ON REPRESENTATION THEORY OF $GL(n)$ OVER p-ADIC DIVISION ALGEBRA AND UNITARITY IN JACQUET-LANGLANDS CORRESPONDENCE

Marko Tadić

Abstract. Let F be a p-adic field of characteristic 0, and let A be an F-central division algebra of dimension d_A over F. In the paper we first develop the representation theory of $GL(m, A)$, assuming that holds the conjecture which claims that unitary parabolic induction is irreducible for $GL(m, A)$'s. Among others, we obtain the formula for characters of irreducible unitary representations of $GL(m, A)$ in terms of standard characters. Then we study the Jacquet-Langlands correspondence on the level of Grothendieck groups of $GL(pd_A, F)$ and $GL(p, A)$. Using the above character formula, we get explicit formulas for the Jacquet-Langlands correspondence of irreducible unitary representations of $GL(n, F)$ (assuming the conjecture to hold). As a consequence, we get that Jacquet-Langlands correspondence sends irreducible unitary representations of $GL(n, F)$ either to zero, or to the irreducible unitary representations, up to a sign.

Introduction

A key aspect of Langlands program is functoriality ([L]). One of the first examples of functoriality which were studied in the local case, was the connection between representations of various inner forms of $GL(n)$ (see [KnRg]). The first example was studied already in [JL], the connection of irreducible representations of $GL(2)$ over a local field F and irreducible representations of the multiplicative group of the quaternion algebra over F (the L groups of these two groups are both $GL(2, \mathbb{C}) \times \text{Gal}(\overline{F}/F)$, and the functoriality considered here corresponds to the identity mapping).

Let F be a p-adic field of characteristic 0 and let A be an F-central division algebra of rank d_A over F. P. Deligne, D. Kazhdan and M.-F. Vigneras established bijections

$$LJ_{pd_A}$$

between irreducible essentially square integrable representations of groups $GL(pd_A, F)$ and $GL(p, A)$. The crucial requirement which holds for these bijection, and which characterizes them uniquely, is that characters Θ_δ and $\Theta_{LJ_{pd_A}(\delta)}$ of representations δ and $LJ_{pd_A}(\delta)$ satisfy

$$(-1)^{pd_A} \Theta_\delta(g) = (-1)^p \Theta_{LJ_{pd_A}(\delta)}(g')$$

1991 Mathematics Subject Classification. Primary 22E50, 22E35, 11F70, 11S37.

Key words and phrases. p-adic field, p-adic division algebra, general linear group, Jacquet-Langlands correspondence, functoriality.

The author was partly supported by Croatian Ministry of Science and Technology grant # 37108.

Typeset by \texttt{AMS-\LaTeX}
whenever \(g \) and \(g' \) have the same characteristic polynomials, and when this polynomial is separable. These bijections are called Jacquet-Langlands correspondences.

A.I. Badulescu observed that Jacquet-Langlands correspondences extend in a very natural to mappings between Grothendieck groups

\[
\text{LJ}_{pd,A} : \text{Groth}(GL(pd_A, F)) \to \text{Groth}(GL(p, A)),
\]

such that extensions are compatible with parabolic inductions, i.e. that they commute with parabolic inductions (essentially, such extensions are unique if we require that characters of \(GL(n, F) \)’s go to 0 if \(d_A \nmid n \)). Moreover, these extensions satisfy the above character identity on the level of formal characters (for precise description of extensions, see 6.1). We shall call these mappings Jacquet-Langlands correspondences on the level of Grothendieck groups.

We consider irreducible representations of \(GL(n, F) \) as a subset of \(\text{Groth}(GL(n, F)) \) (they form a \(\mathbb{Z} \)-basis). An interesting question is to understand what happens with irreducible representations under the Jacquet-Langlands correspondence on the level of Grothendieck groups, and in particular, what happens with irreducible unitary representations. Obviously, an irreducible (unitarizable) representation can go to a negative of (another) irreducible representation. Further, already very simple examples will show that \(\text{LJ}_n \) will carry some irreducible representations to zero.

In this paper we study what happens with irreducible unitary representations under the Jacquet-Langlands correspondence, assuming that holds the following conjecture for general linear groups over division algebras, introduced in [T5]:

\[
(\text{U0}) \quad \text{unitary parabolic induction is irreducible for } GL(m, A) \text{’s}
\]

(i.e. if \(\pi_1 \) and \(\pi_2 \) are irreducible unitary representations of \(GL(m_1, A) \) and \(GL(m_2, A) \), then the parabolically induced representation \(\text{Ind}^{GL(m_1+m_2, A)}(\pi_1 \otimes \pi_2) \) is irreducible).

Note that D. Vogan’s paper [Vo] implies that (U0) holds in the archimedean case. Also, J. Bernstein proved in [Be] that (U0) holds if \(A = F \) (unfortunately the method of [Be] can not be extended to the division algebra case).

In this paper we are first developing some directions of the representation theory of \(GL(n) \) over \(p \)-adic division algebras, to be able to obtain the formula for characters of irreducible unitary representations of \(GL(m, A) \) in terms of standard characters (note that assuming (U0) to hold, [T5] and [BaRe] imply a classification of the unitary duals \(GL(m, A)^* \) of \(GL(m, A), m \geq 1 \)). Using this character formula, we compute explicit formulas for \(\text{LJ}_n(\pi), \pi \in GL(n, F)^* \) (Propositions 7.3, 9.5 and section 11). As a consequence, we get the following interesting consequence:

Corollary. Assume that (U0) holds. Then

\[
\text{LJ}_{pd,A}(GL(pd_A, F)^*) \subseteq \pm GL(p, A)^* \cup \{0\}.
\]

Let us note that there are very strong formal similarities between Jacquet-Langlands correspondence studied in this paper and Kazhdan-Patterson lifting studied in [T8].

A part of this work was done during our visit of the special period on the representation theory of Lie groups in IMS, NUS, Singapore, while we finished the work during our visit
of Université Paris 7 - Denis Diderot. We are thankful to both institutions for their hospitality.

At the end, we shall give a description of the content of the paper according to sections. In the first section the notation and basic results for general linear groups over a p-adic field are introduced (which are needed in the sequel). The second section introduces notation and basic results for general linear groups over division algebras. In the third section we show that canonical involution on irreducible representations of $GL(m, A)$ (introduced by A.-M. Aubert, and by P. Schneider and U. Stuhler) preserves the unitarity. Moreover, we obtain an explicit formula for the involution on irreducible unitary representations (all the time we assume (U0) to hold). In the fourth section we describe irreducible subquotients of ends of complementary series, obtaining in this way a character identities, which enable us to compute in the fifth section characters of irreducible unitary representations of $GL(m, A)$ in terms of standard characters. We recall of the Jacquet-Langlands correspondence on the level of Grothendieck groups in the sixth section. In the seventh section we compute $LJ(\pi)$ for one of four basic types of $\pi \in GL(n, F)\hat{}$, while the unitarity of $LJ(\pi)$ is shown in the eighth section. Sections nine and ten study the same problem for the second basic type of π. In the last section, we compute the Jacquet-Langlands correspondence of the remaining two basic types of π, using canonical involutions.

1. SOME FACTS FROM THE REPRESENTATION THEORY OF $GL(n, F)$

In this section we shall introduce notation and basic results that we shall need for general linear groups over a p-adic field.

1.1. We shall fix a local non-archimedean field F. The modulus character of F will be denoted by $| |_F$ (it satisfies $|x|_F \int_F f(xa)da = \int_F f(a)da$ for any continuous compactly supported complex-valued function f on F, where da denotes a Haar measure of the additive group $(F, +)$ of the field).

1.2. Let G be the group of rational points of a reductive group over F. The set of all equivalence classes of irreducible smooth representations of G will be denoted by \tilde{G}.

The subset of unitarizable classes in \tilde{G} will be denoted by \hat{G}.

A representation $\pi \in \tilde{G}$ is called essentially square integrable if there exists a character χ of G such that $\chi \pi$ is square integrable representation modulo center. All the essentially square integrable classes in \tilde{G} will be denoted by $\mathcal{D}(G)$.

The Grothendieck group of the category of all representations of G of finite length will be denoted by $\text{Groth}(G)$.
1.3. Now we shall introduce the Bernstein and Zelevinsky notation for the general linear group $GL(n, F)$ (for more explanation regarding notation see [Z] and [T2]).

For two smooth representation π_1 and π_2 of $GL(n_1, F)$ and $GL(n_2, F)$, we shall consider $\pi_1 \otimes \pi_2$ as a representation of $GL(n_1, F) \times GL(n_2, F)$. Identifying in a natural way $GL(n_1, F) \times GL(n_2, F)$ with Levi factor of the parabolic subgroup

$$\left\{ \begin{bmatrix} g_1 & * \\ 0 & g_2 \end{bmatrix} : g_i \in GL(n_i, F), i = 1, 2 \right\},$$

we shall denote by

$$\pi_1 \times \pi_2$$

the smooth representation of $GL(n_1 + n_2, F)$ parabolically induced by $\pi_1 \otimes \pi_2$. Then

$$(\pi_1 \times \pi_2) \times \pi_3 \cong \pi_1 \times (\pi_2 \times \pi_3).$$

1.4. The characters of F^\times will be identified with characters of $GL(n, F)$ using the determinant homomorphism. The character of $GL(n, F)$ corresponding to $||F$ will be denoted by

$$\nu.$$

For any character χ of F^\times holds

$$\chi(\pi_1 \times \pi_2) \cong (\chi \pi_1) \times (\chi \pi_2).$$

1.5. Let

$$R_{n,F} = \text{Groth}(GL(n, F)).$$

Then $GL(n, F)^\sim$ is a \mathbb{Z}-basis of $R_{n,F}$. If π is an admissible smooth representation of $GL(n, F)$ of finite length, the semi simplification of π will be denoted by $\text{s.s.}(\pi)$ (which is in $R_{n,F}$).

We can lift \times to a \mathbb{Z}-bilinear mapping $\times : R_{n_1,F} \times R_{n_2,F} \to R_{n_1+n_2,F}$ since the semi simplification of $\pi_1 \times \pi_2$ depends only on semi simplifications of π_1 and π_2. Set

$$R_F = \bigoplus_{n \geq 0} R_{n,F}.$$

One extends \times to an operation $\times : R_F \times R_F \to R_F$ in an obvious way, and R_F becomes an associative, commutative graded ring.

Fix a character χ of F^\times. Lift mappings $\pi \mapsto \chi \pi : R_{n,F} \to R_{n,F}$ to \mathbb{Z}-linear map $\chi : R_F \to R_F$. In this way we get an endomorphism of the graded ring R_F.

We have a natural partial ordering on $R_{n,F}$ ($GL(n, F)^\sim$ generates the cone of positive elements in $R_{n,F}$). Orderings on $R_{n,F}$’s determine an ordering \leq on R_F in a natural way. An additive homomorphism $\phi : R_F \to R_F$ will be called called positive if $x \in R_F$, $x \geq 0$ implies $\phi(x) \geq 0$.

1.6. Denote
\[\mathcal{D}_F = \bigcup_{n \geq 1} \mathcal{D}(GL(n, F)). \]
For \(\delta \in \mathcal{D}_F \) there exists unique \(e(\delta) \in \mathbb{R} \) such that \(\nu^{-e(\delta)}\delta \) is unitarizable. The representation \(\nu^{-e(\delta)}\delta \) will be denoted by \(\delta^u \). In this way,
\[\delta = \nu^{e(\delta)}\delta^u, \]
where \(e(\delta) \in \mathbb{R} \) and \(\delta^u \) is unitarizable.

1.7. Now we shall describe Langlands classification for general linear groups. Let \(M(\mathcal{D}_F) \) be the set of all finite multisets in \(\mathcal{D}_F \) and \(d = (\delta_1, \delta_2, \ldots, \delta_k) \in M(\mathcal{D}_F) \). Let \(p \) be a permutation of \(\{1, 2, \ldots, k\} \) such that \(e(\delta_{p(1)}) \geq e(\delta_{p(2)}) \geq \cdots \geq e(\delta_{p(k)}) \). The representation
\[\lambda(d) = \delta_{p(1)} \times \delta_{p(2)} \times \cdots \times \delta_{p(k)} \]
has a unique irreducible quotient. Its class depends only on \(d \) (not on \(p \) as above). This unique irreducible quotient will be denoted by \(L(d) \) or \(L(\delta_1, \delta_2, \ldots, \delta_k) \). From 1.4 follows that for a character \(\chi \) of \(F^\times \) holds
\[\chi L(\delta_1, \delta_2, \ldots, \delta_k) \cong L(\chi \delta_1, \chi \delta_2, \ldots, \chi \delta_k). \]

To have shorter notation, we shall often denote \(\text{s.s.}(\lambda(d)) \in R_F \) simply by \(\lambda(d) \in R_F \). This will produce no confusion. From the properties of Langlands classification, it is well-known that \(\lambda(d) \in R, d \in M(\mathcal{D}_F) \), form a basis of \(R_F \).

Proposition ([Z]). Ring \(R_F \) is a polynomial ring over \(\mathcal{D}_F \). \(\square \)

1.8. One defines addition of elements of \(M(\mathcal{D}_F) \) by
\[(\delta_1, \delta_2, \ldots, \delta_k) + (\delta'_1, \delta'_2, \ldots, \delta'_{k'}) = (\delta_1, \delta_2, \ldots, \delta_k, \delta'_1, \delta'_2, \ldots, \delta'_{k'}). \]
Then

Proposition ([Rd]). For \(d_1, d_2 \in M(\mathcal{D}_F) \), \(L(d_1 + d_2) \) is a subquotient of \(L(d_1) \times L(d_2) \). The multiplicity is one. \(\square \)

1.9. Let \(\mathcal{C}_F \) be the set of all the equivalence classes of irreducible cuspidal representation of all general linear groups \(GL(n, F) \), \(n \geq 1 \). For \(\rho \in \mathcal{C}_F \) and \(k \in \mathbb{Z}, k \geq 0 \), the set
\[[\rho, \nu^k\rho] = \{ \rho, \nu\rho, \nu^2\rho, \ldots, \nu^k\rho \} \]
is called a segment of irreducible cuspidal representations. We shall also write segment
\[[\nu^{k_1}\rho, \nu^{k_2}\rho] = [k_1, k_2](\rho) \]
(here \(k_1, k_2 \in \mathbb{R}\) such that \(k_2 - k_1 \in \mathbb{Z}\) and \(k_2 - k_1 \geq 0\)). The set of all such segments will be denoted by \(\mathcal{S}_F\). The set of all finite multisets in \(\mathcal{S}_F\) will be denoted by \(M(\mathcal{S}_F)\). We consider partial ordering \(\leq\) on \(M(\mathcal{S}_F)\) introduced in 7.1 of [Z], defined by linking segments.

1.10. Let \(\Delta = [\rho, \nu^k \rho] = \{\rho, \nu \rho, \nu^2 \rho, \ldots, \nu^k \rho\} \in \mathcal{S}_F\). The representation
\[
\rho \times \nu \rho \times \nu^2 \rho \times \cdots \times \nu^k \rho
\]
has a unique irreducible quotient, denoted by
\[
\delta([\rho, \nu^k \rho]),
\]
and a unique irreducible subrepresentation, denoted by
\[
\delta([\rho, \nu^k \rho])^t.
\]
Representations \(\delta([\rho, \nu^k \rho])\) are essentially square integrable. Representations \(\delta([\rho, \nu^k \rho])^t\) are called Zelevinsky’s segment representations.

By Bernstein-Zelevinsky theory, the mapping
\[
\delta : \mathcal{S}_F \rightarrow \mathcal{D}_F, \quad \Delta \mapsto \delta(\Delta),
\]
is a bijection.

We can tell this also in the following way. For \(n \in \mathbb{N}\) and \(\rho \in C_F\) denote
\[
\delta(\rho, n) = \delta((-n-1)/2, (n-1)/2)\rho).
\]
Then \((\rho, n) \mapsto \delta(\rho, n)\) is a bijection of \(\mathbb{N} \times C_F\) onto \(\mathcal{D}_F\).

We lift \(\Delta \mapsto \delta(\Delta)\) naturally to a bijection
\[
M(\delta) : M(\mathcal{S}_F) \rightarrow M(\mathcal{D}_F), \quad (\Delta_1, \ldots, \Delta_k) \mapsto (\delta(\Delta_1), \ldots, \delta(\Delta_k)).
\]
Using the above bijection we get Langlands classification in terms of \(M(\mathcal{S}_F)\).

For \(a \in M(\mathcal{S}_F)\) we denote
\[
L(a) = L(M(\delta)(a)).
\]
We also denote
\[
\lambda(a) = \lambda(M(\delta)(a)).
\]

1.11. Note that 1.10 and Proposition 1.7 imply that \(R_F\) is a polynomial algebra over \(\delta(\Delta), \Delta \in \mathcal{S}_F\). Therefore the mapping
\[
\delta(\Delta) \mapsto (\Delta)^t, \quad \Delta \in \mathcal{S}_F,
\]
extends uniquely to a ring morphism of \(^t : R_F \rightarrow R_F\). This ring morphism is involutive. A fundamental fact is that it carries irreducible representations into irreducible ones ([A], [ScSt]).
Obviously, for a character χ of F^\times, $(\chi \delta(\Delta))^t \approx \chi(\delta(\Delta)^t)$ for $\Delta \in S_F$. Therefore, $t : R_F \to R_F$ and $\chi : R_F \to R_F$ commute, since they commute on generators.

1.12. For an irreducible representation π of a general linear group, there exists a unique $(\rho_1, \ldots, \rho_k) \in M(C_F)$ such that

$$\pi \hookrightarrow \rho_1 \times \cdots \times \rho_k.$$

The multiset (ρ_1, \ldots, ρ_k) is called the cuspidal support of π and it is denoted by $\text{supp}(\pi)$.

It is well-known (and one easily sees it) that $t : R_F \to R_F$ preserves cuspidal support of irreducible representations.

1.13. Denote the set of all unitarizable classes in D_F by D^u_F (in other words, D^u_F are just square integrable classes). For $\delta \in D^u$ and a positive integer n denote

$$u(\delta, n) = L(\nu^{\frac{n-1}{2}}\delta, \nu^{\frac{n-3}{2}}\delta, \ldots, \nu^{\frac{-n-1}{2}}\delta).$$

The following theorem describes irreducible unitarizable representations.

Theorem ([T2]). Let

$$B_F = \{u(\delta, n), \nu^\alpha u(\delta, n) \times \nu^{-\alpha} u(\delta, n), \delta \in D^u_F, n \in \mathbb{N}, 0 < \alpha < 1/2\}.$$

Then

(i) If $\sigma_1, \ldots, \sigma_k \in B_F$, then $\sigma_1 \times \cdots \times \sigma_k$ is an irreducible unitarizable representation of some general linear group over F.

(ii) If π is an irreducible unitarizable representation of some general linear group over F, then there exist $\sigma_1, \ldots, \sigma_m \in B_F$, unique up to a permutation, such that

$$\pi \cong \sigma_1 \times \cdots \times \sigma_m. \square$$

1.14. Let $\rho \in C_F$. Fix positive integers d and n. Let

$$a(1, d)^{(\rho)} = [\nu^{-(d-1)/2}\rho, \nu^{(d-1)/2}\rho] \in S_F,$$

$$a(n, d)^{(\rho)} = (a(1, d)^{\nu^{-(n-1)/2}\rho}, a(1, d)^{\nu^{1-(n-1)/2}\rho}, \ldots, a(1, d)^{\nu^{(n-1)/2}\rho}) \in M(S_F).$$

We shall take (formally) $a(0, d)^{(\rho)}$ to be the empty multiset (then $L(a(0, d)^{(\rho)})$ is the one-dimensional representation of the trivial group $GL(0, F)$, which is identity of R_F).
Similarly, we take also $a(n,0)^{(ρ)}$ to be the empty multiset (so again $L(a(n,0)^{(ρ)})$ is identity in R). Observe that

$$[ν^{k_1} ρ, ν^{k_2} ρ] = [k_1, k_2]^{(ρ)} = a(1, k_2 - k_1 + 1)^{(k_1 + k_2)/2}^{(ρ)},$$

$$a(1, d)^{(ρ)} = [−(d − 1)/2 + α, (d − 1)/2 + α]^{(ρ)}.$$

From 1.7 follows that for a character $χ$ of $F^{×}$

$$χL(a(n, d)^{(ρ)}) = L(a(n, d)^{(χρ)}).$$

Further

$$u(δ(ρ, d), n) = L(a(n, d)^{(ρ)}).$$

1.15. There are two important distinguished bases of R_F, irreducible representations and standard modules $λ(d), d ∈ M(D_F)$. Theorem 1.3 implies that the following theorem solves the problem of expressing irreducible representations (resp. irreducible characters) in terms of standard modules (resp. standard characters). It is convenient to present it in the following form:

Theorem ([T7]). Let $n, d ∈ Z, n, d ≥ 1$. Let W_n be the group of permutations of the set \{1, 2, …, n\}. Denote $W_n^{(d)} = \{w ∈ W_n; w(i) + d ≥ i \text{ for all } 1 ≤ i ≤ n\}$. Then we have the following identity in R_F

$$L(([νρ, ν^d ρ], \ldots, [ν^n ρ, ν^{d+n−1} ρ])) = \sum_{w ∈ W_n^{(d)}} (-1)^{sgn(w)} \prod_{i=1}^{n} δ([ν^i ρ, ν^{w(i)+(d−1) ρ}]),$$

where $sgn(w)$ denotes the sign of permutation p.

1.15. From the following theorem one can get all the irreducible subquotients of ends of complementary series (this is crucial information for determining the topology of the unitary dual).

Theorem ([T3]). For positive integers n and d, and $ρ ∈ C_F$, we have

$$ν^{1/2} L(a(n, d)^{(ρ)}) × ν^{-1/2} L(a(n, d)^{(ρ)}) = L(a(n + 1, d)^{(ρ)}) × L(a(n − 1, d)^{(ρ)}) + L(a(n, d + 1)^{(ρ)}) × L(a(n, d − 1)^{(ρ)}).$$

1.16. The following theorem implies that the involution t carry irreducible unitary representations to the irreducible unitary ones. Moreover, it implies explicit formula for the involution on irreducible unitary representations.

Theorem ([T2]). For positive integers n and d, and $ρ ∈ C_F$, we have

$$(L(a(n, d)^{(ρ)}))^t = L(a(d, n)^{(ρ)}).$$
2. Representations of $GL(n)$ over division algebra A

In this section we shall introduce notation and basic results that we shall need in this paper regarding general linear groups over division algebras. Since the situation is very similar to the case of general linear groups over field, we shall only point out the differences between these two cases (more details one can find in [T5]).

We shall assume in the sequel that the characteristic of F is 0.

2.1. Let A be a finite dimensional division algebra over F, whose center is F. Let

$$\dim_F A = d_A^2.$$

Let $\text{Mat}(n \times n, A)$ be the algebra of all $n \times n$ matrices with entries in A. Then $GL(n, A)$ is the group of invertible matrices, with natural topology. The commutator subgroup is denoted by $SL(n, A)$. We shall denote by

$$\det : GL(n, A) \rightarrow GL(1, A)/SL(1, A)$$

the determinant homomorphism, as defined by J. Dieudonné (for $n = 1$ this is just quotient map). The kernel is $SL(n, A)$.

The reduced norm of $\text{Mat}(n \times n, A)$ will be denoted by $r.n_{\text{Mat}(n \times n, A)/F}$. We shall identify characters of $GL(n, A)$ with characters of F^\times using $r.n_{\text{Mat}(n \times n, A)/F}$. Let

$$\nu = |r.n_{\text{Mat}(n \times n, A)/F}|_F : GL(n, A) \rightarrow \mathbb{R}^\times.$$

2.2. Now we shall comment modifications that one needs to make to 1.3 - 1.12, that these sections apply also to the case of general linear groups over division algebras (more details one can find in [T5]). Particularly small modifications are required for 1.3 - 1.7. We shall first deal with these modifications.

ad 1.3. We define by the same formula, as in 1.3, the multiplication \times of smooth representations of general linear groups over A. Then, as in 1.3, we have $(\pi_1 \times \pi_2) \times \pi_3 \cong \pi_1 \times (\pi_2 \times \pi_3)$.

ad 1.4. In 2.1 we identified characters of $GL(n, A)$ with characters of F^\times using the reduced norm $r.n_{\text{Mat}(n \times n, A)/F}$. The character identified with $|\cdot|_F$ was again denoted by ν. Again, for a character χ of F^\times, we have $\chi(\pi_1 \times \pi_2) \cong (\chi \pi_1) \times (\chi \pi_2)$.

ad 1.5. Define

$$R_{n, A} = \text{Groth}(GL(n, A))$$

(recall that $R_F = \oplus_{n \geq 0} R_{n, F}$). One defines on R_A the structure of (associative, commutative) ring in the same way as in 1.5 was done for the field case. Also characters of F^\times lifts to automorphisms of R_A (as in 1.5).

ad 1.6. All essentially square integrable classes in $\bigcup_{n \geq 1} GL(n, A)^-$ are denoted by \mathcal{D}_A. One defines $e(\delta)$ and δ^n for $\delta \in \mathcal{D}_A$ as in 1.6.
ad 1.7. For $d \in M(D_A)$ we define $\lambda(d)$ and $L(d)$ in the same way as in 1.7. The Langlands classification for general linear groups over division algebras have the same expression as in the field case (parameters are in $M(D_A)$).

Here R_A is a polynomial algebra over D_A.

ad 1.8. Proposition 1.8 holds in the same form for general linear groups over division algebras (Proposition 2.3 of [T5]).

2.3. By [DeKaVi] there exists a bijection

$$LJ_p : D(GL(p, A)) \rightarrow D(GL(pd_A, F))$$

$$\delta' \leftrightarrow \delta$$

such that characters $\Theta_{\delta'}$ and Θ_{δ} satisfy

$$(-1)^p \Theta_{\delta'}(g') = (-1)^{pd_A} \Theta_{\delta}(g)$$

whenever g' and g have same characteristic polynomials, and when this polynomial is separable.

This bijection is uniquely determined by above character requirement and is called Jacquet-Langlands correspondence between irreducible essentially square integrable representations of $GL(p, A)$ and $GL(pd_A, F)$.

This bijection commutes with twisting with characters (see [Ba2]).

Take $\delta' \in D(GL(p, A))$ cuspidal and let δ' corresponds to $\delta \in D(GL(pd_A, F))$ by the above correspondence. We know that

$$\delta = \delta(\rho, q)$$

for some positive integer q which divides pd_A and for some irreducible cuspidal representation ρ of $GL((pd_A)/q, F)$. Further, it is known that $q|d_A$ and that p is relatively prime to q (pd_A is the lowest common multiple of d_A and $(pd_A)/q$).

We define

$$s_{\delta'} = q,$$

and a character

$$\nu_{\delta'} = \nu^{s_{\delta'}}$$

of $GL(p, A)$ (note that in this definition δ' is cuspidal; soon we shall give definition also in the case that δ' is essentially square integrable).

2.4. We shall continue now with modifications that one needs to make in to 1.8 - 1.12, after which these sections will apply also to the case of general linear groups over division algebras.

ad 1.9. We shall denote by C_A the set of all equivalence classes of irreducible cuspidal representation of all $GL(n, A)$, $n \geq 1$. For $\rho' \in C_A$ and $k \in \mathbb{Z}$, $k \geq 0$, the set

$$[\rho', \nu_{\rho'}^k \rho'] = \{\rho', \nu_{\rho'} \rho', \nu_{\rho'}^2 \rho', \ldots, \nu_{\rho'}^k \rho'\}$$
is called a segment of irreducible cuspidal representations of general linear groups over division algebras. In this case we shall also write segment

\[[\nu_{\rho_1}^{k_1} \rho, \nu_{\rho_2}^{k_2} \rho] = [k_1, k_2]^{[\rho]} \]

\((k_1, k_2 \in \mathbb{R}, k_2 - k_1 \in \mathbb{Z} \text{ and } k_2 - k_1 \geq 0)\). The set of all such segments will be denoted by \(S_A\). The set of all finite multisets in \(S_A\) will be denoted by \(M(S_F)\) and we shall consider partial ordering \(\leq\) on \(M(S_A)\) introduced in section 4. of [T5] (ordering is defined again by linking segments).

ad 1.10. For \(\Delta' = [\rho', \nu_{\rho'}^{k'} \rho'] = \{\rho', \nu_{\rho'}^{k_1} \rho', \nu_{\rho'}^{k_2} \rho', \ldots, \nu_{\rho'}^{k_n} \rho'\} \in S_A\), the representation \(\rho' \times \nu_{\rho'}^{k_1} \rho' \times \nu_{\rho'}^{k_2} \rho' \times \ldots \times \nu_{\rho'}^{k_n} \rho'\) has a unique irreducible quotient, denoted by \(\delta([\rho', \nu_{\rho'}^{k'} \rho'])\), and it has a unique irreducible subrepresentation, denoted by \(\delta((\rho', \nu_{\rho'}^{k'} \rho'))\).

The mapping

\[\delta : S_A \rightarrow D_A, \quad \Delta' \mapsto \delta(\Delta'), \]

is a bijection. If we denote by

\[\delta(\rho', n) = \delta(- (n - 1)/2, (n - 1)/2)^{[\rho']} \]

then we can tell the above fact in the following way: \((\rho', n) \mapsto \delta(\rho', n)\) is a bijection of \(\mathbb{N} \times \mathcal{C}_A\) onto \(D_A\).

We define \(\nu_{\delta(\rho', n)}\) to be \(\nu_{\rho'}\), i.e.

\[\nu_{\delta(\rho', n)} = \nu_{\rho'}. \]

We lift \(\Delta' \mapsto \delta(\Delta')\) naturally to a bijection \(M(\delta) : M(S_A) \rightarrow M(D_A)\). This gives Langlands classification for general linear groups over division algebra \(A\) in terms of \(M(S_A)\). For \(a \in M(S_A)\) denote \(L(a) = L(M(\delta)(a))\) and \(\lambda(a) = \lambda(M(\delta)(a))\) as before.

ad 1.11. Since \(R_A\) is a polynomial algebra over \(\delta(\Delta'), \Delta' \in S_A\), the mapping \(\delta(\Delta') \mapsto \delta(\Delta')^t\), \(\Delta \in S_A\), extends uniquely to the ring morphism \(^t : R_A \rightarrow R_A\), which carries irreducible representations into irreducible ones ([A], [ScSt]). This homomorphism of rings is an involution. Again, for a character \(\chi\) of \(F^\times\), \(^t : R_F \rightarrow R_F\) and \(\chi : R_F \rightarrow R_F\) commute.

ad 1.12. One defines cuspidal support of an irreducible representation in the same way as before (it is an element of \(M(\mathcal{C}_A)\)). The involution \(^t\) preserves the cuspidal support.

2.5. Let \(D^n_\chi\) be the set of all the unitarizable classes in \(D_F\). Denote

\[u(\delta', n) = L(\nu_{\delta'}^{n-1} \delta', \nu_{\delta'}^{n-2} \delta', \ldots, \nu_{\delta'}^{n-1} \delta') \]

for \(\delta' \in D^n_\chi\) and a positive integer \(n\).

Let us first recall of a conjecture (U0) from [T5]:

(U0) if \(\pi_1\) and \(\pi_2\) are irreducible unitarizable representations of general linear groups over \(A\), then \(\pi_1 \times \pi_2\) is irreducible.

Now section 6. of [T5] and [BaRe] imply the following
Proposition. Assume that (U0) holds. Denote
\[B_A = \{ u(\delta', n), \, \nu_{\delta'}^\alpha u(\delta', n) \times \nu_{\delta'}^{-\alpha} u(\delta', n), \, \delta' \in D_A^a, \, n \in \mathbb{N}, \, 0 < \alpha < 1/2 \}. \]

Then
(i) If \(\sigma_1, \ldots, \sigma_k \in B_A \), then \(\sigma_1 \times \ldots \times \sigma_k \) is an irreducible unitarizable representation of some general linear group over \(A \).

(ii) If \(\pi \) is an irreducible unitarizable representation of some general linear group over \(A \), then there exist \(\sigma_1, \ldots, \sigma_m \in B_A \), unique up to a permutation, such that
\[\pi \cong \sigma_1 \times \ldots \times \sigma_m. \]

2.6. For \(\rho' \in C_A \) and positive integers \(d, n \) denote
\[a(1, d)(\rho') = [\nu_{\rho'}^{-(d-1)/2} \rho', \nu_{\rho'}^{(d-1)/2} \rho'] \in S_A, \]
\[a(n, d)(\rho') = (a(1, d)(\nu_{\rho'}^{(n-1)/2} \rho'), a(1, d)(\nu_{\rho'}^{-(n-1)/2} \rho'), \ldots, a(1, d)(\nu_{\rho'}^{(n-1)/2} \rho')) \in M(S_A). \]

Further, \(a(0, d)(\rho') \) and \(a(n, 0)(\rho') \) are empty multiset (then \(L(a(0, d)(\rho')) \) and \(L(a(n, 0)(\rho')) \) are both identity in \(R_A \)). Similarly as before we have
\[[\nu_{\rho'}^{k_1} \rho', \nu_{\rho'}^{k_2} \rho'] = [k_1, k_2](\rho') = a(1, k_2 - k_1 + 1)^{(\nu_{\rho'}^{(k_1+k_2)/2} \rho')}, \]
\[a(1, d)(\nu_{\rho'}^{n} \rho') = [-(d-1)/2 + \alpha, (d-1)/2 + \alpha](\rho'). \]

For a character \(\chi \) of \(F^\times \) we have \(\chi L(a(n, d)(\rho')) \cong L(a(n, d)(\chi \rho')). \) Also
\[u(\delta(\rho', d), n) = L(a(n, d)(\rho')). \]

3. Involution and unitarity, on unitary duals of \(GL(n, A) \)

3.1 We shall call an irreducible representation \(\pi \) of a general linear group over \(A \) rigid if
\[e(\rho')/s_{\rho'} \in (1/2)\mathbb{Z} \]
for all \(\rho' \) in the cuspidal support of \(\pi \).

Lemma. Assume that (U0) holds. For \(a, n \in \mathbb{N}, \, \rho' \in C_A \) we have
\[L(a(n, d)(\rho'))^t = L(a(d, n)(\rho')). \]

Proof. Since \(^t \) commutes with characters automorphisms \(\chi : R_A \rightarrow R_A \), it is enough to prove the above relation for unitary \(\rho' \in C_A \).

The proof goes in several steps.
First we shall prove that $L(a(n,d)^{(\rho')})^t$ is unitarizable. We prove it by induction with respect to n. For $n = 1$ we know $L(a(1,d)^{(\rho')})^t = L(a(1,d)^{(\rho')})$, which is unitarizable by Proposition 2.5.

Let $n \geq 1$ and suppose that we have proved unitarity of representations $L(a(n,d)^{(\rho')})^t$ for that n. Proposition 1.8 for division algebra case (see 2.2) and (U0) imply

$$L(a(n+1,d)^{(\rho')}) \times L(a(n-1,d)^{(\rho')}) \leq \nu_{\rho'}^{-1/2}L(a(n,d)^{(\rho')}) \times \nu_{\rho'}^{1/2}L(a(n,d)^{(\rho')}).$$

Applying the involution $^t : R_A \rightarrow R_A$ to the above relation, we get

$$L(a(n+1,d)^{(\rho')})^t \times L(a(n-1,d)^{(\rho')})^t \leq \nu_{\rho'}^{-1/2}L(a(n,d)^{(\rho')})^t \times \nu_{\rho'}^{1/2}L(a(n,d)^{(\rho')})^t.$$

First observe that $L(a(n,d)^{(\rho')})^t$ is rigid (since t preserves the cuspidal support). Now unitarity of $L(a(n,d)^{(\rho')})^t$ and Proposition 2.5 imply that $L(a(n,d)^{(\rho')})^t$ is a products of elements of the form $L(a(n',d')^{(\rho''_n)})$, where $\rho''_n \in C_A$ are unitarizable. Proposition 2.5 implies that all representations

$$\nu_{\rho''_n}^{-\alpha}L(a(n',d')^{(\rho''_n)})^t \times \nu_{\rho''_n}^\alpha L(a(n',d')^{(\rho''_n)})^t, \quad 0 < \alpha < 1/2,$$

are unitarizable. This implies that representations

$$\nu_{\rho''_n}^{-\alpha}L(a(n,d)^{(\rho')})^t \times \nu_{\rho''_n}^\alpha L(a(n,d)^{(\rho')})^t, \quad 0 < \alpha < 1/2,$$

are also unitarizable. Recall that all the irreducible subquotients at the end of complementary series are unitarizable ([MI], see also [T2] and [T4]). This implies that all the irreducible subquotients of $\nu_{\rho'}^{-1/2}L(a(n,d)^{(\rho')})^t \times \nu_{\rho'}^{1/2}L(a(n,d)^{(\rho')})^t$ are unitarizable. In particular,

$$L(a(n+1,d)^{(\rho')})^t \times L(a(n-1,d)^{(\rho')})^t$$

is unitarizable (and irreducible, since t carries irreducible representations to the irreducible ones).

For an irreducible representation π denote by π^+ the Hermitian contragredient of π. Then $\pi \mapsto \pi^+$ lift to an automorphism of R_A. Observe that t carries irreducible Hermitian representations to the (irreducible) Hermitian ones, since automorphisms t and $\pi \mapsto \pi^+$ of R_A commute (one directly checks this on generators). Therefore, $L(a(n+1,d)^{(\rho')})^t \otimes L(a(n-1,d)^{(\rho')})^t$ is Hermitian. Now (d) in section 3. of [T6] implies that $L(a(n+1,d)^{(\rho')})^t \otimes L(a(n-1,d)^{(\rho')})^t$ is (irreducible) unitarizable, which implies that $L(a(n+1,d)^{(\rho')})^t$ is unitarizable. Therefore, we have proved the inductive step.

So, we have proved that representations $L(a(n,d)^{(\rho')})^t$ for $\rho' \in C_A$ unitarizable, are unitarizable in general.

Now we are going to get explicit formula for $L(a(n,d)^{(\rho')})^t$.

First note that $L(a(n,d)^{(\rho')})$ is not induced from proper parabolic subgroup by irreducible unitarizable representation (see Proposition 2.5). Therefore, $L(a(n,d)^{(\rho')})^t$ is also
not induced in that way. Proposition 2.5 implies that \((L(a(n, d)^{(\rho')})^t = L(a(n', d')^{(\rho'')})\) for some \(n', d'\) and \(\rho''\). Since \(^t\) preserves the cuspidal support, one gets directly \(\rho' \cong \rho''\) and \(\{n, d\} = \{n', d'\}\). This implies the lemma if \(n = d\).

It remains to consider the case \(n \neq d\). Actually, in this case it is enough to prove

\[
L(a(n, d)^{(\rho')})^t \neq L(a(n, d)^{(\rho')}).
\]

Since \(^t\) is involution, our previous discussion implies that it is enough to prove the above relation only in the case

\[
d < n.
\]

We shall prove this by induction with respect to \(d\). For \(d = 1\),

\[
L(a(n, 1)^{(\rho')})^t = L(a(1, n)^{(\rho')}),
\]

which is different from \(L(a(n, 1)^{(\rho')})\) since \(n > 1\).

Suppose \(d \geq 1\), and that we have proved the claim for \(d' \leq d\). Let \(d + 1 < n\). We have already observed that holds \(L(a(n + 1, d)^{(\rho')}) \times L(a(n - 1, d)^{(\rho')}) \leq \nu_{\rho}^{-1/2}L(a(n, d)^{(\rho')})\times \nu_{\rho}^{1/2}L(a(n, d)^{(\rho')})\). Applying \(^t\) to this relation and using inductive assumption, we get

\[
L(a(n + 1, d)^{(\rho')})^t \times L(a(d, n - 1)^{(\rho')}) \leq \nu_{\rho}^{-1/2}L(a(d, n)^{(\rho')})\times \nu_{\rho}^{1/2}L(a(d, n)^{(\rho')}).
\]

Suppose

\[
L(a(n + 1, d)^{(\rho')})^t = L(a(n + 1, d)^{(\rho')}).
\]

Then

\[
L(a(n + 1, d)^{(\rho')}) \times L(a(d, n - 1)^{(\rho')}) \leq \nu_{\rho}^{-1/2}L(a(d, n)^{(\rho')}) \times \nu_{\rho}^{1/2}L(a(d, n)^{(\rho')}).
\]

Then by the definition of the ordering \(\leq\) on \(\mathcal{M}(\mathcal{S}_A)\), we can not have on the left hand side more segments than on the right hand side (since ordering is generated by linking segments). This implies \(n + 1 + d \leq 2d\), i.e. \(n + 1 \leq d\) which implies \(n < d\). This contradicts \(d + 1 < n\). Thus \(L(a(n + 1, d)^{(\rho')})^t \neq L(a(n + 1, d)^{(\rho')})\), what we needed to prove. \(\square\)

4.2. Corollary. Assume that \((U0)\) holds. Then \(^t\) carries irreducible unitary representations to the irreducible unitary ones. \(\square\)

4. On ends of complementary series of \(GL(n, A)\); character identities

4.1 The following proposition describes irreducible subquotients in the ends of complementary series. Besides the fact that this is crucial information for determining the topology of the unitary dual, this (essentially character identity) will be crucial for us in obtaining formulas for (characters of) irreducible unitary representations in term of (characters of) standard modules.
Proposition. Assume that $(U0)$ holds. Then for $n,d \in \mathbb{N}, \rho' \in C_A$ we have in R_A

\[\nu_{\rho'}^{-1/2} L(a(n,d)(\rho')) \times \nu_{\rho'}^{1/2} L(a(n,d)(\rho')) = \]

\[L(a(n-1,d)(\rho')) \times L(a(n+1,d)(\rho')) + L(a(n,d-1)(\rho')) \times L(a(n,d+1)(\rho')). \]

Proof. First note that it is enough to prove the above equality for ρ' unitarizable.

Further, Proposition 4.3 of [T5] implies that it is enough to prove the proposition for $n \geq 2$. Applying involution t, we conclude that it is enough to consider only the case $d \geq 2$.

Denote

\[\pi = \nu_{\rho'}^{-1/2} L(a(n,d)(\rho')) \times \nu_{\rho'}^{1/2} L(a(n,d)(\rho')). \]

We know that $L(a(n-1,d)(\rho')) \times L(a(n+1,d)(\rho'))$ is a subquotient of multiplicity one in π (see 2.2).

Applying the same argument to $\pi' = \nu_{\rho'}^{-1/2} L(a(d,n)(\rho')) \times \nu_{\rho'}^{1/2} L(a(d,n)(\rho'))$, we get that $L(a(d-1,n)(\rho')) \times L(a(d+1,n)(\rho'))$ is subquotient of π' of multiplicity one.

Applying t to π', we get from Lemma 3.1 that $L(a(n,d-1)(\rho')) \times L(a(n,d+1)(\rho'))$ is a subquotient of $\pi = (\pi')^t$ of multiplicity one. Therefore, for completion of the proof, it is enough to prove that there are no additional irreducible subquotients besides these two.

Let σ be an irreducible subquotient of π different from the above two subquotients. Since π is an end of complementary series, σ must be unitarizable. Since π is rigid, σ must be rigid. This easily implies that

\[\sigma = L(a(n_1,d_1)(\rho')) \times \ldots \times L(a(n_k,d_k)(\rho')) \]

for some n_i’s and d_i’s. After renumeration, we can (and shall) assume that

\[n_1 + d_1 \geq n_2 + d_2 \geq \cdots \geq n_k + d_k. \]

Look at the cuspidal representation $\nu_{\rho'}^{-(n+d)/2+1/2} \rho' \times \nu_{\rho'}^{-(n+d)/2+1/2} \rho'$. This is the first representation (from the negative left hand side) in the cuspidal support of π. Then the cuspidal support tells

\[n_1 + d_1 = n + d + 1. \]

(Observe that we must have $n_1 + d_1 > n_2 + d_2$, since the multiplicity of $\nu_{\rho'}^{-(n+d)/2+1/2} \rho'$ in the cuspidal support of π is one.)

The rules for linking segments imply

\[d \leq d_1 \]

(since $\nu_{\rho'}^{-(n+d)/2+1/2} \rho'$ is a left end of only one segment in π, and there are no segments which are more to the left, therefore the segment starting with $\nu_{\rho'}^{-(n+d)/2+1/2} \rho'$ must be
at least of length d). Applying t, Lemma 3.1, and repeating the above argument in this situation, we get

$$n \leq n_1.$$

The three above relations imply

$$(n_1, d_1) = (n + 1, d) \quad \text{or} \quad (n_1, d_1) = (n, d + 1),$$

i.e.

$$L(a(n_1, d_1)(\rho')) = L(a(n + 1, d)(\rho')) \quad \text{or} \quad L(a(n_1, d_1)(\rho')) = L(a(n, d + 1)(\rho')).$$

Now the first remaining representation in the cuspidal support is $\nu^{-\frac{n+d}{2}+1/2} = \nu^{-\frac{n+d}{2}+3/2} \rho$. (Similarly as above, looking at the cuspidal support of π, we can conclude that $n_2 + d_2 > n_3 + d_3$ if $k \geq 3$.) This implies

$$n_2 + d_2 = n + d - 1.$$

Now looking at the rules for linking segments, one gets directly

$$d - 1 \leq d_2.$$

(note that $\nu^{-\frac{n+d}{2}+3/2} \rho'$ must be the beginning of a segment in $a(n_2, d_2)(\rho')$, and the shortest segment that can be here with this beginning is of length $d - 1$, which one gets intersecting the leftist segment in π with the segment in π starting at $\nu^{-\frac{n+d}{2}+1/2} \rho'$).

Repeating the above argument in the case of π^t and using Lemma 3.1 we get

$$n - 1 \leq n_2.$$

The three above relations imply

$$(n_2, d_2) = (n - 1, d) \quad \text{or} \quad (n_2, d_2) = (n, d - 1),$$

i.e.

$$L(a(n_2, d_2)(\rho')) = L(a(n - 1, d)(\rho')) \quad \text{or} \quad L(a(n_2, d_2)(\rho')) = L(a(n, d - 1)(\rho')).$$

We have now four possibilities for the first two factors of σ. We shall analyze two possibilities. Denote

$$\sigma' = L(a(n_3, d_3)(\rho')) \times \ldots \times L(a(n_k, d_k)(\rho'))$$

if $k \geq 3$. Otherwise, we take $\sigma' = 1$.

Suppose that σ is isomorphic to

$$L(a(n + 1, d)(\rho')) \times L(a(n, d - 1)(\rho')) \times \sigma' \quad \text{or} \quad L(a(n, d + 1)(\rho')) \times L(a(n - 1, d)(\rho')) \times \sigma'.$$
we conclude that

The first representation can not be a subquotient of \(\pi \) since it corresponds to at least \(2n + 1 \) segments, while \(\pi \) is defined by \(2n \) segments. For the second representation, observe that

\[
(L(a(n, d + 1)^{\rho'})) \times L(a(n - 1, d)^{\rho'}) \times \sigma^t = L(a(d + 1, n)^{(\rho')}) \times L(a(d, n - 1)^{(\rho')}) \times (\sigma')^t
\]

is a subquotient of \(\pi^t = \nu_{\rho'}^{-1/2} L(a(d, n)^{(\rho')}) \times \nu_{\rho'}^{1/2} L(a(d, n)^{(\rho')}) \). This is impossible, for the same reason as in the first case.

Therefore, the only two remaining possibilities for \(\sigma \) are

\[
L(a(n - 1, d)^{(\rho')}) \times L(a(n + 1, d)^{(\rho')}) \times \sigma',
L(a(n, d - 1)^{(\rho')}) \times L(a(n, d + 1)^{(\rho')}) \times \sigma'.
\]

But since both \(L(a(n - 1, d)^{(\rho')}) \times L(a(n + 1, d)^{(\rho')}) \) and \(L(a(n, d - 1)^{(\rho')}) \times L(a(n, d + 1)^{(\rho')}) \) have in cuspidal support \(2nd \) representations (counted with multiplicities), which is exactly the number of representations in the cuspidal support of \(\pi \) (counted with multiplicities), we conclude that \(\sigma' = 1 \).

This completes the proof of the lemma. \(\Box \)

5. On characters of irreducible unitary representations of \(GL(n, A) \)

5.1. Fix \(\rho \in \mathcal{C}_F \) and \(\rho' \in \mathcal{C}_A \). Let \(R_F(\rho) \) (resp. \(R_A(\rho') \)) be the subalgebra of \(R_F \) (resp. \(R_A \)) generated by

\[
\{ \delta([\nu^{k_1} \rho, \nu^{k_2} \rho]); k_1, k_2 \in (1/2)\mathbb{Z}, k_2 - k_1 \geq 0 \}
\]

(resp. \(\{ \delta([\nu^{k_1} \rho', \nu^{k_2} \rho']); k_1, k_2 \in (1/2)\mathbb{Z}, k_2 - k_1 \geq 0 \} \),

Then clearly, both algebras are polynomial over the above sets of generators. Define algebra isomorphism \(\Psi_{\rho, \rho'} : R_F(\rho) \rightarrow R'_A(\rho') \) by

\[
\Psi_{\rho, \rho'} : \delta([\nu^{k_1} \rho, \nu^{k_1} \rho]) \mapsto \delta([\nu^{k_1} \rho', \nu^{k_1} \rho'])
\]

for all \(k_1, k_2 \in (1/2)\mathbb{Z}, k_2 - k_1 \in \mathbb{Z}_+ \).

Lemma. If we assume (U0), then

\[
\Psi_{\rho, \rho'} : (L(a(n, d)^{(\nu^{k} \rho)})) = L(a(n, d)^{(\nu^{k} \rho')})
\]

for all \(n, d \in \mathbb{N} \) and \(k \in (1/2)\mathbb{Z} \).

Proof. We shall prove the lemma by induction with respect to \(n \). For \(n = 1 \) (and all \(d \)) the lemma holds by definition of \(\Psi_{\rho, \rho'} \) (see 1.14 and 2.6). Fix \(n \geq 1 \) and assume that the
formula of the lemma holds for all \(n' \leq n \). Applying \(\Psi_{\rho,\rho'} \) to the formula of Theorem 1.15 (with \(\nu^k\rho \) instead of \(\rho \) in the formula), and using inductive assumption we get

\[
\nu^{1/2}_{\rho'} L(a(n, d)^{(\nu^k\rho)}) \times \nu^{-1/2}_{\rho'} L(a(n, d)^{(\nu^k\rho')}) =
\Psi_{\rho,\rho'} \left(L(a(n + 1, d)^{(\nu^k\rho')}) \times L(a(n - 1, d)^{(\nu^k\rho')}) + L(a(n, d + 1)^{(\nu^k\rho')}) \times L(a(n, d - 1)^{(\nu^k\rho')}) \right).
\]

Now subtracting the above formula from the formula of Proposition 4.1 (with \(\nu^k\rho' \) instead of \(\rho' \) in the formula) and using the fact that \(R_A \) is an integral domain, one gets

\[
\Psi_{\rho,\rho'} (L(a(n + 1, d)^{(\nu^k\rho)}) = L(a(n + 1, d)^{(\nu^k\rho')})).
\]

The proof of the lemma is now complete. □

5.2. As a direct consequence of the above lemma and Theorem 1.15 we get the following

Proposition. Assume that \((U0)\) holds. Let \(\rho' \in C_A \) and \(n, d \in \mathbb{Z}, n, d \geq 1 \). Let \(W_n \) be the group of permutations of the set \(\{1, 2, \ldots, n\} \). Denote \(W_n^{(d)} = \{w \in W_n; w(i) + d \geq i \text{ for all } 1 \leq i \leq n\} \). Then we have the following identity in \(R_A \)

\[
L((\nu^0\rho', \nu^d_\rho), [\nu^1_\rho', \nu^{d+1}_\rho'], \ldots, [\nu^{n-1}_\rho', \nu^{d+n-1}_\rho']) = \sum_{w \in W_n^{(d)}} (-1)^{\text{sgn}(w)} \prod_{i=1}^{n} \delta([\nu^i_\rho', \nu^{w(i)+(d-1)}_\rho']).
\]

\[
\square
\]

6. **Jacquet-Langlands correspondence**

6.1. A.I. Badulescu in [Ba2] studied very natural extensions of Jacquet-Langlands correspondences. We shall recall here some of his considerations (in a slightly different notation).

In the section 2.3 we have recalled of the Jacquet-Langlands correspondences

\[
(6-1-1) \quad JL_p : \mathcal{D}(GL(p, A)) \rightarrow \mathcal{D}(GL(pd_A, F))
\]

which are uniquely determined by the requirement that the characters \(\Theta_{\delta'} \) and \(\Theta_{JL_p(\delta')} \) satisfy

\[
(6-1-2) \quad (-1)^p \Theta_{\delta'}(g') = (-1)^{pd_A} \Theta_{JL_p(\delta')}(g).
\]

whenever \(g' \) and \(g \) have the same characteristic polynomials, and when this polynomial is separable.

The above correspondences are bijections, so we could instead correspondences \(JL_p \), consider its inverses \(JL_p^{-1} \).

The mappings \(JL_p, p \geq 1 \), define in a natural way an injective mapping

\[
JL : \mathcal{D}_A \rightarrow \mathcal{D}_F.
\]
Since the algebras R_A and R_F are polynomial over D_A and D_F respectively, JL_p can be uniquely extended to the ring homomorphism of R_A into R_F, which will be again denoted by

$$ (6-1-3) \quad JL : R_A \to R_F. $$

Clearly, the extension is also injective.

The homomorphism JL carries $\text{Groth}(GL(p, A))$ to $\text{Groth}(GL(pd_A, F))$, and we shall denote this restriction again by

$$ (6-1-4) \quad JL_p : \text{Groth}(GL(p, A)) \to \text{Groth}(GL(pd_A, F)). $$

Then this extended JL_p satisfies again the relation

$$ (6-1-5) \quad (-1)^p\Theta_{\pi'}(\pi') = (-1)^{pd_A}\Theta_{JL_p(\pi')}(g) $$

for any $\pi \in GL(p, A)^\circ$.

Denote

$$ D^{(d_A)}_F = \bigcup_{p \geq 1} D(GL(pd_A, F)). $$

Then JL defines a bijection of D_A onto $D^{(d_A)}_F$. Denote the inverse mapping by

$$ LJ : D^{(d_A)}_F \to D_A. $$

There exist the unique ring homomorphism $R_F \to R_A$ which extends LJ and which sends all the elements from $D_F \setminus D^{(d_A)}_F$ to $0 \in R_A$. This extension will be denoted again by

$$ LJ : R_F \to R_A. $$

If $d_A|m$, then we shall denote by LJ_m restriction

$$ LJ_m : \text{Groth}(GL(m, F)) \to \text{Groth}(GL(m/d_A, A)). $$

Otherwise, we shall take (formally) $LJ_m = 0$ (as a mapping from $\text{Groth}(GL(m, F))$ into R_A).

Let

$$ I_{F,A} $$

be the ideal in R_F generated by $D_F \setminus D^{(d_A)}_F$ (clearly, this ideal is graded). This is just the kernel of LJ. Therefore, $R_A \cong R_F/I_{F,A}$.

Further, suppose that $\varphi \in \text{Groth}(GL(m, F))$ is in $I_{F,A}$ and $d_A|m$. Then for regular semi simple $g \in GL(m, F)$ we have

$$ \Theta_{\varphi}(g) = 0, $$
where Θ_φ denotes the formal character of φ. Therefore,

\begin{equation}
(6-1-6) \quad (-1)^m \Theta_\varphi(g) = (-1)^{\frac{m}{d_A}} \Theta_{LJ(\varphi)}(g')
\end{equation}

whenever g and g' have the same characteristic polynomials, and this polynomial is separable. Clearly, $LJ \circ JL = \text{id}_{R_A}$.

The correspondence $JL: \mathbb{R}_A \to \mathbb{R}_F$, which we considered the first, does not beehive well with respect to the irreducibility. Namely, one sees easily (as in Comments after Theorem 3.1 of [Ba2]) that JL does not carry in general irreducible representations to the irreducible ones (up to a sign). Similar situation is with unitarity. Even irreducible unitary representations are carried neither to the irreducible ones (up to a sign), nor to a linear combination of irreducible unitary representations in general.

Assuming (U0) to hold, we shall see in the rest of the paper that the correspondence $LJ: \mathbb{R}_F \to \mathbb{R}_A$ beehive well with respect to the irreducible unitary representations, that it carries such representations either again to the irreducible unitary representations (up to a sign), or to 0.

\subsection{6.2} Let $\rho' \in \mathcal{C}_A$. Suppose that

$$
\delta([\rho, \nu^{s_{\rho'}^{-1}} \rho]) \in \mathcal{D}_F \quad \text{corresponds to} \quad \rho'
$$

under the Jacquet-Langlands correspondence (here $\rho \in \mathcal{C}_F$). Then

$$
\delta([\rho, \nu^{s_{\rho'} k^{-1}} \rho]) \quad \text{corresponds to} \quad \delta([\rho', \nu^{k^{-1}} \rho']).
$$

\subsection{6.3} Fix an irreducible cuspidal representation ρ of $GL(m, F)$. Let $s'm$ be the smallest common multiple of m and d_A. The fact $s'm|d_Am$ implies

$$
 s'|d_A.
$$

Note that $\delta([\rho, \nu^{s'-1} \rho])$ is an irreducible essentially square integrable representation of $GL(s'm, F)$. Therefore it lifts under the Jacquet-Langlands correspondence to an irreducible essentially square integrable representation ρ' in R'. A short discussion implies that ρ' is cuspidal, and then $s_{\rho'} = s'$.

Now ρ' is a representation of $GL(p, A)$, where $p = \frac{ms_{\rho'}}{d_A}$. Since $s'm$ is the smallest common multiple of m and d_A, this implies $(p, s_{\rho'}) = 1$ (if k would be the greatest common divisor, then kd_A and km would divide $s'm$). Further, the smallest common multiple of d_A and $\frac{pd_A}{s_{\rho'}} = m$ is $s_{\rho'}m = pd_A$.

\subsection{6.4} Assuming (U0) we shall compute $LJ(\pi)$ for irreducible unitary representations of general linear groups over the field. Since LJ is a ring homomorphism, for this it will be enough to compute

$$
LJ(L(a(r, d)^{(\rho)})) \in \mathbb{R}_A, \quad r, d \in \mathbb{N}.
$$
Suppose that we are in the situation of 6.3, and suppose that $s_{\rho'} = 1$ (which means that ρ corresponds to ρ' under the Jacquet-Langlands correspondence). Then Theorem 1.15 and Proposition 5.2 directly imply

$$LJ(L(a(r, d)^{(\rho)})) = L(a(r, d)^{(\rho')}).$$

It remains therefore to consider the case

$$s_{\rho'} \geq 2.$$

We shall assume this in the rest of the paper.

If $r = 1$, then we know by 6.2 what is $LJ(L(a(1, d)^{(\rho)}))$, so we could assume also $r \geq 2$.

To simplify notation, we shall often denote below $s_{\rho'}$ by n, i.e.

$$s_{\rho'} = n.$$

7. Calculation of Jacquet-Langlands correspondence in the unitary case I, the case of $r \leq d$ and $s_{\rho'} | d$

7.1. In this section we shall assume $r \leq d$ and $s_{\rho'} | d$ (i.e. $n | d$).

We shall use below the following Lemma 3.1 of [T8]. For easier following later calculations, we shall repeat this technical lemma here.

Denote by W'_r the group of permutations of $\{0, 1, \ldots, r - 1\}$. The signature of a permutation w will be denoted by $\text{sgn}(w)$.

Lemma. Write $r = an + b$, with $a, b \in \mathbb{Z}$ such that $0 \leq b \leq n - 1$.

(i) Let

$$W'_r(n; \ell) = \{w \in W'_r; w(i) = i \text{ if } n \nmid (i - \ell)\}.$$

For $0 \leq \ell \leq \min(n, r) - 1$ denote by

$$W'_r(n; \ell) = \{w \in W'_r; w(i) = i \text{ if } n \nmid (i - \ell)\}.$$

Then $W'_r(n)$ is a subgroup of W'_r, $W'_r(n; \ell)$ are subgroups of $W'_r(n)$ and $W'_r(n)$ is a direct product of $W'_r(n; \ell)$, $\ell = 0, 1, 2, \ldots, \min(n, r) - 1$.

(ii) Let $0 \leq \ell \leq b - 1$ (resp. $b \leq \ell \leq \min(n, r) - 1$). For $w \in W'_{a+1}$ (resp. $w \in W'_a$) define $w^* \in W'_r$ by

$$w^*(j) = \begin{cases} j, & \text{if } n \nmid (i - \ell); \\ \ell + nw(i), & \text{if } j = \ell + ni. \end{cases}$$

Then $w \mapsto w^*$ is an isomorphism of W'_{a+1} (resp. W'_a) onto $W'_r(n; \ell)$. Further, $\text{sgn}(w) = \text{sgn}(w^*)$. □

7.2. Denote

$$\Pi = L(([\rho, \nu^{d-1}\rho], [\nu\rho, \nu^d\rho], \ldots, [\nu^{r-1}\rho, \nu^{r-1+d-1}\rho])).$$
Now we shall start computation of
\[
LJ(\Pi) = LJ(L([\rho, \nu^{d-1} \rho], [\nu \rho, \nu^d \rho], \ldots, [\nu^{r-1} \rho, \nu^{r-1+d-1} \rho]))
\]
\[
= \sum_{w \in W'_r} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} LJ(\delta([\nu^i \rho, \nu^{w(i)+(d-1) \rho}])),
\]
since \(n|d\).

Write \(r = an + b, a, b \in \mathbb{Z}, 0 \leq b \leq n - 1\). We shall use now above lemma to modify the above sum:

\[
LJ(\Pi) = \sum_{w \in W'_r(n)} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} LJ(\delta([\nu^i \rho, \nu^{w(i)+(d-1) \rho}])),
\]
\[
= \sum_{w_0, w_1, \ldots, w_{q-1} \in W'_{p+1}} \sum_{w_q, w_{q+1}, \ldots, w_{\min(n,r)-1} \in W'_r}
\left(\prod_{\ell=0}^{b-1} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} LJ(\delta([\nu^{\ell+n i} \rho, \nu^{\ell+n w_\ell(i)+(d-1) \rho}])) \right)
\times \left(\prod_{\ell=b}^{\min(n,r)-1} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} LJ(\delta([\nu^{\ell+n i} \rho, \nu^{\ell+n w_\ell(i)+(d-1) \rho}])) \right)
\]
\[
= \left(\prod_{\ell=0}^{b-1} \sum_{w_\ell \in W'_{a+1}} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} LJ(\delta([\nu^{\ell+n i} \rho, \nu^{\ell+n w_\ell(i)+(d-1) \rho}])) \right)
\times \left(\prod_{\ell=b}^{\min(n,r)-1} \sum_{w_\ell \in W'_a} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} LJ(\delta([\nu^{\ell+n i} \rho, \nu^{\ell+n w_\ell(i)+(d-1) \rho}])) \right)
\]
(we assume in the sequel that \(\delta([\rho, \nu^{n-1} \rho])\) and \(\rho'\) correspond under Jacquet-Langlands correspondence as in 6.2)

\[
= \left(\prod_{\ell=0}^{b-1} \sum_{w_\ell \in W'_{a+1}} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} \delta([\nu^{\ell+n i} \rho', \nu^{\ell+n i} \nu^{w_\ell(i)-i+(d-1) \rho'}]) \right)
\times \left(\prod_{\ell=b}^{\min(n,r)-1} \sum_{w_\ell \in W'_a} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} \delta([\nu^{\ell+n i} \rho', \nu^{\ell+n i} \nu^{w_\ell(i)-i+(d-1) \rho'}]) \right)
\[
\left(\prod_{\ell=0}^{b-1} \nu_{\rho'}^\ell \sum_{w_{\ell} \in W_{a+1}} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a} \delta([\nu_{\rho}^i \rho', \nu_{\rho'}^i \rho') + \left(\frac{d}{n} - 1 \right) \rho']) \right) \\
\times \left(\prod_{\ell=b}^{\min(n,r)-1} \nu_{\rho'}^\ell \sum_{w_{\ell} \in W_r} (-1)^{\text{sgn}(w_{\ell})} \prod_{i=0}^{a-1} \delta([\nu_{\rho}^i \rho', \nu_{\rho'}^i \rho') + \left(\frac{d}{n} - 1 \right) \rho']) \right).
\]

Note that \(r \leq d \) implies \(r - b \leq d \), which implies \(an \leq d \), i.e.
\[a \leq d/n. \]

If \(b \geq 1 \),

then \(r - b < d \), which implies \(a < \frac{d}{n} \) and further
\[a + 1 \leq d/n \]

(since \(n|d \)).

Therefore
\[
\text{LJ}((\prod) = \left(\prod_{\ell=0}^{b-1} \nu_{\rho'}^\ell \mathcal{L}((\rho, \nu^\frac{d}{n} \rho'), [\nu_{\rho'}^\ell \rho', \nu_{\rho'}^\ell \rho'], \ldots, [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1} \rho']) \right) \\
\times \left(\prod_{\ell=b}^{\min(n,r)-1} \nu_{\rho'}^\ell \mathcal{L}((\rho, \nu^\frac{d}{n} \rho'), [\nu_{\rho'}^\ell \rho', \nu_{\rho'}^\ell \rho'], \ldots, [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1} \rho']) \right).
\]

7.3. Now suppose that \(\rho \) is unitary and that
\[
\delta(\rho, s_{\rho'}) = \delta(\rho, n) \quad \text{corresponds to} \quad \rho''
\]
under Jacquet-Langlands correspondence. Then \(\rho'' \) is unitary.

Further
\[
\rho'' = \text{LJ}(\delta(\rho, n)) = \text{LJ}(\nu^{-\frac{n-1}{2}} \delta([\rho, \nu^{n-1} \rho])) = \nu^{-\frac{n-1}{2}} \text{LJ}(\delta([\rho, \nu^{n-1} \rho])) = \nu_{\rho'}^{-\frac{n-1}{2}} \rho',
\]

i.e.
\[
\rho'' = \nu_{\rho'}^{-\frac{n-1}{2}} \rho'
\]
(and \(\rho' = \nu_{\rho'}^{-\frac{n-1}{2}} \rho'' \)). Note that
\[
\nu_{\rho'} = \nu_{\rho''}.
\]

Now we shall compute (for \(d \leq r \) and \(n|d \))
\[
\text{LJ}(L(a(r, d)(\rho))) = \text{LJ}(\nu^{-\frac{r+d}{2}+1} L(([\rho, \nu^{d-1} \rho], [\nu \rho, \nu^d \rho], \ldots, [\nu^{r-1} \rho, \nu^{r-1+d-1} \rho]))
\]
\[= \nu^{-\frac{r+d}{2}+1}\left[\prod_{\ell=0}^{b-1} \nu_\rho^\ell \nu_{\rho'}^{\frac{a+1+d}{2}2^{\ell}} - 1 L(a(a + 1, d/n)(\rho')) \right] \times \left(\prod_{\ell=b}^{\min(n,r)-1} \nu_\rho^\ell \nu_{\rho'}^{\frac{a+d}{2}2^{\ell}} - 1 L(a(a, d/n)(\rho')) \right). \]

Since \(\nu^{-\frac{r+d}{2}+1} = \nu_{\rho'}^{\frac{r-d+2}{2n}} = \nu_{\rho'}^{\frac{-r-d+2}{2n}} \), we have

\[L \mathcal{J}(L(a(r, d)(\rho))) = \left(\prod_{\ell=0}^{b-1} \nu_{\rho'}^{-\frac{b+2+2\ell-2n}{2n}} L(a(a + 1, d/n)(\nu_{\rho'}^{\frac{n-1}{2}\rho'})) \right) \times \left(\prod_{\ell=b}^{\min(n,r)-1} \nu_{\rho'}^{-\frac{b+2+2\ell-2n}{2n}} L(a(a, d/n)(\nu_{\rho'}^{\frac{n-1}{2}\rho'})) \right). \]

For an irreducible representation \(\pi \) of \(GL(l, A) \) and a non-negative integer \(k \) define

\[\text{string}_{\nu_\rho^\ell}(k, n, \pi) = (\nu_\rho^\ell \frac{-k}{n}) \times (\nu_{\rho'}^\ell \frac{-k}{n}) \times (\nu_\rho^\ell \frac{-k}{n}) \times \cdots \times (\nu_{\rho'}^\ell \frac{-k}{n}). \]

If \(k = 0 \), we take the string to be identity of \(R_A \) (i.e. trivial representation of trivial group \(GL(0, A) \)).

Now directly follows
Proposition. Suppose that (U0) holds. Assume that $\delta(\rho, n)$ corresponds to $\rho'' \in C_A$ under the Jacquet-Langlands correspondence. Let

$$r \leq d, \quad n|d, \quad 1 \leq n.$$

Write

$$r = an + b, \quad a, b \in \mathbb{Z}, \quad 0 \leq b \leq n - 1.$$

Then

$$LJ(L(a(r, d)(\rho))) = \text{string}_{\nu, \rho''}(b, n, L(a(a + 1, d/n)(\rho''))) \times \text{string}_{\nu, \rho''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))).$$

We can the above formula also write as

$$LJ(L(a(r, d)(\rho))) = \text{string}_{\nu, \rho''}(r - \lfloor r/n \rfloor n, n, L(a([r/a] + 1, d/n)(\rho''))) \times \text{string}_{\nu, \rho''}(\min(n, r) - r + \lfloor r/n \rfloor n, n, L(a([r/a], d/n)(\rho''))),$$

where $\lfloor x \rfloor$ denotes the greatest integer which does not exceed x.

8. Unitarity of Jacquet-Langlands correspondence of irreducible unitary representations I

8.1. We shall now show that $LJ(L(a(r, d)(\rho)))$, which we have computed in previous section, is irreducible and unitary if $\rho \in C_F$ is unitary (after this, we shall show that $LJ(\nu^\beta(L(a(r, d)(\rho)))) \times \nu^{-\beta}(L(a(r, d)(\rho)))$ is unitary for $0 < \beta < 1/2$).

If $b = 0$, then $\text{string}_{\nu, \rho''}(b, n, L(a(a + 1, d/n)(\rho''))) = 1$. So $\text{string}_{\nu, \rho''}(b, n, L(a(a + 1, d/n)(\rho'')))$ is irreducible unitary. Suppose $b \geq 1$. Then $0 \leq (b - 1)/(2n) < n/(2n) = 1/2$. Therefore, $\text{string}_{\nu, \rho''}(b, n, L(a(a + 1, d/n)(\rho'')))$ is again irreducible unitary.

If $r < n$, then $\text{string}_{\nu, \rho''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))) = 1$, and $\text{string}_{\nu, \rho''}(\min(n, r) - b, n, L(a(a, d/n)(\rho'')))$ is irreducible unitary. Suppose $r \geq n$. Then

$$\text{string}_{\nu, \rho''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))) = \text{string}_{\nu, \rho''}(n - b, n, L(a(a, d/n)(\rho''))).$$

Since now $0 \leq (n - b - 1)/(2n) \leq (n - 1)/(2n) < 1/2$, this implies that $\text{string}_{\nu, \rho''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))$ is irreducible unitary. Therefore, $LJ(L(a(r, d)(\rho)))$ is irreducible unitary.

Let now $0 < \beta < 1/2$. Now we shall show that

$$LJ(\pi(L(a(r, d)(\rho), \beta)))$$
is irreducible unitary. Observe

\[\text{LJ}(\pi(L(a(r, d)(\rho)), \beta)) = \nu^\beta \text{LJ}(L(a(r, d)(\rho))) \times \nu^{-\beta} \text{LJ}(L(a(r, d)(\rho))) \]

\[= \nu^{\rho''} \text{string}_{\nu''}(b, n, L(a(a + 1, d/n)(\rho''))) \times \nu^{\rho''} \text{string}_{\nu''}(b, n, L(a(a + 1, d/n)(\rho''))) \]

\[\times \nu^{\rho''} \text{string}_{\nu''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))) \]

\[\times \nu^{-\rho''} \text{string}_{\nu''}(\min(n, r) - b, n, L(a(a, d/n)(\rho''))). \]

This implies that it is enough to show unitarity (and irreducibility, which follows from unitarity) of

\[\nu^{\rho''} \text{string}_{\nu''}(b, n, L(a(a + 1, d/n)(\rho''))) \times \nu^{\rho''} \text{string}_{\nu''}(b, n, L(a(a + 1, d/n)(\rho''))) \]

for \(b \geq 1 \), and of

\[\nu^{\rho''} \text{string}_{\nu''}(n - b, n, L(a(a, d/n)(\rho''))) \times \nu^{-\rho''} \text{string}_{\nu''}(n - b, n, L(a(a, d/n)(\rho''))) \]

for \(r \geq n \). For the first representation we need to show

\[0 \leq (b - 1)/(2n) + \beta/n < 1/2 \quad \text{if} \quad \beta < 1/2. \]

This obviously holds since \(\beta < 1/2 \).

9. Calculation of Jacquet-Langlands correspondence in the unitary case II, the case of \(r \leq d \) and \(s_{\rho'} \) not dividing \(d \)

9.1. In this section we shall assume that \(r \leq d \) and \(s_{\rho'} \) \(\not| \) \(d \) (i.e. \(n \) \(\not| \) \(d \)).

If \(n \not| rd \), then one sees directly that

\[\text{LJ}(L([\rho, \nu^{d-1} \rho], [\nu \rho, \nu^d \rho], \ldots, [\nu^{r-1} \rho, \nu^{r-1+d-1} \rho])) \]

\[= \sum_{w \in W'} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} \text{LJ}(\delta([\nu^i \rho, \nu^{i+(d-1) \rho}])) = 0. \]

Therefore, we need only to consider the case \(n|rd \). Soon we shall see that a stronger assumption needs to be imposed to get a non-zero result.
Write
\[r = an + b, \quad a, b \in \mathbb{Z}, \quad 0 \leq b \leq n - 1. \]

Now \(n|rd \) implies \(n|bd \).

We continue to assume
\[n \geq 2. \]

If \(r = 1 \), then \(LJ(L([\rho, \nu d^{-1} \rho])) = 0 \) since \(n \nmid d \). Therefore, we shall assume in the sequel
\[r \geq 2. \]

9.2. The following lemma is a modification of Lemma 4.1 of [T8].

Lemma. Suppose \(n \nmid d \). If the set
\[
X_r(n, d) = \{ w \in W'_r; \ n|(d + w(i) - i) \text{ for all } 0 \leq i \leq r - 1 \}
\]
\[
= \{ w \in W'_r; n|(d + i - w^{-1}(i)) \text{ for all } 0 \leq i \leq r - 1 \}
\]
is non-empty, then \(n|r \).

Proof. Suppose \(X_r(n, d) \neq \emptyset \). Clearly, identity is not in \(X_r(n, d) \) since \(n \nmid d \).

Take some \(w \in X_r(n, d) \). Note that for \(0 \leq i \leq r - 2 \), \(n|(d + w(i) - i) \) and \(n|(d + w(i + 1) - i - 1) \) imply \(n|(w(i) - w(i + 1) + 1) \) Suppose \(w(i) - w(i + 1) + 1 = 0 \) for all \(i \) as above. This implies \(w(1) = w(0) + 1, w(2) = w(0) + 2, \ldots, w(r - 2) = w(0) + r - 2 \), which implies \(w(0) = 1 \) (since \(w \) cannot be identity). This implies \(w(r - 1) = 0 \).

Since \(w \in X_r(n, d) \), we get \(n|(d + 1) \) and \(n|(d + w(r - 1) - (r - 1)) = (d + 1 - r) \). These two relations imply \(n|r \).

Therefore it remains to consider the case when
\[w(i) - w(i + 1) + 1 \neq 0 \]
for some \(0 \leq i \leq r - 2 \). If the above number is negative, then \(w(i) - w(i + 1) + 1 \leq -n \), which implies \(w(i) + n + 1 \leq w(i + 1) \). This implies \(n + 1 \leq r - 1 \). If the above number is positive, then \(n \leq w(i) - w(i + 1) + 1 \), which implies \(n \leq r \). Thus we have proved (up to now) that
\[n \leq r. \]

We have written \(r = an + b \) \(a, b \in \mathbb{Z}, \) \(0 \leq b \leq n - 1 \). We know \(a \geq 1 \).

Write
\[
d = cn + d', \quad c, d' \in \mathbb{Z},
\]
\[
1 \leq d' \leq n - 1 \quad (\leq r - 1)
\]
(since \(n \nmid d \)).
Since elements in \(X_r(n,d) \subseteq W'_r \) are bijections, then for each \(i \in \{0,1,\ldots,n-1\} \) it must hold

\[
\text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [0,r-1]) = \text{card}(\{i - d + kn; k \in \mathbb{Z}\} \cap [0,r-1]) = \text{card}(\{i - d' + kn; k \in \mathbb{Z}\} \cap [0,r-1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [d',d' + r - 1]).
\]

From the above relation we get

\[
\text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [0,d' - 1]) + \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [d',r - 1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [d',d' + r - 1]) + \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [r,d' + r - 1]).
\]

Thus for each \(i \in \{0,1,\ldots,n-1\} \) we have

\[
\text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [0,d' - 1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [r,d' + r - 1]).
\]

The last relation can be written as

\[
\text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [0,d' - 1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [an + b, an + b + d' - 1]).
\]

Therefore, for each \(i \in \{0,1,\ldots,n-1\} \)

\[
\text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [0,d' - 1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [b,b + d' - 1]),
\]

i.e.

\[
\text{card}(\{i\} \cap [0,d' - 1]) = \text{card}(\{i + kn; k \in \mathbb{Z}\} \cap [b,b + d' - 1]).
\]

Suppose \(b \geq 1 \). The above relation for \(i = d' - 1 \) implies \(b \leq d' - 1 \), and further \(b < d' \). The case \(i = d' \) implies \(d' < b \). This is a contradiction. The proof is now complete. \(\square \)

9.3. We shall need also the following lemma. It is a slight modification of Lemma 4.2 of [T8]. The proof is almost the same. Therefore, we omit it here.

Lemma. Suppose \(r = an \) (\(a \in \mathbb{Z}, a \geq 1 \)) and \(n \nmid d \). Then:

(i) \(W'_r(n)X_r(n,d)W'_r(n) = X_r(n,d) \).

(ii) \(X_r(n,d) \) normalizes \(W'_r(n) \).

(iii) For any \(w \in X_r(n,d) \) we have \(X_r(n,d) = wW'_r(n) = W'_r(n)w \).

(iv) Each \(i \in \{0,1,2,\ldots,r-1\} \) write \(i = s(i)n + t(i) \) where \(s(i), t(i) \in \mathbb{Z} \) and \(0 \leq t(i) \leq n - 1 \). Let \(d = cn + d' \), where \(c, d' \in \mathbb{Z}, 1 \leq d' \leq n - 1 \) (\(\leq r - 1 \)) \((d' \neq 0 \text{ since } n \nmid d \)). Define \(w_{(n,d)} \in W'_r \) by

\[
w_{(n,d)}(i) = \begin{cases}
i + (n - d'), & \text{if } t(i) \leq d' - 1; \\
i - d', & \text{if } t(i) \geq d'. \end{cases}
\]
Then \(w_{(n,d)} \in X_\tau(n,d) \) and \(\text{sgn}(w_{(n,d)}) = (-1)^{\frac{n}{d} (n-d')} = (-1)^{\frac{n}{d} (n-d)} \).

9.4. Denote as before

\[
\Pi = L(([\rho, \nu^{d-1}\rho], [\nu\rho, \nu^d\rho], \ldots, [\nu^{r-1}\rho, \nu^{r-1+d-1}\rho])).
\]

Now we shall compute in this case

\[
\text{LJ}(\Pi) = \text{LJ} \left(L(([\rho, \nu^{d-1}\rho], [\nu\rho, \nu^d\rho], \ldots, [\nu^{r-1}\rho, \nu^{r-1+d-1}\rho])) \right)
\]

\[
= \sum_{w \in W'_n} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} \text{LJ} \left(\delta([\nu^i \rho, \nu^{w(i)+(d-1)\rho}]) \right)
\]

\[
= \sum_{w \in X_\tau(n,d)} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} \text{LJ} \left(\delta([\nu^i \rho, \nu^{w(i)+(d-1)\rho}]) \right)
\]

\[
= (-1)^{\text{sgn}(w_{(n,d)})} \sum_{w \in W'_n(n)} (-1)^{\text{sgn}(w)} \prod_{i=0}^{r-1} \text{LJ} \left(\delta([\nu^i \rho, \nu^{w(i)+(d-1)\rho}]) \right)
\]

\[
= (-1)^{a(n-d)d} \sum_{w \in W'_n(n)} (-1)^{\text{sgn}(w)} \prod_{\ell=0}^{n-1} \prod_{j=0}^{a-1} \text{LJ} \left(\delta([\nu^{\ell+nj} \rho, \nu^{w_{(n,d)}(\ell+nj)+(d-1)\rho}]) \right)
\]

\[
= (-1)^{a(n-d)d} \sum_{w_0', \ldots, w_{n-1}' \in W'_n(n;0)} \prod_{\ell=0}^{n-1} (-1)^{\text{sgn}(w_\ell')} \left(\prod_{j=0}^{a-1} \text{LJ} \left(\delta([\nu^{\ell+nj} \rho, \nu^{w_{(n,d)}(\ell+nj)+(d-1)\rho}]) \right) \right)
\]

\[
= (-1)^{a(n-d)d} \sum_{w_0, \ldots, w_{n-1} \in W'_n} \prod_{\ell=0}^{n-1} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \text{LJ} \left(\delta([\nu^{\ell+nj} \rho, \nu^{w_{(n,d)}(\ell+nj)+(d-1)\rho}]) \right) \right)
\]

\[
= (-1)^{a(n-d)d} \sum_{w_0, \ldots, w_{n-1} \in W'_n} \prod_{\ell=0}^{d'-1} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \text{LJ} \left(\delta([\nu^{\ell+nj} \rho, \nu^{w_{(n,d)}(\ell+nj)+(d-1)\rho}]) \right) \right)
\]

\[
\times \prod_{\ell=d'}^{n-1} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \text{LJ} \left(\delta([\nu^{\ell+nj} \rho, \nu^{w_{(n,d)}(\ell+nj)+(d-1)\rho}]) \right) \right)
\]
\[
(-1)^{a(n-d)d} \sum_{w_0, \ldots, w_{n-1} \in W_a'} \prod_{\ell=0}^{d'-1} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \ell J \left(\delta([\nu^{\ell+j} \rho, \nu^{\ell+nw_\ell(j)}+(n-d')+(d-1)\rho]) \right) \right) \\
\times \prod_{\ell=d'}^{n-1} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \ell J \left(\delta([\nu^{\ell+j} \rho, \nu^{\ell+nw_\ell(j)}-d'+(d-1)\rho]) \right) \right)
\]

(we assume in sequel that \(\delta([\rho, \nu^{n-1}\rho])\) corresponds to \(\rho'\) under Jacquet-Langlands correspondence as in 6.2)

\[
(-1)^{a(n-d)d} \prod_{\ell=0}^{d'-1} \sum_{w_\ell \in W_a'} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \delta([\nu^{\ell+j} \rho', \nu^{\ell+nj \nu^w(j)}-j+c\rho']) \right) \\
\times \prod_{\ell=d'}^{n-1} \sum_{w_\ell \in W_a'} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \delta([\nu^{\ell+j} \rho', \nu^{\ell+nj \nu^w(j)}-j+c-1\rho']) \right)
\]

\[
(-1)^{a(n-d)d} \prod_{\ell=0}^{d'-1} \nu_{\rho'}^{\ell} \sum_{w_\ell \in W_a'} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \delta([\nu^j \rho', \nu^w_(j)+c\rho']) \right) \\
\times \prod_{\ell=d'}^{n-1} \nu_{\rho'}^\ell \sum_{w_\ell \in W_a'} (-1)^{\text{sgn}(w_\ell)} \left(\prod_{j=0}^{a-1} \delta([\nu^j \rho', \nu^w_(j)+c-1\rho']) \right)
\]

\[
(-1)^{a(n-d)d} \prod_{\ell=0}^{d'-1} \nu_{\rho'}^{\ell} L(([\rho', \nu^c \rho'], \ldots, [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c} \rho'])) \\
\times \prod_{\ell=d'}^{n-1} \nu_{\rho'}^{\ell} L(([\rho', \nu_{\rho'}^{c-1} \rho'], \ldots, [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c-1} \rho']))
\]

since \(a \leq c\), and then clearly \(a < c+1\) (note that we assume \(r \leq d\), i.e. \(an \leq cn + d'\), which implies \(an < cn\), i.e. \(a < c\); therefore in particular \(a \leq c\).
We have proved
\[
\text{LJ}(\Pi) = \text{LJ} \left(L([\rho, \nu^{d-1} \rho], ..., [\nu^{r-1} \rho, \nu^{r-1+d-1} \rho]) \right) \\
= (-1)^{a(n-d)} \prod_{\ell=0}^{d'-1} \nu_{\rho}^{(d'-1)\ell} L\left([\rho', \nu_{\rho'}^{c} \rho'], ..., [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c} \rho'] \right) \\
\times \left(\prod_{\ell=d'}^{n-1} \nu_{\rho}^{\ell} L\left([\rho', \nu_{\rho'}^{c} \rho'], ..., [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c} \rho'] \right) \right).
\]

9.5 Suppose now that \(\rho \) is unitary and that \(\rho'' \) corresponds to \(\delta(\rho, s_{\rho'}) = \delta(\rho, n) \) under Jacquet-Langlands correspondence (as at the beginning of 7.3). Then \(\rho'' \) is unitary and
\[
\rho'' = \nu_{\rho'}^{-\frac{n-1}{2n}} \rho', \quad \rho' = \nu_{\rho'}^{\frac{n-1}{2n}} \rho'', \quad \nu_{\rho'} = \nu_{\rho''}.
\]

Now (for \(n \nmid d \))
\[
\text{LJ}(L(a(r, d)(\rho))) = \text{LJ} \left(\nu^{-\frac{r+d}{2}+1} L([\rho, \nu^{d-1} \rho], ..., [\nu^{r-1} \rho, \nu^{r-1+d-1} \rho]) \right) \\
= (-1)^{a(n-d)} \nu^{-\frac{r+d}{2}+1} \prod_{\ell=0}^{d'-1} \nu_{\rho}^{(d'-1)\ell} L\left([\rho', \nu_{\rho'}^{c} \rho'], ..., [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c} \rho'] \right) \\
\times \left(\prod_{\ell=d'}^{n-1} \nu_{\rho}^{\ell} L\left([\rho', \nu_{\rho'}^{c} \rho'], ..., [\nu_{\rho'}^{a-1} \rho', \nu_{\rho'}^{a-1+c} \rho'] \right) \right) \\
= (-1)^{a(n-d)} \nu_{\rho'}^{\frac{a+c+\frac{n}{2}}{2}+\frac{1}{2}} \left(\prod_{\ell=0}^{d'-1} \nu_{\rho}^{\ell} L(a(a, c+1)(\rho')) \right) \\
\times \left(\prod_{\ell=d'}^{n-1} \nu_{\rho}^{\ell} L(a(a, c)(\rho')) \right) \\
= (-1)^{a(n-d)} \prod_{\ell=0}^{d'-1} \nu_{\rho'}^{\frac{2\ell-n-d+2}{2n}} L(a(a, c+1)(\rho')) \\
\times \prod_{\ell=d'}^{n-1} \nu_{\rho}^{\frac{2\ell-2n-d+2}{2n}} L(a(a, c)(\rho')) \\
= (-1)^{a(n-d)} \prod_{\ell=0}^{d'-1} \nu_{\rho'}^{\frac{2\ell-n-d+2}{2n}} L(a(a, c+1)(\nu_{\rho'}^{\frac{n-1}{2n}} \rho'')).
Therefore we have proved

Proposition. Suppose that (U0) holds. Assume $n \nmid d$, $n \mid r$ and $r \leq d$. Write

$$d = cn + d', \quad c, d \in \mathbb{Z}, \quad 1 \leq d' \leq n - 1.$$

Then

$$LJ(L(a(r, d)^{\rho})) = (-1)^{a(n-d)d}\text{string}_{\nu_{\rho''}}(d', n, L(a(r/n, c+1)^{\rho''}))$$

$$\times\text{string}_{\nu_{\rho''}}(n - d', n, L(a(r/n, c)^{\rho''})). \quad \Box$$

This can be also written as

$$= (-1)^{a(n-d)d}\text{string}_{\nu_{\rho''}}(d - [d/n]n, n, L(a(r/n, [d/n] + 1)^{\rho''}))$$

$$\times\text{string}_{\nu_{\rho''}}(([d/n] + 1)n - d, n, L(a(r/n, [d/n])^{\rho''})),$$

where $[x]$ denotes the greatest integer which does not exceed x.

10. Unitarity of Jacquet-Langlands correspondence of irreducible unitary representations II

10.1. Under assumptions of previous section, we shall first show in this section that $LJ(L(a(r, d)^{\rho}))$ is unitary (we assume ρ to be unitary). Then we shall show that

$$LJ(\nu^{\beta}(L(a(r, d)^{\rho})) \times \nu^{-\beta}(L(a(r, d)^{\rho})))$$

is unitary for $0 < \beta < 1/2$ (under same assumptions).
For unitarity of $LJ(L(a(r, d)^{(\rho)}))$, it is enough to show

$$0 \leq (d' - 1)/(2n) < 1/2$$

and

$$0 \leq (n - d' - 1)/(2n) < 1/2.$$

Both obviously hold (recall $1 \leq d' \leq n - 1$).

For the complementary series, we need to see that for $0 < \beta < 1/2$

$$0 \leq (d' - 1)/(2n) + \beta/n < 1/2$$

and

$$0 \leq (n - d' - 1)/(2n) + \beta/n < 1/2$$

(see section 9). This holds since $1 \leq d' \leq n - 1$ and $\beta < 1/2$.

11. Jacquet-Langlands correspondence in the unitary case, the remaining cases

11.1. It remains to compute $LJ(L(a(d, r)^{(\rho)}))$ in the case $d \geq r$. Since by Theorem 3.17 of [Ba2], LJ and t commute up to a sign, we have

$$LJ(L(a(d, r)^{(\rho)})) = LJ(L(a(r, d)^{(\rho)})^t) = \pm LJ(L(a(r, d)^{(\rho)}))^t$$

So, we can apply our previous calculations. We have two cases.

If $r \leq d, \ n|d, \ r = an + b, \ a, b \in \mathbb{Z}, \ 0 \leq b \leq n - 1, \ 1 \leq n,$

then

$$LJ(L(a(d, r)^{(\rho)})) = \pm LJ(L(a(r, d)^{(\rho)})^t) = \pm \text{string}_{\nu''}(b, n, L(a(d/n, a + 1)^{(\rho''})) \times \text{string}_{\nu''}(\min(n, r) - b, n, L(a(d/n, a)^{(\rho''}))).$$

If $n \nmid d, \ n|r, \ r \leq d, \ d = cn + d', \ c, d \in \mathbb{Z}, \ 1 \leq d' \leq n - 1,$

then

$$LJ(L(a(d, r)^{(\rho)})) = \pm LJ(L(a(r, d)^{(\rho)}))^t = \pm (-1)^{a(n-d)d}\text{string}_{\nu''}(d', n, L(a(c+1, r/n)^{(\rho''})) \times \text{string}_{\nu''}(n - d', n, L(a(c, r/n)^{(\rho''}))).$$

Note that here unitarity is also preserved by sections 8 and 10, since the involution preserves the unitarity (we assume (U0) to hold as before).

One can compute the exact sign in the above two formulas using Theorem 3.7 of [Ba2] (note that our involutions differ up to a sign with the ones used in [Ba2]).
References

Department of Mathematics, University of Zagreb, Blijenička 30, 10000 Zagreb, Croatia

E-mail address: tadic@math.hr