Near-critical percolation with heavy-tailed impurities and forest fire processes

Pierre Nolin\(^1\) (CityU Hong Kong)

based on j.w. with Rob van den Berg (CWI and VU, Amsterdam)

May 27th, 2019

SASI Probability Meeting, NUS

\(^1\)partially supported by GRF grant CityU11304718 (Research Grants Council of Hong Kong SAR)
Bernoulli percolation

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

Site percolation on \mathbb{Z}^2

Site percolation on \mathbb{T}
Bernoulli percolation

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

For some parameter $p \in [0, 1]$, vertices ("sites") independently

- occupied / black (p)
Bernoulli percolation

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

For some parameter $p \in [0, 1]$, vertices ("sites") independently

- occupied / black (p)
- vacant / white ($1 - p$)
Bernoulli percolation

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

For some parameter $p \in [0, 1]$, vertices (“sites”) independently

- occupied / black (p)
- vacant / white ($1 - p$)
Bernoulli percolation

Percolation: phase transition as p varies

\[p_{c}^{\text{site}}(\mathbb{Z}^d) / p_{c}^{\text{site}}(\mathbb{T}) \]
Bernoulli percolation

Percolation: phase transition as p varies

$0 \quad p_c^{\text{site}}(\mathbb{Z}^d) \; / \; p_c^{\text{site}}(\mathbb{T}) \quad 1$

subcritical regime

- no ∞ cluster
- exponential decay for cluster size
- only tiny clusters

trivial large scale behavior
Bernoulli percolation

Percolation: phase transition as p varies

$\frac{p_c^{\text{site}}(\mathbb{Z}^d)}{p_c^{\text{site}}(\mathbb{T})}$

0 1 p

subcritical regime
- no ∞ cluster
- exponential decay for cluster size
- only tiny clusters
- trivial large scale behavior

supercritical regime
- unique ∞ cluster
- exponential decay for finite clusters
- only tiny finite clusters
- trivial large scale behavior
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- Each vertex vacant; occupied at birth times: pure birth process (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets $\geq N$, i.e. all vertices along the outer boundary then stay vacant forever
- Forest fire process: occupied clusters burn when hit by lightning, i.e. all vertices become vacant instantaneously without recovery: burnt vertices then stay vacant forever
- Forest fire process with recovery: burnt vertices can become occupied again, at later birth times
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant

- Each vertex vacant \leadsto occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, births (rate 1) and ignitions (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant

- Each vertex vacant \leadsto occupied at birth times: pure birth process (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)

- N-volume-frozen percolation: occupied clusters stop growing if their volume ($= \# \text{ vertices}$) gets $\geq N$, i.e. all vertices along the outer boundary then stay vacant forever

- Forest-fire process: occupied clusters burn when hit by lightning, i.e. all vertices become vacant instantaneously without recovery: burnt vertices then stay vacant forever

- Forest-fire process with recovery: burnt vertices can become occupied again, at later birth times
Frozen percolation

$N = 200$-volume-frozen percolation on \mathbb{T}

Final configuration at time $t = \infty$ (Fig. Demeter Kiss)
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant

- Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)

- N-volume-frozen percolation: occupied clusters stop growing if their volume (=$\#$ vertices) gets $\geq N$, i.e. all vertices along the outer boundary then stay vacant

- **forest-fire process**: occupied clusters burn when one vertex ignites, i.e. all vertices become vacant instantaneously

Without recovery: burnt vertices then stay vacant forever

With recovery: burnt vertices can become occupied again, at later birth times
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- Each vertex vacant \sim occupied at birth times: pure birth process (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- N-volume-frozen percolation: occupied clusters stop growing if their volume (=$\#$ vertices) gets $\geq N$, i.e. all vertices along the outer boundary then stay vacant
- forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously
 - without recovery: burnt vertices then stay vacant forever
Forest fire processes

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, \textbf{births} (rate 1) and \textbf{ignitions} (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant

- Each vertex vacant \sim occupied at birth times: \textbf{pure birth process} (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)

- \textit{N-volume-frozen percolation}: occupied clusters stop growing if their volume (\(= \#\) vertices) gets $\geq N$, i.e. all vertices along the outer boundary then stay vacant

- \textbf{forest-fire process}: occupied clusters burn when one vertex \textit{ignited}, i.e. all vertices become vacant instantaneously

 - \textbf{without recovery}: burnt vertices then stay vacant forever
 - \textbf{with recovery}: burnt vertices can become occupied again, at later birth times
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\to 0)$
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate ζ ($\to 0$)
- \leadsto the tree “burns” (disappears) immediately, together with its whole connected component
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\to 0)$
- \sim the tree “bears” (disappears) immediately, together with its whole connected component
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate ζ ($\to 0$)
- \leadsto the tree “burns” (disappears) immediately, together with its whole connected component
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\to 0)$
- \sim the tree “burns” (disappears) immediately, together with its whole connected component

Note: in the absence of fires, Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$.
Forest fire processes

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\to 0)$
- \sim the tree “burns” (disappears) immediately, together with its whole connected component

Note: in the absence of fires, Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$.

We can consider forest fire processes with or without recovery.
Forest fire processes

Forest fire process *without recovery*, rate $\zeta = 0.01$
Relevant “macroscopic” behavior starts to occur around critical time t_c (defined by $1 - e^{-t_c} = p_c$).

→ Instance of self-organized criticality (well-known phenomenon in statistical physics).
Forest fire processes

Relevant “macroscopic” behavior starts to occur around critical time t_c (defined by $1 - e^{-t_c} = p_c$).

→ Instance of self-organized criticality (well-known phenomenon in statistical physics).

▶ Spontaneous arising of a critical regime (without any fine-tuning of a parameter).
Forest fire processes

Relevant “macroscopic” behavior starts to occur around critical time t_c (defined by $1 - e^{-t_c} = p_c$).

→ Instance of self-organized criticality (well-known phenomenon in statistical physics).

- Spontaneous arising of a critical regime (without any fine-tuning of a parameter).
- It can be used to explain the appearance of complex structures in nature (“universal” fractal shapes).
Forest fire processes

Relevant “macroscopic” behavior starts to occur around critical time t_c (defined by $1 - e^{-t_c} = p_c$).

→ Instance of self-organized criticality (well-known phenomenon in statistical physics).

- Spontaneous arising of a critical regime (without any fine-tuning of a parameter).

- It can be used to explain the appearance of complex structures in nature (“universal” fractal shapes).

Forest fire processes

- N-volume-frozen percolation ($N \to \infty$) now well understood\(^1\): deconcentration phenomenon

Forest fire processes

- N-volume-frozen percolation ($N \to \infty$) now well understood\(^1\): **deconcentration** phenomenon

- For forest fire processes, rate at which a cluster ignited = $\zeta \times$ volume

Forest fire processes

- N-volume-frozen percolation ($N \to \infty$) now well understood\(^1\): deconcentration phenomenon

- For forest fire processes, rate at which a cluster ignited $= \zeta \times$ volume
 \to As $\zeta \to 0$, same behavior near t_c as N-volume-frozen percolation, with $N \leftrightarrow \zeta^{-1}$?

Forest fire processes

- \(N \)-volume-frozen percolation \((N \to \infty)\) now well understood\(^1\): deconcentration phenomenon

- For forest fire processes, rate at which a cluster ignited = \(\zeta \times \text{volume} \)
 \(\to \) As \(\zeta \to 0 \), same behavior near \(t_c \) as \(N \)-volume-frozen percolation, with \(N \leftrightarrow \zeta^{-1} \)?

- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.

Forest fire processes

- N-volume-frozen percolation ($N \to \infty$) now well understood\(^1\): \textit{deconcentration} phenomenon

- For forest fire processes, rate at which a cluster ignited $= \zeta \times \text{volume}$
 \to As $\zeta \to 0$, same behavior near t_c as N-volume-frozen percolation, with $N \leftrightarrow \zeta^{-1}$?

- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.

- \textbf{Note}: “boundary rules” (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role

Forest fire processes

- N-volume-frozen percolation ($N \to \infty$) now well understood\(^1\): deconcentration phenomenon

- For forest fire processes, rate at which a cluster ignited $= \zeta \times$ volume
 \to As $\zeta \to 0$, same behavior near t_c as N-volume-frozen percolation, with $N \leftrightarrow \zeta^{-1}$?

- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.

- **Note**: “boundary rules” (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role (important role when freezing by diameter\(^2\))

Critical regime

Percolation: phase transition as p varies

\[p_{c}^{\text{site}}(T) \]

\begin{align*}
\text{subcritical regime} & \quad \text{supercritical regime} \\
\text{no } \infty \text{ cluster} & \quad \text{unique } \infty \text{ cluster} \\
\text{exponential decay} & \quad \text{exponential decay} \\
\text{for cluster size} & \quad \text{for finite clusters} \\
\text{only tiny clusters} & \quad \text{only tiny finite clusters} \\
\text{trivial large scale behavior} & \quad \text{trivial large scale behavior} \\
\text{critical regime} & \\
\text{non-trivial scaling limits} & \\
\text{conformal invariance} & \\
\text{connection with SLE}(6) & \\
\text{(Lawler, Schramm, Werner, Smirnov 1999-2001)} & \ldots
\end{align*}
Near-critical regime

Critical regime \((p = p_c)\)

e.g. \(\mathbb{P}_{p_c}(\text{graph}) = N^{-5/48+o(1)}\) \((N \to \infty)\)
Near-critical regime

- Critical regime ($p = p_c$)
- Near-critical regime ($p \approx p_c$)

Scaling relations (Kesten 1987)

- E.g. $\mathbb{P}_{p_c} \left(\begin{array}{c} N \\ 0 \end{array} \right) = N^{-5/48+o(1)} (N \to \infty)$
Near-critical regime

critical regime \((p = p_c)\)

e.g. \(\mathbb{P}_{p_c} \left(\begin{array}{c} N \\ 0 \end{array} \right) = N^{-5/48 + o(1)} \)

scaling relations
(Kesten 1987)

near-critical regime \((p \simeq p_c)\)

e.g. density \(\theta(p) = (p - p_c)^{5/36 + o(1)} \)

\((p \searrow p_c)\)

scaling relations
(Kesten 1987)

critical regime \((p = p_c)\)

e.g. \(\mathbb{P}_{p_c} \left(\begin{array}{c} N \\ 0 \end{array} \right) = N^{-5/48 + o(1)} \)

scaling relations
(Kesten 1987)

near-critical regime \((p \simeq p_c)\)

e.g. density \(\theta(p) = (p - p_c)^{5/36 + o(1)} \)

\((p \searrow p_c)\)
Near-critical regime

$$0 \rightarrow p \rightarrow 1$$

$$p = p_c$$

$$p \approx p_c$$

scales "below" $$L(p) = |p - p_c|^{-4/3 + o(1)} (p \rightarrow p_c)$$

(characteristic length)

critical regime $$(p = p_c)$$

e.g. $$\mathbb{P}_{p_c} \left(\begin{array}{c} N \\ 0 \end{array} \right) = N^{-5/48 + o(1)} (N \rightarrow \infty)$$

scaling relations

(Kesten 1987)

near-critical regime $$(p \approx p_c)$$

e.g. density $$\theta(p) = (p - p_c)^{5/36 + o(1)} (p \downarrow p_c)$$

$$\theta(p)$$

0 1

1 1

0 0

$$p_c$$

$$p_c$$

1
Forest fire processes

Sequence of \textbf{exceptional scales}: for all \(k \geq 1 \),

\[
m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with} \quad \delta_k \nearrow \delta_\infty = \frac{48}{55}
\]

\(\rightarrow \) highlight \textbf{non-monotonicity}, not predicted in the literature)
Forest fire processes

Sequence of **exceptional scales**: for all $k \geq 1$,

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$

(\rightarrow highlight **non-monotonicity**, not predicted in the literature)

Theorem (van den Berg, N., 2018)

For forest fire process without recovery, in box $B_m(\zeta)$: as $\zeta \to 0$,

- $m_1(\zeta) \approx m_k(\zeta)$
- $\lim \inf \mathbb{P}_\zeta^{B_m(\zeta)}(0 \text{ burns before } t) > 0$ (for $t > t_c$)
- burning on (t_c, ∞)
- $m_k(\zeta) \ll m(\zeta) \ll m_{k+1}(\zeta)$
- $\mathbb{P}_\zeta^{B_m(\zeta)}(0 \text{ burns before } t) \to 0$ (for $\zeta \to 0$)
- burning only near t_c

clusters in final configuration:

- macroscopic (volume $\asymp \zeta^{-1}$)
- microscopic (volume $O(1)$)
- mesoscopic (volume $\zeta^{-\delta + o(1)}$), $0 < \delta < 1$
Forest fire processes

- Related to behavior established earlier for volume-frozen percolation\(^3\).

Forest fire processes

- Related to behavior established earlier for volume-frozen percolation\(^3\).

- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).

Forest fire processes

- Related to behavior established earlier for volume-frozen percolation\(^3\).

- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).

- Moreover, significant \textbf{additional issue}: many “early” fires, larger and larger as time approaches \(t_c\) (with a “heavy-tailed” distribution, in some sense), all over the lattice.

Forest fire processes

- Related to behavior established earlier for volume-frozen percolation\(^3\).

- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).

- Moreover, significant **additional issue**: many “early” fires, larger and larger as time approaches \(t_c\) (with a “heavy-tailed” distribution, in some sense), all over the lattice.

- We have to understand the effect of these **“impurities”** on the connectedness of the lattice.

Forest fire processes

- Related to behavior established earlier for volume-frozen percolation\(^3\).

- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).

- Moreover, significant **additional issue**: many “early” fires, larger and larger as time approaches \(t_c\) (with a “heavy-tailed” distribution, in some sense), all over the lattice.

- \(\rightarrow\) We have to understand the effect of these “impurities” on the connectedness of the lattice. (not clear that they do not perturb too much the “near-critical picture”!)

“Impurities” created by fires before time $t_c - \varepsilon$ ($\varepsilon = 0.1$)
Heavy-tailed impurities

→ New model: percolation with “heavy-tailed” impurities.
Heavy-tailed impurities

→ New model: percolation with “heavy-tailed” impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \to \infty$),
Heavy-tailed impurities

→ New model: percolation with “heavy-tailed” impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \to \infty$),

▶ each vertex v is the center of an impurity with probability $\lesssim m^{-\beta}$
Heavy-tailed impurities

→ New model: percolation with “heavy-tailed” impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \to \infty$),

- each vertex v is the center of an impurity with probability $\ll m^{-\beta}$
- radius R_v such that $\mathbb{P}(R_v \geq r) \ll r^{\alpha-2} e^{-cr/m}$
New model: percolation with “heavy-tailed” impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \to \infty$),

- each vertex v is the center of an impurity with probability $\lesssim m^{-\beta}$
- radius R_v such that $\mathbb{P}(R_v \geq r) \lesssim r^{\alpha-2} e^{-cr/m}$
Heavy-tailed impurities

Percolation with heavy-tailed impurities: random environment
Heavy-tailed impurities

We manage to obtain the **full “phase diagram”** as α, β vary:
Heavy-tailed impurities

For forest fires, $\alpha = \frac{55}{48}$ and $\beta > \alpha$ (most interesting regime)

Note: impurities have density $m^{-(\beta - \alpha)}$, $\beta - \alpha$ arbitrarily small
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?

- **classical case**: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ ("$\alpha = -\infty$")
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?

- **classical case**: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ ("$\alpha = -\infty$")
 - density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

▶ effect on pivotal sites: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)
 - relies on inequality between arm exponents $\alpha_4 \leq \alpha_2 + 1$
 - hence, specific to T so far.
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?

- **classical case:** single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ ("$\alpha = -\infty$")
 - \rightarrow density of impurities has to stay $\lesssim m^{-3/4 + o(1)}$

- here, any $\beta > \alpha > \frac{3}{4}$ work, density $m^{-(\beta - \alpha)}$
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?

- **classical case**: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ ("$\alpha = -\infty$"")

 \rightarrow density of impurities has to stay $\ll m^{-3/4 + o(1)}$

- here, any $\beta > \alpha > \frac{3}{4}$ work, density $m^{-(\beta-\alpha)}$

- effect on **pivotal sites**: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)
Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of the lattice?

- **classical case**: single-site updates (“impurities”), need \(\beta > \frac{1}{\nu} = \frac{3}{4} \) (\(\alpha = -\infty \))

 \[\rightarrow \text{density of impurities has to stay} \lesssim m^{-3/4 + o(1)} \]

- here, any \(\beta > \alpha > \frac{3}{4} \) work, density \(m^{-(\beta-\alpha)} \)

- effect on **pivotal sites**: quite subtle balance (impurities “help” vacant arm / “hinder” occupied arms)

 \[\rightarrow \text{relies on inequality between arm exponents} \]

 \[\alpha_4 \leq \alpha_2 + 1 \]

 (hence, specific to \(\mathbb{T} \) so far).
Forest fire processes

Forest fire process at time $t_c + \varepsilon$, in a box with side length

$$M \gg m = L(t_c - \varepsilon) \asymp L(t_c + \varepsilon)$$

(typically, $m = \hat{M}$)

![Diagram](image)

- "lower bound" by percolation with heavy-tailed impurities
- near-critical behavior
- configuration at this time
Forest fire processes

In the full plane: existence of exceptional scales indicate a convoluted structure
Forest fire processes

In the full plane: existence of exceptional scales indicate a convoluted structure

→ **deconcentration** phenomenon as $\zeta \to 0$ (work in progress)
Forest fire processes

In the full plane: existence of exceptional scales indicate a convoluted structure

→ **deconcentration** phenomenon as $\zeta \to 0$ (work in progress)

Theorem (van den Berg, N., 2019+)

For forest fire process without recovery, in full plane \mathbb{T}: for all $t > 0$,

$$
\mathbb{P}_\zeta^T(0 \text{ burns before } t) \xrightarrow{\zeta \to 0} 0
$$

+ qualitative description of what happens right after t_c (“avalanche” of successive fires surrounding 0, more and more localized).
Exceptional scales

Consider \(N \)-volume-frozen percolation, in a box with side length \(C \sqrt{N} \) \((C > 1)\).
Exceptional scales

Consider \(N \)-volume-frozen percolation, in a box with side length \(C \sqrt{N} \) (\(C > 1 \)). For \(t \) just above \(t_c \) \((1 - e^{-t_c} = p_c)\)

\[
C \sqrt{N} \simeq L(t) \quad \text{volume} \simeq \theta(t) \cdot (C \sqrt{N})^2
\]

(Borgs, Chayes, Kesten, Spencer, 2001)
Exceptional scales

Consider N-volume-frozen percolation, in a box with side length $C \sqrt{N}$ ($C > 1$). For t just above t_c ($1 - e^{-t_c} = p_c$) the volume freezes at a time very close to $\bar{t} = \bar{t}(C) := \theta^{-1}(\frac{1}{C^2})$.
Exceptional scales

Consider *N-volume-frozen percolation*, in a box with side length $C\sqrt{N}$ ($C > 1$). For t just above t_c ($1 - e^{-t_c} = p_c$)

\[
C\sqrt{N} \approx L(t)
\]

volume $\simeq \theta(t) \cdot (C\sqrt{N})^2$

(Borgs, Chayes, Kesten, Spencer, 2001)

- freezes at a time very close to $\bar{t} = \bar{t}(C) := \theta^{-1}\left(\frac{1}{C^2}\right)$
- leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$
Exceptional scales

Consider N-volume-frozen percolation, in a box with side length $C \sqrt{N}$ ($C > 1$). For t just above t_c ($1 - e^{-t_c} = p_c$)

$C \sqrt{N} \approx L(t)$

volume $\approx \theta(t) \cdot (C \sqrt{N})^2$

(Borgs, Chayes, Kesten, Spencer, 2001)

- freezes at a time very close to $\bar{t} = \bar{t}(C) := \theta^{-1}(1/C^2)$
- leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$
- nothing else freezes: only 1 giant cluster freezes, “spanning” the box
Exceptional scales

In a box with side length $m = L(t)$ ($t = t(N) \searrow t_c$): for t' just above t,

\[L(t) \approx L(t') \]

\[\text{volume} \approx \theta(t') \cdot (L(t))^2 \]

\[\implies \text{freezes at a time very close to } \hat{t} \text{ s.t. } L(t)^2 \theta(\hat{t}) = N, \]
Exceptional scales

In a box with side length \(m = L(t) \) \((t = t(N) \searrow t_c)\): for \(t' \) just above \(t \),

\[
L(t) \approx L(t') \\
\text{volume } \approx \theta(t') \cdot (L(t))^2
\]

▶ freezes at a time very close to \(\hat{t} \) s.t. \(L(t)^2 \theta(\hat{t}) = N \),
Exceptional scales

In a box with side length \(m = L(t) \) \((t = t(N) \searrow t_c)\): for \(t' \) just above \(t \),

\[
\text{volume} \simeq \theta(t') \cdot (L(t))^2
\]

- freezes at a time very close to \(\hat{t} \) s.t. \(L(t) \theta(\hat{t}) = N \),
- leaves a hole around 0 with diameter \(\asymp L(\hat{t}) \),
Exceptional scales

In a box with side length \(m = L(t) \) \((t = t(N) \searrow t_c) \): for \(t' \) just above \(t \),

\[
\text{volume } \simeq \theta(t') \cdot (L(t))^2
\]

- freezes at a time very close to \(\hat{t} \) s.t. \(L(t)^2 \theta(\hat{t}) = N \),
- leaves a hole around 0 with diameter \(\asymp L(\hat{t}) \),
- \(\rightarrow \) next scale \(\hat{m} = L(\hat{t}) \).
Exceptional scales

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.
Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2 \pi_1(m_k) \asymp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{91}$$
Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2 \pi_1(m_k) \asymp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with} \quad \delta_k \nearrow \delta_\infty = \frac{48}{91}$$

Note: for previous reasoning, need to be “on the edge of supercriticality”, for $\hat{t} - t_c \gg t - t_c$ ($\leftrightarrow L(\hat{t}) = \hat{m} \ll L(t) = m$)
Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2 \pi_1(m_k) \asymp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{91}$$

Note: for previous reasoning, need to be “on the edge of supercriticality”, for $\hat{t} - t_c \gg t - t_c$ (⇒ $L(\hat{t}) = \hat{m} \ll L(t) = m$)

→ condition $m^2 \pi_1(m) \ll N$, i.e.

$$m \ll m_\infty(N) = N^{\delta_\infty + o(1)}$$
Exceptional scales

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.
Exceptional scales

For **forest fire processes**: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For $m = L(t)$, $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c)L(t)^2\theta(\hat{t}) = 1$$
Exceptional scales

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For $m = L(t)$, $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c) L(\hat{t})^2 \pi_4(L(\hat{t})) \sim 1$, $\hat{m} = L(\hat{t})$ satisfies

$$\zeta \cdot m^2 \pi_1(\hat{m}) \sim \hat{m}^2 \pi_4(\hat{m})$$
Exceptional scales

For **forest fire processes**: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For $m = L(t)$, $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c)L(t)^2\theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2\pi_4(L(\hat{t})) \asymp 1$, $\hat{m} = L(\hat{t})$ satisfies

$$\zeta \cdot m^2\pi_1(\hat{m}) \asymp \hat{m}^2\pi_4(\hat{m})$$

→ predicts **exceptional scales** again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$
Exceptional scales

For forest fire processes: we can again start with \(m_1(\zeta) = \zeta^{-1/2} \), and try to follow the same reasonings.

For \(m = L(t) \), \(\hat{t} > t \) such that

\[
\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1
\]

Since \((\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \asymp 1\), \(\hat{m} = L(\hat{t}) \) satisfies

\[
\zeta \cdot m^2 \pi_1(\hat{m}) \asymp \hat{m}^2 \pi_4(\hat{m})
\]

→ predicts exceptional scales again, with more complicated formulas:

\[
m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}
\]

In order to make this reasoning rigorous, we use the model with impurities.
Forest fire processes

Conclusion:

- By studying **percolation with heavy tailed impurities**, we show that early fires do not perturb too much connectedness of the forest.

Forest fire processes

Conclusion:

▶ By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.

▶ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).

Conclusion:

- By studying *percolation with heavy tailed impurities*, we show that early fires do not perturb too much connectedness of the forest.

- → We prove the existence of *exceptional scales* for *forest fires without recovery*, in a similar sense as for volume-frozen percolation (but with much more work).

- We also obtain a similar *deconcentration* phenomenon around t_c, and a rather complete understanding of the final configuration (*work in progress*).

Forest fire processes

Conclusion:

► By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.

► We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).

► We also obtain a similar deconcentration phenomenon around t_c, and a rather complete understanding of the final configuration (work in progress).

► For forest fires with recovery, the same behavior should hold, up to a time $t_c + \delta$ where $\delta > 0$ universal (using also properties of “self-destructive percolation”\(^4\)) → precise description beyond t_c.

Forest fire processes

Conclusion:

▶ By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.

▶ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).

▶ We also obtain a similar deconcentration phenomenon around t_c, and a rather complete understanding of the final configuration (work in progress).

▶ For forest fires with recovery, the same behavior should hold, up to a time $t_c + \delta$ where $\delta > 0$ universal (using also properties of “self-destructive percolation”4) → precise description beyond t_c.

▶ This should improve our understanding of the long-term ($t \to \infty$) behavior, but limited progress so far.

Thank you!