal{A} \subset \mathcal{P}([0, 1])$.

- The optimal terminal wealth problem turns into

$$\text{Min } \sup_{\mu \in \mathcal{A}} \int_0^1 G(z) \varphi(\mu)(dz)$$

s.t.

$$\mathbb{E}[\xi G(1 - Z)] = x_0,$$

$$\mathbb{E}[G(1 - Z)] \geq l. \quad (4)$$

- If we can swap min and sup, then the minimization over G is the same as that for WV@R.
When ρ is coherent and law-invariant

Theorem 4: We can exchange the order of \min and \sup in problem (4) with or without the extra no-bankruptcy constraint, i.e., $G(0) = 0$.
When ρ is coherent and law-invariant

Theorem 4: We can exchange the order of \min and \sup in problem (4) with or without the extra no-bankruptcy constraint, i.e., $G(0) = 0$.

- For problem (4) w/o no-bankruptcy constraint, we have another critical quantity

\[
\gamma_A := \inf_{\mu \in A} \sup_{0 < c < 1} \frac{\varphi(\mu)((c,1])}{\int_c^1 F_{\xi}^{-1}(1-z)dz}.
\]
When ρ is coherent and law-invariant

Theorem 4: We can exchange the order of \min and \sup in problem (4) with or without the extra no-bankruptcy constraint, i.e., $G(0) = 0$.

- For problem (4) w/o no-bankruptcy constraint, we have another critical quantity

$$\gamma_A := \inf_{\mu \in A} \sup_{0 < c < 1} \frac{\varphi(\mu)((c, 1])}{\int_c^1 F_{\xi}^{-1}(1 - z)dz}.$$

Theorem 5: Suppose $\text{essinf} \xi = 0$. Denote V_c and \hat{V}_c as the optimal value for problem (4) without and with the no-bankruptcy constraint.

- For problem (4) without no-bankruptcy constraint, $V_c > -\infty$ iff $\gamma_A \leq 1$. When $V_c > -\infty$, we have $V_c = -x$.

- For problem (4) with no-bankruptcy constraint, $\hat{V}_c > -\infty$ iff $\gamma_A < +\infty$. When $V_c > -\infty$, we have $V_c = -x \max(\gamma_A, 1)$.
Questions and Comments