Extended monstrous moonshine

Scott Carnahan

Department of Mathematics
University of Tsukuba

2018-6-27
Pan-Asia Number Theory Conference
What is moonshine?
Strange connections between finite groups and modular forms

Symmetry
Finite groups

Moonshine

Complex analysis/
Number theory
Modular forms
What is moonshine?

Strange connections between finite groups and modular forms

The connections should be “very special”

Infinitely many cases \Rightarrow not moonshine!
Classification of finite simple groups

Any finite simple group is one of the following

- A cyclic group of prime order
- An alternating group A_n ($n \geq 5$)
- A group of Lie type (16 infinite families)
- One of 26 sporadic simple groups

Largest sporadic: Monster \mathbb{M}, about $8 \cdot 10^{53}$ elements (Griess 1982).
194 irreducible representations of dimension 1, 196883, 21296876, …
Hauptmodul (or principal modulus)

A Hauptmodul for a discrete subgroup $\Gamma \subset \text{SL}_2(\mathbb{R})$ is a holomorphic function $\mathcal{H} \to \mathbb{C}$ invariant under Γ, that generates the function field of $\Gamma \backslash \mathcal{H}$.

J-function as Hauptmodul

The quotient space $\text{SL}_2(\mathbb{Z}) \backslash \mathcal{H}$ has genus zero. Function field generated by J. Fourier expansion:

$q^{-1} + 196884q + 21493760q^2 + \cdots (q = e^{2\pi i z})$
Coefficients of J and Irreducible Monster reps

\[
\begin{align*}
196884 & = 1 + 196883 \quad \text{(McKay, 1978)} \\
21493760 & = 1 + 196883 + 21296876 \quad \text{(Thompson, 1979)} \\
864299970 & = 2 \times 1 + 2 \times 196883 + 21296876 + 842609326 \\
& \vdots
\end{align*}
\]

How to continue this sequence?

McKay-Thompson conjecture: Natural graded rep

\[
\bigoplus_{n=0}^{\infty} V_n \text{ of } \mathbb{M} \text{ such that } \sum \dim V_n q^{n-1} = J.
\]
Idea: Physics forms a bridge

Conformal field theory

Monster (Vertex operator algebras) → J function

Solution: Frenkel, Lepowsky, Meurman 1988

Constructed a vertex operator algebra

\[V^\natural = \bigoplus_{n \geq 0} V_n^\natural \] (the Moonshine Module), such that

\[\sum_{n \geq 0} (\dim V_n^\natural) q^{n-1} = J \text{ and } \Aut V^\natural = \mathbb{M}. \]
Refined correspondence

Thompson’s suggestion: replace graded dimension with graded trace of non-identity elements.

Monstrous Moonshine Conjecture (Conway, Norton 1979)

There is a faithful graded representation $V = \bigoplus_{n \geq 0} V_n$ of the monster \mathbb{M} such that for all $g \in \mathbb{M}$, the series $T_g(\tau) = \sum_{n \geq 0} \text{Tr}(g|V_n)q^{n-1}$ is the q-expansion of a congruence Hauptmodul (= “generates function field of genus 0 \mathbb{H}-quotient”).
First proof (Atkin, Fong, Smith 1980)

Theorem: A virtual representation of \mathbb{M} exists yielding the desired functions. No construction.

Second proof (Borcherds 1992)

Theorem: The Conway-Norton conjecture holds for \mathbb{V}^\dagger.
Outline of Borcherd's proof

FLM construction: V^q

Add torus and quantize

Lie algebra m

Isomorphism $m \cong L$

Twisted Denominator Identities

Automorph. ∞ prod.

gens. and rels.

Lie algebra L

Recursion relations

Hauptmoduln
Additional Moonshine Phenomena
Theorem (Ogg 1974)

The primes p such that $X_0(p)^+ = X_0(p)/\langle w_p \rangle$ has genus zero are

$$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71$$

These are the primes p such that all supersingular elliptic curves over $\overline{\mathbb{F}}_p$ have j invariant in \mathbb{F}_p.

Ogg’s Jack Daniels problem

Explain why these are precisely the primes that divide the order of the Monster.
Borcherds’s half-solution

For each $p | \#\mathbb{M}$, there is a conjugacy class pA, such that $T_g(\tau)$ is a Hauptmodul of $X_0(p)^+$ for g in pA.

The other half (still open)

Explain why $V^\frac{1}{2}$ has so many automorphisms.
Positivity phenomena

For g in pA, the coefficients of $T_g(\tau)$ are non-negative integers.
E.g. for $2A$, $T_g(\tau) = q^{-1} + 4372q + 96256q^2 + \cdots$ is a Hauptmodul for $\Gamma_0(2)^+$.

Extra phenomena (Conway-Norton, Queen)

The coefficients of $T_g(\tau)$ appear to be dimensions of representations of centralizers.
E.g., For g in $2A$, $C_M(g) \cong 2.B$, with irreducible representations: $1, 4371, 96255, 96256, \ldots$
Two explanations conjectured!

1. Generalized Moonshine (Norton 1987): Graded representations $V(g)$ of $C_M(g)$ in characteristic zero, traces of centralizing elements are Hauptmoduln.

Complementary history

<table>
<thead>
<tr>
<th></th>
<th>Generalized</th>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990s</td>
<td>Objects $V(g)$ exist (Dong-Li-Mason 1997)</td>
<td>Hauptmoduln assuming existence (Borcherds-Ryba 1996)</td>
</tr>
<tr>
<td>2010s</td>
<td>Hauptmoduln</td>
<td>Objects V^p exist</td>
</tr>
</tbody>
</table>

Key advance:

Theory of cyclic orbifolds of vertex operator algebras.
What is a vertex operator algebra?

1. $V = \bigoplus_{n \in \mathbb{Z}} V_n$, a graded vector space
2. $1 \in V_0$, an “identity element”
3. $\omega \in V_2$ a “Virasoro element”
4. $Y : V \otimes V \to V((z))$, “multiplication”

satisfying

1. $Y(1, z)x = x, \ Y(x, z)1 \in x + zV[[z]]$
2. coefficients of $Y(\omega, z)$ give Virasoro action
3. “commutativity and associativity”.
4. $\forall n, \dim V_n < \infty$. For $n \ll 0$, $V_n = 0$.
Lattice vertex operator algebras

L an even positive definite lattice.

$V_L = \mathbb{C}[L] \otimes \text{Sym}_\mathbb{C} x (L \otimes \mathbb{C})[x].$

Graded dimension is $\frac{\theta_L(\tau)}{\eta^{\text{rank } L}}$.

E.g., For Leech lattice, get $J + 24$.
V-Modules

For V - vertex operator algebra, a V-module is a vector space M with an action map $Y^M : V \otimes M \rightarrow M((z))$ satisfying some compatibility. V is **holomorphic** if all V-modules are direct sums of V.

Theorem (Dong 1994)

All V_L-modules are direct sums of $V_{L+\alpha}$ for $\alpha \in L^\vee/L$. In particular, V_L holomorphic $\Leftrightarrow L$ unimodular.
Theorem (van Ekeren, Möller, Scheithauer 2015)

V holomorphic VOA, g “anomaly-free” automorphism of order n. Then there exist:
- a “generalized VOA” $g V = \bigoplus_{i,j \in \mathbb{Z}/n\mathbb{Z}} g V^{i,j}$.
- a pair of commuting automorphisms (g, g^*) giving decomposition into $V^{i,j}$.
- An isomorphism $V = \bigoplus_{i \in \mathbb{Z}/n\mathbb{Z}} g V^{i,0}$
- a holomorphic VOA $V/g = \bigoplus_{j \in \mathbb{Z}/n\mathbb{Z}} g V^{0,j}$

Cyclic orbifold duality: $(V, g) \leftrightarrow (V/g, g^*)$
Special case: First construction of V^Λ (1988)

V_Λ - Leech lattice VOA

σ lifted from the -1-automorphism of Λ.

Then $V^\Lambda = (V_\Lambda)/\sigma$.

Now we have 51 constructions

We can take any σ that is fixed-point free, with “no massless states”. (51 algebraic conjugacy classes).
Generalized Monstrous Moonshine
Generalized Moonshine Conjecture (Norton 1987):

- \(g \in M \Rightarrow V(g) \) graded proj. rep. of \(C_M(g) \)
- \((g, h), gh = hg \Rightarrow Z(g, h; \tau) \) holomorphic on \(\mathcal{H} \)

1. \(q \)-expansion of \(Z(g, h; \tau) \) is graded trace of (a lift of) \(h \) on \(V(g) \).
2. \(Z \) is invariant under simultaneous conjugation of the pair \((g, h) \) up to scalars.
3. \(Z(g, h; \tau) \) constant or a Hauptmodul.
4. \(Z(g, h; \frac{a\tau + b}{c\tau + d}) \) proportional to \(Z(g^ah^c, g^bh^d; \tau) \).
5. \(Z(g, h; \tau) = J(\tau) \) if and only if \(g = h = 1 \).
Brute force solution (like Atkin-Fong-Smith)?

This is a finite problem:

- Finitely many conjugacy classes of commuting pairs, and possible levels are bounded.
- Central extensions of centralizers “can be computed”.

Not finite enough for 2018

- We still haven’t classified the commuting pairs.
- We still don’t know character tables of all centralizers, let alone central extensions.
Physics Language (Dixon, Ginsparg, Harvey 1988)

\(V(g) \) - twisted sectors of a conformal field theory with \(\mathbb{M} \)-symmetry.

\(Z(g, h; \tau) \) - genus 1 partition functions (with \((g, h)\)-twisted boundary conditions).

All except Hauptmodul claim (3) “follow” from conformal field theory considerations.

Algebraic Interpretation

\(V(g) = \) irreducible \(g \)-twisted \(V^\mathbb{M} \)-module \(V^\mathbb{M}(g) \)

\(Z(g, h; \tau) = \text{Tr}(\tilde{h} q^L(0)^{-1} | V(g)) \) for a lift \(\tilde{h} \).
Geometric interpretation of Z

Physicists draw boundary conditions as colorings.

Commuting pair (g, h) gives $\text{hom } \pi_1(E, e) \to \mathcal{M}$. $SL_2(\mathbb{Z})$ action changes generating pair. Ignoring scalar ambiguities, claims (2) and (4) say that Z is a function on the moduli space of elliptic curves with principal \mathcal{M}-bundles.
First Breakthrough (Dong, Li, Mason 1997)

- Existence and uniqueness (up to isom.) of V^g.
- Convergence of power series defining Z.
- Settles claims (1), (2), (5).
- Reduces $SL_2(\mathbb{Z})$ claim (4) to “g-rationality”.

Theorem (C, Miyamoto 2016)

Category of g-twisted V^g-modules is semisimple. This resolves the $SL_2(\mathbb{Z})$-compatibility claim (4).
On to claim (3)

We now need to show that all $Z(g, h; \tau)$ are Hauptmoduln or constant.

Second Breakthrough (Höhn 2003)

Generalized Moonshine for 2A (Baby monster case).
- Gives outline for proving Hauptmodul claim (3).
Borcherds-Höhn program for Hauptmoduln

Ab. intertw. alg. $\frac{g}{N} V^{\frac{q}{N}}$

Add torus and quantize

Lie algebra m_g

Automorph. ∞ prod.

gens. and rels.

Lie algebra L_g

Isom. $m_g \cong L_g$

Twisted Denominator Identities

Recursion relations

Hauptmoduln

Extended monstrous moonshine
Borcherds products of the form:

\[T_g(\sigma) - T_g(-1/\tau) = p^{-1} \prod_{m>0, n \in \frac{1}{N}\mathbb{Z}} \left(1 - p^m q^n\right)^{c_{m,n}^g(mn)} \]

- Exponent \(c_{m,n}^g(mn) \) is \(q^{mn} \)-coefficient of a v.v. modular function formed from \(\{T_g^i(\tau)\}_{i=0}^{N-1} \).
- \(L_g \) is a \(\mathbb{Z} \oplus \frac{1}{N}\mathbb{Z} \)-graded BKM Lie algebra.
- Simple roots of multiplicity \(c_{1,n}^g(n) \) in degree \((1, n)\).
Add a torus and quantize

- Take a graded tensor product with a lattice
- Get conformal VA, $c = 26$, graded by 2d lattice, has invariant form.
- Apply a bosonic string quantization functor.
- For Fricke g (i.e., $T_g(\tau) = T_g(-1/N\tau)$), get a
- graded by $II_{1,1}(-1/N) \cong \mathbb{Z} \oplus \frac{1}{N}\mathbb{Z}$.
Comparison

Borcherds-Kac-Moody Lie algebras:
- m_g has canonical projective action of $C_M(g)$.
- L_g has “nice shape”: known simple roots, good homology.

Isomorphism from matching root multiplicities:
$$\dim(L_g)_{m,n} = (m_g)_{m,n} = c_{g_{m,n}}(mn).$$

Transport de structure \Rightarrow L_g gets $\widehat{C_M(g)}$ action.
Virtual $\tilde{C}_M(g)$-module isom $H_*(E_g, \mathbb{C}) \cong \wedge^* E_g$

implies equivariant Hecke operators $n \hat{T}_n$ given by

$$n \hat{T}_n Z(g, h, \tau) = \sum_{ad=n, 0 \leq b < d} Z(g^d, g^{-b} h^a, \frac{a \tau + b}{d})$$

act by monic polynomials on $Z(g, h, \tau)$.

- Hauptmodul condition follows (C 2008).
- Constants come from (g, h) such that all $g^a h^c$ are non-Fricke when $(a, c) = 1$, using claim (4).

This resolves the final claim (3).
Extended monstrous moonshine

Modular Moonshine

Generalized Monstrous Moonshine

Additional Monstrous Phenomena

Modular Moonshine

Unification?
Ryba’s conjecture

For each g in conjugacy class $pA \ (p \nmid \# \mathbb{M})$, there is a vertex algebra $V^p = \bigoplus_{n \geq 0} V_n^p$ over \mathbb{F}_p with an action of $C_{\mathbb{M}}(g)$, such that for all p-regular elements h, the Brauer character

$$\sum_{n \geq 0} \hat{\text{Tr}}(h | V_n^p) q^{n-1}$$

is the q-expansion of the Hauptmodul $T_{gh}(\tau)$.
Borcherds-Ryba interpretation 1996

\[V^p = H^0(g, V^\mathbb{Z}_{\mathbb{Z}}), \text{ where } V^\mathbb{Z}_{\mathbb{Z}} \text{ is a self-dual integral form of } V^\mathbb{Z} \text{ (i.e., a VOA over } \mathbb{Z} \text{ with } \mathbb{M} \text{-symmetry).} \]

Theorem (Borcherds-Ryba 1996, Borcherds 1998)

If \(V^\mathbb{Z}_{\mathbb{Z}} \) exists, then \(V^p := H^0(g, V^\mathbb{Z}_{\mathbb{Z}}) \) works.

Theorem (C 2017)

\(V^\mathbb{Z}_{\mathbb{Z}} \) exists.
How to construct a self-dual integral form?

Existing constructions (e.g., by cyclic orbifold) have denominators.
For example, order n orbifold construction requires $\frac{1}{n}$ and $e^{\pi i/n}$.

Solution

Do orbifold constructions of many different orders, and glue using faithfully flat descent.
Recall

Conjugacy classes \(pA \) yield reps. of \(C_\mathbb{M}(g) \):
\(V(g) \) (char. 0) and \(V^g \) (char. \(p \))

Same \(p \)-regular characters!

In fact, for any \(g \in \mathbb{M} \), we get reps of \(C_\mathbb{M}(g) \):
\(V(g) \) (char. 0) and \(\hat{H}^*(g, V_\mathbb{Z}^\perp) \) (char. \(|g| \)).

Question

Is there an integral structure that produces both?
Main obstruction

Sometimes $\hat{H}^1(g, V_{\mathbb{Z}}^l) \neq 0$.

Conjecture (Borcherds-Ryba 1996)

$\hat{H}^1(g, V_{\mathbb{Z}}^l) = 0$ if and only if $T_g(\tau) = \sum \text{Tr}(g|V^l_n)q^{n-1}$ has a pole at 0.

Definition

We say g is Fricke if $T_g(\tau)$ has a pole at 0. Equivalently, $T_g(\tau)$ is invariant under the Fricke involution $w_N : \tau \mapsto -\frac{1}{N\tau}$. g is non-Fricke if $T_g(\tau)$ is regular at 0.
Fricke versus non-Fricke

- \mathcal{M} has 141 Fricke classes, and 53 non-Fricke classes.
- $T_g(\tau)$ non-negative coeffs. $\iff g$ Fricke.
- $Z(g, h, \tau)$ has a pole at ∞ if and only if g is Fricke.
- $V^{\frac{1}{2}}/g \cong \begin{cases} V^{\frac{1}{2}} & g \text{ is Fricke} \\ V_\Lambda & g \text{ non-Fricke} \end{cases}$
Conjecture (Borcherds 1998)

There is a rule that assigns to any $g \in \mathbb{M}$ of order n, a $\frac{1}{n}\mathbb{Z}$-graded $\mathbb{Z}[e^{2\pi i/n}]$-module V_g with an action of a central extension $\mathbb{Z}/n\mathbb{Z}.C_{\mathbb{M}}(g)$, such that

1. $V_g \otimes_{\mathbb{Z}[e^{2\pi i/n}]} \mathbb{C} \cong V(g)$ as $\mathbb{Z}/n\mathbb{Z}.C_{\mathbb{M}}(g)$-reps.

2. $g \not\sim \text{Fricke} \Rightarrow V_g \otimes_{\mathbb{Z}[e^{2\pi i/n}]} \mathbb{Z}/n\mathbb{Z} \cong \hat{H}^0(g, V_{\mathbb{Z}}^h)$ as $\mathbb{Z}/n\mathbb{Z}.C_{\mathbb{M}}(g)$-reps.

3. $\hat{H}^*(h, V_g) = V_{gh} \otimes \mathbb{Z}/|h|\mathbb{Z}$ when g, h commute and have coprime order.

4. (additional compatibilities)
Current progress

Twisted modules $V(g)$ can be defined over $\mathbb{Z}[\frac{1}{n}, e^{2\pi i/n}]$, but removing $\frac{1}{n}$ is tricky.
Looks like $\hat{H}^1(g, V_{\mathbb{Z}})$ = 0 for Fricke g (in progress)

What we really need

- Canonical lifts of $\hat{H}^*(g, V_{\mathbb{Z}})$ to characteristic zero.
- Meaningful interpretation of these objects.