Inverse problem for anisotropic elasticity system

Gen Nakamura

Hokkaido University

Workshop on Qualitative and Quantitative Approaches to Inverse Scattering Problems, Institute of Mathematical Sciences, NUS, Singapore, September 27, 2018

Collaborators of this study are

M. de Hoop and J. Zhai.
Outline of my talk

- Anisotropic elasticity and ND map, "localized" DN map
- Global uniqueness for identifying piecewise homogeneous/analytic density and elasticity tensor with known interfaces
- Some important ingredients of the proof
- Global uniqueness for identifying piecewise homogeneous/analytic density and elastic tensor with unknown interfaces
- Key tool for the proof: theory of subanalytic sets
- Discussion and future works
Anisotropic elasticity and its equation

- \(x = (x_1, x_2, x_3) \in \Omega \subset \mathbb{R}^3 \) bounded domain with smooth boundary \(\partial \Omega \)

- **elasticity tensor**: \(C = (C_{ijkl}(x)) \in L^\infty(\Omega) \);
 for any a.e. \(x \in \overline{\Omega} \) and indices \(i, j, k, l \in \{1, 2, 3\} \), it satisfies

 \[
 \begin{align*}
 \text{symmetry} \quad & C_{ijkl}(x) = C_{ijlk}(x) \quad (\text{minor symmetry}), \\
 & C_{ijkl}(x) = C_{klij}(x) \quad (\text{major symmetry})
 \end{align*}
 \]

- **strong convexity**:

 There exists \(\delta > 0 \) s.t. for any symmetric matrix \(\epsilon = (\epsilon_{ij}) \),

 \[
 \epsilon : (C :: \epsilon) = \sum_{i,j,k,l=1}^{3} C_{ijkl}(x)\epsilon_{ij}\epsilon_{kl} \geq \delta (\epsilon : \epsilon) \quad (\text{a.e. } x \in \Omega)
 \]

- e.g. **isotropic case**: \(C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{kj}) \)
Continued

- the displacement (column) vector \(u = (u_1, u_2, u_3) \) satisfies the elasticity equations of system

\[(\rho \partial_t^2 u - Lu)_i = (\rho \partial_t^2 u - \text{div}(C : \nabla u))_i \]

\[:= \rho \partial_t^2 u_i - \sum_{j,k,l=1}^{3} \partial_j (C_{ijkl}(x)\partial_l u_k) = 0 \text{ in } \Omega_T = \Omega \times (0, T), \]

where \(\partial_j = \partial/(\partial x_j) \), \(0 < \rho_0 \leq \rho \in L^\infty(\Omega) \) is the density, where \(\rho_0 \) is a constant.

- \[\partial \Omega = \overline{\Gamma^D} \cup \overline{\Gamma^N}, \]

where \(\Gamma^D, \Gamma^N \subset \partial \Omega \) : open, connected, nonempty, disjoint sets with smooth boundaries.
Forward problem

Consider

\[
\begin{cases}
 (\rho \partial_t^2 u - L)u = 0 & \text{in } \Omega_T, \\
 \partial_L u = 0 & \text{on } \Gamma^D_T, \\
 \partial_L u := (C : \nabla u)\nu = f \in H^2((0, T); \dot{H}^{-1/2}(\Gamma^N)) & \text{on } \Gamma^N_T, \\
 u \big|_{t=0} = 0, \quad \partial_t u \big|_{t=0} = 0, & \text{in } \Omega,
\end{cases}
\]

where \(\Gamma^D_T := \Gamma^D \times (0, T), \Gamma^N_T := \Gamma^N \times (0, T) \) and \(\nu \) is the outer unit normal of \(\partial \Omega \).

Well-posedness of (MP):

\[\exists! u \in C^0([0, T]; H^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)) : \text{solution to (MP) such that} \]

\[\|u(\cdot, t)\|_{H^1(\Omega)} + \|\partial_t u(\cdot, t)\| \lesssim \|f\|_{H^2((0, T); \dot{H}^{-1/2}(\Gamma^N))}, \quad t \in [0, T]. \]
Neumann-to-Dirichlet map = ND map

- **ND map** Λ^T

$$\Lambda^T : H^2((0, T); \dot{H}^{-1/2}(\Gamma_N)) \ni f \mapsto u^f|_{\Gamma^N_T} \in C^0([0, T]; \overline{H}^{1/2}(\Gamma_N))$$

with the solution $u = u^f$ of (MP). Also, define $\Lambda := \Lambda^T$ with $T = \infty$.

- **influence domain** \tilde{E}^T is the maximal subdomain of Ω in which all the solutions in $C^0([0, 2T]; H^1(\Omega)) \cap C^1([0, 2T]; L^2(\Omega))$ of the equation of (MP) become zero at $t = T$ if their Cauchy data on Γ^N_{2T} are zero.

- **filling time** $T^* := \inf\{T > 0 : \tilde{E}^T = \Omega\}$.

- **extension of ND map**: If the equation of (MP) has the unique continuation property = UCP of solutions, then $T^* < \infty$ exists and Λ^{2T} with $T > T^*$ can be extended to Λ.
Further assumptions on the density and elastic tensor

- finitely many subdomains \(D_\alpha \subset \Omega, \alpha \in A, \) s.t.
 \[
 \bar{\Omega} = \bigcup_{\alpha \in A} \overline{D_\alpha}, \quad D_\alpha \cap D_\beta = \emptyset \text{ if } \alpha \neq \beta
 \]
 \[
 \{D_\alpha\}_{\alpha \in A}/\{\overline{D_\alpha}\}_{\alpha \in A}
 \]
 and each \(\partial D_\alpha \) are called **cover** of \(\Omega \) and **interface**, respectively. Each interface is piecewise analytic.

- \(\rho, C \) are analytic up to the boundary in each \(D_\alpha \).

Refer these as saying \((\rho, C)\) is piecewise analytic.
Inverse problem and its reduction

Inverse problem: Show the uniqueness of identifying the density ρ and elasticity tensor C by knowing Λ^T.

This is a typical question asked for the vibroseis exploration technique in reflection seismology.

By the piecewise analyticity of (ρ, C), we have UCP by the Holmgren uniqueness theorem. Hence there is a filling time $T^* < \infty$ and Λ^{2T} with $T > T^*$ can be extended to Λ.

Take $f = t^2 \tilde{f}(x)$ with $\tilde{f} \in \dot{H}^{-1/2}(\Gamma^N)$. Then due to $(Lt^2)(\tau) := \int_0^\infty e^{-\tau t^2} dt = 2\tau^{-3}$ for $\tau > 0$, we can reduce the inverse problem as follows by taking the Laplace transform of the equation and boundary condition of (MP) with respect to t.

vibrator of vibroseis
Intermediate reduced inverse problem: Show the uniqueness of identifying the density ρ and elasticity tensor C by knowing the ND maps Λ_τ for $\tau > 0$ defined as

$$\Lambda_\tau : \dot{H}^{-1/2}(\Gamma^N) \ni \tilde{f} \mapsto v^{\tilde{f}}_\tau \in \dot{H}^{1/2}(\Gamma^N),$$

where $v = v^{\tilde{f}}_\tau \in H^1(\Omega)$ is the solution to the boundary value problem (BP):

$$\begin{align*}
(BP) \quad \left\{
M_\tau v := (\rho\tau^2 - L)v &= 0 \text{ in } \Omega, \\
(\partial_L v = 0 \text{ on } \Gamma^D,) \partial_L v &= \tilde{f} \text{ on } \Gamma^N.
\right.
\end{align*}$$

Remark Let Φ_τ be the ”localized” Dirichlet to Neumann (=DN) map on Γ^N, then Λ_τ and Φ_τ are inverse to each other. Here $\Phi_\tau h = \partial_L w^h_\tau$ on Γ^N for $h \in \dot{H}^{1/2}(\Gamma^N)$ with $w = w^h_\tau$ solving

$$M_\tau w = 0 \text{ in } \Omega, \quad \partial_L w = 0 \text{ on } \Gamma^D, \quad w = h \text{ on } \Gamma^N.$$
Reduced inverse problem

Finally we have reduced the inverse problem to

Reduced inverse problem: Show the uniqueness of identifying the density ρ and elasticity tensor C by knowing the localized DN maps Φ_τ for $\tau > 0$.

Consider two cases for the interfaces.
(i) Interfaces are known.
(ii) Interfaces are unknown.

Consider three cases for piecewise analytic pair (ρ, C).
(i) (ρ, C) is piecewise homogeneous. i.e. (ρ, C) is homogeneous in each subdomain.
(ii) C is transversally isotropic.
(iii) C is orthorhombic.
Transversally isotropic/orthorhombic elasticity tensor

(i) If x_3 axis coincide with the axis of symmetry, the 5 non-zero components of transversally isotropic elastic tensor C are

\[C_{1111}, C_{2222}, C_{3333}, C_{1122}, C_{1133}, C_{2233}, C_{2323}, C_{1313}, C_{1212} \]

with relations

\[C_{1111} = C_{2222}, \quad C_{1133} = C_{2233}, \]
\[C_{2323} = C_{1313}, \quad C_{1212} = \frac{1}{2}(C_{1111} - C_{1122}). \]

(ii) If the coordinates (x_1, x_2, x_3) are aligned within the symmetry planes, the 9 non-zero components of orthorhombic elastic tensor C are

\[C_{1111}, C_{2222}, C_{3333}, C_{1122}, C_{1133}, C_{2233}, C_{2323}, C_{1313}, C_{1212}. \]
orthorhombic
Main result assuming interfaces are known

for any $\alpha \in A$, there exists a chain $D_i := D_{\alpha_i} \ (i = 1, \ldots, N)$ with $\alpha_N = \alpha$ and nonempty surfaces $\Gamma_i \subset \partial D_i$ s.t. $\Gamma_1 = \Sigma = \Gamma^N$, and $\bar{D}_i \cap \bar{D}_{i+1} \supset \Gamma_{i+1} \ (i = 1, \ldots, N - 1)$

Let $(\rho_j, C^{(j)}), \ j = 1, 2$ be the two pairs of density and elastic tensor with the same known interfaces. Denote the localized DN maps for them by $\Phi_{\tau,j}, \ j = 1, 2$. Then we have the following theorem.
Continued and some previous works

Theorem

If $\Phi_{\tau,1} = \Phi_{\tau,2}$ for $\tau > 0$, then this implies $(\rho_1, C^{(1)}) = (\rho_2, C^{(2)})$ in D_N, i.e. the **global uniqueness** for the following cases:

(i) (ρ, C) is piecewise homogeneous and each Γ_i has nonzero curvature in its some open subset (**curvature condition**).

(ii) (ρ, C) is piecewise analytic and C is either transversally isotropic with known symmetric axis or orthorhombic with one of known symmetry planes which is parallel to the interfaces.

Remark The argument is reconstructive.
Some previous works for the case $\tau = 0$

(i) [Kohn, Vogelius, 1984, 1985] uniqueness for scalar isotropic conductivity even with unknown interfaces for 2D.

(ii) [Alessandrini, de Hoop, Gaburro, 2016] uniqueness for scalar anisotropic conductivity with known interfaces

(iii) [Carstea, Honda, Nakamura, 2017] uniqueness for piecewise homogeneous anisotropic elasticity even with unknown interfaces.

We will adapt the argument developed in (iii).
Structure of the argument

- **Determination at the boundary**: Φ_τ for $\tau > 0$ determine (ρ, C) and if it is not piecewise homogeneous, also its all the derivatives at Σ.

- **Interior determination**: iteratively show that

 $$
 (\rho_1, C^{(1)})|_{D_i} = (\rho_2, C^{(2)})|_{D_i} \\
 \implies (\rho_1, C^{(1)})|_{D_{i+1}} = (\rho_2, C^{(2)})|_{D_{i+1}}.
 $$

- usually this has been done by using Green functions or singular solutions similar to them

- for elliptic systems, Green functions are not always known to exist with necessary properties

- we use a more abstract method adapted from [Ikehata; 2002]
Determination at the boundary

Theorem

$(\rho, C)|_{D_1}$ can be recovered from Φ_τ, $\tau > 0$ for the following cases.

(i) (ρ, C) is piecewise homogeneous and Σ satisfies the curvature condition.

(ii) (ρ, C) is piecewise analytic and C is either transversally isotropic with known symmetric axis or orthorhombic with one of known symmetry planes which is parallel to the coordinates axes.

Some important ingredients for the proof for (ii) Φ_τ is a classical pseudodifferential operator for each fixed τ and also a pseudodifferential operator with large parameter τ.
Their respective principal symbols $Z_{cl} = Z(x', \xi')$ and $Z = Z(x', \xi', \tau)$ with $(x', \xi') \in T^*(\Sigma)$ are commonly called the surface impedance tensor. The normal derivatives of $Z(x', \xi')$ and $Z(x', \xi', \tau)$ can be recovered from the full symbol of Φ_τ. Z_{cl} only depends on $\xi' = m \times n$ with $m \perp n$ and $n =$ unit normal of Σ. Using these and by an explicit computations we have (ii).

for (i) Let $\Gamma(x, \tau)$ be the fundamental solution of M_τ. Then at each fix point of Σ, $\Gamma(x, \tau)$ for $x \perp n$ can be recovered from Z. Since Σ satisfies the curvature condition, we can recover $\Gamma(x, \tau)$ for x in an open subset of $\mathbb{R}^3 \setminus \{0\}$ by doing this recovery along Σ. Then due to the analyticity of $\Gamma(x, \tau)$ with respect to $x \in \mathbb{R}^3 \setminus \{0\}$, we can recover $\Gamma(x, \tau)$ and hence also (ρ, C).
Interior uniqueness: adapting IKEHATA’s argument

\[Ω_2 = Ω \setminus \bar{D}_1, \ Σ_2 = \partial Ω_2 \setminus \partial Ω \]

it is enough to show that \(Φ_\tau = Φ_{\tau,Σ} \) determines \(Φ_{\tau,Σ_2} \)

Green operator \(G : (H^1(Ω))^* \to H^1(Ω) \) of \(M_\tau \) with Neumann boundary condition on \(\partial Ω \).

for \(f \in (\overline{H}^{1/2}(Σ_2))^* \) define \(T_f \in (H^1(Ω))^* \) by

\[T_f(φ) = \langle f, φ|Σ_2 \rangle \text{ for any } φ \in H^1(Ω) \]
Continued

single layer operator $S^\Sigma_2 : (\dot{H}^{1/2}(\Sigma_2))^* \rightarrow \dot{H}^{1/2}(\Sigma_2)$,

$$S^\Sigma_2(f) = (GT_f)|_{\Sigma_2}$$

by Runge approximation (\Leftarrow UCP), $(\rho, C)|_{D_1}$ and $\Phi_{\tau, \Sigma}$ determine G in $\Omega \setminus \bar{\Omega}_2$
By a limiting procedure, can show that \((\rho, C')\big|_{D_1}\) and \(\Phi_{\tau, \Sigma}\) determine \(S^{\Sigma_2}\)

\(\Phi^+_{\tau, \Sigma_2}\) the loc. DN map in the domain \(\Omega \setminus \bar{\Omega}_2\)

\(\Phi_{\tau, \Sigma_2} + \Phi^+_{\tau, \Sigma_2}\) is injective (i.e. one to one)

\((\Phi_{\tau, \Sigma_2} + \Phi^+_{\tau, \Sigma_2})S^{\Sigma_2}f = f\) for any \(f \in (\dot{H}^{1/2}(\Sigma_2))^*\)

\(\Rightarrow \Phi_{\tau, \Sigma_2} + \Phi^+_{\tau, \Sigma_2} = (S^{\Sigma_2})^{-1}\)
Main result without assuming interfaces are known

Definition
Let \(\{D_\alpha\}_{\alpha \in A} \) be a cover with piecewise analytic interfaces.

(i) \((\rho, C)\) and the associated cover are called piecewise homogeneous if \((\rho, C)\) is constant in each \(D_\alpha\).

(ii) If an open subset of \(\Sigma\) and the analytic part of each interfaces except those contained in \(\partial \Omega\) have non-zero curvature, we say that the strong curvature condition is satisfied.

Theorem
The global uniqueness holds for the following cases:

(i) \((\rho, C)\) is piecewise homogeneous and unknown interfaces satisfy the strong curvature condition.

(ii) \((\rho, C)\) is piecewise analytic and isotropic.
Key lemma

Figure: strong curvature condition
Key is to generalize Lemma 1 of [Kohn-Vogelius ; 1985] given for the two dimensional (isotropic conductivity) case to the three dimensional case by using the theory of subanalytic sets.

Lemma

\((\rho_1, C_1), (\rho_2, C_2)\): piecewise analytic \(\implies\)
there exists a piecewise analytic cover (referred as common cover) such that \((\rho_1, C_1), (\rho_2, C_2)\) are piecewise analytic with respect to this cover.

If the covers of \((\rho_1, C_1), (\rho_2, C_2)\) satisfy the strong curvature condition, then this cover satisfies the strong curvature condition.

Once having this, the proof of the second global uniqueness theorem can be done by just repeating the previous proof of the first global uniqueness theorem for the common cover.
A tool to prove the key lemma

Let X be a real analytic manifold countable at infinity.

- $Z \subset X$ is said to be semi-analytic if, for any point $x \in \overline{Z}$, there exists an open neighborhood V of x satisfying

$$Z \cap V = \bigcup_{i,j} \{ x \in V : f_{ij}(x) \ast_{ij} 0 \}$$

for a finite number of analytic functions f_{ij} on V. Here the binary relation \ast_{ij} is either $>$ or $=$ for each i,j.

- Each subdomain D_α of our cover is a semi-analytic.

- A semi-analytic set is subanalytic.
Structure of subanalytic set

Any closed subanalytic set Z admits a so called subanalytic stratification $\{Z_\alpha\}_{\alpha \in \Lambda}$:

1. Z is a locally finite disjoint union of Z_α's. Each Z_α is called a stratum.

2. For every point $p \in Z_\alpha$, Z_α is an analytic submanifold of X in some open neighborhood of p.

3. If $Z_\alpha \cap \overline{Z_\beta} \neq \emptyset$ for $\alpha, \beta \in \Lambda$, then $Z_\alpha \subset \overline{Z_\beta}$ holds. Further, we have $Z_\alpha \subset \partial Z_\beta$ and $\dim_{\mathbb{R}} Z_\alpha < \dim_{\mathbb{R}} Z_\beta$.
Example of subanalytic stratification

Let \(X = \mathbb{R}^2 \) and let \(Z \) be a closed triangle \(abc \) with vertexes \(a, b, c \). Then \(Z \) has a subanalytic stratification consisting of 7-strata, the interior of the triangle, open segments \(ab, bc, ca \) and points \(a, b, c \).

![Diagram of a stratification of a closed triangle Z.](image)

Figure: A stratification of a closed triangle \(Z \).
Properties of subanalytic sets and construction of a common cover

Let X be a real analytic manifold countable at infinity. Then here are some properties of subanalytic sets.

1. Let Z be a subanalytic subset in X. Then its closure, its interior and its complement in X are again subanalytic in X.

2. A finite union and a finite intersection of subanalytic subsets in X are subanalytic in X.

Construction of common cover
Let $\{D'_\beta\}_{\beta \in B}, \{D''_\gamma\}_{\gamma \in C}$ be covers. Consider all the non-empty connected components of the closure of strata with dimension 3 for each $\overline{D'_\beta} \cap \overline{D''_\gamma}$. Then all of these non-empty connected components give a desire common cover $\{D_\alpha\}_{\alpha \in A}$.
Discussion and future works

(i) Recently I have succeeded with Catalin Carstea in giving an argument how to propagate the localized ND map. Using this we can give global uniqueness in a region of interest with less measurement time.

(ii) Consider the transversally isotropic and orthorhombic cases when the interfaces are unknown.

(iii) Weaken the strong curvature condition.

(iv) Consider the case that Ω is unbounded.
Thank you for your attention!
Z is said to be subanalytic if for any \(x \in \overline{Z} \) there exist an open neighborhood \(U \) of \(x \), real analytic compact manifolds \(Y_{i,j}, i = 1, 2, 1 \leq j \leq N \) and real analytic maps \(\Phi_{i,j} : Y_{i,j} \to X \) such that

\[
Z \cap U = \bigcup_{j=1}^{N} (\Phi_{1,j}(Y_{1,j}) \setminus \Phi_{2,j}(Y_{2,j})) \cap U.
\]