Wavelet Frames and Differential Operators: Bridging Discrete and Continuum for Image Restoration

Bin Dong

Associate Professor, Beijing International Center for Mathematical Research, Peking University
Associate Director, Laboratory for Biomedical Image Analysis, Beijing Institute of Big Data Research

Workshop on Spline Approximation and its Applications on Carl de Boor's 80th Birthday
December 4-6, 2017
NUS, Singapore
Outlines

I. Brief review of image restoration models

II. Bridging wavelet frame transforms and differential operators under variational and PDE framework

III. Applications of B-spline wavelet frames in medical imaging
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]

- Denoising, when \(A \) is identity operator
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]

- Denoising, when \(A \) is identity operator
- Deblurring, when \(A \) is some blurring operator
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]

- Denoising, when \(A \) is identity operator
- Deblurring, when \(A \) is some blurring operator
- Inpainting, when \(A \) is some restriction operator
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]

- Denoising, when \(A \) is identity operator
- Deblurring, when \(A \) is some blurring operator
- Inpainting, when \(A \) is some restriction operator
- CT/MR Imaging, when \(A \) is partial Radon/Fourier transform
Image Restoration Model

- Image Restoration Problems

\[f = Au + \eta \]

- Denoising, when \(A \) is identity operator
- Deblurring, when \(A \) is some blurring operator
- Inpainting, when \(A \) is some restriction operator
- CT/MR Imaging, when \(A \) is partial Radon/Fourier transform

- Challenges: large-scale & ill-posed
Image Restoration Models: A Quick Review

- Image restoration: \[f = Au + \eta \]
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
- PDEs and Iterative Algorithms
Image Restoration Models: A Quick Review

- Image restoration: $f = Au + \eta$
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
- PDEs and Iterative Algorithms
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
 - Total variation (TV) and generalizations:
 \[
 R(u) = \|\nabla u\|_1 \quad \text{or} \quad \|Du\|_1
 \]
- PDEs and Iterative Algorithms
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)

- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \|\nabla u\|_1 \) or \(\|Du\|_1 \)
 - Wavelet frame based: \(R(u) = \|Wu\|_1 \) or \(\|Wu\|_0 \)

- PDEs and Iterative Algorithms
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \|\nabla u\|_1 \) or \(\|Du\|_1 \)
 - Wavelet frame based: \(R(u) = \|Wu\|_1 \) or \(\|Wu\|_0 \)
 - Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.
- PDEs and Iterative Algorithms
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \|\nabla u\|_1 \text{ or } \|Du\|_1 \)
 - Wavelet frame based: \(R(u) = \|Wu\|_1 \text{ or } \|Wu\|_0 \)
 - Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.
- PDEs and Iterative Algorithms
 - Perona-Malik equation, shock-filtering (Rudin & Osher), etc
 \[
 u_t = \sum_{\ell=1}^{L} \frac{\partial}{\partial x} \alpha_\ell \Phi_\ell(Du, u) - A^*(Au - f), \quad \text{with } D = \left(\frac{\partial \beta_1}{\partial x \beta_1}, \ldots, \frac{\partial \beta_L}{\partial x \beta_L} \right)
 \]
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \| Au - f \|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \| \nabla u \|_1 \) or \(\| Du \|_1 \)
 - Wavelet frame based: \(R(u) = \| W u \|_1 \) or \(\| W u \|_0 \)
 - Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.
- PDEs and Iterative Algorithms
 - Perona-Malik equation, shock-filtering (Rudin & Osher), etc
 \[
 u_t = \sum_{\ell=1}^{L} \frac{\partial^{\alpha_{\ell}}}{\partial x^{\alpha_{\ell}}} \Phi_{\ell}(Du, u) - A^*(Au - f), \quad \text{with } D = \left(\frac{\partial^{\beta_1}}{\partial x^{\beta_1}}, \ldots, \frac{\partial^{\beta_L}}{\partial x^{\beta_L}} \right)
 \]
 - Iterative shrinkage algorithm
 \[
 u^k = \left(W W^T \right) S_{\alpha^{k-1}}(W u^{k-1}) - A^T (Au^{k-1} - f), \quad k = 1, 2, \ldots
 \]
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)

- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \| Au - f \|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \| \nabla u \|_1 \) or \(\| Du \|_1 \)
 - Wavelet frame based: \(R(u) = \| Wu \|_1 \) or \(\| Wu \|_0 \)
 - Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.

- PDEs and Iterative Algorithms
 - Perona-Malik equation, shock-filtering (Rudin & Osher), etc
 \[
 u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_\ell}{\partial x} \Phi_\ell(Du, u) - A^*(Au - f), \quad \text{with} \quad D = \left(\frac{\partial \beta_1}{\partial x \beta_1}, \ldots, \frac{\partial \beta_L}{\partial x \beta_L} \right)
 \]
 - Iterative shrinkage algorithm
 \[
 u^k = \widetilde{W}^\top S_{\alpha_{k-1}}(Wu^{k-1}) - A^\top(Au^{k-1} - f), \quad k = 1, 2, \ldots
 \]

- What do they have in common?
Image Restoration Models: A Quick Review

- Image restoration: \(f = Au + \eta \)
- Variational and Optimization Models
 \[
 \min_u \lambda R(u) + \|Au - f\|^2
 \]
 - Total variation (TV) and generalizations: \(R(u) = \|\nabla u\|_1 \) or \(\|Du\|_1 \)
 - Wavelet frame based: \(R(u) = \|W u\|_1 \) or \(\|W u\|_0 \)
 - Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.
- PDEs and Iterative Algorithms
 - Perona-Malik equation, shock-filtering (Rudin & Osher), etc
 \[
 u_t = \sum_{\ell=1}^{L} \frac{\partial}{\partial x} \alpha_\ell \Phi_\ell(Du, u) - \alpha^* (Au - f), \quad \text{with } D = \left(\frac{\partial \beta_1}{\partial x}, \ldots, \frac{\partial \beta_L}{\partial x} \right)
 \]
 - Iterative shrinkage algorithm
 \[
 u^k = \widetilde{W}^T S_{\alpha^{k-1}}(W u^{k-1}) - A^T (Au^{k-1} - f), \quad k = 1, 2, \ldots
 \]
- What do they have in common?
 Shrinkage in **sparse** domain under **transformation!**
Bridging discrete and continuum

WAVELET FRAME TRANSFORMS AND DIFFERENTIAL OPERATORS

MRA-Based Tight Wavelet Frames

Refinable and wavelet functions

\[\phi = 2^d \sum a_0[k] \phi(2 \cdot -k) \quad \psi_\ell = 2^d \sum a_\ell[k] \phi(2 \cdot -k), \quad \ell = 1, 2, \ldots, q. \]
MRA-Based Tight Wavelet Frames

Refinable and wavelet functions

$$\phi = 2^d \sum a_0[k] \phi(2 \cdot -k) \quad \psi_\ell = 2^d \sum a_\ell[k] \phi(2 \cdot -k), \quad \ell = 1, 2, \ldots, q.$$

- **Unitary extension principle (UEP)**

$$\sum_{\ell=0}^{q} |\hat{a}_\ell(\xi)|^2 = 1 \quad \text{and} \quad \sum_{\ell=0}^{q} \hat{a}_\ell(\xi) \hat{a}_\ell(\xi + \nu) = 0,$$

$$\nu \in \{0, \pi\}^d \setminus \{0\} \quad \text{and} \quad \xi \in [-\pi, \pi]^d$$
MRA-Based Tight Wavelet Frames

Refinable and wavelet functions

\[\phi = 2^d \sum a_0[k] \phi(2 \cdot -k) \quad \psi_\ell = 2^d \sum a_\ell[k] \phi(2 \cdot -k), \quad \ell = 1, 2, \ldots, q. \]

- Unitary extension principle (UEP)

\[\sum_{\ell=0}^{q} |\hat{a}_\ell(\xi)|^2 = 1 \quad \text{and} \quad \sum_{\ell=0}^{q} \hat{a}_\ell(\xi)\hat{a}_\ell(\xi + \nu) = 0, \]

\[\nu \in \{0, \pi \}_r \setminus \{0\} \text{ and } \xi \in [-\pi, \pi]^d \]

- Discrete 2D transformation: \(W_u = \{ W_{l,i}u : 0 \leq l \leq L - 1, 0 \leq i_1, i_2 \leq r \} \)

\[W_{l,i}u := a_{l,i}[\cdot] \ast u, \]
MRA-Based Tight Wavelet Frames

Reinfaible and wavelet functions

$$\phi = 2^d \sum a_0[k] \phi(2 \cdot -k) \quad \psi_{\ell} = 2^d \sum a_{\ell}[k] \phi(2 \cdot -k), \quad \ell = 1, 2, \ldots, q.$$

- **Unitary extension principle (UEP)**
 $$\sum_{\ell=0}^{q} |\hat{a}_{\ell}(\xi)|^2 = 1 \quad \text{and} \quad \sum_{\ell=0}^{q} \hat{a}_{\ell}(\xi) \overline{\hat{a}_{\ell}(\xi + \nu)} = 0, \quad \nu \in \{0, \pi\}^d \setminus \{0\} \quad \text{and} \quad \xi \in [-\pi, \pi]^d$$

- **Discrete 2D transformation:**
 $$W_{l,i} u = \{W_{l,i} u : 0 \leq l \leq L - 1, 0 \leq i_1, i_2 \leq r\}$$

 $$W_{l,i} u := a_{l,i}[\cdot] \ast u,$$

 $$a_i[k] := a_{i_1}[k_1] a_{i_2}[k_2], \quad 0 \leq i_1, i_2 \leq r; \quad (k_1, k_2) \in \mathbb{Z}^2.$$

 $$a_{l,i} = \tilde{a}_{l,i} \ast \tilde{a}_{l-1,0} \ast \ldots \ast \tilde{a}_{0,0} \quad \text{with} \quad \tilde{a}_{l,i}[k] = \begin{cases} a_i[2^{-l} k], & k \in 2^l \mathbb{Z}^2; \\ 0, & k \notin 2^l \mathbb{Z}^2. \end{cases}$$
MRA-Based Tight Wavelet Frames

Refinable and wavelet functions

\[\phi = 2^d \sum a_0[k] \phi(2 \cdot -k) \quad \psi_\ell = 2^d \sum a_\ell[k] \phi(2 \cdot -k), \quad \ell = 1, 2, \ldots, q. \]

- Unitary extension principle (UEP)

\[\sum_{\ell=0}^{q} |\hat{a}_\ell(\xi)|^2 = 1 \quad \text{and} \quad \sum_{\ell=0}^{q} \hat{a}_\ell(\xi) \overline{\hat{a}_\ell(\xi + \nu)} = 0, \quad \nu \in \{0, \pi\}^d \setminus \{0\} \quad \text{and} \quad \xi \in [-\pi, \pi]^d. \]

- Discrete 2D transformation: \(W_u = \{ W_{l,i} u : 0 \leq l \leq L - 1, 0 \leq i_1, i_2 \leq r \} \)

\[W_{l,i} u := a_{l,i}[-\cdot] \ast u, \]

\[a_i[k] := a_{i_1}[k_1] a_{i_2}[k_2], \quad 0 \leq i_1, i_2 \leq r; \quad (k_1, k_2) \in \mathbb{Z}^2. \]

\[a_{l,i} = \tilde{a}_{l,i} \oplus \tilde{a}_{l-1,0} \oplus \ldots \oplus \tilde{a}_{0,0} \quad \text{with} \quad \tilde{a}_{l,i}[k] = \begin{cases} a_i[2^{-l} k], & k \in 2^l \mathbb{Z}^2; \\ 0, & k \notin 2^l \mathbb{Z}^2. \end{cases} \]

- Perfect reconstruction: \(W^T W = I \)

- Example: B-spline tight wavelet frames and many others
Connections: Motivation

- Difference operators in wavelet frame transform:

Haar Filters

\[h_{0,1} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad h_{1,0} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad h_{1,1} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \]

Transform

\[W u = \{ h_{0,1}[-\cdot] \ast u; \quad h_{1,0}[-\cdot] \ast u; \quad h_{1,1}[-\cdot] \ast u \} \]
Connections: Motivation

- Difference operators in wavelet frame transform:

 Haar Filters
 \[h_{0,1} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad h_{1,0} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad h_{1,1} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \]

 Transform
 \[W u = \{ h_{0,1}[-\cdot] \ast u; h_{1,0}[-\cdot] \ast u; h_{1,1}[-\cdot] \ast u \} \]

 Approximation
 \[h_{0,1}[-\cdot] \ast u \approx \frac{1}{2} \delta u_x, \quad h_{1,0}[-\cdot] \ast u \approx \frac{1}{2} \delta u_y, \quad h_{1,1}[-\cdot] \ast u \approx \frac{1}{4} \delta^2 u_{xy} \]
Connections: Motivation

- Difference operators in wavelet frame transform:

 \[h_{0,1} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad h_{1,0} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad h_{1,1} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

 Wavelet Transform: \[W u = \{ h_{0,1}[-\cdot] \ast u; h_{1,0}[-\cdot] \ast u; h_{1,1}[-\cdot] \ast u \} \]

 Approximation: \[h_{0,1}[-\cdot] \ast u \approx \frac{1}{2} \delta u_x, \quad h_{1,0}[-\cdot] \ast u \approx \frac{1}{2} \delta u_y, \quad h_{1,1}[-\cdot] \ast u \approx \frac{1}{4} \delta^2 u_{xy} \]

- Thus,

\[
\frac{2}{\delta} W u \approx \nabla u
\]

\[|\nabla u| \approx \left(\frac{1}{4} \left[(D_x^+ u_{i,j})^2 + (D_x^+ u_{i,j+1})^2 + (D_y^+ u_{i,j})^2 + (D_y^+ u_{i+1,j})^2 \right] \right)^{\frac{1}{2}}
\]

\[+ \left[\frac{(D_x^+ u_{i,j} + D_y^- u_{i,j+1})^2}{4} + \frac{(D_x^+ u_{i,j} + D_y^+ u_{i+1,j})^2}{4} \right] \right)^{\frac{1}{2}} \]
Connections: Motivation

- Works for every tensor product B-spline wavelet frame transforms in a weaker setting [Cai, Dong, Osher and Shen, 2012]
- More general cases by [Dong, Xie and Shen, 2017; Choi, Dong and Zhang, 2017]

Proposition. Let a tensor product framelet function $\psi_\alpha \in L_2(\mathbb{R}^2)$ have vanishing moments of order α with $|\alpha| \leq s$, and let $\text{supp}(\psi_\alpha) = [a_1, a_2] \times [b_1, b_2]$. For $n \in \mathbb{N}$ and $k \in \mathbb{Z}^2$ with $\text{supp}(\psi_{\alpha,n-1,k}) \subseteq \bar{\Omega}$, we have

$$
\langle u, \psi_{\alpha,n-1,k} \rangle = (-1)^{|\alpha|} 2^{|\alpha|(1-n)} \langle \partial^\alpha u, \varphi_{\alpha,n-1,k} \rangle
$$

for every $u \in W^s_1(\Omega)$ with $\int \varphi_\alpha \neq 0$ and $\text{supp}(\varphi_\alpha) = \text{supp}(\psi_\alpha)$.
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\| \lambda \cdot Wu \|_1 + \frac{1}{2} \| Au - f \|_2^2 \quad \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| Au - f \|_{L^2(\Omega)}^2
\]
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[\lambda W u_1 + \frac{1}{2} \| Au - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| Au - f \|_{L^2(\Omega)}^2 \]

For any differential operator when proper parameter is chosen.
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| W u \|_1 + \frac{1}{2} \| A u - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| A u - f \|_{L^2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

Theorem. Let the objective functionals of the analysis based model and the variational model be \(E_n(u) \) and \(E(u) \) respectively, then:

1. \(E_n(u) \to E(u) \) for each \(u \in W^s_1(\Omega) \);
2. \(E_n(u_n) \to E(u) \) for every sequence \(u_n \to u \). Consequently, \(E_n \) \(\Gamma \)-converges to \(E \);
3. If \(u_n^* \) is an \(\epsilon \)-optimal solution to \(E_n \), i.e. \(E_n(u_n^*) \leq \inf_u E_n(u) + \epsilon \), then

\[
\limsup_{n} E_n(u_n^*) \leq \inf_u E(u) + \epsilon.
\]
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| Du \|_1 + \frac{1}{2} \| Au - f \|_2^2 \quad \text{Converges} \quad \lambda \| Du \|_1 + \frac{1}{2} \| Au - f \|_{L^2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| W u \|_1 + \frac{1}{2} \| Au - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| Au - f \|_{L^2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us
 - Geometric interpretations of the wavelet frame transform (WFT)
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| W u \|_1 + \frac{1}{2} \| A u - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| A u - f \|_{L^2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us
 - Geometric interpretations of the wavelet frame transform (WFT)
 - WFT provides flexible and good discretization for differential operators
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:
 \[\lambda \| W u \|_1 + \frac{1}{2} \| Au - f \|_2^2 \rightarrow \lambda \| D(u) \|_1 + \frac{1}{2} \| Au - f \|_{L_2(\Omega)}^2 \]

For any differential operator when proper parameter is chosen.

- The connections give us
 - Geometric interpretations of the wavelet frame transform (WFT)
 - WFT provides flexible and good discretization for differential operators

![Graphs showing standard discretization and piecewise linear WFT](image)
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| W u \|_1 + \frac{1}{2} \| Au - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| Au - f \|_{L_2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us
 - Geometric interpretations of the wavelet frame transform (WFT)
 - WFT provides flexible and good discretization for differential operators
 - Different discretizations affect reconstruction results (or from modified equation perspective)
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\lambda \| W u \|_1 + \frac{1}{2} \| A u - f \|_2^2 \quad \text{Converges} \quad \lambda \| D(u) \|_1 + \frac{1}{2} \| A u - f \|_{L_2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us
 - Geometric interpretations of the wavelet frame transform (WFT)
 - WFT provides flexible and good discretization for differential operators
 - Different discretizations affect reconstruction results (or from modified equation perspective)
 - Good regularization should contain differential operators with varied orders (e.g., total generalized variation [Bredies, Kunisch, and Pock, 2010])
Connections: Analysis Based Model and Variational Model

- [Cai, Dong, Osher and Shen, 2012]:

\[
\gamma W u_1 + \frac{1}{2} \| A u - f \|_2^2 \quad \text{Converges} \quad \gamma \| D(u)_1 + \frac{1}{2} \| A u - f \|_{L_2(\Omega)}^2
\]

For any differential operator when proper parameter is chosen.

- The connections give us:
 - Geometric interpretations of the wavelet frame transform (WFT)
 - WFT provides flexible and good discretization for differential operators
 - Different discretizations affect reconstruction results (or from modified equation perspective)
 - Good regularization should contain differential operators with varied orders (e.g., total generalized variation [Bredies, Kunisch, and Pock, 2010])

- Leads to new applications of wavelet frames:
 - Image segmentation: [Dong, Chien and Shen, 2010]
 - Surface reconstruction from point clouds: [Dong and Shen, 2011]
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Earlier work
 - 2nd-order diffusion and Haar wavelet: [Mrazek, Weickert and Steidl, 2003&2005]
 - High-order diffusion and tight wavelet frames in 1D: [Jiang, 2011]
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Earlier work
 - 2nd-order diffusion and Haar wavelet: [Mrazek, Weickert and Steidl, 2003&2005]
 - High-order diffusion and tight wavelet frames in 1D: [Jiang, 2011]

- Questions yet to be answered
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Earlier work
 - 2nd-order diffusion and Haar wavelet: [Mrazek, Weickert and Steidl, 2003&2005]
 - High-order diffusion and tight wavelet frames in 1D: [Jiang, 2011]

- Questions yet to be answered
 - How general the connections can be?
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Earlier work
 - 2nd-order diffusion and Haar wavelet: [Mrazek, Weickert and Steidl, 2003&2005]
 - High-order diffusion and tight wavelet frames in 1D: [Jiang, 2011]

- Questions yet to be answered
 - How general the connections can be?
 - Can we theoretically justify such connection, at least for some PDEs?
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Earlier work
 - 2nd-order diffusion and Haar wavelet: [Mrazek, Weickert and Steidl, 2003&2005]
 - High-order diffusion and tight wavelet frames in 1D: [Jiang, 2011]

- Questions yet to be answered
 - How general the connections can be?
 - Can we theoretically justify such connection, at least for some PDEs?
 - Can we see something new and useful from such connection?
Relations: Wavelet Shrinkage and Nonlinear PDEs

[Dong, Jiang and Shen, 2017]

\[u^k = \tilde{W}^\top S_{\alpha^{k-1}}(W u^{k-1}), \quad k = 1, 2, \ldots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_\ell}{\partial x^\alpha_\ell} \Phi_\ell(Du, u), \quad \text{with } Du = \left(\frac{\partial \beta_1}{\partial x^{\beta_1}}, \ldots, \frac{\partial \beta_L}{\partial x^{\beta_L}} \right) \]
Relations: Wavelet Shrinkage and Nonlinear PDEs

[Dong, Jiang and Shen, 2017]

\[u^k = \tilde{W}^\top S_{\alpha_{k-1}}(W u^{k-1}), \quad k = 1, 2, \cdots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_{\ell}}{\partial x_{\alpha_{\ell}}} \Phi_{\ell}(Du, u), \quad \text{with } Du = \left(\frac{\partial \beta_1}{\partial x_{\beta_1}}, \cdots, \frac{\partial \beta_L}{\partial x_{\beta_L}} \right) \]
Relations: Wavelet Shrinkage and Nonlinear PDEs

[Dong, Jiang and Shen, 2017]

\[u^k = \hat{W}^\top S_{\alpha_{k-1}}(W u^{k-1}), \quad k = 1, 2, \ldots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_{\ell}}{\partial x_{\alpha_{\ell}}} \Phi_{\ell}(D u, u), \quad \text{with} \ D u = \left(\frac{\partial \beta_1}{\partial x_{\beta_1}}, \ldots, \frac{\partial \beta_L}{\partial x_{\beta_L}} \right) \]

Theoretical justification available for quasilinear parabolic equations.
Relations: Wavelet Shrinkage and Nonlinear PDEs

- [Dong, Jiang and Shen, 2017]

\[u^k = \overrightarrow{W} S_{\alpha^{k-1}}(W u^{k-1}), \quad k = 1, 2, \cdots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_{\ell}}{\partial x_{\alpha_{\ell}}} \Phi_{\ell}(Du, u), \quad \text{with} \quad Du = \left(\frac{\partial \beta_1}{\partial x_{\beta_1}}, \cdots, \frac{\partial \beta_L}{\partial x_{\beta_L}} \right) \]

- Theoretical justification available for quasilinear parabolic equations.
- Lead to new PDE models such as:
Relations: Wavelet Shrinkage and Nonlinear PDEs

[Dong, Jiang and Shen, 2017]

\[u^k = \tilde{W}^\top S_{\alpha_k^{-1}} (W u^{k-1}), \quad k = 1, 2, \ldots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_{\ell}}{\partial x_{\alpha_{\ell}}} \Phi_{\ell}(Du, u), \quad \text{with} \quad Du = \left(\frac{\partial \beta_1}{\partial x_{\beta_1}}, \ldots, \frac{\partial \beta_L}{\partial x_{\beta_L}} \right) \]

- Theoretical justification available for quasilinear parabolic equations.
- Lead to new PDE models such as:

\[u_{tt} + Cu_t = \sum_{\ell=1}^{L} (-1)^{1 + |\beta_{\ell}|} \frac{\partial \beta_{\ell}}{\partial x_{\beta_{\ell}}} \left[g_{\ell} \left(u, \frac{\partial \beta_1 u}{\partial x_{\beta_1}}, \ldots, \frac{\partial \beta_L u}{\partial x_{\beta_L}} \right) \frac{\partial \beta_{\ell}}{\partial x_{\beta_{\ell}}} u \right] - \kappa A^\top (Au - f) \]
Relations: Wavelet Shrinkage and Nonlinear PDEs

[Dong, Jiang and Shen, 2017]

\[u^k = \hat{W}^\top S_{\alpha^{k-1}} (W u^{k-1}), \quad k = 1, 2, \ldots \]

\[u_t = \sum_{\ell=1}^{L} \frac{\partial \alpha_\ell}{\partial x} \Phi_\ell (D u, u), \quad \text{with } D u = \left(\frac{\partial \beta_1}{\partial x}, \ldots, \frac{\partial \beta_L}{\partial x} \right) \]

Theoretical justification available for quasilinear parabolic equations.

Lead to new PDE models such as:

\[u_{tt} + C u_t = \sum_{\ell=1}^{L} (-1)^{1+|\beta_\ell|} \frac{\partial \beta_\ell}{\partial x} \left[g_\ell \left(u, \frac{\partial \beta_1 u}{\partial x}, \ldots, \frac{\partial \beta_L u}{\partial x} \right) \frac{\partial \beta_\ell}{\partial x} u \right] - \kappa A^\top (Au - f) \]

Lead to new wavelet frame shrinkage algorithms:
Relations: Wavelet Shrinkage and Nonlinear PDEs

- **[Dong, Jiang and Shen, 2017]**

\[u^k = \widehat{W}^\top S_{\alpha^{k-1}}(W u^{k-1}), \quad k = 1, 2, \cdots \]

\[u_t = \sum_{\ell=1}^L \frac{\partial \alpha_{\ell}}{\partial x} \Phi_{\ell}(D u, u), \quad \text{with} \quad D u = \left(\frac{\partial \beta_1}{\partial x}, \cdots, \frac{\partial \beta_L}{\partial x} \right) \]

- Theoretical justification available for quasilinear parabolic equations.
- Lead to new PDE models such as:

\[u_{tt} + C u_t = \sum_{\ell=1}^L (-1)^{1+|\beta_{\ell}|} \frac{\partial \beta_{\ell}}{\partial x} \left[g_{\ell} \left(u, \frac{\partial \beta_1 u}{\partial x}, \cdots, \frac{\partial \beta_L u}{\partial x} \right) \frac{\partial \beta_{\ell}}{\partial x} u \right] - \kappa A^\top (A u - f) \]

- Lead to new wavelet frame shrinkage algorithms:

\[u^k = (I - \mu A^\top A) W^\top S_{\alpha^{k-1}}(W u^{k-1}) + \mu A^\top f \]

where

\[S_{\alpha^{k-1}}(W u^{k-1}) = \left\{ S_{\alpha_{l},\ell,n}(W_l u^{k-1}) : 0 \leq l \leq \text{Lev} - 1, 1 \leq \ell \leq L \right\} \]

\[S_{\alpha_{l},\ell,n}(d_1,n,d_2,n) = d_{\ell,n} \left(1 - \frac{4\tau}{h^2} g \left(\frac{4(d_1,n)^2 + 4(d_2,n)^2}{h^2} \right) \right) \]
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Advantage of the new models for image deblurring:
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Advantage of the new models for image deblurring:
 - WFT v.s. standard finite differencing

<table>
<thead>
<tr>
<th>Image Name</th>
<th>PM-SD</th>
<th>PM-Haar</th>
<th>PM-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbara</td>
<td>24.8097</td>
<td>24.9080</td>
<td>24.9625</td>
</tr>
<tr>
<td>Boat</td>
<td>23.4765</td>
<td>23.5915</td>
<td>23.6089</td>
</tr>
<tr>
<td>Peppers</td>
<td>23.6635</td>
<td>23.8096</td>
<td>23.8203</td>
</tr>
</tbody>
</table>
Advantage of the new models for image deblurring:

- WFT v.s. standard finite differencing

<table>
<thead>
<tr>
<th>Image Name</th>
<th>PM-SD</th>
<th>PM-Haar</th>
<th>PM-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbara</td>
<td>24.8097</td>
<td>24.9080</td>
<td>24.9625</td>
</tr>
<tr>
<td>Boat</td>
<td>23.4765</td>
<td>23.5915</td>
<td>23.6089</td>
</tr>
<tr>
<td>Peppers</td>
<td>23.6635</td>
<td>23.8096</td>
<td>23.8203</td>
</tr>
</tbody>
</table>

- New models are generally better
Relations: Wavelet Shrinkage and Nonlinear PDEs

- Advantage of the new models for image deblurring:
 - WFT v.s. standard finite differencing
 - New models are generally better

<table>
<thead>
<tr>
<th>Image Name</th>
<th>PM-SD</th>
<th>PM-Haar</th>
<th>PM-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbara</td>
<td>24.8097</td>
<td>24.9080</td>
<td>24.9625</td>
</tr>
<tr>
<td>Boat</td>
<td>23.4765</td>
<td>23.5915</td>
<td>23.6089</td>
</tr>
<tr>
<td>Peppers</td>
<td>23.6635</td>
<td>23.8096</td>
<td>23.8203</td>
</tr>
</tbody>
</table>

- Acceleration really works

<table>
<thead>
<tr>
<th>Image Name</th>
<th>IST-Haar</th>
<th>IST-Linear</th>
<th>AMT-Haar</th>
<th>AMT-Linear</th>
<th>AST-Haar</th>
<th>AST-Linear</th>
<th>IRED-SD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Image Name</th>
<th>AMT-Linear</th>
<th>A-AMT-Linear</th>
<th>IRED-FD</th>
<th>A-IRED-FD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (sec)</td>
<td>PSNR</td>
<td>Time (sec)</td>
<td>PSNR</td>
</tr>
<tr>
<td>Barbara</td>
<td>23.38</td>
<td>25.5651</td>
<td>15.34</td>
<td>25.5657</td>
</tr>
<tr>
<td>Boat</td>
<td>40.44</td>
<td>24.7906</td>
<td>23.27</td>
<td>24.7322</td>
</tr>
<tr>
<td>Peppers</td>
<td>55.95</td>
<td>25.4677</td>
<td>31.46</td>
<td>25.4678</td>
</tr>
</tbody>
</table>
Further Developments – Piecewise Smooth Model

- Piecewise-smooth image restoration model: analysis and applications. [Cai, Dong and Shen, 2016]
Further Developments – Piecewise Smooth Model

- Piecewise-smooth image restoration model: analysis and applications. [Cai, Dong and Shen, 2016]

\[
\inf_{u, \Gamma} \| [\lambda \cdot W u]_{\Gamma^c} \|^2_2 + \| [\gamma \cdot W u]_{\Gamma} \|^1_1 + \frac{1}{2} \| A u - f \|^2_2
\]
Further Developments – Piecewise Smooth Model

- Piecewise-smooth image restoration model: analysis and applications. [Cai, Dong and Shen, 2016]

\[
\inf_{u, \Gamma} \left\| \lambda \cdot W u \right\|_{\Gamma_c}^2 + \left\| \gamma \cdot W u \right\|_{\Gamma} + \frac{1}{2} \left\| A u - f \right\|_{2}^2
\]

\[
\inf_{u \in H^{1,s}(\Omega_{j,j}), \{\Gamma_{j}, \{\Gamma_{j,j}\}}} \left\| \nu \cdot D u \right\|_{2}^2 + \sum_{j=1}^{m} \left[\mu_1 \int_{\Gamma_j} \left| \xi_j^+(u) - \xi_j^-(u) \right| ds \right. \\
+ \left. \mu_2 \sum_{j=1}^{\tilde{m}_j} \int_{\Gamma_{j,\bar{j}}} \left(\sum_{i=1}^{n} \left| \xi_{j,\bar{j}}^+(D_i u) - \xi_{j,\bar{j}}^-(D_i u) \right|^2 \right)^{\frac{1}{2}} ds \right] + \frac{1}{2} \left\| A u - f \right\|_{L^2(\Omega)}^2
\]
Further Developments – Piecewise Smooth Model

- Piecewise-smooth image restoration model: analysis and applications. [Cai, Dong and Shen, 2016]

\[
\inf_{u, \Gamma} \| \lambda \cdot W u \|_{\Gamma^c}^2 + \| \gamma \cdot W u \|_{\Gamma}^1 + \frac{1}{2} \| A u - f \|_2^2
\]

\[
\inf_{u \in H^1, s(\{\Omega_j\}), \{\Gamma_j\}, \{\Gamma_{j,i}\}} \| \nu \cdot Du \|_2^2 + \sum_{j=1}^{m} \left[\mu_1 \int_{\Gamma_j} | \Sigma^+_{j,i}(u) - \Sigma^-_{j,i}(u) | ds \right] + \frac{1}{2} \| u - f \|_{L^2(\Omega)}^2
\]

Mumford-Shah Functional

\[
\nu \int_{\Omega \setminus \Gamma} | \nabla u |^2 + \mu | \Gamma | + \frac{1}{2} \| u - f \|_{L^2(\Omega)}^2
\]
Further Developments – Piecewise Smooth Model

- Analysis based model
 \[\text{PSNR}=31.72 \]

- Piecewise smooth model
 \[\text{PSNR}=34.27 \]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

\[
\inf_{u,v} \left\{ a\|W' u - v\|_{\ell_p(O)}^p + b\|W'' v\|_{\ell_q(O)}^q + \frac{1}{2}\|Au - f\|_{\ell_2(O)}^2 \right\}
\]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

\[
\inf_{u,v} \left\{ a\|W'u - v\|^{p}_{\ell_p(O)} + b\|W''v\|^{q}_{\ell_q(O)} + \frac{1}{2}\|Au - f\|^{2}_{\ell_2(O)} \right\}
\]

- Special case I: balanced model

\[
\inf_{v} \left\{ a\|(Id - WW^T)v\|^{2}_{\ell_2(O)} + b\|v\|_{\ell_1(O)} + \frac{1}{2}\|AW^Tv - f\|^{2}_{\ell_2(O)} \right\}
\]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

$$\inf_{u,v} \left\{ a\|W'u - v\|_{l_p(o)}^p + b\|W''v\|_{l_q(o)}^q + \frac{1}{2}\|Au - f\|_{l_2(o)}^2 \right\}$$

- Special case I: balanced model

$$\inf_{v} \left\{ a\|(I - WW^T)v\|_{l_2(o)}^2 + b\|v\|_{l_1(o)} + \frac{1}{2}\|AW^Tv - f\|_{l_2(o)}^2 \right\}$$

- Special case II: wavelet packet model

$$\inf_{u_1,u_2} \left\{ a\|Wu_1\|_{l_1(o)} + b\|W^2u_2\|_{l_1(o)} + \frac{1}{2}\|A(u_1 + u_2) - f\|_{l_2(o)}^2 \right\}$$
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

\[
\inf_{u,v} \left\{ a\| W'u - v \|_{\ell_p(O)}^p + b\| W''v \|_{\ell_q(O)}^q + \frac{1}{2}\| Au - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case I: balanced model

\[
\inf_{v} \left\{ a\| (I - WW^T)v \|_{\ell_2(O)}^2 + b\| v \|_{\ell_1(O)} + \frac{1}{2}\| AW^T v - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case II: wavelet packet model

\[
\inf_{u_1,u_2} \left\{ a\| Wu_1 \|_{\ell_1(O)} + b\| W^2u_2 \|_{\ell_1(O)} + \frac{1}{2}\| A(u_1 + u_2) - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case III: two-layer model

\[
\inf_{u,v} \left\{ a\| W'u - v \|_{\ell_1(O)} + b\| W''v \|_{\ell_1(O)} + \frac{1}{2}\| Au - f \|_{\ell_2(O)}^2 \right\}
\]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

\[
\inf_{u,v} \left\{ a \| W' u - v \|_{\ell_p(O)}^p + b \| W'' v \|_{\ell_q(O)}^q + \frac{1}{2} \| A u - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case I: balanced model

\[
\inf_v \left\{ a \| (I_d - WW^T) v \|_{\ell_2(O)}^2 + b \| v \|_{\ell_1(O)} + \frac{1}{2} \| AW^T v - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case II: wavelet packet model

\[
\inf_{u_1,u_2} \left\{ a \| W u_1 \|_{\ell_1(O)} + b \| W^2 u_2 \|_{\ell_1(O)} + \frac{1}{2} \| A(u_1 + u_2) - f \|_{\ell_2(O)}^2 \right\}
\]

- Special case III: two-layer model

\[
\inf_{u,v} \left\{ a \| W' u - v \|_{\ell_1(O)} + b \| W'' v \|_{\ell_1(O)} + \frac{1}{2} \| A u - f \|_{\ell_2(O)}^2 \right\}
\]

- **Gamma-limit** of the energy functional:

\[
\nu_1 \| D' u - v \|_{L^p(\Omega;\ell_2)} + \nu_2 \| D'' v \|_{L^q(\Omega;\ell_2)} + \frac{1}{2} \| A u - f \|_{L^2(\Omega)}^2
\]
Further Developments – General Frame Based Model

- A general wavelet frame based image restoration model. [Dong, Shen and Xie, 2017]

\[\inf_{u,v} \left\{ a \|W'u - v\|_{p,(O)}^p + b \|W''v\|_{q,(O)}^q + \frac{1}{2} \|Au - f\|_{\ell_2(O)}^2 \right\} \]

- Special case I: balanced model
 \[\inf_v \left\{ a \|(I_d - WW^T)v\|_{\ell_2(O)}^2 + b \|v\|_{\ell_1(O)} + \frac{1}{2} \|AW^T v - f\|_{\ell_2(O)}^2 \right\} \]

- Special case II: wavelet packet model
 \[\inf_{u_1, u_2} \left\{ a \|Wu_1\|_{\ell_1(O)} + b \|W^2 u_2\|_{\ell_1(O)} + \frac{1}{2} \|A(u_1 + u_2) - f\|_{\ell_2(O)}^2 \right\} \]

- Special case III: two-layer model
 \[\inf_{u,v} \left\{ a \|W'u - v\|_{\ell_1(O)} + b \|W''v\|_{\ell_1(O)} + \frac{1}{2} \|Au - f\|_{\ell_2(O)}^2 \right\} \]

- **Gamma-limit** of the energy functional:
 \[\nu_1 \|D'u - v\|_{L_p(\Omega;\ell_2)}^p + \nu_2 \|D''v\|_{L_q(\Omega;\ell_2)}^q + \frac{1}{2} \|Au - f\|_{L_2(\Omega)}^2 \]

- TGV(2) is a special case
Summary

Continuum
Variational Model
PDEs

Discrete
Optimization
Iterative Algorithms
Summary

Continuum

Variational Model

PDEs

Discrete

Optimization

Iterative Algorithms
Summary

Continuum
Variational Model
PDEs

Discrete
Optimization
Iterative Algorithms
Summary

- Variational Model
- PDEs
- Optimization
- Iterative Algorithms
Summary

Continuum

Variational Model

PDEs

Discrete

Optimization

Iterative Algorithms
Summary

Continuum

Variational Model

PDEs

Discrete

Optimization

Iterative Algorithms
Summary

Continuum

Variational Model

PDEs

Discrete

Optimization

Iterative Algorithms
Summary

Significance of the series of studies:

- Merging of the two separately developed fields for the first time
- PDE/Variational models also have the property of sparse approximation
- Illustration of “redundancy is good” from PDE/variational viewpoint
- Granting geometric interpretations to wavelet/wavelet frame models
- Giving birth to new and effective models
APPLICATION IN MEDICAL IMAGING

Take full advantage of sparse approximation of B-spline tight wavelet frames
Workflow of Medical Image Analysis

Medical Problem:
- Imaging
- Diagnosis
- Treatment

Modeling:
- Large scale ill-posed inverse problems
- Segmentation
- Registration
- Knowledge Extraction
- Optimization
CT image reconstruction: safer imaging

- B-spline wavelet frame based algorithm with GPU speed-up
 [Jia, Dong, Lou, and Jiang, PMB, 2011]

Image size: 512 x 512 x 70; Time: 2 min and 20 sec
CT image reconstruction: safer imaging

- B-spline wavelet frame based algorithm with GPU speed-up
 【Jia, Dong, Lou, and Jiang, PMB, 2011】

 Image size: 512 x 512 x 70; Time: 2 min and 20 sec

- B-spline wavelet frame based spatial-Radon reconstruction model 【Dong, Li and Shen, JSC, 2013】
Imaging

- CT image reconstruction: safer imaging
 - Data-driven spatial-Radon reconstruction model 【Zhan and Dong, SIIMS, 2016】

![Non data-driven vs. Data-driven CT images](image-url)
Imaging

- **CT image reconstruction: safer imaging**
 - Data-driven spatial-Radon reconstruction model
 【Zhan and Dong, SIIMS, 2016】

- **B-spline wavelet frame based metal artifact reduction**
 【Zhang, Dong, Liu, SIIMS, 2017】
Segmentation

- Segmentation for accurate quantification and diagnosis of abnormalities

- B-spline wavelet frame based variational model for medical image segmentation 【Dong, Chien and Shen, CMS, 2010】
Segmentation

- Segmentation for accurate quantification and diagnosis of abnormalities
 - B-spline wavelet frame based variational model for ultrasound video segmentation with shape priors [Liu, Zhang, Dong, Shen and Gu, SIIMS, 2016]

Chan-Vese

Our model

Radiologist
Segmentation

- Segmentation for accurate quantification and diagnosis of abnormalities
 - B-spline wavelet frame based variational model for ultrasound video segmentation with shape priors 【Liu, Zhang, Dong, Shen and Gu, SIIMS, 2016】
Conclusion

- Established generic connection between wavelet frame transform and differential operators
- Obtained unified view of the models and algorithms in image restoration
- Give rise to new insights and new models
- Successful applications in medical imaging
- Extension to challenging tasks in data science – combining applied math with deep learning
Happy Birthday Professor Carl de Boor!