WALDSPURGER FORMULA OVER FUNCTION FIELDS

CHIH-YUN CHUANG AND FU-TSUN WEI

Abstract. In this paper, we derive a function field version of the Waldspurger formula for the central critical values of the Rankin-Selberg L-functions. This formula states that the central critical L-values in question can be expressed as the “ratio” of the global toric period integral to the product of the local toric period integrals. Consequently, this result provides a necessary and sufficient criterion for the non-vanishing of these central critical L-values, and supports the Gross-Prasad conjecture for SO(3) over function fields.

Introduction

In 1985, Waldspurger [15] established a fundamental formula for the central critical value of the Rankin-Selberg L-function associated to an automorphic cuspidal representation of GL_2 over a given number field F convolved with a Hecke character on the idele class group of a quadratic field extension over F. This formula asserts that “global toric period integrals” can be written as the central critical L-value in question multiplying the product of “local toric period integrals.” From this result, these critical L-values now have been studied extensively over number fields and lead to plenty of arithmetic consequences (cf. [2], [3], and [22]). The main purpose of this paper is to derive a function field analogue of Walspurger’s formula.

Let k be a global function field with odd characteristic, and denote the adele ring of k by k^\infty. Let D be a quaternion algebra over k, and K be a separable quadratic algebra over k with an embedding \iota: K \hookrightarrow D. We put \Pi^D and \tilde{\Pi}^D to be the adelization of D and K, respectively. Let \Pi^D be an infinite dimensional automorphic representation of D^\times (cuspidal if D is the matrix algebra) with a unitary central character \eta. Given a unitary Hecke character \chi: K \times k^\infty \rightarrow \mathbb{C}^\times, suppose \eta \cdot \chi|_{k^\times} = 1. Let P^D_\chi \in \text{Hom}_{K^\times}(\Pi^D, \chi^{-1}) be the global toric period integral:

P^D_\chi(f) := \int_{K^\times \backslash K^\times_k} f(\iota(a))\chi(a)d^\times a, \quad \forall f \in \Pi^D.

The measure d^\times a chosen here is the Tamagawa measure (cf. Section 1.2). This then gives us a linear functional \mathcal{P}^D_\chi: \Pi^D \otimes \tilde{\Pi}^D \rightarrow \mathbb{C} (where \tilde{\Pi}^D is the contragredient representation of \Pi^D) defined by:

\mathcal{P}^D_\chi(f \otimes \tilde{f}) := P^D_\chi(f) \cdot P^D_{\tilde{\chi}}(\tilde{f}), \quad \forall f \otimes \tilde{f} \in \Pi^D \otimes \tilde{\Pi}^D.

On the other hand, write \Pi^D = \otimes_v \Pi^D_v and \tilde{\Pi}^D = \otimes_v \tilde{\Pi}^D_v. We may assume that the identification between \Pi^D (resp. \tilde{\Pi}^D) and \otimes_v \Pi^D_v (resp. \otimes_v \tilde{\Pi}^D_v) satisfies the following equality:

\langle \cdot, \cdot \rangle^D_{\text{Pet}} = \frac{2L(1, \Pi, \text{Ad})}{\zeta_k(2)} \cdot \prod_v \langle \cdot, \cdot \rangle^D_v: \Pi^D \times \tilde{\Pi}^D \rightarrow \mathbb{C},

2010 Mathematics Subject Classification. 11F41, 11F67, 11R58.

Key words and phrases. Function field, Automorphic form on GL_2, Rankin-Selberg L-function.

This work was supported by grants from Ministry of Science and Technology, Taiwan.
where:

- the pairing \((\cdot, \cdot)_{P}^{D}\) is induced from the Petersson inner product (with respect to the Tamagawa measure, i.e. the total volume of \(D^\times k_{A}^\times /D_{A}^\times\) is 2, cf. Section 1.2).
- for each place \(v\) of \(k\), \((\cdot, \cdot)_{P}^{D}\) is the natural duality pairing between \(\Pi_{v}^{D}\) and \(\Pi_{v}^{P}\).
- \(\Pi\) is the automorphic cuspidal representation of \(GL_{2}(k_{A})\) corresponding to \(\Pi^{D}\) via the Jacquet-Langlands correspondence.
- \(L(s, \Pi, Ad)\) is the adjoint L-function of \(\Pi\).
- \(\zeta_{k}(s)\) is the Dedekind-Weil zeta function of \(k\).

Write \(\chi = \otimes v \chi_{v}\). Then for each \(v\), the local toric period integral \(\mathcal{P}_{\chi, v}: \Pi_{v}^{P} \otimes \Pi_{v}^{D} \to \mathbb{C}\) is given by:

\[
\mathcal{P}_{\chi, v}(f_{v} \otimes f_{v}') := * \cdot \int_{K_{v}^\times /k_{v}^\times} (\Pi_{v}^{P}(i(a_{v})) f_{v} f_{v}')_{v} \chi_{v}(a_{v}) d^\times a_{v}.
\]

Here \(d^\times a_{v}\) is the Tamagawa measure on \(K_{v}^\times /k_{v}^\times\) (chosen in Section 1.2), and \(*\) is a product of “local L-factors” so that \(\mathcal{P}_{\chi, v}(f_{v} \otimes f_{v}) = 1\) when \(v\) is “good” (cf. Lemma 5.1). These local toric period integrals induce another linear functional \(\mathcal{P}_{\chi}^{D} := \otimes v \mathcal{P}_{\chi, v}: \Pi^{D} \otimes \Pi^{P} \to \mathbb{C}\). We now state the main theorem of this paper as follows (cf. Theorem 5.2):

Theorem 0.1. Under the above assumptions, we have

\[
\mathcal{P}_{\chi}^{D} = L(\frac{1}{2}, \Pi \times \chi) \cdot \mathcal{P}_{\chi}^{P},
\]

where \(L(s, \Pi \times \chi)\) is the Rankin-Selberg L-function associated to \(\Pi\) and \(\chi\).

We remark that \(L(s, \Pi \times \chi)\) can be identified with \(L(s, \Pi_{K} \otimes \chi)\), the L-function of \(\Pi_{K}\) twisted by \(\chi\), where \(\Pi_{K}\) is Jacquet’s lifting of \(\Pi\) to \(GL_{2}(K_{A})\) (cf. [7, Theorem 20.6]).

Let \(\zeta_{K}\) be the quadratic Hecke character of \(K/k\) and put \(\zeta_{K,v} := \zeta_{K}\big|_{K_{v}^\times}\). From the work of Tunnell [13] and Waldspurger [15] Lemme 10], the local toric period integral \(\mathcal{P}_{\chi,v}^{D}\) is not trivial if and only if

\[
\epsilon_{v}(\Pi \times \chi) = \eta_{v}(-1) \zeta_{K,v}(-1) \epsilon_{v}(D). \quad (\ast)
\]

Here \(\epsilon_{v}(\Pi \times \chi)\) is the local root number of \(L(s, \Pi \times \chi)\) at \(v\) and \(\epsilon_{v}(D)\) is the Hasse invariant of \(D\) at \(v\). This leads us to the following consequence.

Corollary 0.2. Suppose \(\prod_{v} \epsilon_{v}(\Pi \times \chi) = 1\). Let \(D\) be the unique (up to isomorphism) quaternion algebra over \(k\) so that the equality \((\ast)\) holds for every place \(v\) of \(k\). Then the non-vanishing of \(L(1/2, \Pi \times \chi)\) is equivalent to the existence of an automorphic form \(f \in \Pi^{D}\) so that

\[
P_{\chi}^{D}(f) = \int_{K_{A}^\times /K_{A}^\times} f(i(a)) \chi(a) d^\times a \neq 0.
\]

In particular, via the isomorphism \(PGL_{2} \cong SO(3)\), Corollary 0.2 supports the Gross-Prasad conjecture for the \(SO(3)\) case over function fields (cf. [6]).

The proof of Theorem 0.1 basically follows Waldspurger’s approach in [15] for the number field case. Suppose first that \(K\) is a quadratic field over \(k\). Let \((V_{D}, Q_{V_{D}})\) be the quadratic space \((D, Nr_{D/k})\), where \(Nr_{D/k}\) is the reduced norm from \(D\) to \(k\). Given \(\phi \in \Pi\) and a Schwartz function \(\varphi \in S(V_{D}(k_{A}))\), suppose \(\phi\) and \(\varphi\) are both pure tensors. From the Rankin-Selberg
method, we have (cf. Corollary 3.3 (2))

\[(0.1) \quad L(2s, \zeta_K) \cdot Z(s; \phi, \varphi) = L(s, \Pi \times \chi) \cdot \prod_v Z_v^\circ(s; \phi_v, \varphi_v),\]

where the zeta integral \(Z(s; \phi, \varphi)\) (resp. \(Z_v^\circ(s; \phi_v, \varphi_v)\)) is defined in the beginning of Section 3.2 (resp. Corollary 3.3 (2)). Applying the Siegel-Weil formula in Theorem 3.1 and the seesaw identity (cf. the diagram 4.2), we may connect \(L(1, \zeta_K) \cdot Z(1/2; \phi, \varphi)\) with a global toric period integral \(T(\phi, \varphi)\) (cf. the equation (4.3) and Proposition 4.3). On the other hand, the local zeta integral \(Z_v^\circ(1/2; \phi_v, \varphi_v)\) can be rewritten as a local toric period integral \(T_v(\phi_v, \varphi_v)\) (cf. Proposition 4.1). The global (resp. local) Shimizu correspondence in Theorem 2.2 (resp. Section 2.3.1) then enables us to connect \(T\) (resp. \(T_v\)) with \(\mathcal{P}_\chi^D\) (resp. \(\mathcal{P}_\chi^{D_v}\)), which completes the proof. Note that in our approach, we always take the original Schwartz functions (i.e. functions in \(S(V(k_h))\), cf. Section 2), instead of using the “extended ones” (i.e. functions in \(S(V(k_h) \times k_h^+)\)) as in [15, Section 3]. This simplifies the arguments.

One ingredient of the above proof is to decompose the global Shimizu correspondence as the tensor product of local ones (cf. Section 2.3.1 and Appendix A). To achieve this, we need to verify the Siegel-Weil formula for the dual pair \((\tilde{\text{SL}}_2, O(D^o))\), where \(\tilde{\text{SL}}_2\) is the metaplectic cover of \(\text{SL}_2\), and \(D^o\) consists of all the pure quaternions in \(D\) (cf. Appendix B).

When \(K = k \times k\), the existence of the embedding \(\iota : K \hookrightarrow D\) forces that \(D = \text{Mat}_2\). We may write \(\chi = \chi_1 \times \chi_2\) where \(\chi_i\) are unitary Hecke characters on \(k^X\). In this case we have

\[L(s, \Pi \times \chi) = L(s, \Pi \otimes \chi_1) \cdot L(s, \Pi \otimes \chi_2).\]

Note that the assumption \(\eta \cdot \chi|_{k^X} = 1\) says that \(\Pi \otimes \chi_2 = \tilde{\Pi} \otimes \chi_1^{-1}\). The global (resp. local) toric period integrals can then be easily identified with the product of the special values of the global (resp. local) zeta integrals of forms in \(\Pi \otimes \chi_1\) and \(\tilde{\Pi} \otimes \chi_1^{-1}\) at \(s = 1/2\). Therefore Theorem 0.1 follows immediately (cf. Appendix C).

Identifying \(\tilde{\Pi}^D\) with the space \(\{f : f \in \Pi^D\}\) via the Petersson inner product on \(\Pi^D\), we put \(\|f\|_{\tilde{\Pi}^D_{\text{pet}}} := \langle f, f \rangle_{\tilde{\Pi}^D_{\text{pet}}} \) (resp. \(\|f_v\|_{\Pi^D_v} := \langle f_v, f_v \rangle_{\Pi^D_v}\)). For non-zero pure tensors \(\phi = \otimes_v \phi_v \in \Pi\) and \(f = \otimes_v f_v \in \Pi^D\), from Theorem 0.1 we obtain that

\[(0.2) \quad \frac{|\mathcal{P}^D(f)|^2}{\|f\|_{\tilde{\Pi}^D_{\text{pet}}}^2} = \frac{L(1/2, \Pi \times \chi)}{\|\phi\|_{\Pi^D_{\text{pet}}}^2} \cdot \prod_v \alpha_v(\phi_v, f_v),\]

where

\[\alpha_v(\phi_v, f_v) := \left(\frac{L_v(1, \Pi, \text{Ad})}{\zeta_v(2)} \|\phi_v\|_{\Pi^D_v}^{\text{Mat}_2} \right) \cdot \left(\frac{L_v(1, \Pi \times \chi)}{L_v(1/2, \Pi \times \chi)} \int_{K_v/k_v^X} \langle \mathcal{P}^D_v(\iota(a_v)f_v, \tilde{f}_v)\rangle_v \|f_v\|_{\Pi^D_v}^2 \right)^{-1/2} \chi_v(a_v) d^\times a_v.\]

Taking suitable \(\phi\) and \(f\), it is possible to calculate the local quantities \(\alpha_v(\phi_v, f_v)\) in concrete terms. Therefore the equality (0.2) leads us to an explicit formula of \(L(1/2, \Pi \times \chi)\). This will be studied in a subsequent paper.

The content of this paper is given as follows. In Section 1 we first set up basic notations used throughout this paper, and fix all the Haar measures in the paper to be the Tamagawa measures. In Section 2 we recall needed properties of theta series associated to quadratic fields and quaternion algebras, and state the Shimizu correspondence in the version used here. In Section 3 we apply the Rankin-Selberg method to show the equation (0.1). In Section 4 we first rewrite \(Z_v^\circ(1/2; \phi_v, \varphi_v)\) in terms of the local toric period integral \(T_v(\phi_v, \varphi_v)\).
associated to ϕ_v and φ_v in Section 4.1. Applying the seesaw identity, the special value $L(1, \zeta_K) \cdot Z(1/2; \phi, \varphi)$ equals to the global toric period integral $\mathcal{T}(\phi, \varphi)$ associated to ϕ and φ in Section 4.2. We thereby arrive at the main theorem in Section 5 by applying the global and local Shimizu correspondence. In Appendix A we recall the decomposition of the global Shimizu correspondence into the tensor product of local ones. In Appendix B we verify the Siegel-Weil formula for the dual pair ($SL_2, O(D^o)$), where SL_2 is the metaplectic cover of SL_2, and D^o consists of all the pure quaternions in a division quaternion algebra D. The case when $K = k \times k$ for Theorem 0.1 is proven in Appendix C.

1. Preliminaries

1.1. Basic settings. Give a ring R, the multiplicative group of R is denoted by R^\times. By $\#(S)$ for each set S, we mean the cardinality of S.

Let k be a global function field with finite constant field \mathbb{F}_q. Throughout this paper, we always assume q to be odd. For each place v of k, let k_v be the completion of k at v, and O_v be the valuation ring in k_v. Choose a uniformizer π_v once and for all. Set $\mathbb{F}_v := O_v/\pi_v O_v$, the residue field at v, and put $q_v := \#(\mathbb{F}_v)$. The valuation on k_v is denoted by ord_v, and we normalize the absolute value $|\cdot|_v$ on k_v by $|a_v|_v := q_v^{-\text{ord}_v(a_v)}$ for every $a_v \in k_v$.

Let k_h be the ring of adeles of k, i.e. $k_h = \prod_v k_v$, the restricted direct product of k_v with respect to O_v. The maximal compact subring of k_h is denoted by O_h. The group of ideles of k is k_h^\times, with the maximal compact subgroup O_h^\times. For $a = (a_v)_v \in k_h^\times$, we put $|a|_h := \prod_v |a_v|_v$.

Finally, fix a non-trivial additive character $\psi : k_h \to \mathbb{C}^\times$ which is trivial on k. For each place v of k, put $\psi_v := \psi|_{k_v}$. Let δ_v be the “conductor” of ψ_v, i.e. ψ_v is trivial on $\pi_v^{-\delta_v} O_v$ but not trivial on $\pi_v^{-\delta_v - 1} O_v$. Then $\sum_v \delta_v \cdot \deg v = 2g_k - 2$, where g_k is the genus of k.

1.2. Tamagawa measures. For each place v of k, choose the self-dual Haar measure dx_v on k_v with respect to the fixed additive character ψ_v, i.e. $\text{vol}(O_v, dx_v) = q_v^{-\delta_v/2}$. The Haar measure $dx = \prod_v dx_v$ on k_h is then self-dual with respect to ψ, and $\text{vol}(k) = 1$. For the multiplicative group k_v^\times, we take the Haar measure

$$d^\times x_v := \zeta_v(1) \cdot \frac{dx_v}{|x_v|_v},$$

where $\zeta_v(s) = (1 - q_v^{-s})^{-1}$ is the local zeta function of k at v. Then $\text{vol}(O_v^\times, d^\times x_v) = q_v^{-\delta_v/2}$. This gives us a Haar measure $d^\times x = \prod_v d^\times x_v$ on k_h^\times.

Given a separable quadratic algebra K over k, let $T_{K/k}$ and $N_{K/k}$ be the trace and norm from K to k, respectively. Put $K_v := K \otimes_k k_v$. The Haar measures on K_v and K_v^\times are chosen as above for each place v of k (with respect to the character $\psi_v \circ T_{K/k}$). This induces a Haar measure $d^\times h_v$ on K_v^\times / k_v^\times, and one has $\text{vol}(O_{K_v}^\times / O_v^\times, d^\times h_v) = q_v^{-(\text{ord}_v(\mathfrak{d}_K) + \delta_v)/2}$, where $\mathfrak{d}_K \in \text{Div}(K)$ is the discriminant divisor of K over k. Let $K_h := K \otimes_k k_h$. We then take the Haar measure on K_h^\times / k_h^\times to be $d^\times h := \prod_v d^\times h_v$. Let ζ_K be the quadratic character of K/k, i.e. $\zeta_K : k^\times / k_h^\times \to \mathbb{C}^\times$ is the character with the kernel precisely equal to $k^\times \cdot N_{K/k}(K_h^\times)$. When K is a field, one has

$$\text{vol}(K^\times \backslash K_h^\times / k_h^\times, d^\times h) = 2 \cdot L(1, \zeta_K).$$
By Hilbert’s theorem 90, we may identify $K^×/k^×$ with $K^1 := \{a \in K^× \mid N_{K/k}(a) = 1\}$. Thus the chosen Haar measure $d^×h$ on $K^×_k/k^×_k$ can be identified with a Haar measure $d^×h^1$ on K^1_k. In particular, for each place v of k, we have
\[
\text{vol}(O^1_{k_v}, d^×h^1_v) = (\text{ord}_v(\Delta_K) + 1) \cdot q_v^{-(\text{ord}_v(\Delta_K) + 3)} / 2.
\]

Given a quaternion algebra D over k, let $\text{Tr}_{D/k}$ and $\text{Nr}_{D/k}$ be the reduced trace and norm from D to k, respectively. Put $D_v := D \otimes_k k_v$ for each place v of k. The Haar measure db_v on D_v for each v is taken to be self-dual with respect to $\psi_v \circ \text{Tr}_{D/k}$. For the multiplicative group $D_v^×$, we choose
\[
d^×b_v := \zeta_v(1) \cdot \frac{db_v}{|\text{Norm}_{D/k}(b_v)|_v}.
\]
Globally, put $D_h := D \otimes_k k_h$. We choose the Haar measure $d^×b$ on $D^×_h$ satisfying that for each maximal compact open subgroup $K = \prod_v K_v \subset D^×_h$, one has
\[
\text{vol}(K, d^×b) := \prod_v \text{vol}(K_v, d^×b_v).
\]
Via the exact sequence
\[
1 \to D^1 \to D^× \to k^× \to 1
\]
the chosen Haar measures $d^×b$ on $D^×_h$ and $d^×x$ on $k^×_h$ determine a Haar measure $d^×b_1$ on D^1_h. Moreover, it is known that (cf. [21, Theorem 3.3.1])
\[
\text{vol}(D^×k^×_h \setminus D^×_h, d^×b) = 2 \quad \text{and} \quad \text{vol}(D^1 \setminus D^1_h, d^×b_1) = 1.
\]

2. Theta series

2.1. Weil representation. Let (V, Q_V) be a non-degenerate quadratic space over k with even dimension (then $\dim_k V \leq 4$). Set
\[
\langle x, y \rangle_V := Q_V(x + y) - Q_V(x) - Q_V(y), \quad \forall x, y \in V,
\]
the bilinear form associated to Q_V. Given an arbitrary k-algebra R, set $V(R) := V \otimes_k R$. For our purpose, the (local) Weil representation ω^v of $(\text{SL}_2 \times \text{O}(V))(k_v)$ on the Schwartz space $S(V(k_v))$ is chosen with respect to ψ_v for every place v of k. We denote by $\omega^V := \otimes_v \omega^v$ the (global) Weil representation of $(\text{SL}_2 \times \text{O}(V))(k_h)$ on the Schwartz space $S(V(k_h))$.

Let $\text{GO}(V)$ be the orthogonal similitude group of V over k. Put
\[
[\text{GL}_2 \times \text{GO}(V)] := \{(g, h) \in \text{GL}_2 \times \text{GO}(V) \mid \det(g) = \nu(h)\}.
\]
Here $\nu(h)$ is the factor of similitude for $h \in \text{GO}(V)$. We extend ω^V to a representation (still denoted by ω^V) of $[\text{GL}_2 \times \text{GO}(V)](k_h)$ on $S(V(k_h))$ by the following: for every pair $(g, h) \in [\text{GL}_2 \times \text{GO}(V)](k_h)$ and $\varphi \in S(V(k_h))$, set
\[
(\omega^V(g, h) \varphi)(x) := |\det(g)|_{h^{-1}}^{-\frac{1}{2}} \cdot (\omega^V \left(\begin{array}{cc} 1 & \cdot \\ 0 & \det(g)^{-1} \end{array} \right) g) \varphi)(h^{-1}x), \quad \forall x \in V(k_h).
\]
Given $(g, h) \in [\text{GL}_2 \times \text{GO}(V)](k_h)$ and $\varphi \in S(V(k_h))$, let
\[
\theta^V(g, h; \varphi) := \sum_{x \in V(k)} (\omega^V(g, h) \varphi)(x).
\]
For every $\varphi \in S(V(k_h))$, the theta series $\theta^V(\cdot, \cdot; \varphi)$ is invariant by $[\text{GL}_2 \times \text{GO}(V)](k)$ via left multiplications.
2.2. Quadratic theta series. Let K be a quadratic field extension of k. Given $\gamma \in k^\times$, let $(V(\gamma), Q(\gamma)) := (K, \gamma \cdot N_{K/k})$, where $N_{K/k}$ is the norm form on K/k. Then one has $GO(V(\gamma)) \cong K^\times \rtimes \langle \tau_K \rangle$, where $\tau_K(x) := \bar{x}$ for every $x \in K = V(\gamma)(k)$. We may identify $K^1 := \{ h \in K \mid N_{K/k}(h) = 1 \}$ with the special orthogonal group $SO(V(\gamma))$.

Let GL_2^{+K} be the image of natural projection of $[GL_2 \times GO(V(\gamma))]$ into GL_2. Given a unitary Hecke character χ on $K^\times \backslash K$ and $\varphi \in S(V(\gamma)(k))$, set

$$\theta_{\chi}^{\gamma}(g; \varphi) := \int_{K^1 \backslash K} \theta_{\chi}^{V(\gamma)}(g, rh_g; \varphi) \chi(rh_g) dr, \quad \forall g \in GL_2^{+K}(k).$$

Here $h_g \in K^\times$ is chosen so that $N_{K/k}(h_g) = \det(g)$. Then $\theta_{\chi}^{\gamma}(\cdot; \varphi)$ is invariant under $GL_2^{+K}(k)$ by left multiplications, and has a central character equal to $\zeta_K \cdot \chi|_{K^\times}$, where ζ_K is the quadratic Hecke character of K/k. When $\gamma = 1$, we will denote by $\theta_K^{\gamma}(\cdot; \varphi)$ and $\theta_{\chi}^{\gamma}(\cdot; \varphi)$ the quadratic theta series $\theta_{\chi}^{V(\gamma)}(\cdot; \varphi)$ and $\theta_{\chi}^{1}(\cdot; \varphi)$, respectively.

2.2.1. Whittaker functions. Given $\gamma \in k^\times$, the Whittaker function (with respect to $\overline{\psi}$) attached to $\theta_{\chi}^{\gamma}(\cdot; \varphi)$ for $\varphi \in S(V(\gamma)(k))$ is:

$$W_{\chi}^{\gamma}(g; \varphi) := \int_{k^1 \backslash k} \theta_{\chi}^{\gamma} \left(\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} g ; \varphi \right) \overline{\psi(n)} dn.$$

Then

$$W_{\chi}^{\gamma} \left(\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} g ; \varphi \right) = \overline{\psi(n)} \cdot W_{\chi}^{\gamma}(g; \varphi), \quad \forall g \in GL_2^{+K}(k) \text{ and } n \in k.$$

It is straightforward that:

Lemma 2.1. Suppose $\varphi = \otimes_v \varphi_v \in S(V(\gamma)(k))$ is a pure tensor. Then $W_{\chi}^{\gamma}(\cdot; \varphi)$ is factorizable. More precisely, for $g = (g_v)_v \in GL_2^{+K}(k)$, choose $h_g = (h_g)_v \in K^\times_k$ so that $\det(g) = N_{K/k}(h_g)$. One has $W_{\chi}^{\gamma}(g; \varphi) = \prod_v W_{\chi,v}^{\gamma}(g_v; \varphi_v)$, where

$$W_{\chi,v}^{\gamma}(g_v; \varphi_v) := \int_{K^1_v} (\omega_v^{\gamma}(g_v, \psi_h g_v, \varphi_v))(1) \cdot \chi_v(r_v h_g, g_v) dr_v.$$

2.3. Quaternionic theta series. Let \mathcal{D} be a quaternion algebra over k, and denote by $N_{\mathcal{D}/k}$ (resp. $\text{Tr}_{\mathcal{D}/k}$) the reduced norm (resp. trace) on \mathcal{D}/k. Let $(V_{\mathcal{D}}, Q_{\mathcal{D}}) := (\mathcal{D}, N_{\mathcal{D}/k})$. Then we have the following exact sequence:

$$1 \longrightarrow k^\times \longrightarrow (\mathcal{D}^\times \times \mathcal{D}^\times) \times \langle \tau_{\mathcal{D}} \rangle \longrightarrow GO(V_{\mathcal{D}}) \longrightarrow 1.$$

Here:

- k^\times embeds into $\mathcal{D}^\times \times \mathcal{D}^\times$ diagonally;
- every pair $(b_1, b_2) \in \mathcal{D}^\times \times \mathcal{D}^\times$ is sent to $[b_1, b_2] := (x \mapsto b_1 xb_2^{-1}, x \in \mathcal{D}) \in GO(V_{\mathcal{D}})$;
- $\tau_{\mathcal{D}}(x) := \bar{x} = \text{Tr}_{\mathcal{D}/k}(x) - x$ for every $x \in \mathcal{D}$.

Let $\Pi^{\mathcal{D}}$ be an infinite dimensional automorphic representation of \mathcal{D}^\times which is cuspidal if $\mathcal{D} = \text{Mat}_2$. Suppose the central character of $\Pi^{\mathcal{D}}$ is unitary. Let Π be the automorphic cuspidal representation of $GL_2(k)$ corresponding to $\Pi^{\mathcal{D}}$ via the Jacquet-Langlands correspondence. Given $\varphi \in S(V_{\mathcal{D}}(k))$ and $\phi \in \Pi$, for $b_1, b_2 \in \mathcal{D}^\times$ we set

$$\theta^{\mathcal{D}}(b_1, b_2; \phi, \varphi) := \int_{\text{SL}_2(k) \backslash \text{SL}_2(k)} \phi(g^1 \alpha(b_1 b_2^{-1})) \cdot \theta^{\mathcal{D}}(g^1 \alpha(b_1 b_2^{-1}), [b_1, b_2]; \varphi) dg^1.$$
Here $\alpha(b) := \begin{pmatrix} 1 & 0 \\ 0 & \text{Nr}_{D_A}(b) \end{pmatrix}$ for every $b \in D_A^\times$, and dg^1 is the Tamagawa measure on $SL_2(k_A)$ (cf. Section 4.2). It is clear that $\theta^D(\cdot, \cdot; \phi, \varphi)$ is invariant by $D^\times \times D^\times$ via left multiplications. Put

$$\Theta^D(\Pi) := \{\theta^D(\cdot, \cdot; \phi, \varphi) \mid \phi \in \Pi, \varphi \in S(V_D(k_A))\}.$$

The Shimizu correspondence says (cf. [12] Theorem 1):

Theorem 2.2. Given an infinite dimensional automorphic representation Π^D of D_A^\times (cuspidal if $D = \text{Mat}_2$), suppose the central character of Π^D is unitary. Then

$$\Theta^D(\Pi) = \{f_1 \otimes \tilde{f}_2 : D_A^\times \times D_A^\times \to \mathbb{C} \mid f_1, f_2 \in \Pi^D\}_{C-span}. \tag{2.1}$$

Here $f_1 \otimes \tilde{f}_2 (b, b') := f_1(b) \cdot \tilde{f}_2(b')$ for every $b, b' \in D_A^\times$. Consequently, let $\tilde{\Pi}^D$ be the contragredient representation of Π^D. Identifying Π^D with the space $\{f \mid f \in \Pi^D\}$ via the Petersson inner product, the equality (2.1) induces an isomorphism

$$\text{Sh} : \Theta^D(\Pi \otimes \Pi^D).$$

2.3.1. **Local Shimizu correspondence.** We may identify Π with $\otimes_v \Pi_v$ naturally via the Whittaker model of Π (with respect to ψ_v). Let v be a place of k. For $\phi_v \in \Pi_v$ and $\varphi_v \in S(V_D(k_v))$, put

$$\theta_v^{D, \alpha}(b_v, b'_v; \phi_v, \varphi_v) := \frac{\zeta_v(2)}{L_v(1, \Pi, \text{Ad})} \cdot \int_{U(k_v) \setminus SL_2(k_v)} W_{\phi_v}(g_v^1 \alpha(b_v b_v^{-1})) \cdot (\omega_v^{\Pi}(g_v^1 \alpha(b_v b_v^{-1}), [b_v, b'_v]) \varphi_v)(1) dg_v^1.$$

Here W_{ϕ_v} is the Whittaker function of ϕ_v (with respect to ψ_v), the map α is defined in the above of Theorem 2.2 and $U \subset SL_2$ is the standard unipotent subgroup. Observe that when v is “good” we have $\theta_v^{D, \alpha}(b_v, b'_v; \phi_v, \varphi_v) = 1$ (cf. Theorem A.3 (1)). Moreover, for pure tensors $\phi = \otimes_v \phi_v \in \Pi$ and $\varphi = \otimes_v \varphi_v \in S(V_D(k_A))$ we have (cf. Theorem A.3)

$$\int_{D^\times A \setminus D_v^\times} \theta_v^{D, \alpha}(b_v b_v b_v b_v; \phi_v, \varphi_v) d^\times b = \frac{2L(1, \Pi, \text{Ad})}{\zeta_v(2)} \cdot \prod_v \theta_v^{D, \alpha}(b_v b_v b_v b_v; \phi_v, \varphi_v), \quad \forall b_1, b_2 \in D_A^\times. \tag{2.2}$$

Put

$$\Theta_v^D(\Pi_v) := \{\theta_v^{D, \alpha}(\cdot, \cdot; \phi_v, \varphi_v) \mid \phi_v \in \Pi_v, \varphi_v \in S(V_D(k_v))\}.$$

Then the above equality implies that (cf. Proposition A.4)

$$\Theta_v^D(\Pi_v) = \{f_v \otimes \tilde{f}_v : D_v^\times \times D_v^\times \to \mathbb{C} \mid f_v \in \Pi_v, \tilde{f}_v \in \tilde{\Pi}_v\}_{C-span}.$$

Here $f_v \otimes \tilde{f}_v$ is viewed as a matrix coefficient:

$$f_v \otimes \tilde{f}_v(b_v, b'_v) := \langle \Pi_v^D(b_v) f_v, \tilde{\Pi}_v^D(b'_v) \tilde{f}_v \rangle_v^D, \quad \forall b_v, b'_v \in D_v^\times,$$

where $\langle \cdot, \cdot \rangle_v : D_v^\times \times \tilde{\Pi}_v^D \to \mathbb{C}$ is the natural duality pairing. Consequently, we have an isomorphism $\text{Sh}_v : \Theta_v^D(\Pi_v) \cong \Pi_v^D \otimes \tilde{\Pi}_v^D.$

Remark 2.3. Let $\langle \cdot, \cdot \rangle_{\text{Pet}}^D : \Pi^D \times \tilde{\Pi}^D \to \mathbb{C}$ be the Petersson pairing. The equality (2.2), together with Sh and Sh_v, provide us a way to indentify Π^D (resp. Π^D) with $\otimes_v \Pi_v^D$ (resp. $\otimes_v \tilde{\Pi}_v^D$) so that for pure tensors $f = \otimes_v f_v \in \Pi^D$ and $\tilde{f} = \otimes_v \tilde{f}_v \in \tilde{\Pi}^D$, we have

$$\langle f, \tilde{f} \rangle_{\text{Pet}}^D = \frac{2L(1, \Pi, \text{Ad})}{\zeta_v(2)} \cdot \prod_v \langle f_v, \tilde{f}_v \rangle_v^D.$$
3. Zeta integrals and Rankin-Selberg method

3.1. Siegel Eisenstein series. Let K be a quadratic field over k. Fix $\gamma \in k^\times$. Recall that we put $(V_{(\gamma)}, Q_{(\gamma)}) = (K, \gamma \cdot N_{K/k})$. Given $\varphi \in S(V_{(\gamma)}(k_\mathfrak{A}))$, the Siegel section associated to φ is defined by

$$\Phi_\varphi(g, s) := \frac{|a|_K^s}{|b|_K^s} \cdot \zeta_K(b) \cdot \left(\omega^{V(\gamma)}(\kappa) \varphi \right)(0)$$

for every $g = \begin{pmatrix} a & n \\ 0 & b \end{pmatrix}$ with $a, b \in k_\mathfrak{A}^\times$, $n \in k_\mathfrak{A}$, $\kappa \in \text{SL}_2(O_\mathfrak{A})$, and $s \in \mathbb{C}$. Here ζ_K is the quadratic character of K/k. The Siegel Eisenstein series associated to φ is

$$E(g, s, \varphi) := \sum_{\gamma \in B(k) \backslash GL_2(k)} \Phi_\varphi(\gamma g, s), \ \forall g \in GL_2(k),$$

which converges absolutely for $\text{Re}(s) > 1$. It is known that $E(g, s, \varphi)$ has meromorphic continuation to the whole complex s-plane and satisfies a functional equation with the symmetry between s and $1 - s$. Note that $E(g, s, \varphi)$ is always holomorphic at the central critical point $s = 1/2$, and the following formula holds (cf. [17, Theorem 0.1]):

Theorem 3.1. (The Siegel-Weil formula) Fix $\gamma \in k^\times$. Given $\varphi \in S(V_{(\gamma)}(k_\mathfrak{A}))$, one has

$$E(g, \frac{1}{2}, \varphi) = \frac{1}{L(1, s_K)} \cdot \theta_{1_K}^\gamma(g, \varphi), \ \forall g \in GL_2(k),$$

where 1_K is the principal character on $K^\times_\mathfrak{A}$.

3.2. Zeta integrals. Let D be a quaternion algebra over k. Given a quadratic field extension K over k with an embedding $K \hookrightarrow D$, we write $D = K + Kj$ where $j^2 = \gamma \in k^\times$ and $jb = b_j$ for every $b \in K$. Set $(V_D, Q_{V_D}) := (D, N_{D/k})$. Then

$$(V_D, Q_{V_D}) = (V_{(1)}, Q_{(1)}) \oplus (V_{(-\gamma)}, Q_{(-\gamma)}).$$

Let Π be an automorphic cuspidal representation of $GL_2(k_\mathfrak{A})$ with a unitary central character denoted by η. Given a Hecke character $\chi : K^\times \backslash K_\mathfrak{A}^\times \rightarrow \mathbb{C}^\times$, suppose that χ is unitary and $\eta \cdot \chi|_{K^\times_\mathfrak{A}} = 1$. For $\phi \in \Pi$ and $\varphi \in S(V_D(k_\mathfrak{A}))$, we are interested in the following (global) zeta integral: writing $\varphi = \oplus_i \varphi_{1,i} \oplus \varphi_{2,i}$ with $\varphi_{1,i} \in S(V_{(1)}(k_\mathfrak{A}))$ and $\varphi_{2,i} \in S(V_{(-\gamma)}(k_\mathfrak{A}))$, we set

$$Z(s; \phi, \varphi) := \sum_i \int_{Z(k_\mathfrak{A}) \backslash GL_2(k_\mathfrak{A}) \backslash GL_2(k_\mathfrak{A})} \phi(g) \theta^K_\chi(g, \varphi_{1,i}) E(g, s; \varphi_{2,i}) dg.$$

Here Z is the center of GL_2, and dg is the Tamagawa measure on $GL_2(k_\mathfrak{A})$ restricting to $GL_2^\times(k_\mathfrak{A})$ (cf. Section 1.2). This integral is a meromorphic function on the complex s-plane. Moreover, one asserts:

Proposition 3.2. Given pure tensors $\phi = \otimes_v \phi_v \in \Pi$ and $\varphi = \otimes_v \varphi_v \in S(V_D(k_\mathfrak{A}))$, one has

$$Z(s; \phi, \varphi) = \prod_v Z_v(s; \phi_v, \varphi_v),$$

where $Z_v(s; \phi_v, \varphi_v)$ is equal to

$$\int_{K_v^\times} \left(\int_{SL_2(O_v)} W_{\phi_v} \left(\begin{pmatrix} N_{K/k}(h) & 0 \\ 0 & 1 \end{pmatrix} k_v^\times \right) \left(\omega_v^D(k_v^\times) \varphi_v \right)(h) d_\mathfrak{a} h \right) \chi_v(h) |N_{K/k}(h)|_v^{-\frac{s-1}{2}} d^\times h,$$

and W_{ϕ_v} is the local Whittaker function associated to f_v (with respect to ψ_v).
Proof. Without loss of generality, assume \(\varphi = \varphi_1 \oplus \varphi_2 \). Let \(B^+ := B \cap GL^+_2 = Z \cdot T^+_1 \cdot U \), where
\[
T_1 := \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix}, \quad T^+_1 := T_1 \cap GL^+_2, \quad \text{and} \quad U := \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.
\]
Put \(GL^+_2(O_h) := GL_2(O_h) \cap GL^+_2(k_h) \). From the Iwasawa decomposition
\[
GL^+_2(k_h) = B^+(k_h) \cdot GL^+_2(O_h),
\]
we write the zeta integral \(Z(s; \phi, \varphi) \) as
\[
Z(s; \phi, \varphi) = \int_{Z(O_h) \setminus GL^+_2(O_h)} \int_{T^+_1(k_h)} W_{\phi}(tk^1)W^K\chi_\gamma(tk^1; \varphi)(0)|t|_v^{s-1}d^\gamma dt \kappa,
\]
where for every \(\kappa \in GL_2(O_h) \), we put \(\kappa^1 := \begin{pmatrix} \det(\kappa)^{-1} & 0 \\ 0 & 1 \end{pmatrix} \kappa \in SL_2(O_h) \). Note that for each place \(v \) of \(k \), we have the following exact sequence:
\[
1 \longrightarrow \{ \pm 1 \} \longrightarrow SL_2(O_v) \longrightarrow Z(O_v) \setminus GL_2(O_v) \longrightarrow \frac{O_v^\times}{(O_v^\times)^2} \longrightarrow 1.
\]
Therefore when \(\varphi \) and \(f \) are pure tensors, one has
\[
Z(s; \phi, \varphi) = \prod_v Z'_v(s; \phi_v, \varphi_v),
\]
where
\[
Z'_v(s; \phi_v, \varphi_v) := \int_{SL_2(O_v)} \int_{T^+_1(k_v)} W_{\phi_v}(t_vk^1_v)W^K\chi_\gamma(t_vk^1_v; \varphi_{1,v})(\omega_v^{(-\gamma)}(k^1_v)\varphi_{2,v})(0)|t_v|_v^{s-1}d^\gamma t_vd\kappa_v.
\]
By Lemma 2.1 the local zeta integral \(Z'_v(s; \phi_v, \varphi_v) \) becomes
\[
Z'_v(s; \phi_v, \varphi_v) = \int_{SL_2(O_v)} \int_{T^+_1(k_v)} W_{\phi_v}(t_vk^1_v)
\cdot \left(\int_{K^1_v} (\omega^K_v(\kappa^1_v)\varphi_{1,v})(\rho_r\chi_v(r_vh_{t,v})dr_v) \right) \chi_v(h_{t,v})d\kappa_v
\cdot \left(\omega^K_v(-\gamma)(\kappa^1_v)\varphi_{2,v})(0)|t_v|_v^{s-1}d^\gamma t_vd\kappa_v = Z_v(s; \phi_v, \varphi_v). \]

The following results are straightforward.

Corollary 3.3. (1) Suppose \(v \) is “good”, i.e. the conductor of \(\psi_v \) is trivial, \(\Pi_v \) is an unramified principal series, \(\phi_v \in \Pi_v \) is spherical with \(W_{\phi_v}(1) = 1 \), \(v \) is unramified in \(K \), \(\chi_v \) is unramified, \(\text{ord}_v(\gamma) = 0 \), and \(\varphi = \varphi_1 \oplus \varphi_2 \) with \(\varphi_1 = \varphi_2 = 1_{O_{K_v}} \). We have
\[
Z_v(s; \phi_v, \varphi_v) = \frac{L_v(s, \Pi \times \chi_v)}{L_v(2s, s_K)}.
\]

(2) Given \(\phi_v \in \Pi_v \) and \(\varphi_v \in S(V_\overline{T}(k_v)) \), put
\[
Z'_v(s; \phi_v, \varphi_v) := \frac{L_v(2s, s_K)}{L_v(s, \Pi \times \chi_v)} \cdot Z_v(s; \phi_v, \varphi_v).
\]
Then $Z_v^o(s; \phi_v, \varphi_v) = 1$ for all but finitely many v, and

$$Z(s; \phi, \varphi) = \frac{L(s, \Pi \times \chi)}{L(2s, \zeta_K)} \cdot \prod_v Z_v^o(s; \phi_v, \varphi_v)$$

for every pure tensors $\phi \in \Pi$ and $\varphi \in S(V_D(k_\ell))$.

(3) The (local) zeta integral $Z_v^o(s; \phi_v, \varphi_v)$ always converges at $s = 1/2$.

4. CENTRAL CRITICAL VALUES OF ZETA INTEGRALS

Let D, K, Π, η, and χ be as in the above section. For pure tensors $\phi = \otimes_v \phi_v \in \Pi$ and $\varphi = \otimes \varphi_v \in S(V_D(k_\ell))$, we shall express $Z(1/2; \phi, \varphi)$ (resp. $Z_v(1/2; \phi_v, \varphi_v)$) in terms of global (resp. local) “toric period integrals” of the pair (ϕ, φ) (resp. (ϕ_v, φ_v)).

4.1. Local case. We may rewrite $Z_v(1/2; \phi_v, \varphi_v)$ for $\phi_v \in \Pi_v$ and $\varphi_v \in S(V_D(k_v))$ as follows:

Proposition 4.1. Given $\phi_v \in \Pi_v$ and $\varphi_v \in S(V_D(k_v))$, we have

$$Z_v\left(\frac{1}{2}; \phi_v, \varphi_v\right) = \frac{L_v(1, \Pi, \Ad)}{\zeta_2(2)} \cdot \int_{K_v^o / \mathbb{A}_v} \theta_v^{\Ad, \sigma}(h_v, 1; \phi_v, \varphi_v) \chi_v(h_v) d^\times h_v.$$

Here $\theta_v^{\Ad, \sigma}(\cdot, \cdot; \phi_v, \varphi_v)$ is defined in Section 2.3.1.

Proof. Given $h_v \in K_v^\times$ and $g_v \in SL_2(k_v)$, one has

$$\omega_v^D\left(g_v^o \alpha(h_v), [h_v, 1]\right) \varphi_v(1) = |N_{K/k}(h_v)|_{v}^{-1} \cdot \omega_v^D\left(\alpha(h_v)^{-1} g_v^o \alpha(h_v)\right) (h_v^{-1}).$$

From the Iwasawa decomposition:

$$SL_2(k_v) = B^1(k_v) \cdot \left(\alpha(h_v) SL_2(O_v) \alpha(h_v)^{-1}\right),$$

we may write

$$dg_v = |N_{K/k}(h_v)|_{v} \cdot dL h_v^1 \cdot dR \kappa_v^1.$$
4.2. Global case. Put

\[(\text{GO}(V(1)) \times \text{GO}(V(\gamma))) := \{(h_1, h_2) \in \text{GO}(V(1)) \times \text{GO}(V(\gamma)) \mid \nu(h_1) = \nu(h_2)\}, \]

which is viewed as a subgroup of \(\text{GO}(V) \). Note that \(\text{GO}(V(a)) \cong K^\times \ltimes \langle \tau_K \rangle \) for every \(a \in k^\times \), and we have the following exact sequence

\[1 \longrightarrow k^\times \longrightarrow (D^\times \times D^\times) \times \langle \tau_D \rangle \longrightarrow \text{GO}(V_D) \longrightarrow 1. \]

Here \(k^\times \) embeds into \(D^\times \times D^\times \) diagonally, and every pair \((h_1, h_2) \in D^\times \times D^\times \) is sent to \((x \mapsto b_1 x b_2^{-1}, x \in V = D) \in \text{GO}(V_D) \). Let

\[[K^\times \times K^\times] := \{(h_1, h_2) \in K^\times \times K^\times \mid N_{K/k}(h_1) = N_{K/k}(h_2)\} = K^\times \times K^\times \cap [\text{GO}(V(1)) \times \text{GO}(V(\gamma))]. \]

Define \(\iota : [K^\times \times K^\times] \hookrightarrow D^\times \times D^\times \) by sending \((h_1, h_2)\) to \((h_1 h', h') \in (D^\times \times D^\times)/k^\times \), where \(h' \in K^\times \) such that \(h'/\overline{h} = h_2/h_1 \). Then the following diagram commutes:

\[\begin{array}{ccc}
[K^\times \times K^\times] & \xrightarrow{\iota} & D^\times \times D^\times \\
\downarrow & & \downarrow \\
[\text{GO}(V(1)) \times \text{GO}(V(\gamma))] & \longrightarrow & \text{GO}(V_D).
\end{array} \]

Suppose \(\varphi = \varphi_1 \oplus \varphi_2 \in S(V_D(k_\Lambda)) \), where \(\varphi_1 \in S(V(1)(k_\Lambda)) \) and \(\varphi_2 \in S(V(\gamma)(k_\Lambda)) \). In Section 2.1 we put

\[\theta^K_\Lambda(g; \varphi_1) = \int_{K_\Lambda \backslash K_\Lambda^\times} \theta^{\nu(1)}(g, rh_g; \varphi_1) \chi(rh_g) dr, \quad \forall g \in \text{GL}^{+K}_{2}(k_\Lambda). \]

The Siegel-Weil formula in Theorem 3.1 says

\[E(g, \frac{1}{2}; \varphi_2) = \frac{1}{L(1, \varsigma_K)} \int_{K_\Lambda \backslash K_\Lambda^\times} \theta^{\nu(\gamma)}(g, rh_g; \varphi_2) dr. \]

Note that the following lemma is straightforward.

Lemma 4.2. Given \(g \in \text{GL}^{+K}_{2}(k_\Lambda) \) and \(h_1, h_2 \in K_\Lambda^\times \) with \(\det(g) = N_{K/k}(h_1) = N_{K/k}(h_2) \), one has

\[\theta^{\nu(1)}(g, h_1; \varphi_1) \cdot \theta^{\nu(\gamma)}(g, h_2; \varphi_2) = \theta^{V_D}(g, [h_1 h', h'] ; \varphi_1 \oplus \varphi_2). \]

Here \(h' \in K_\Lambda^\times \) is chosen so that \(h'/\overline{h} = h_2/h_1 \), and \([h_1 h', h'] \in (D_\Lambda^\times \times D_\Lambda^\times)/k_\Lambda^\times \) is considered as an element in \(\text{GO}(V_D)(k_\Lambda) \).

Applying the “seesaw identity” (cf. [10]) with respect to the following diagram

\[\begin{array}{ccc}
\text{GL}^{+K}_{2} & \longrightarrow & [\text{GO}(V(1)) \times \text{GO}(V(\gamma))] \\
\text{GO}(V_D)^{+K} & \longrightarrow & \\
\text{GL}^{+K}_{2} \times \text{GL}^{+K}_{2} & \longrightarrow & \text{GO}(V(1)) \times \text{GO}(V(\gamma))
\end{array} \]

where \([\text{GL}^{+K}_{2} \times \text{GL}^{+K}_{2}] \) (resp. \([\text{GO}(V(1)) \times \text{GO}(V(\gamma))] \)) is the subgroup of \(\text{GL}^{+K}_{2} \times \text{GL}^{+K}_{2} \) (resp. \(\text{GO}(V(1)) \times \text{GO}(V(\gamma)) \)) consisting of all pairs \((g_1, g_2)\) where \(g_1 \) and \(g_2 \) have the same determinants (resp. the factor of similitudes), we then obtain that:

Proposition 4.3. Given \(\phi \in \Pi \) and \(\varphi \in S(V_D(k_\Lambda)) \), we have

\[Z^{\frac{1}{2}}(1; \phi, \varphi) = \frac{1}{L(1, \varsigma_K)} \int_{K_\Lambda^\times \backslash K_\Lambda^\times \backslash K_\Lambda^\times} \int_{K_\Lambda^\times \backslash K_\Lambda^\times \backslash K_\Lambda^\times} \theta^{D}(h_1, h_2; \phi, \varphi) \cdot \chi(h_1 h_2^{-1}) dh_1 dh_2. \]
Proof. The above discussion says that
\[Z(\frac{1}{2}; \phi, \varphi) = \frac{1}{L(1, \zeta_K)} \cdot \int_{Z(k_a)} GL_2^+(k) \backslash GL_2^+(k_a) \phi(g) \]
\[\cdot \left(\int_{K^1 \backslash K_1^1} \int_{K_1^1 \backslash K_1^1} \theta^\Pi(g, r_1 h_g; \varphi_1) \theta^\Pi(-g, r_2 h_g; \varphi_2) \chi(r_1 h_g) dr_1 dr_2 \right) dg \]
\[= \frac{1}{L(1, \zeta_K)} \cdot \int_{SL_2(k) \backslash SL_2(k_a)} \phi(g^1 \alpha(N_K/h(h))) \]
\[\cdot \left(\int_{K^\alpha \backslash K_1^\alpha} \int_{K_1^\alpha \backslash K_1^\alpha} \theta^P(g^1 \alpha(N_K/h(h)), [hh', h'] ; \varphi(h) dh dh') dg^1 \right) \]
\[= \frac{1}{L(1, \zeta_K)} \cdot \int_{K^\alpha \backslash K_1^\alpha} \int_{K^\alpha \backslash K_1^\alpha} \theta^P(h_1, h_2; \phi, \varphi) \cdot \chi(h_1 h_2^{-1}) dh_1 dh_2. \]
\[\square \]

For each pair \((\phi, \varphi)\) with \(\phi \in \Pi\) and \(\varphi \in S(V_D(k_a))\), define the global toric period integral by:
\[T(\phi, \varphi) := \int_{K^\alpha \backslash K_1^\alpha} \int_{K^\alpha \backslash K_1^\alpha} \theta^P(h_1, h_2; \phi, \varphi) \cdot \chi(h_1 h_2^{-1}) dh_1 dh_2. \]

Then by Corollary 3.3, Proposition 4.1 and 4.3, we arrive at:

Corollary 4.4. Given pure tensors \(\phi = \otimes_v \phi_v \in \Pi\) and \(\varphi = \otimes_v \varphi_v \in S(V_D(k_a))\), we have
\[T(\phi, \varphi) = L(\frac{1}{2}, \Pi \times \chi) \cdot \prod_v T_v(\phi_v, \varphi_v). \]
Lemma 5.1. Suppose v is “good,” i.e. the additive character ψ_v has trivial conductor, the quaternion algebra \mathcal{D} splits at v, the local representation $\Pi_v^D = \Pi_v$ is an unramified principal series, the place v is unramified in K, the character χ_v is unramified. Take $f_v \in \Pi_v^D$ and $\hat{f}_v \in \hat{\Pi}_v^D$ to be spherical and invariant by $\iota(O_{K_v})$ with $(f_v, \hat{f}_v)_v = 1$. Then

$$\mathcal{P}_{\chi,v}^D(f_v \otimes \hat{f}_v) = 1.$$

Proof. Suppose v is inert in K. Then the choices of f_v and \hat{f}_v satisfy

$$\mathcal{P}_{\chi,v}^D(f_v \otimes \hat{f}_v) = \frac{L_v(1, \zeta_K)L_v(1, \Pi, \text{Ad})}{L_v(1/2, \Pi \times \chi)(2)}.$$

It is straightforward that the right hand side of the above equality equals to 1 under the above assumptions on v.

Suppose v splits in K, i.e. $K_v = k_v \times k_v$. Write $\chi_v = \chi_v,1 \times \chi_v,2$ on $k_v^x \times k_v^x$. Then

$$L_v(1/2, \Pi \times \chi) = L_v(1/2, \Pi_v \otimes \chi_v,1) \cdot L_v(1/2, \Pi_v \otimes \chi_v,2) = L_v(1/2, \Pi_v \otimes \chi_v,1) \cdot L_v(1/2, \tilde{\Pi}_v \otimes \chi_v^{-1},1).$$

The last equality follows from the assumption $\eta_v(\cdot | k_v) = 1$, where η_v is the central character of Π_v. The pairing $\langle \cdot, \cdot \rangle_v$ can be realized by

$$\langle f_v, \hat{f}_v \rangle_v := \frac{\zeta_v(2)}{\zeta_v(1)L_v(1, \Pi, \text{Ad})} \cdot \int_{k_v} W_{f_v} \left(\begin{array}{cc} a_v & 0 \\ 0 & 1 \end{array} \right) W'_{\hat{f}_v} \left(\begin{array}{cc} a_v & 0 \\ 0 & 1 \end{array} \right) d^\times a_v, \forall f_v \in \Pi_v^D, \hat{f}_v \in \hat{\Pi}_v^D,$$

where W_{f_v} (resp. $W'_{\hat{f}_v}$) is the Whittaker function of f_v (resp. \hat{f}_v) with respect to ψ_v (resp. $\overline{\psi}_v$). We may assume the embedding $\iota : K_v \to \mathcal{D}_v$ satisfies

$$\iota(a_v, a'_v) = \left(\begin{array}{cc} a_v & 0 \\ 0 & a'_v \end{array} \right) \in \text{Mat}_2(k_v) = \mathcal{D}_v, \quad \forall (a_v, a'_v) \in k_v \times k_v.$$

Then

$$\mathcal{P}_{\chi,v}^D(f_v \otimes \hat{f}_v) = \left(\frac{1}{L_v(1/2, \Pi_v \otimes \chi_v,1)} \int_{k_v^x} W_{f_v} \left(\begin{array}{cc} a_v & 0 \\ 0 & 1 \end{array} \right) \chi_v,1(a_v) d^\times a_v \right) \cdot \left(\frac{1}{L_v(1/2, \tilde{\Pi}_v \otimes \chi_v^{-1},1)} \int_{k_v^x} W'_{\hat{f}_v} \left(\begin{array}{cc} a_v & 0 \\ 0 & 1 \end{array} \right) \chi_v^{-1},1(a_v) d^\times a_v \right).$$

Therefore when f_v and \hat{f}_v are spherical and invariant by $\iota(O_{K_v})$ with $(f_v, \hat{f}_v)_v = 1$, we get $\mathcal{P}_{\chi,v}^D(f_v \otimes \hat{f}_v) = 1.$

Set $\mathcal{P}_\chi^D := \otimes_v \mathcal{P}_{\chi,v}^D : \Pi^D \otimes \hat{\Pi}^D \to \mathbb{C}$. We finally arrive at:

Theorem 5.2. The linear functionals \mathcal{P}_χ^D and \mathcal{P}_χ^D on $\Pi^D \otimes \hat{\Pi}^D$ satisfy

$$\mathcal{P}_\chi^D = L(\frac{1}{2}, \Pi \times \chi) \cdot \mathcal{P}_\chi^D.$$

Proof. The case when $K = k \times k$ is proven in Appendix C. Suppose K is a quadratic field over k. Take pure tensors $\phi = \otimes_v \phi_v \in \Pi$ and $\varphi = \otimes_v \varphi_v \in S(V_{\mathcal{D}}(k_h))$. Applying the global
and local Shimizu correspondence (cf. Theorem 2.2 and Section 2.3.1), Corollary 4.4 implies

\[P_D^\chi(\text{Sh}(\theta^D(\cdot, \cdot, \phi, \varphi))) = T(\phi, \varphi) \]
\[= L\left(\frac{1}{2}, \Pi \times \chi\right) \cdot \prod_v T_v(\phi_v, \varphi_v) \]
\[= L\left(\frac{1}{2}, \Pi \times \chi\right) \cdot \prod_v \mathcal{P}^D_{\chi,v}(\text{Sh}_v(\theta^{D,v}(\cdot, \cdot, \phi_v, \varphi_v))) \]
\[= L\left(\frac{1}{2}, \Pi \times \chi\right) \cdot \mathcal{P}^D(\cdot, \cdot, \phi, \varphi). \]

Therefore the result holds. \(\square\)

5.1. Non-vanishing criterion. For each place \(v\) of \(k\), we have:

Lemma 5.3. (cf. [13]) The space \(\text{Hom}_{K_v^x}(\Pi_v^D, \chi_v^{-1})\) is at most one dimensional. Moreover, \(\text{Hom}_{K_v^x}(\Pi_v^D, \chi_v^{-1}) \neq 0\) if and only if

\[\epsilon_v(\Pi_v \times \chi_v) = \chi_v(-1)\xi_{K_v}(\Pi_v, \chi_v) \cdot \epsilon_v(D). \]

Here \(\epsilon_v(\Pi_v \times \chi_v)\) is the local root number of \(L_v(s, \Pi \times \chi)\), and \(\epsilon_v(D)\) is the Hasse invariant of \(D\) at \(v\).

It is clear that \(\mathcal{P}^D_{\chi,v}\) lies in \(\text{Hom}_{K_v^x}(\Pi_v^D, \chi_v^{-1}) \otimes \text{Hom}_{K_v^x}(\tilde{\Pi}_v^D, \chi_v)\). Moreover, following Waldspurger [13], Lemme 10] one gets

Lemma 5.4. \(\mathcal{P}^D_{\chi,v}\) is a generator of the \(\mathbb{C}\)-vector space \(\text{Hom}_{K_v^x}(\Pi_v^D, \chi_v^{-1}) \otimes \text{Hom}_{K_v^x}(\tilde{\Pi}_v^D, \chi_v)\).

Consequently, \(\mathcal{P}^D_{\chi,v}\) generates the space \(\text{Hom}_{K_v^x}(\Pi^D, \chi^{-1}) \otimes \text{Hom}_{K_v^x}(\tilde{\Pi}^D, \chi)\), in which \(P^D_{\chi}\) lies. Therefore Theorem 4.2 implies:

Corollary 5.5. Let \(\Pi\) be an automorphic cuspidal representation of \(\text{GL}_2(k)\) with a unitary central character \(\eta\). Given a separable quadratic algebra \(K\) over \(k\) and a unitary Hecke character \(\chi : K^\times \backslash \mathbb{A}_K^\times \rightarrow \mathbb{C}^\times\) with \(\eta \cdot \chi|_{\mathbb{A}_K^\times} = 1\), assume \(\prod_v \epsilon_v(\Pi_v \times \chi_v) = 1\). Let \(D\) be the quaternion algebra over \(k\) satisfying (5.2) for every place \(v\) of \(k\), and \(\Pi^D\) be the automorphic representation of \(D^x\) corresponding to \(\Pi\) via the Jacquet-Langlands correspondence. Choose an embedding \(i : K \hookrightarrow D\). Then the non-vanishing of the central critical value \(L(1/2, \Pi \times \chi)\) is equivalent to the existence of \(f \in \Pi^D\) so that

\[P^D_{\chi}(f) = \int_{K^x \backslash K^x \backslash \mathbb{A}_K^x} f(\iota(h)) \chi(h) d^x h \neq 0. \]

APPENDIX A. LOCAL SHIMIZU CORRESPONDENCES

Recall the Shimizu correspondence stated in Theorem 2.2.

Theorem A.1. Given an infinite dimensional automorphic representation \(\Pi^D\) of \(D^x\) which is cuspidal if \(D = \text{Mat}_2\), suppose the central character of \(\Pi^D\) is unitary. Then

\[\Theta^D(\Pi) = \{ f_1 \otimes f_2 : D^x \times D^x \rightarrow \mathbb{C} \mid f_1, f_2 \in \Pi^D \}_{\mathbb{C}-\text{span}}. \]

Here \(f_1 \otimes f_2\) is viewed as the function \((b, b') \mapsto f_1(b) \cdot f_2(b')\). Consequently, let \(\tilde{\Pi}^D\) be the contragredient representation of \(\Pi^D\), Identifying \(\tilde{\Pi}^D\) with the space \(\{ f \mid f \in \Pi^D \}\) via the Petersson inner product, the equality (2.1) induces an isomorphism

\[\text{Sh}: \Theta^D(\Pi) \cong \Pi^D \otimes \tilde{\Pi}^D. \]
Recall that for \(\phi_v \in \Pi_v \) and \(\varphi_v \in S(V_D(k_v)) \), we define \(\theta^{D,o}_v(b_v, b'_v; \phi_v, \varphi_v) \) for \(b_v, b'_v \in D_v^\times \) in Section 2.3.1 by

\[
\theta^{D,o}_v(b_v, b'_v; \phi_v, \varphi_v) = \frac{\zeta_v(2)}{L_v(1, \Pi, \text{Ad})} \cdot \int_{U(k_v) \backslash SL_2(k_v)} W_{\phi_v}(g_v^1 \alpha(b_v b'_v \alpha^{-1})) \cdot (\omega_v^D(g_v^1 b_v b'_v \alpha^{-1}), [b_v, b'_v]) \varphi_v(1) dg_v^1.
\]

Lemma A.2. Suppose \(v \) is “good,” i.e. \(\psi_v \) has trivial conductor, the representation \(\Pi_v \) is an unramified principle series, the vector \(\phi_v \in \Pi_v \) is spherical with \(W_{\phi_v} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \), the quaternion algebra \(D_v = \text{Mat}_2(k_v) \), and the Schwartz function \(\varphi_v = 1_{\text{Mat}_2(O_v)} \). One has

\[
\theta^{D,o}_v(b_v, b'_v; \phi_v, \varphi_v) = 1, \quad \forall b_v, b'_v \in \text{GL}_2(O_v).
\]

Proof. From the Iwasawa decomposition \(SL_2(k_v) = B^1(k_v) \cdot SL_2(O_v) \), the above assumptions imply that for \(b_v, b'_v \in \text{GL}_2(O_v) \), we have

\[
\theta^{D,o}_v(b_v, b'_v; \phi_v, \varphi_v) = \frac{\zeta_v(2)}{L_v(1, \Pi, \text{Ad})} \cdot \int_{k_v^\times} W_{\phi_v} \begin{pmatrix} a_v & 0 \\ 0 & a_v^{-1} \end{pmatrix} 1_{O_v}(a_v) d^\times a_v = 1.
\]

The aim of this section is to show:

Theorem A.3. Given pure tensors \(\phi = \otimes_v \phi_v \in \Pi \) and \(\varphi = \otimes_v \varphi_v \in S(V_D(k)) \), we have

\[
\int_{D_v^\times k_v^\times \backslash D_v^\times} \theta^D(b b_1 b_2; \phi, \varphi) d^\times b = \frac{2L(1, \Pi, \text{Ad})}{\zeta_k(2)} \cdot \prod_v \theta^{D,o}_v(b_1, b_2; \phi_v, \varphi_v), \quad \forall b_1, b_2 \in D_k^\times.
\]

The proof of the above theorem is given in Section A.1 when \(D = \text{Mat}_2 \), and in Section A.2 when \(D \) is division.

Via the Petersson pairing \(\langle \cdot, \cdot \rangle_{\text{Pet}} : \Pi^D \times \tilde{\Pi}^D \), the representation \(\Pi^D \otimes \tilde{\Pi}^D \) is isomorphic to the space of the matrix coefficients of \(\Pi^D \otimes \tilde{\Pi}^D \):

\[
f \otimes \tilde{f} \longleftrightarrow m_{f \otimes \tilde{f}} \quad \forall f \otimes \tilde{f} \in \Pi^D \times \tilde{\Pi}^D,
\]

where

\[
m_{f \otimes \tilde{f}}(b, b') := \langle \Pi^D(b) f, \tilde{\Pi}^D(b') \tilde{f} \rangle_{\text{Pet}}, \quad \forall b, b' \in D^\times_k.
\]

On the other hand, for each place \(v \) of \(k \), we may also identify \(\Pi_v^D \otimes \tilde{\Pi}_v^D \) with the space of matrix coefficients, i.e. for \(f_v \in \Pi_v^D \) and \(\tilde{f}_v \in \tilde{\Pi}_v^D \), the matrix coefficient \(m_{f_v \otimes \tilde{f}_v} \) associated to \(m_{f \otimes \tilde{f}} \) is defined by

\[
m_{f_v \otimes \tilde{f}_v}(b_v, b'_v) := \langle \Pi_v^D(b_v) f_v, \tilde{\Pi}_v^D(b'_v) \tilde{f}_v \rangle_{\text{Pet}}, \quad \forall b_v, b'_v \in D_v^\times.
\]

Here \(\langle \cdot, \cdot \rangle_v^D : \Pi_v^D \times \tilde{\Pi}_v^D \to \mathbb{C} \) is the natural duality pairing. Put

\[
\Theta_v^D(\Pi_v) := \{ \theta^D_v(\cdot, \cdot; \phi_v, \varphi_v) \mid \phi_v \in \Pi_v, \varphi_v \in S(V_D(k_v)) \}.
\]

Proposition A.4. We have the following equality:

\[
\Theta_v^D(\Pi_v) = \{ m_{f_v \otimes \tilde{f}_v} \mid f_v \in \Pi_v^D, \tilde{f}_v \in \tilde{\Pi}_v^D \} \subset \text{span}.
\]

This induces an isomorphism \(\text{Sh}_v : \Theta_v^D(\Pi_v) \cong \Pi_v^D \otimes \tilde{\Pi}_v^D \).
Proof. Pick \(\phi^o = \otimes_v \phi_v^o \in \Pi \) and \(\varphi^o = \otimes_v \varphi_v^o \in S(V_D(k_h)) \) so that

\[
C(\phi^o, \varphi^o) := \int_{D^\times k_h \setminus D_k^\times} \theta_D(b, b; \phi^o, \varphi^o) db \neq 0.
\]

Then for each place \(v_0 \) of \(k \), the space of matrix coefficients of \(\Pi^D_{v_0} \) can be generated by \(m_{v_0}(\phi_{v_0}, \varphi_{v_0}) \) for \(\phi_{v_0} \in \Pi_{v_0} \) and \(\varphi_{v_0} \in S(V_D(k_v)) \), where \(m_v(\phi_{v_0}, \varphi_{v_0}) \) is defined by:

\[
m_v(\phi_{v_0}, \varphi_{v_0})(b_{v_0}, b'_{v_0}) := \int_{D^\times k_h \setminus D_k^\times} \theta_D(bb_{v_0}, bb'_{v_0}; \phi, \varphi) db, \quad \forall b_{v_0}, b'_{v_0} \in D_k^\times,
\]

where \(\phi = \phi_{v_0} \otimes_{v \neq v_0} \phi_v^o \in \Pi \) and \(\varphi = \varphi_{v_0} \otimes_{v \neq v_0} \varphi_v^o \in S(V_D(k_h)) \). By Theorem A.3 we may assume that the chosen \(\phi^o \) and \(\varphi^o \) satisfy

\[
C(\phi^o, \varphi^o) = \theta_D^{\sigma_o}(1, 1; \phi^o, \varphi^o).
\]

Then

\[
m_{v_0}(\phi_{v_0}, \varphi_{v_0})(b_{v_0}, b'_{v_0}) = \frac{\int_{D^\times k_h \setminus D_k^\times} \theta_D(bb_{v_0}, bb'_{v_0}; \phi, \varphi) db}{C(\phi^o, \varphi^o)} \cdot C(\phi^o, \varphi^o)
\]

\[
= \frac{\theta_D^{\sigma_o}(b_{v_0}, b'_{v_0}; \phi_{v_0}, \varphi_{v_0})}{\theta_D^{\sigma_o}(1, 1; \phi_{v_0}, \varphi_{v_0})} \cdot C(\phi^o, \varphi^o) \quad \text{(by Theorem A.3)}
\]

\[
= \theta_D^{\sigma_o}(b_{v_0}, b'_{v_0}; \phi_{v_0}, \varphi_{v_0}).
\]

\[
\square
\]

A.1. Proof of Theorem A.3 when \(D = \text{Mat}_2 \). Given \(\phi \in \Pi \) and \(\varphi \in S(V_D(k_h)) \), consider the Whittaker function associated to \(\phi \) and \(\varphi \):

\[
\mathcal{W}_{\phi, \varphi}(b_1, b_2)
\]

\[
:= \int_{k_h} \int_{k_h} \theta_D \left(\begin{array}{cc} 1 & u_1 \\ 0 & 1 \end{array} \right) b_1, \left(\begin{array}{cc} 1 & u_2 \\ 0 & 1 \end{array} \right) b_2; \psi(u_2 - u_1) du_1 du_2, \quad \forall b_1, b_2 \in \text{GL}_2(k_h).
\]

Then:

Proposition A.5. When \(\phi \) and \(\varphi \) are both pure tensors, we have

\[
\mathcal{W}_{\phi, \varphi} = \prod_v \mathcal{W}_{\phi_v, \varphi_v}.
\]

Here for \(b_1, b_2 \in \text{GL}_2(k_v) \), let

\[
\mathcal{W}_{\phi_v, \varphi_v}(b_1, b_2) := \int_{U(k_v) \backslash \text{SL}_2(k_v)} W_{\phi_v}(g_1^v \alpha(b_1 b_2^{-1})); (\varphi_v^D(g_1^v \alpha(b_1 b_2^{-1}), [b_1, b_2]) \varphi_v) \sim \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) dg_1,
\]

and

\[
(\varphi_v)^{\sim} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) := \int_{k_v} \varphi_v(a b') db' \quad \text{for } \varphi_v \in S(V_D(k_v)).
\]

Proof. Let \(V_i := \left\{ \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array} \right) \right\} \subset V_D, V_2 := \left\{ \left(\begin{array}{cc} 0 & * \\ * & 0 \end{array} \right) \right\} \subset V_D, \quad \text{and } Q_i := Q_D \mid_{V_i} \text{ for } i = 1, 2.\)

Then \((V_D, Q_D) = (V_1, Q_1) \oplus (V_2, Q_2) \). For \(\varphi_2 \in S(V_2(k_h)) \) and \(g^1 \in \text{SL}_2(k_h) \), it is observed that

\[
(\varphi_2^D(g^1) \varphi_2)^{\sim} \left(\begin{array}{cc} 0 & b \\ c & 0 \end{array} \right) = \varphi_2^{\sim} \left(\begin{array}{cc} 0 & b' \\ c' & 0 \end{array} \right),
\]

where \((c', b') = (c, b) \cdot g^1 \). Thus for \(\varphi \in S(V_D(k_h)) \), by Poisson summation formula we may write

\[
\theta_D^{\sigma_o}(g_1^v \alpha(b_1 b_2^{-1}), [b_1, b_2]; \varphi) = \theta_1^{\sigma_o}(g_1^v \alpha(b_1 b_2^{-1}), [b_1, b_2]; \varphi) + \theta_2^{\sigma_o}(g_1^v \alpha(b_1 b_2^{-1}), [b_1, b_2]; \varphi),
\]

where \(\theta_1^{\sigma_o}, \theta_2^{\sigma_o} \) are the Poisson sums.
where
\[
\theta_1^{V_\varphi}(g^1\alpha(b_1b_2^{-1}), [b_1, b_2]; \varphi) := \sum_{\gamma \in U(k)\backslash SL_2(k)} \sum_{a, d \in k} \left(\omega^D(\gamma g^1\alpha(b_1b_2^{-1}), [b_1, b_2]) \varphi \right) \left(a \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right),
\]
and
\[
\theta_2^{V_\varphi}(g^1\alpha(b_1b_2^{-1}), [b_1, b_2]; \varphi) := \sum_{a, d \in k} \left(\omega^D(g^1\alpha(b_1b_2^{-1}), [b_1, b_2]) \varphi \right) \left(a \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right).
\]
Since for \(u_1, u_2 \in k_h \) one has
\[
\left(\omega^D(1, \left[\begin{smallmatrix} 1 & u_1 \\ 0 & 1 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 & 0 \\ u_2 & 1 \end{smallmatrix} \right]; b_1, b_2 \right) \mapsto \psi(b(-au_2 + du_1 + cu_1u_2)) \cdot \varphi \mapsto \left(a \begin{smallmatrix} b \\ c \end{smallmatrix} \right),
\]
we get
\[
\int_{k \backslash k_h} \int_{k \backslash k_h} \theta^{V_\varphi}(g^1\alpha(b_1b_2^{-1}), \left[\begin{smallmatrix} 1 & u_1 \\ 0 & 1 \end{smallmatrix} \right] b_1, \left[\begin{smallmatrix} 1 & 0 \\ u_2 & 1 \end{smallmatrix} \right] b_2; \varphi) \psi(u_2 - u_1)du_1du_2
\]
\[
= \sum_{\gamma \in U(k)\backslash SL_2(k)} \left(\omega^D(\gamma g^1\alpha(b_1b_2^{-1}), [b_1, b_2]) \varphi \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right).
\]
Therefore
\[
W_{\phi, \varphi}(b_1, b_2) = \int_{U(k)\backslash SL_2(k_h)} \phi(g^1\alpha(b_1b_2^{-1})) \cdot \left(\omega^D(\gamma g^1\alpha(b_1b_2^{-1}), [b_1, b_2]) \varphi \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) dg^1
\]
\[
= \int_{U(k)\backslash SL_2(k_h)} W_\varphi(g^1\alpha(b_1b_2^{-1})) \cdot \left(\omega^D(\gamma g^1\alpha(b_1b_2^{-1}), [b_1, b_2]) \varphi \right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) dg^1
\]
\[
= \prod_v W_{\phi, \varphi, v}(b_1, b_2, v).
\]

The space consisting of all the \(W_{f, \varphi, v} \) is actually the Whittaker model of \(\Pi_v \otimes \tilde{\Pi}_v \). Moreover, the following straightforward lemma connects the local Whittaker function \(W_{\phi, \varphi, v} \) with \(\theta^{D, \sigma}(\cdot, \cdot; \phi_v, \varphi_v) \):

Lemma A.6. For \(b_1, b_2 \in GL_2(k_v) \), one gets
\[
\frac{\zeta_v(2)}{L_v(1, \Pi, Ad)} \cdot \int_{k_v} W_{f, \varphi, v} \left(\left(\begin{smallmatrix} a_v & 0 \\ 0 & 1 \end{smallmatrix} \right) b_1, \left(\begin{smallmatrix} a_v & 0 \\ 0 & 1 \end{smallmatrix} \right) b_2 \right) d^\times a_v = \zeta_v(1) \cdot \theta^{D, \sigma}_v(b_1, b_2; \phi_v, \varphi_v).
\]

Recall that for pure tensors \(f_1, f_2 \in \Pi^D = \Pi \), we have
\[
\langle f_1, f_2 \rangle_{\text{Pet}}^{\text{Mat}_2} = 2 \cdot L(1, \Pi, Ad) \cdot \zeta_k(2) \cdot \langle f_1, f_2 \rangle_{v}^{\text{Mat}_2 ^v},
\]
where
\[
\langle f_1, f_2 \rangle_{v}^{\text{Mat}_2 ^v} := \frac{\zeta_v(2)}{\zeta_v(1)L_v(1, \Pi, Ad)} \cdot \int_{k_v} W_{f_1, v} \left(\left(\begin{smallmatrix} a_v & 0 \\ 0 & 1 \end{smallmatrix} \right) W_{f_2, v} \left(\begin{smallmatrix} a_v & 0 \\ 0 & 1 \end{smallmatrix} \right) \right) d^\times a_v,
\]
and \(\langle f_1, f_2, v \rangle_v = 1 \) when \(v \) is “good.” Therefore by Proposition A.5 and Lemma A.6 the Shimizu correspondence in Theorem 22 implies that:

Proposition A.7. Theorem A.3 holds when \(D = \text{Mat}_2 \).
A.2. Proof of Theorem A.3 when D is division. Given $g^1 \in \text{SL}_2(k_h)$, we set

$$I^D(g^1, s, \varphi) := \sum_{\gamma \in B^+(k) \setminus \text{SL}_2(k)} |a(\gamma g^1)|_{k_h}^{-1} \cdot \sum_{x \in k} (\omega^D(\gamma g^1)\varphi)(x), \quad \forall \varphi \in \mathcal{S}(V_D(k_h)).$$

Here $a(g^1) = a \in k_h^\times$ is chosen so that g^1 can be written as

$$g^1 = \begin{pmatrix} a & \ast \\ 0 & a^{-1} \end{pmatrix} \kappa^1$$

with $\kappa^1 \in \text{SL}_2(O_h)$.

This series converges absolutely when $\text{Re}(s) > 3/2$, and has meromorphic continuation to the whole complex s-plane. Given pure tensors $\phi = \otimes_v \phi_v \in \Pi$ and $\varphi = \otimes_v \varphi_v \in \mathcal{S}(V_D(k_h))$, one has

$$J^D(s; \phi, \varphi) := \int_{\text{SL}_2(k) \setminus \text{SL}_2(k)} \phi(g^1)I^D(g^1, s, \varphi)dg^1$$

$$= \int_{U(k) \setminus \text{SL}_2(k_h)} \phi(g^1)|a(g^1)|_{k_h}^{-1} \cdot (\omega^D(g^1)\varphi)(1)dg^1$$

$$= \prod_v J^D_v(s; \phi_v, \varphi_v),$$

where

$$J^D_v(s; \phi_v, \varphi_v) := \int_{U(k_v) \setminus \text{SL}_2(k_v)} W_{\phi_v}(g^1)(\omega_v^D(g^1)\varphi_v)(1)|a(g^1)|_{k_v}^{-1}dg^1.$$

It is clear that:

Lemma A.8. The local integral $J^D_v(s; \phi_v, \varphi_v)$ always converges when $\text{Re}(s) \geq 1$. Moreover, when v is “good,” one has

$$J^D_v(s; \phi_v, \varphi_v) = \frac{L_v(s, \Pi, \text{Ad})}{\zeta_v(2s)}.$$ In particular, we obtain that

$$J^D(s; \phi, \varphi) = \frac{L(s, \Pi, \text{Ad})}{\zeta_k(2s)} \cdot \prod_v J^D_v(s; \phi_v, \varphi_v),$$

where

$$J^D_v(s; \phi_v, \varphi_v) := \frac{\zeta_v(2s)}{L_v(s, \Pi, \text{Ad})} \cdot J^D_v(s; \phi_v, \varphi_v).$$

For $b_1, b_2 \in D_v^\times$, one has

$$\theta^D_v(b_1, b_2; \phi_v, \varphi_v) = J^D_v(1; \phi_v', \varphi_v'),$$

where $\phi' := \Pi_v(\alpha(b_1b_2^{-1}))\phi_v$ and $\varphi' := \omega_v^P(\alpha(b_1b_2^{-1}), [b_1, b_2])\varphi_v$. Thus we obtain that:

Proposition A.9. Theorem A.3 holds when D is division.

Proof. From the equality (B.1) in Remark B.2 we get that for $b_1, b_2 \in D_h^\times$,

$$\int_{D \times k_h^\times \setminus D_h^\times} \theta^P(bb_1, bb_2; \phi, \varphi)db = 2J^D(1; \phi', \varphi')$$

$$= \frac{2L(1, \Pi, \text{Ad})}{\zeta_k(2)} \cdot \prod_v J^D_v(1; \phi_v', \varphi_v')$$

$$= \frac{2L(1, \Pi, \text{Ad})}{\zeta_k(2)} \cdot \prod_v \theta^D_v(b_{1,v}, b_{2,v}; \phi_v, \varphi_v).$$

\qed
Note that the equality \([B.1]\) follows from a “metaplectic type” Siegel-Weil formula, which is verified in the next section.

APPENDIX B. SIEGEL–WEIL FORMULA FOR THE METAPLECTIC EISENSTEIN SERIES

B.1. Metaplectic groups. For each place \(v\), the Kubota 2-cocycle \(\sigma_v\) is defined by (cf. \[9, Section 3\]):

\[
\sigma_v'(g_1, g_2) := \left(\frac{x(g_1 g_2)}{x(g_1)} \cdot \frac{x(g_1 g_2)}{x(g_2)} \right)_v, \quad \forall g_1, g_2 \in \SL_2(k_v).
\]

Here

\[
x \begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{cases} c, & \text{if } c \neq 0, \\ d, & \text{if } c = 0; \end{cases}
\]

and \((\cdot, \cdot)_v\) is the Hilbert quadratic symbol at \(v\). Define a map \(s_v : \SL_2(k_v) \to \{\pm1\}\) by setting

\[
s_v \begin{pmatrix} a & b \\ c & d \end{pmatrix} := \begin{cases} (c, d)_v, & \text{if ord}_v(c) \text{ is odd and } d \neq 0, \\ 1, & \text{otherwise.} \end{cases}
\]

Let \(\sigma_v\) be the 2-cocycle defined by

\[
\sigma_v(g_1, g_2) := \sigma_v'(g_1, g_2)s_v(g_1)s_v(g_2)s_v(g_1 g_2)^{-1}, \quad \forall g_1, g_2 \in \SL_2(k_v).
\]

It is known that (cf. \[4, Section 2.3\]) \(\sigma_v(\kappa_1, \kappa_2) = 1 \forall \kappa_1, \kappa_2 \in \SL_2(O_v)\). Hence \(\sigma_v\) induces a central extension \(\widetilde{\SL}_2(k_v)\) of \(\SL_2(k_v)\) by \(\{\pm1\}\) which splits on the subgroup \(\SL_2(O_v)\). More precisely, the extension \(\widetilde{\SL}_2(k_v)\) is identified with \(\SL_2(k_v) \times \{\pm1\}\) (as sets) with the following group law:

\[
(g_1, \xi_1) \cdot (g_2, \xi_2) = (g_1 g_2, \xi_1 \xi_2 \sigma_v(g_1, g_2)).
\]

Globally, we define a 2-cocycle \(\sigma\) on \(\SL_2(k_h)\) by setting \(\sigma := \otimes_v \sigma_v\), and let \(\widetilde{\SL}_2(k_h)\) be the corresponding central extension of \(\SL_2(k_h)\) by \(\{\pm1\}\). The section

\[
\begin{array}{ccc}
\SL_2(k_h) & \longrightarrow & \widetilde{\SL}_2(k_h) \\
\kappa & \longmapsto & (\kappa, 1)
\end{array}
\]

becomes a group homomorphism when restricting to \(\SL_2(O_h)\), which embeds \(\SL_2(O_h)\) into \(\widetilde{\SL}_2(k_h)\) as a subgroup. Moreover, for every \(\gamma \in \SL_2(k)\), the value \(s(\gamma) := \prod_v s_v(\gamma)\) is well-defined, and the embedding

\[
\begin{array}{ccc}
\SL_2(k) & \longrightarrow & \widetilde{\SL}_2(k_h) \\
\gamma & \longmapsto & (\gamma, s(\gamma))
\end{array}
\]

preserves the group law. Thus we may view \(\SL_2(k)\) as a discrete subgroup of \(\widetilde{\SL}_2(k_h)\).

B.2. Weil representation. Let \(D\) be a division quaternion algebra over \(k\). We first write \(D\) as \(V_1 \oplus V_3\), where \(V_1 = k\) and \(V_3 := \{b \in D : \text{Tr}_{D/k}(b) = 0\}\). Put \(Q_{V_1} := \text{N}_{D/k} |_{V_1}\). Then the quadratic space \((V_1, Q_{V_1})\) is anisotropic with dimension \(i\), and \(\SO(V_1) \cong D^\times/k^\times\). Let \(\omega^{V_1} = \otimes_v \omega_v^{V_1}\) be the Weil representation of the metaplectic group \(\widetilde{\SL}_2(k_h) \times \text{O}(V_1)\) on the Schwartz space \(S(V_1(k_h))\), where for each place \(v\), \(\omega_v^{V_1}\) is defined as follows (cf. \[4, Section
\begin{enumerate}
\item \(\omega^V_\nu(h)\phi(x) := \phi(h^{-1}x), \ h \in O(V)\);
\item \(\omega^V_\nu(1, \xi)\phi(x) := \xi \cdot \phi(x), \ \xi \in \{\pm 1\};\)
\item \(\omega^V_\nu\left(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, 1\right) \phi(x) = \psi_\nu(uQ_V(x))\phi(x), \ u \in k_\nu;\)
\item \(\omega^V_\nu\left(\begin{pmatrix} a_v & 0 \\ 0 & a_v^{-1} \end{pmatrix}, 1\right) \phi(x) = |a_v|^{\frac{1}{2}}(a_v, a_v)\varepsilon^V_\nu(a_v) \cdot \phi(a_v x), \ a_v \in k_\nu^\times;\)
\item \(\omega^V_\nu\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 1\right) \phi(x) = \varepsilon^V_\nu(1) \cdot \hat{\phi}(x).\)
\end{enumerate}

Here:
\begin{itemize}
\item \(\varepsilon^V_\nu(a_v) := \int_{L_\nu} \psi_\nu(a_vQ_V(x))d_{a_v}x, \ \forall a_v \in k_\nu^\times,\)
\end{itemize}

where \(L_\nu\) is a sufficiently large \(O_\nu\)-lattice in \(V_\nu(k_\nu)\), and the Haar measure \(d_{a_v}x\) is self-dual with respect to the pairing
\[(x, y) \mapsto \psi_\nu(a_v \cdot \text{Tr}_{D/k}(x \bar{y})), \ \forall x, y \in V_\nu(k_\nu);\]
\(\hat{\phi}(x)\) is the Fourier transform of \(\phi:\)
\[\hat{\phi}(x) := \int_{V_\nu(k_\nu)} \phi(y)\psi_\nu(\text{Tr}_{D/k}(x \bar{y}))dy.\]

For \(a = (a_v)_\nu \in k_\nu^\times\), we put \(\varepsilon^V_\nu(a) := \prod_{\nu} \varepsilon^V_\nu(a_\nu).\)

\section{Siegel-Eisenstein series.}
Recall that \(B^1\) denotes the standard Borel subgroup of \(\text{SL}_2\), and let \(B^1\) be the preimage of \(B^1\) in \(\widetilde{\text{SL}}_2(k_\nu)\).

For each \(\phi \in S(V_3(k_\nu))\), the Siegel section associated to \(\phi\) is defined by:
\[\Phi_{\phi}(\bar{g}, s) = \xi \cdot \frac{\varepsilon^V_3(a)}{\varepsilon^V_3(1)} \cdot |a|^{s + \frac{1}{2}} \cdot (\omega^V_3(\kappa^3)\phi)(0), \ \text{for} \ \bar{g} \in \widetilde{\text{SL}}_2(k_\nu),\]

where \(a \in k_\nu^\times\) and \(\kappa^3 \in \text{SL}_2(O_\nu)\) so that \(\bar{g} = \left(\begin{pmatrix} a & * \\ 0 & a^{-1} \end{pmatrix}, \xi \right) \cdot \kappa^3.\) The Siegel-Eisenstein series associated to \(\varphi\) is then defined by
\[E(\bar{g}, s, \phi) := \sum_{\gamma \in B^1(k_\nu) \backslash \text{SL}_2(k_\nu)} \Phi_{\phi}(\gamma \bar{g}, s),\]

which converges absolutely for \(\text{Re}(s) > 3/2\) and has meromorphic continuation to the whole complex \(s\)-plane. In this section, we shall verify that:

\textbf{Theorem B.1.} \(\text{Given } \phi \in S(V_3(k_\nu)), \text{ we have}\)
\[E(\bar{g}, 1, \phi) = \frac{1}{2} \cdot I^3(\bar{g}, \phi), \ \forall \bar{g} \in \widetilde{\text{SL}}_2(k_\nu),\]

where
\[I^3(\bar{g}, \phi) := \int_{\mathcal{D} \times k_\nu^\times / \mathcal{D}_\nu} \left(\sum_{x \in V_3(k)} \omega^V_3(\bar{g}, b)\phi(x)\right)db.\]
Remark B.2. Write \((V_D, Q_{V_D}) = (V_1, Q_{V_1}) \oplus (V_3, Q_{V_3})\). Given \(\varphi \in S(V_D(k_h))\), suppose \(\varphi = \varphi_1 \oplus \varphi_3\) where \(\varphi_1 \in S(V_1(k_h))\) and \(\varphi_3 \in S(V_3(k_h))\). Then
\[
I^D(g, s, \varphi) = \theta^k((g, 1), \varphi_1) \cdot E((g, 1), s, \varphi_3), \quad \forall g \in \text{SL}_2(k_h),
\]
where \(\theta^k((g, 1), \varphi_1) \equiv \sum_{x \in k} (\omega^{V_3}(g)\varphi_1)(x)\). On the other hand,
\[
\theta^k((g, 1), \varphi_1) \cdot I^3((g, 1), \varphi_3) = \int_{D^* k_h^2 / D_h^2} \theta^{V_D}(g, [b, b]; \varphi) db.
\]
Therefore
\[
I^D(g, 1, \varphi) = \frac{1}{2} \int_{D^* k_h^2 / D_h^2} \theta^{V_D}(g, [b, b]; \varphi) db, \quad \forall g \in \text{SL}_2(k_h) \text{ and } \varphi \in S(V_D(k_h)).
\]
In particular, for \(\varphi \in \Pi\) we have
\[
J^D(1; \varphi, \varphi) = J^D(1; \varphi, \varphi) = \int_{\text{SL}_2(k_h) \setminus \text{SL}_2(k_h)} \phi(g)I^D(g, 1, \varphi) dg = \frac{1}{2} \int_{D^* k_h^2 / D_h^2} \theta^D(b, b; \varphi) db.
\]

Proof of Theorem B.1. The proof of the above theorem basically follows the approach in [16] for the even dimensional case. Here we recall the strategy as follows: For each \(\beta \in k\), the \(\beta\)-th Fourier coefficient of a given metaplectic form \(f\) is:
\[
J^D_\beta(\tilde{g}) := \int_{k/k_h} f \left(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \tilde{g} \right) \psi(-\beta u) du.
\]
Given \(\varphi \in S(V_3(k_h))\), we verify that:

(1) The equality holds for the “constant terms,” i.e.
\[
E^*_0(\tilde{g}, 1, \varphi) = \left(\omega^{V_3}(\tilde{g})\varphi \right)(0) = \frac{1}{2} \cdot I^{3, *}(\tilde{g}, \varphi).
\]
In particular, this says that \(E(\tilde{g}, 1, \varphi) - 1/2 \cdot I^3(\tilde{g}, \varphi)\) is a cusp form on \(\widetilde{\text{SL}}_2(k_h)\).

(2) It is straightforward that \(E(\cdot, s, \varphi)\) is orthogonal to all the cuspidal metaplectic forms on \(\widetilde{\text{SL}}_2(k_h)\) with respect to the Petersson inner product.

(3) The theta integral \(I^3(\cdot, \varphi)\) is orthogonal to all the cuspidal metaplectic forms on \(\widetilde{\text{SL}}_2(k_h)\). Indeed, adapting the proof of [16] Theorem A.4], there exists a constant \(C\) so that
\[
I^{3, *}_\beta(\tilde{g}, \varphi) = C \cdot E^*_\beta(\tilde{g}, 1, \varphi), \quad \forall \beta \neq 0.
\]
In particular, the function \(I'(\cdot, \varphi) := I^3(\cdot, \varphi) - C \cdot E(\cdot, 1, \varphi)\) satisfies
\[
I'(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \tilde{g}, \varphi) = I'(\tilde{g}, \varphi), \quad \forall u \in k_h.
\]
Thus \(I'(\cdot, \varphi)\) is orthogonal to all the cuspidal metaplectic forms, and so is \(I^3(\cdot, \varphi)\) by (2).

Since a cusp form orthogonal to itself must be zero, we get \(E(\tilde{g}, 1, \varphi) = 1/2 \cdot I^3(\tilde{g}, \varphi)\) for every \(\tilde{g} \in \text{SL}_2(k_h)\). □
APPENDIX C. THE CASE WHEN $K = k \times k$

When $K = k \times k$, we have $L(s, \zeta_K) = \zeta_k(s)$. Moreover, the existance of an embedding $\iota : K \hookrightarrow \mathcal{D}$ implies that $\mathcal{D} = \text{Mat}_2(k)$, and $\Pi^D = \Pi$. We may write the given Hecke character χ as $\chi_1 \times \chi_2$, where χ_1 is a unitary Hecke character on $k^\times \backslash k_k^\times$ for $i = 1, 2$. The assumption $\eta \cdot \chi|_{k_k^\times} = 1$ says that $\Pi \otimes \chi_2 = \overline{\Pi} \otimes \chi_1^{-1}$. Thus we have $L(s, \Pi \otimes \chi_1) = L(s, \Pi \otimes \chi_1) \cdot L(s, \Pi \otimes \chi_2)$.

Without lose of generality, suppose $(a, b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ for every $a, b \in k$. Then for $f \in \Pi$ and $\tilde{f} \in \overline{\Pi}$,

$$P^D_\chi(f \otimes \tilde{f}) = Z(\frac{1}{2}; f, \chi_1) \cdot Z(\frac{1}{2}; \tilde{f}, \chi_1^{-1}),$$

where

$$Z(s; f, \chi_1) := \int_{k^\times \backslash k_k^\times} f \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} \chi_1(y) |y_k^\times|^{s-1/2} d^\times y$$

and

$$Z(s; \tilde{f}, \chi_1^{-1}) := \int_{k^\times \backslash k_k^\times} \tilde{f} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} \chi_1^{-1}(y) |y_k^\times|^{s-1/2} d^\times y$$

are entire functions on the complex s-plane. Note that for a pure tensor $f = \otimes_v f_v \in \Pi$, one has (cf. [10] the equality (5.31) in Chapter 3 and Proposition 3.5.3])

(C.1) $Z(s; f, \chi_1) = L(s, \Pi \otimes \chi_1) \cdot \prod_v Z_v^0(s; f_v, \chi_1, v)$,

where for each place v of k put

$$Z_v^0(s; f_v, \chi_1, v) := \frac{1}{L_v(s, \Pi \otimes \chi_1)} \cdot \int_{k_v^\times} W_{f_v} \begin{pmatrix} y_v & 0 \\ 0 & 1 \end{pmatrix} \chi_{1,v}(y_v) |y_{v,v}^\times|^{s-1/2} d^\times y_v.$$

Here W_{f_v} is the Whittaker function associated to f_v with respect to the chosen ψ_v. Similarly, for a pure tensor $\tilde{f} = \otimes_v \tilde{f}_v \in \overline{\Pi}$ we have

(C.2) $Z(s; \tilde{f}, \chi_1^{-1}) = L(s, \overline{\Pi} \otimes \chi_1^{-1}) \cdot \prod_v Z_v^0(s; \tilde{f}_v, \chi_1^{-1}, v)$,

where

$$Z_v^0(s; \tilde{f}_v, \chi_1^{-1}, v) = \frac{1}{L_v(s, \overline{\Pi} \otimes \chi_1^{-1})} \cdot \int_{k_v^\times} W'_{\tilde{f}_v} \begin{pmatrix} y_v & 0 \\ 0 & 1 \end{pmatrix} \chi_{1,v}^{-1}(y_v) |y_{v,v}^\times|^{s-1/2} d^\times y_v.$$

Here we take $W'_{\tilde{f}_v}$ to be the Whittaker function associated to \tilde{f}_v with respect to $\overline{\psi}_v$. Note that the validity of Ramanujan bounds for Π and $\overline{\Pi}$ implies that $Z_v^0(s; f_v, \chi_1, v)$ and $Z_v^0(s; \tilde{f}_v, \chi_1^{-1}, v)$ both converge absolutely at $s = 1/2$.

Recall that we may choose $\langle \cdot, \cdot \rangle_{\text{Mat}_2} : \Pi_v \times \overline{\Pi}_v \rightarrow \mathbb{C}$ by:

$$\langle f_v, \tilde{f}_v \rangle_{\text{Mat}_2} := \frac{\zeta_v(2)}{\zeta_v(1)L_v(1, \Pi, \text{Ad})} \cdot \int_{k_v^\times} W_{f_v} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} W'_{\tilde{f}_v} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} d^\times y.$$

Indeed, by the Rankin-Selberg method these local pairings satisfy:

$$\langle \cdot, \cdot \rangle_{\text{Pet}} = \frac{2L(1, \Pi, \text{Ad})}{\zeta_k(2)} \cdot \prod_v \langle \cdot, \cdot \rangle_{\text{Mat}_2}.$$

Therefore we get

$$\mathcal{B}_{\chi_v^0}(f_v \otimes \tilde{f}_v) = Z_v^0(\frac{1}{2}; f_v, \chi_1, v) \cdot Z_v^0(\frac{1}{2}; \tilde{f}_v, \chi_1^{-1}, v).$$

From the equation (C.1) and (C.2), we arrive at:

Theorem C.1. Theorem 0.1 holds for the case when $K = k \times k$.

Acknowledgments. The authors are grateful to Jing Yu for his steady encouragements. The work was done partially while the second author was visiting the Institute for Mathematical Sciences, National University of Singapore in 2016. The visit was supported by the Institute. He would like to thank Professor Wee Teck Gan for the invitation, and the institute for kind hospitality and wonderful working conditions.

References

Department of Mathematics, National Taiwan University, Taiwan
E-mail address: cychuang@ntu.edu.tw

Department of Mathematics, National Central University, Taiwan
E-mail address: ftwei@math.ncu.edu.tw