Higher Recursion in Computable Structure Theory.

Antonio Montalbán

University of California, Berkeley

Workshop on Higher Recursion Theory
IMS – NUS – Singapore
May 2019
Summary

1. Π^1_1-ness and ordinals
2. Hyperarithmeticity
3. When hyperarithmetic is recursive
4. Overspill
5. A structure equivalent to its own jump
Part I

1. Π^1_1-ness and ordinals
2. Hyperarithmeticy
3. When hyperarithmetical is recursive
4. Overspill
5. A structure equivalent to its own jump
Ordinals

0, 1, 2, ...,
Ordinals

0, 1, 2, ..., ω,
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1,$
Ordinals

0, 1, 2, ..., \(\omega \), \(\omega + 1 \), \(\omega + 2 \), ...,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω
Ordinals

0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2, ...,
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots, \omega 3,$
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ...,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
..., ω · ω =
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega 2,$
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega 2, \ldots \omega 3$
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega 2, \ldots, \omega^3, \ldots, \omega^4, \ldots$
Ordinals

0, 1, 2, ..., \(\omega \), \(\omega + 1 \), \(\omega + 2 \), ..., \(\omega + \omega = \omega^2 \), \(\omega^2 + 1 \), \(\omega^2 + 2 \) ..., \(\omega^3 \), ..., \(\omega^4 \), ..., \(\omega^\omega \),
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
...
ω · ω = ω2, ..., ω3, ..., ω4, ..., ωω, ..., ωωω.
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
,..., ω · ω = ω2, ..., ω3, ..., ω4, ..., ωω, ..., ωωω, ...
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ..., ω·ω = ω², ..., ω³, ..., ω⁴, ... ω², ..., ω³, ..., ω⁴, ... ωω, ... ωωω, ...
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
ω · ω = ω2, ..., ω3, ..., ω4, ..., ωω, ..., ωωω, ...

Definition:
A linear ordering (A; ≤) is well-ordered if every subset has a least element.

An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:
A is isomorphic to an initial segment of B
B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2, ..., ω³, ..., ω⁴, ..., ω · ω = ω², ..., ω³, ..., ω⁴, ..., ωω, ..., ωωω, ...
Ordinals

0, 1, 2, ..., \(\omega \), \(\omega + 1 \), \(\omega + 2 \), ..., \(\omega + \omega = \omega^2 \), \(\omega^2 + 1 \), \(\omega^2 + 2 \), ..., \(\omega^3 \), ..., \(\omega^4 \), ..., \(\omega \cdot \omega = \omega^2 \), ..., \(\omega^3 \), ..., \(\omega^4 \), ..., \(\omega^\omega \), ..., \(\omega^{\omega^\omega} \),
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ...

ω · ω = ω², ..., ω³, ..., ω⁴, ..., ωω, ..., ωωω,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
ω · ω = ω2, ... ω3, ..., ω4, ... ωω, ... ωωω,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ...
...
ω · ω = ω², ... ω³, ..., ω⁴, ... ωω, ... ωωω,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
ω · ω = ω2, ... ω3, ..., ω4, ... ωω, ... ωωω,
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...

ω · ω = ω2, ..., ω3, ..., ω4, ..., ωω, ..., ωωω,

Definition: A linear ordering \((A; \leq A)\) is well-ordered if every subset has a least element. An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings \(A\) and \(B\), one of the following holds:

- \(A\) is isomorphic to an initial segment of \(B\)
- \(B\) is isomorphic to an initial segment of \(A\)

The class of ordinals is itself well-ordered by embeddability.
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
ω · ω = ω2, ... ω3, ..., ω4, ... ωω, ... ωωω,
Ordinals

0, 1, 2, ..., \(\omega\), \(\omega + 1\), \(\omega + 2\), ..., \(\omega + \omega = \omega 2\), \(\omega 2 + 1\), \(\omega 2 + 2\) ..., \(\omega 3\), ..., \(\omega 4\), ...

\(\omega \cdot \omega = \omega^2\), ...

\(\omega^3\), ..., \(\omega^4\), ..., \(\omega^\omega\), ..., \(\omega^{\omega^\omega}\),
Ordinals

$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega ^ 2, \ldots, \omega ^ 3, \ldots, \omega ^ 4, \ldots, \omega ^ \omega, \ldots, \omega ^ {\omega ^ \omega}, \ldots$
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ...
ω · ω = ω², ..., ω³, ..., ω⁴, ..., ωω, ..., ωωω, ..

Definition:
A linear ordering \((A; \leq A)\) is well-ordered if every subset has a least element.

An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings \(A\) and \(B\), one of the following holds:

- \(A\) is isomorphic to an initial segment of \(B\)
- \(B\) is isomorphic to an initial segment of \(A\)

The class of ordinals is itself well-ordered by embeddability.
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ...
ω · ω = ω², ... ω³, ..., ω⁴, ... ωω, ..., ωωω, ..
Ordinals

\[0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega^2, \ldots, \omega^3, \ldots, \omega^4, \ldots, \omega^\omega, \ldots, \omega^{\omega^\omega}, \ldots \]
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω², ω² + 1, ω² + 2 ..., ω³, ..., ω⁴, ..., ω · ω = ω², ..., ω³, ..., ω⁴, ... ω⁵, ... ωω, ... ωωω, ..
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
..., ω · ω = ω², ..., ω³, ..., ω⁴, ..., ω⁵, ..., ωω, ..., ωωω, ...
Ordinals

\[0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2 \ldots, \omega 3, \ldots, \omega 4, \ldots, \omega \cdot \omega = \omega 2, \ldots \omega 3, \ldots, \omega 4, \ldots \omega ^{\omega}, \ldots \omega ^{\omega ^{\omega}}, \ldots \]

Definition:
A linear ordering \((A; \leq_A)\) is *well-ordered* if every subset has a least element.
Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4, ...
ω · ω = ω2, ..., ω3, ..., ω4, ..., ωω, ..., ωωω, ..

Definition:
A linear ordering \((A; \leq_A)\) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.
Definition:
A linear ordering \((A; \leq_A)\) is **well-ordered** if every subset has a least element.
An **ordinal** is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings \(A\) and \(B\), one of the following holds:
- \(A\) is isomorphic to an initial segment of \(B\)
- \(B\) is isomorphic to an initial segment of \(A\)
Ordinals

0, 1, 2, ..., \(\omega \), \(\omega + 1 \), \(\omega + 2 \), ..., \(\omega + \omega = \omega 2 \), \(\omega 2 + 1 \), \(\omega 2 + 2 \), ..., \(\omega 3 \), ..., \(\omega 4 \), ..., \(\omega \cdot \omega = \omega 2 \), ..., \(\omega 3 \), ..., \(\omega 4 \), ..., \(\omega ^{\omega} \), ..., \(\omega ^{\omega \omega} \), ...

Definition:
A linear ordering \((A; \leq_A)\) is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings \(A\) and \(B\), one of the following holds:
- \(A\) is isomorphic to an initial segment of \(B\)
- \(B\) is isomorphic to an initial segment of \(A\)

The class of ordinals is itself well-ordered by embeddability.
A Π^1_1 formula is one of the form $\forall f \in \mathbb{N} \phi(f)$, where ϕ is arithmetic.

Theorem: Consider $S \subseteq \mathbb{N}$. S is $\Pi^1_1 \iff$ there is a computable list of linear orders L_e such that $e \in S \leftrightarrow L_e$ is well-ordered.

The key notion connecting Π^1_1-ness and well-orders is well-founded trees.
\(\Pi^1_1 \)-ness and Well-Orders

Definition

A \(\Pi^1_1 \) formula is one of the form \(\forall f \in \mathbb{N}^\mathbb{N} \varphi(f) \), where \(\varphi \) is arithmetic.
Definition

A Π^1_1 formula is one of the form $\forall f \in \mathbb{N}^\mathbb{N} \varphi(f)$, where φ is arithmetic.

Theorem: Consider $S \subseteq \mathbb{N}$.

S is Π^1_1 \iff there is a computable list of linear orders \mathcal{L}_e such that $e \in S \iff \mathcal{L}_e$ is well-ordered.
\(\Pi^1_1 \)-ness and Well-Orders

Definition

A \(\Pi^1_1 \) formula is one of the form \(\forall f \in \mathbb{N}^\mathbb{N} \ \varphi(f) \), where \(\varphi \) is arithmetic.

Theorem: Consider \(S \subseteq \mathbb{N} \).

\(S \) is \(\Pi^1_1 \) \iff there is a computable list of linear orders \(L_e \) such that \(e \in S \leftrightarrow L_e \) is well-ordered.

The key notion connecting \(\Pi^1_1 \)-ness and well-orders is well-founded trees.
Well-founded trees

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded if it has no infinite paths.
Well-founded trees

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is **well-founded** if it has no infinite paths.

Definition: Let the **rank** of a tree be defined by transfinite recursion:

$$
\text{rk}(T) = \sup_{n \in \mathbb{N}} (\text{rk}(T_n) + 1),
$$

where $T_n = \{\sigma \in \mathbb{N}^{<\omega} : n \vdash \sigma \in T\}$.

If T is ill-founded, let $\text{rk}(T) = \infty$.

The rank function is NOT a computable function.

Lemma: Given trees S and T,

$$
\text{rk}(S) \leq \text{rk}(T) \iff \text{there is an } \mathrel{\subseteq} -\text{preserving embedding } S \to T.
$$
Well-founded trees

Definition: A tree \(T \subseteq \mathbb{N}^{<\omega} \) is well-founded if it has no infinite paths.

Definition: Let the rank of a tree be defined by transfinite recursion:

\[
\text{rk}(T) = \sup_{n \in \mathbb{N}} (\text{rk}(T_n) + 1),
\]

where \(T_n = \{ \sigma \in \mathbb{N}^{<\omega} : n \upharpoonright \sigma \in T \} \).

If \(T \) is ill-founded, let \(\text{rk}(T) = \infty \).
Well-founded trees

Definition: A tree $T \subseteq \mathbb{N}^{<\omega}$ is **well-founded** if it has no infinite paths.

Definition: Let the **rank** of a tree be defined by transfinite recursion:

$$\text{rk}(T) = \sup_{n \in \mathbb{N}} (\text{rk}(T_n) + 1),$$

where $T_n = \{\sigma \in \mathbb{N}^{<\omega} : n \triangleleft \sigma \in T\}$.

If T is ill-founded, let $\text{rk}(T) = \infty$.

The rank function is **NOT** a computable function.

Lemma: Given trees S and T,

$$\text{rk}(S) \leq \text{rk}(T) \iff \text{there is an } \subseteq\text{-preserving embedding } S \rightarrow T.$$
From linear orderings to trees

Definition: Given a linear ordering $L = (L; \leq_L)$, define the tree of descending sequences:

$$T_L = \{ \langle \ell_0, \ldots, \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Obs: L is well-ordered \iff T_L is well-founded.

Furthermore, if L is well-ordered, $\text{rk}(T_L) \sim = L$.

Corollary: Deciding if a linear ordering is WO, is as hard as deciding if a tree is WF.
Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the tree of descending sequences:

$$T_L = \{ \langle \ell_0, \ldots, \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$
From linear orderings to trees

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the tree of descending sequences:

$$T_{\mathcal{L}} = \{\langle \ell_0, \ldots, \ell_k \rangle \in L^{<\omega} : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k\}.$$

Obs: \mathcal{L} is well-ordered $\iff T_{\mathcal{L}}$ is well-founded.
From linear orderings to trees

Definition: Given a linear ordering $\mathcal{L} = (L; \leq_L)$, define the *tree of descending sequences*:

$$T_{\mathcal{L}} = \{ \langle \ell_0, \ldots, \ell_k \rangle \in L^\omega : \ell_0 >_L \ell_1 >_L \cdots >_L \ell_k \}.$$

Obs: \mathcal{L} is well-ordered \iff $T_{\mathcal{L}}$ is well-founded.

Furthermore, if \mathcal{L} is well-ordered, $\text{rk}(T_{\mathcal{L}}) \cong \mathcal{L}$.

Antonio Montalbán (U.C. Berkeley)
Higher Recursion and computable structures
May 2019 7 / 50
From linear orderings to trees

Definition: Given a linear ordering \(\mathcal{L} = (L; \leq_L) \), define the tree of descending sequences:

\[
T_\mathcal{L} = \{ \langle \ell_0, \ldots, \ell_k \rangle \in L^{<\omega} : \ell_0 \succ_L \ell_1 \succ_L \cdots \succ_L \ell_k \}.
\]

Obs: \(\mathcal{L} \) is well-ordered \(\iff \) \(T_\mathcal{L} \) is well-founded.

Furthermore, if \(\mathcal{L} \) is well-ordered, \(\text{rk}(T_\mathcal{L}) \cong \mathcal{L} \).

Corollary: Deciding if a linear ordering is WO, is as hard as deciding if a tree is WF.
The Kleene-Brower ordering on $\mathbb{N}^{<\omega}$ is defined as follows: $\sigma \leq_{\text{KB}} \tau \iff \sigma \supseteq \tau \lor \exists i (\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i))$.

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{\text{KB}})$ is well-ordered.

Lemma: $\text{rk}(T) + 1 \leq (T; \leq_{\text{KB}}) \leq \omega \text{rk}(T) + 1$.

Corollary: Deciding if a tree is WF, is as hard as deciding if linear ordering is WO.
From trees to linear orderings

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{KB} \tau \iff \sigma \supseteq \tau \lor \exists i \left(\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i) \right).$$
From trees to linear orderings

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{KB} \tau \iff \sigma \supseteq \tau \lor \exists i \left(\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i) \right).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{KB})$ is well-ordered.
From trees to linear orderings

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{KB} \tau \iff \sigma \supseteq \tau \lor \exists i \left(\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i) \right).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{KB})$ is well-ordered.

Lemma: $\text{rk}(T) + 1 \leq (T; \leq_{KB}) \leq \omega^{\text{rk}(T)} + 1$.
From trees to linear orderings

The *Kleene-Brower* ordering on $\mathbb{N}^{<\omega}$ is defined as follows:

$$\sigma \leq_{KB} \tau \iff \sigma \supseteq \tau \lor \exists i \left(\sigma \upharpoonright i = \tau \upharpoonright i \land \sigma(i) < \tau(i) \right).$$

Obs: A tree $T \subseteq \mathbb{N}^{<\omega}$ is well-founded $\iff (T; \leq_{KB})$ is well-ordered.

Lemma: $\text{rk}(T) + 1 \leq (T; \leq_{KB}) \leq \omega^{\text{rk}(T)} + 1$.

Corollary: Deciding if a tree is WF,

is as hard as deciding if linear ordering is WO.
Kleene’s \mathcal{O}

Definition

Kleene’s \mathcal{O} is the set of indices e of computable well-orders.
Kleene’s \mathcal{O}

Definition
Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem
Kleene’s \mathcal{O} is Π^1_1-complete.
Kleene’s \mathcal{O}

Definition

Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:
Kleene’s \mathcal{O}

Definition
Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem
Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:
- Every Σ^1_1 formula $\varphi(n)$ is equivalent to
 $$\exists f \in \mathbb{N}^\mathbb{N} \; \theta(f, n)$$
 where θ is Π^{0}_1.

Kleene’s \mathcal{O}

Definition
Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem
Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:
- Every Σ^1_1 formula $\varphi(n)$ is equivalent to
 \[\exists f \in \mathbb{N}^\mathbb{N} \; \theta(f, n)\] where θ is Π^0_1.
- For a Π^0_1 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
Kleene’s \mathcal{O}

Definition

Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:

- Every Σ^1_1 formula $\varphi(n)$ is equivalent to
 $$\exists f \in \mathbb{N}^\mathbb{N} \; \theta(f, n) \text{ where } \theta \text{ is } \Pi^0_1.$$
- For a Π^0_1 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π^0_1 formula $\theta(f, n)$, there is computable sequence of trees T_n such that
 $$\theta(f, n) \iff f \in [T_n].$$
Kleene’s \mathcal{O}

Definition

Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:

- Every Σ^1_1 formula $\varphi(n)$ is equivalent to $\exists f \in \mathbb{N}^\mathbb{N} \theta(f, n)$ where θ is Π^1_0.
- For a Π^1_0 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π^1_0 formula $\theta(f, n)$, there is a computable sequence of trees T_n such that $\theta(f, n) \iff f \in [T_n]$.
- If $S \subseteq \mathbb{N}$ is Π^1_1 and definable by $\neg \varphi(n)$, then $n \in S \iff T_n$ has no paths.
Kleene’s \mathcal{O}

Definition
Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:

- Every Σ^1_1 formula $\varphi(n)$ is equivalent to
 $$\exists f \in \mathbb{N}^\mathbb{N} \ \theta(f, n)$$
 where θ is Π^0_1.
- For a Π^0_1 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π^0_1 formula $\theta(f, n)$, there is computable sequence of trees T_n such that $\theta(f, n) \iff f \in [T_n]$.
- If $S \subseteq \mathbb{N}$ is Π^1_1 and definable by $\neg \varphi(n)$, then
 $$n \in S \iff T_n \text{ has no paths} \iff (T_n; \leq_{KB}) \text{ is well-ordered}$$
Kleene’s \mathcal{O}

Definition

Kleene’s \mathcal{O} is the set of indices e of computable well-orders.

Theorem

Kleene’s \mathcal{O} is Π^1_1-complete.

Proof:

- Every Σ^1_1 formula $\varphi(n)$ is equivalent to
 \[\exists f \in \mathbb{N}^\mathbb{N} \; \theta(f, n) \text{ where } \theta \text{ is } \Pi^0_1. \]
- For a Π^1_1 formula $\theta(f)$, there is a computable tree T with $\theta(f) \iff f \in [T]$.
- For a Π^0_1 formula $\theta(f, n)$, there is computable sequence of trees T_n such that $\theta(f, n) \iff f \in [T_n]$.
- If $S \subseteq \mathbb{N}$ is Π^1_1 and definable by $\neg \varphi(n)$, then
 \[n \in S \iff T_n \text{ has no paths} \iff (T_n; \leq_{KB}) \text{ is well-ordered} \iff \text{index}(T_n; \leq_{KB}) \in \mathcal{O}. \]
An ordinal α is **computable** if

there is a computable $\leq A \subseteq \omega^2$ with $\alpha \cong (\omega; \leq A)$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω_{CK} be the least non-computable ordinal.

Obs: Kleene’s Ω can compute a copy of ω_{CK}:

$\omega_{CK} \cong = \sum_{e \in \Omega} L_e$ where L_e is the linear ordering with index e.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures May 2019 10 / 50
An ordinal α is \textit{computable} if there is a computable $\leq_A \subseteq \omega^2$ with $\alpha \approx (\omega; \leq_A)$.

\textbf{Obs: } The computable ordinals are closed downwards.
Omega-one-Church-Kleene

An ordinal α is "computable" if

there is a computable $\leq_\mathcal{A} \subseteq \omega^2$ with $\alpha \simeq (\omega; \leq_\mathcal{A})$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω^1_{CK} be the least non-computable ordinal.
An ordinal \(\alpha \) is \textit{computable} if there is a computable \(\leq_A \subseteq \omega^2 \) with \(\alpha \cong (\omega; \leq_A) \).

\textbf{Obs:} The computable ordinals are closed downwards.

\textbf{Definition:} Let \(\omega_1^{CK} \) be the least non-computable ordinal.

\textbf{Obs:} Kleene’s \(O \) can compute a copy of \(\omega_1^{CK} \):
An ordinal α is **computable** if
there is a computable $\leq_A \subseteq \omega^2$ with $\alpha \simeq (\omega; \leq_A)$.

Obs: The computable ordinals are closed downwards.

Definition: Let ω_1^{CK} be the least non-computable ordinal.

Obs: Kleene’s O can compute a copy of ω_1^{CK}:

$$\omega_1^{CK} \simeq \sum_{e \in O} L_e$$

where L_e is the linear ordering with index e.
Theorem: Let $A \subset \mathcal{O}$ be Σ^1_1. There is an ordinal $\alpha < \omega_1^{CK}$ such that $L_e < \alpha$ for all $e \in A$.

Σ^1_1-bounding
\[\Sigma^1_1 \text{-bounding} \]

Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \). There is an ordinal \(\alpha < \omega^{CK}_1 \) such that \(\mathcal{L}_e < \alpha \) for all \(e \in A \).

Proof:
Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \).
There is an ordinal \(\alpha < \omega_1^{CK} \) such that \(\mathcal{L}_e < \alpha \) for all \(e \in A \).

Proof:
- Define \(* \)-operation on trees satisfying \(\text{rk}(T * S) = \min(\text{rk}(T), \text{rk}(S)) \).
Theorem: Let $A \subseteq \mathcal{O}$ be Σ^1_1. There is an ordinal $\alpha < \omega^{	ext{CK}}_1$ such that $L_e < \alpha$ for all $e \in A$.

Proof:
- Define \ast-operation on trees satisfying $\text{rk}(T \ast S) = \min(\text{rk}(T), \text{rk}(S))$.
- Let $\{S_n\}_{n \in \mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \text{rk}(S_n) = \infty$.
Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \).

There is an ordinal \(\alpha < \omega_1^{CK} \) such that \(\mathcal{L}_e < \alpha \) for all \(e \in A \).

Proof:

- Define \(* \)-operation on trees satisfying \(\text{rk}(T \ast S) = \min(\text{rk}(T), \text{rk}(S)) \).
- Let \(\{S_n\}_{n \in \mathbb{N}} \) be a computable sequence of trees s.t. \(n \in A \iff \text{rk}(S_n) = \infty \).
- Define \(\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} \ast S_n; \leq_{KB}) \).
Theorem: Let $A \subset \mathcal{O}$ be Σ^1_1.
There is an ordinal $\alpha < \omega^\text{CK}_1$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:
- Define \ast-operation on trees satisfying $\text{rk}(T \ast S) = \text{min}(\text{rk}(T), \text{rk}(S))$.
- Let $\{S_n\}_{n \in \mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \text{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}}(T_{\mathcal{L}_e} \ast S_n; \leq_{KB})$.

Theorem: Let $\mathcal{A} \subset 2^\mathbb{N}$ be a Σ^1_1 set of well-orderings of \mathbb{N}.
There is an ordinal $\alpha < \omega^\text{CK}_1$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathcal{A}$.
\[\Sigma^1_1 \text{-bounding} \]

Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \). There is an ordinal \(\alpha < \omega^1_{CK} \) such that \(L_e < \alpha \) for all \(e \in A \).

Proof:

- Define \(* \)-operation on trees satisfying \(\text{rk}(T * S) = \min(\text{rk}(T), \text{rk}(S)) \).
- Let \(\{S_n\}_{n \in \mathbb{N}} \) be a computable sequence of trees s.t. \(n \in A \iff \text{rk}(S_n) = \infty \).
- Define \(\alpha = \sum_{n \in \mathbb{N}} (T_{L_e} * S_n; \leq_{KB}) \).

Theorem: Let \(\mathcal{A} \subset 2^\mathbb{N} \) be a \(\Sigma^1_1 \) set of well-orderings of \(\mathbb{N} \). There is an ordinal \(\alpha < \omega^1_{CK} \) such that all \(L < \alpha \) for all \(L \in \mathcal{A} \).

Proof:
Theorem: Let $A \subset \mathcal{O}$ be Σ^1_1. There is an ordinal $\alpha < \omega_{1}^{CK}$ such that $\mathcal{L}_e < \alpha$ for all $e \in A$.

Proof:
- Define \ast-operation on trees satisfying $\text{rk}(T \ast S) = \min(\text{rk}(T), \text{rk}(S))$.
- Let $\{S_n\}_{n \in \mathbb{N}}$ be a computable sequence of trees s.t. $n \in A \iff \text{rk}(S_n) = \infty$.
- Define $\alpha = \sum_{n \in \mathbb{N}}(T_{\mathcal{L}_e} \ast S_n; \leq_{KB})$.

Theorem: Let $\mathcal{A} \subset 2^{\mathbb{N}}$ be a Σ^1_1 set of well-orderings of \mathbb{N}. There is an ordinal $\alpha < \omega_{1}^{CK}$ such that all $\mathcal{L} < \alpha$ for all $\mathcal{L} \in \mathcal{A}$.

Proof: Let $A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathcal{A}) \mathcal{L}_e \preceq \mathcal{L}\}$.
Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \). There is an ordinal \(\alpha < \omega_1^{CK} \) such that \(\mathcal{L}_e < \alpha \) for all \(e \in A \).

Proof:
- Define \(\ast \)-operation on trees satisfying \(\text{rk}(T \ast S) = \min(\text{rk}(T), \text{rk}(S)) \).
- Let \(\{S_n\}_{n \in \mathbb{N}} \) be a computable sequence of trees s.t. \(n \in A \iff \text{rk}(S_n) = \infty \).
- Define \(\alpha = \sum_{n \in \mathbb{N}} (T_{\mathcal{L}_e} \ast S_n; \leq_{KB}) \).

Theorem: Let \(\mathcal{A} \subset 2^\mathbb{N} \) be a \(\Sigma^1_1 \) set of well-orderings of \(\mathbb{N} \). There is an ordinal \(\alpha < \omega_1^{CK} \) such that all \(\mathcal{L} < \alpha \) for all \(\mathcal{L} \in \mathcal{A} \).

Proof: Let \(A = \{e \in \mathbb{N} : (\exists \mathcal{L} \in \mathcal{A}) \mathcal{L}_e \preceq \mathcal{L}\} \).
\(A \) is \(\Sigma^1_1 \) and \(A \subseteq \mathcal{O} \).
Theorem: Let \(A \subset \mathcal{O} \) be \(\Sigma^1_1 \). There is an ordinal \(\alpha < \omega^{	ext{CK}}_1 \) such that \(L_e < \alpha \) for all \(e \in A \).

Proof:
- Define \(\ast \)-operation on trees satisfying \(\text{rk}(T \ast S) = \min(\text{rk}(T), \text{rk}(S)) \).
- Let \(\{S_n\}_{n \in \mathbb{N}} \) be a computable sequence of trees s.t. \(n \in A \iff \text{rk}(S_n) = \infty \).
- Define \(\alpha = \sum_{n \in \mathbb{N}} (T_{L_e} \ast S_n; \leq_{KB}) \).

Theorem: Let \(\mathcal{A} \subset 2^\mathbb{N} \) be a \(\Sigma^1_1 \) set of well-orderings of \(\mathbb{N} \). There is an ordinal \(\alpha < \omega^{	ext{CK}}_1 \) such that all \(L < \alpha \) for all \(L \in \mathcal{A} \).

Proof: Let \(A = \{e \in \mathbb{N} : (\exists L \in \mathcal{A}) L_e \preceq L\} \).
\(A \) is \(\Sigma^1_1 \) and \(A \subseteq \mathcal{O} \). Let \(\alpha < \omega^{	ext{CK}}_1 \) be a bound for \(A \).
Σ₁¹-bounding

Theorem: Let \(A \subset O \) be \(\Sigma_1^{1} \). There is an ordinal \(\alpha < \omega_1^{CK} \) such that \(L_e < \alpha \) for all \(e \in A \).

Proof:
- Define \(*\)-operation on trees satisfying \(\text{rk}(T * S) = \min(\text{rk}(T), \text{rk}(S)) \).
- Let \(\{S_n\}_{n \in \mathbb{N}} \) be a computable sequence of trees s.t. \(n \in A \iff \text{rk}(S_n) = \infty \).
- Define \(\alpha = \sum_{n \in \mathbb{N}} (T_{L_e} * S_n; \leq_{KB}) \).

Theorem: Let \(\mathcal{A} \subset 2^{\mathbb{N}} \) be a \(\Sigma_1^{1} \) set of well-orderings of \(\mathbb{N} \). There is an ordinal \(\alpha < \omega_1^{CK} \) such that all \(L \in \mathcal{A} \) with \(L < \alpha \).

Proof: Let \(A = \{ e \in \mathbb{N} : (\exists L \in \mathcal{A}) L_e \preceq L \} \).
\(A \) is \(\Sigma_1^{1} \) and \(A \subset O \). Let \(\alpha < \omega_1^{CK} \) be a bound for \(A \). Then \(\alpha \) is a bound for \(\mathcal{A} \) too.
A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.
Δ^1_1 sets

A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega^*_1$, let $O(\leq \alpha)$ be the set of indices of computable ordinals $\leq \alpha$.

\[\]
\(\Delta^1_1 \) sets

A set is \(\Delta^1_1 \) if it is both \(\Pi^1_1 \) and \(\Sigma^1_1 \).

For \(\alpha < \omega^\text{CK}_1 \), let \(O(\leq \alpha) \) be the set of indices of computable ordinals \(\leq \alpha \).

Observation: \(O(\leq \alpha) \) is \(\Delta^1_1 \).
Δ^1_1 sets

A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega_1^{CK}$, let $O_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O_{(\leq \alpha)}$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.
Δ_1^1 sets

A set is Δ_1^1 if it is both Π_1^1 and Σ_1^1.

For $\alpha < \omega_1^{CK}$, let $O(\leq \alpha)$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O(\leq \alpha)$ is Δ_1^1.

Σ_1^1-bounding: If $A \subseteq O$ is Σ_1^1, then $A \subseteq O(\leq \alpha)$ for some $\alpha < \omega_1^{CK}$.

Theorem: $A \subseteq \omega$ is Δ_1^1 \iff $A \leq_m O(\leq \alpha)$ for some $\alpha < \omega_1^{CK}$.
Δ^1_1 sets

A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega^\text{CK}_1$, let $O_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O_{(\leq \alpha)}$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O_{(\leq \alpha)}$ for some $\alpha < \omega^\text{CK}_1$.

Theorem: $A \subseteq \omega$ is Δ^1_1 \iff $A \leq_m O_{(\leq \alpha)}$ for some $\alpha < \omega^\text{CK}_1$.

Proof: (\leq)
Δ₁¹ sets

A set is Δ₁¹ if it is both Π₁¹ and Σ₁¹.

For \(\alpha < \omega₁^{CK} \), let \(\mathcal{O}(\leq \alpha) \) be the set of indices of computable ordinals \(\leq \alpha \).

Observation: \(\mathcal{O}(\leq \alpha) \) is Δ₁¹.

Σ₁¹-bounding: If \(A \subseteq \mathcal{O} \) is Σ₁¹, then \(A \subseteq \mathcal{O}(\leq \alpha) \) for some \(\alpha < \omega₁^{CK} \).

Theorem: \(A \subseteq \omega \) is Δ₁¹ \(\iff \) \(A \leq_m \mathcal{O}(\leq \alpha) \) for some \(\alpha < \omega₁^{CK} \).

Proof: (≤) Both Π₁¹ sets and Σ₁¹ sets are closed downward under \(\leq_m \).
Δ^1_1 sets

A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega^\text{CK}_1$, let $O(\leq \alpha)$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O(\leq \alpha)$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O(\leq \alpha)$ for some $\alpha < \omega^\text{CK}_1$.

Theorem: $A \subseteq \omega$ is Δ^1_1 if and only if $A \leq_m O(\leq \alpha)$ for some $\alpha < \omega^\text{CK}_1$.

Proof: (\Leftarrow) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m.

(\Rightarrow)
A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega_1^{CK}$, let $O_{(\leq \alpha)}$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O_{(\leq \alpha)}$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Theorem: $A \subseteq \omega$ is Δ^1_1 \iff $A \leq_m O_{(\leq \alpha)}$ for some $\alpha < \omega_1^{CK}$.

Proof: (\leq) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m.

(\Rightarrow) Let $f : A \leq_m O$.
\(\Delta^1_1\) sets

A set is \(\Delta^1_1\) if it is both \(\Pi^1_1\) and \(\Sigma^1_1\).

For \(\alpha < \omega^\text{CK}_1\), let \(O(\leq \alpha)\) be the set of indices of computable ordinals \(\leq \alpha\).

Observation: \(O(\leq \alpha)\) is \(\Delta^1_1\).

\(\Sigma^1_1\)-bounding: If \(A \subseteq O\) is \(\Sigma^1_1\), then \(A \subseteq O(\leq \alpha)\) for some \(\alpha < \omega^\text{CK}_1\).

Theorem: \(A \subseteq \omega\) is \(\Delta^1_1\) \iff \(A \leq_m O(\leq \alpha)\) for some \(\alpha < \omega^\text{CK}_1\).

Proof:
(\(\leq\)) Both \(\Pi^1_1\) sets and \(\Sigma^1_1\) sets are closed downward under \(\leq_m\).
(\(\Rightarrow\)) Let \(f : A \leq_m O\). Since \(A\) is \(\Sigma^1_1\), so is \(f[A] \subseteq O\).
A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega^1_{CK}$, let $O(\leq \alpha)$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O(\leq \alpha)$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O(\leq \alpha)$ for some $\alpha < \omega^1_{CK}$.

Theorem: $A \subseteq \omega$ is Δ^1_1 \iff $A \leq_m O(\leq \alpha)$ for some $\alpha < \omega^1_{CK}$.

Proof: (\leq) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m.

(=>) Let $f : A \leq_m O$. Since A is Σ^1_1, so is $f[A] \subseteq O$.

Let $\alpha < \omega^1_{CK}$ be a bound for $f[A]$.
A set is Δ^1_1 if it is both Π^1_1 and Σ^1_1.

For $\alpha < \omega^{CK}_1$, let $O(\leq \alpha)$ be the set of indices of computable ordinals $\leq \alpha$.

Observation: $O(\leq \alpha)$ is Δ^1_1.

Σ^1_1-bounding: If $A \subseteq O$ is Σ^1_1, then $A \subseteq O(\leq \alpha)$ for some $\alpha < \omega^{CK}_1$.

Theorem: $A \subseteq \omega$ is $\Delta^1_1 \iff A \leq_m O(\leq \alpha)$ for some $\alpha < \omega^{CK}_1$.

Proof: (\leq) Both Π^1_1 sets and Σ^1_1 sets are closed downward under \leq_m.

(\Rightarrow) Let $f : A \leq_m O$. Since A is Σ^1_1, so is $f[A] \subseteq O$.

Let $\alpha < \omega^{CK}_1$ be a bound for $f[A]$. Then $f : A \leq_m O(\leq \alpha)$.
Finding paths through trees

Observation: \mathcal{O} can compute paths through any computable tree.
Finding paths through trees

Observation: \mathcal{O} can compute paths through any computable tree.

Lemma: Every non-empty Σ^1_1 class of reals has a member $\leq_T \mathcal{O}$.
Observation: \(\mathcal{O} \) can compute paths through any computable tree.

Lemma: Every non-empty \(\Sigma^1_1 \) class of reals has a member \(\leq_T \mathcal{O} \).

Theorem (Spector-Gandy)

Every non-empty \(\Sigma^1_1 \) class of reals has a member \(\leq_T \mathcal{O} \) and low for \(\omega_1 \)

..., where a real \(X \) is low for \(\omega_1 \) if \(\omega_1^X = \omega_1^{CK} \).
Part II

1. Π^1_1-ness and ordinals
2. Hyperarithmeticy
3. When hyperarithmetical is recursive
4. Overspill
5. A structure equivalent to its own jump
Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set \(A \subseteq \mathbb{N} \) is arithmetic if it is definable in \(\mathbb{N} \) by a first-order formula of arithmetic.

\[
A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) = \varphi(n) \}.
\]

The following are equivalent:

- \(A \) is arithmetic
- \(A \) is computable in \(0^n \) for some \(n \)
- \(A \) is \(\leq^m O(\leq^\omega n) \) for some \(n \)
Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.
Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set $A \subseteq \mathbb{N}$ is *arithmetic* if it is definable in \mathbb{N} by a first-order formula of arithmetic.

$$A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.$$
Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set \(A \subseteq \mathbb{N} \) is *arithmetic* if it is definable in \(\mathbb{N} \) by a first-order formula of arithmetic.

\[
A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.
\]

The following are equivalent:

- \(A \) is arithmetic
- \(A \) is computable in \(0^{(n)} \) for some \(n \),
Arithmetic sets

Vocabulary of arithmetic: 0, 1, +, ×, ≤.

Definition: A set $A \subseteq \mathbb{N}$ is *arithmetic* if it is definable in \mathbb{N} by a first-order formula of arithmetic.

$$A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.$$

The following are equivalent:

- A is arithmetic
- A is computable in $0^{(n)}$ for some n,
- A is $\leq_m O(\leq \omega^n)$ for some n
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

In a group $G = (G; e, \ast)$:
Infinitary 1st-order formulas

In 1st-order languages, \(\forall \) and \(\exists \) range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: \(\text{torsion}(x) \equiv \)

In a group \(\mathcal{G} = (G; e, \ast) \):
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: \[torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e), \]

In a group $G = (G; e, \ast)$:
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e),$$

In a group $G = (G; e, \ast)$:

$$\text{divisible}(x) \equiv$$
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e)$, $n \text{ times}$.

In a group $G = (G; e, \ast)$: $\text{divisible}(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \ast y \ast y \ast \cdots \ast y = x)$.
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e)$,

In a group $G = (G; e, \ast)$: $\text{divisible}(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \ast y \ast y \ast \cdots \ast y = x)$,

Theorem: [Scott 65] For every countable structure \mathcal{A}, there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C}, $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.
Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e),$$

In a group $G = (G; e, \ast)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \ast y \ast y \ast \cdots \ast y = x),$$

Theorem: [Scott 65] For every countable structure \mathcal{A}, there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C}, $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{ \bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b}) \}$.
Depths of infinitary formulas

We count alternations of \exists and \lor versus \forall and \land.
Depths of infinitary formulas

We count alternations of \exists and \lor versus \forall and \land.

A Σ^in_n formula is one of the form:

$$\lor_{i_0 \in \mathbb{N}} \exists \bar{y}_0 \land_{i_1 \in \mathbb{N}} \forall \bar{y}_1 \lor_{i_2 \in \mathbb{N}} \exists \bar{y}_2 \land_{i_3 \in \mathbb{N}} \forall \bar{y}_3 \cdots \left(\psi_{i_0, i_1, \ldots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_n) \right)$$

n alternations

finitary, quantifier free
Depths of infinitary formulas

We count alternations of \exists and \lor versus \forall and \land.

A Π^∞_n formula is one of the form:

$$\bigwedge_{i_0 \in \mathbb{N}} \forall \bar{y}_0 \lor \bigvee_{i_1 \in \mathbb{N}} \exists \bar{y}_1 \land \bigwedge_{i_2 \in \mathbb{N}} \forall \bar{y}_2 \lor \bigvee_{i_3 \in \mathbb{N}} \exists \bar{y}_3 \cdots \left(\psi_{i_0, i_1, \ldots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_n) \right)$$

n alternations

finitary, quantifier free
Depths of infinitary formulas

We count alternations of \exists and \lor versus \forall and \land.

A Π^∞_n formula is one of the form:

$$\land_{i_0 \in \mathbb{N}} \forall \bar{y}_0 \lor_{i_1 \in \mathbb{N}} \exists \bar{y}_1 \land_{i_2 \in \mathbb{N}} \forall \bar{y}_2 \lor_{i_3 \in \mathbb{N}} \exists \bar{y}_3 \cdots \left(\psi_{i_0, i_1, \ldots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_n) \right)$$

n alternations

finitary, quantifier free

A Σ^∞_α formula is one of the form:

$$\lor_{i \in \mathbb{N}} \exists \bar{y} \left(\psi_i(\bar{x}, \bar{y}) \right)$$

Π^∞_β for $\beta < \alpha$
Depths of infinitary formulas

We count alternations of \exists and \lor versus \forall and \land.

A Π^∞_n formula is one of the form:

$$\bigwedge_{i_0 \in \mathbb{N}} \forall \bar{y}_0 \lor \bigvee_{i_1 \in \mathbb{N}} \exists \bar{y}_1 \land \bigwedge_{i_2 \in \mathbb{N}} \forall \bar{y}_2 \lor \bigvee_{i_3 \in \mathbb{N}} \exists \bar{y}_3 \cdots \left(\psi_{i_0, i_1, \ldots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_n) \right)$$

n alternations

finitary, quantifier free

A Π^∞_β formula is one of the form:

$$\bigwedge_{i \in \mathbb{N}} \forall \bar{y} \left(\varphi_i(\bar{x}, \bar{y}) \right)$$

Σ^∞_γ for $\gamma < \beta$
Computable infinitary formulas

Definition: An infinitary formula is computable if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example: \(\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e) \),

In a group \(G = (G; e, \ast) \):
\(\text{divisible}(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \ast \cdots \ast y = x) \),

We use \(Lc^\omega \) to denote the set of computably infinitary formulas.
Definition: An infinitary formula is *computable* if
Definition: An infinitary formula is *computable* if it has a computable tree representation.
Computable infinitary formulas

Definition: An infinitary formula is *computable* if it has a computable tree representation.

Equivalently, if

\[\text{torsion} \left(x\right) \equiv \bigvee_{n \in \mathbb{N}} x \cdot x \cdot x \cdot \ldots \cdot x = e, \]

In a group \(G = (G; e, \ast) \):

\[\text{divisible} \left(x\right) \equiv \bigwedge_{n \in \mathbb{N}} \exists y \left(y \cdot y \cdot y \cdot \ldots \cdot y = x\right), \]

We use \(L_{c, \omega} \) to denote the set of computably infinitary formulas.
Computable infinitary formulas

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.
Computable infinitary formulas

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

In a group $G = (G; e, \cdot)$:

- *Divisible* (x) $\equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \cdot y \cdot \ldots \cdot y = x)$.

We use Lc_ω to denote the set of computably infinitary formulas.
Computable infinitary formulas

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

\[\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} \left(x \ast x \ast x \ast \cdots \ast x = e \right), \]

In a group \(G = (G; e, \ast) \):

\[\text{divisible}(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y \left(y \ast y \ast y \ast \cdots \ast y = x \right), \]
Computable infinitary formulas

Definition: An infinitary formula is *computable* if it has a computable tree representation. Equivalently, if the infinitary conjunctions and disjunctions are of computable lists of formulas.

Example:

\[\text{torsion}(x) \equiv \bigvee_{n \in \mathbb{N}} (x \ast x \ast x \ast \cdots \ast x = e), \]

In a group \(G = (G; e, \ast) \):

\[\text{divisible}(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y \ast y \ast y \ast \cdots \ast y = x), \]

We use \(L_{c,\omega} \) to denote the set of computably infinitary formulas.
more examples

Example: There is a $\Pi_{2^{\alpha+1}}^c$ formula ψ_α such that, on a partial ordering \mathcal{P},

$$\mathcal{P} \models \psi_\alpha(a) \iff \text{rk}_\mathcal{P}(a) \leq \alpha.$$
Example: There is a $\Pi^c_{2\alpha+1}$ formula ψ_α such that, on a partial ordering \mathcal{P},

$$\mathcal{P} \models \psi_\alpha(a) \iff \text{rk}_\mathcal{P}(a) \leq \alpha.$$

The formula is built by transfinite recursion:

$$\psi_\alpha(x) \equiv \forall y < x \biguplus_{\gamma < \beta} \psi_\gamma(y).$$
more examples

Example: There is a $\Pi^c_{2\alpha+1}$ formula ψ_α such that, on a partial ordering \mathcal{P},

$$\mathcal{P} \models \psi_\alpha(a) \iff \text{rk}_\mathcal{P}(a) \leq \alpha.$$

The formula is built by transfinite recursion:

$$\psi_\alpha(x) \equiv \forall y < x \bigvee_{\gamma < \beta} \psi_\gamma(y).$$

Example: There is a $\Sigma^c_{2\alpha+1}$ sentence φ_{ω^α} such that, for a linear ordering \mathcal{L},

$$\mathcal{L} \models \varphi_{\omega^\alpha} \iff \mathcal{L} \leq \omega^\alpha.$$
Hyperarithmetic sets

Definition: A set $A \subseteq \mathbb{N}$ is hyperarithmetic if
it is definable by an infinitary computable formula $\varphi(x)$.

$$A = \{ n \in \mathbb{N} : (\mathbb{N}; 0, 1, +, \times, \leq) \models \varphi(n) \}.$$
Hyperarithmetic sets

Definition: A set $A \subseteq \mathbb{N}$ is *hyperarithmetic* if it is definable by an infinitary computable formula $\varphi(x)$.

$$A = \{ n \in \mathbb{N} : \mathbf{N; 0, 1, +, \times, \leq} \models \varphi(n) \}. $$

Theorem: Let $A \subseteq \mathbb{N}$. The following are equivalent:

- A is definable by a $\mathcal{L}_{c,\omega}$ formula
- There is a computable list $\{\varphi_n : n \in \mathbb{N}\}$ of $\mathcal{L}_{c,\omega}$ sentences over the empty vocabulary $\{\top, \bot\}$ such that $A = \{ n \in \mathbb{N} : \models \varphi_n \}$.
Observation Deciding if “$\mathcal{M} \models \varphi$” for φ infinitary is Σ^1_1:

There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ^1_1.

Given a computable list $\{M_e : e \in \mathbb{N}\}$ and a $\mathcal{L}_{\omega \omega}$-sentence φ, $\{n : M_n \models \varphi\}$ is hyperarithmetic.

Corollary: $\mathcal{O}(\leq \alpha)$ is hyperarithmetic.

Theorem: [Kleene] Let $A \subseteq \omega$. The following are equivalent:

1. A is hyperarithmetic
2. A is Δ^1_1
3. $A \leq_m O(\leq \alpha)$ for some $\alpha < \omega_{CK}$
Observation Deciding if \(\mathcal{M} \models \varphi \) for \(\varphi \) infinitary is \(\Sigma^1_1 \):

There is a valid truth-assignment to the sub-formulas making \(\varphi \) true.
Hyp and Δ^1_1

Observation Deciding if “$\mathcal{M} \models \varphi$” for φ infinitary is Σ^1_1:
There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ^1_1.
Hyp and Δ^1_1

Observation Deciding if “$\mathcal{M} \models \varphi$” for φ infinitary is Σ^1_1: There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ^1_1.

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}$ and a $\mathcal{L}_{c,\omega}$-sentence φ, $\{n : \mathcal{M}_n \models \varphi\}$ is hyperarithmetic.
Hyp and Δ^1_1

Observation Deciding if “$\mathcal{M} \models \varphi$” for φ infinitary is Σ^1_1:
There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ^1_1.

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}$ and a $\mathcal{L}_{c,\omega}$-sentence φ, $\{n : \mathcal{M}_n \models \varphi\}$ is hyperarithmetic.

Corollary: $\mathcal{O}(\leq \alpha)$ is hyperarithmetic.
Hyp and Δ^1_1

Observation: Deciding if $\mathcal{M} \models \varphi$ for φ infinitary is Σ^1_1:
There is a valid truth-assignment to the sub-formulas making φ true.

Corollary: Hyperarithmetic sets are Δ^1_1.

Given a computable list $\{\mathcal{M}_e : e \in \mathbb{N}\}$ and a $\mathcal{L}_{c,\omega}$-sentence φ, $\{n : \mathcal{M}_n \models \varphi\}$ is hyperarithmetic.

Corollary: $\mathcal{O}_{(\leq \alpha)}$ is hyperarithmetic.

Theorem: [Kleene] Let $A \subseteq \omega$. The following are equivalent:

- A is hyperarithmetic
- A is Δ^1_1
- $A \leq_m \mathcal{O}_{(\leq \alpha)}$ for some $\alpha < \omega^c_{1CK}$
Let L be a well-ordering with domain $\subseteq \mathbb{N}$.

Definition: A jump hierarchy on L is a set $H \subseteq L \times \mathbb{N}$ such that $H[\ell] = (H[<\ell])'$, where $X[\ell] = \{x : (\ell, x) \in X\}$ and $X[<\ell] = \{(k, x) : k < L\ell \land (k, x) \in X\}$.

Obs: For every well-ordering L, there is a unique jump hierarchy on it.
Transfinite iterations of the Turing jump

Let \mathcal{L} be a well-ordering with domain $\subseteq \mathbb{N}$.

Definition: A *jump hierarchy* on \mathcal{L} is a set $H \subseteq \mathcal{L} \times \mathbb{N}$ such that

$$H^{[\ell]} = (H^{[<\ell]})',$$

where $X^{[\ell]} = \{x : (\ell, x) \in X\}$ and $X^{[<\ell]} = \{(k, x) : k <_{\mathcal{L}} \ell \text{ and } (k, x) \in X\}$.
Transfinite iterations of the Turing jump

Let \mathcal{L} be a well-ordering with domain $\subseteq \mathbb{N}$.

Definition: A *jump hierarchy* on \mathcal{L} is a set $H \subseteq \mathcal{L} \times \mathbb{N}$ such that

$$H^{[\ell]} = (H^{[<\ell]})',$$

where $X^{[\ell]} = \{x : (\ell, x) \in X\}$ and $X^{[<\ell]} = \{(k, x) : k \prec \mathcal{L} \ell \& (k, x) \in X\}$.

Obs: For every well-ordering \mathcal{L} there is a unique jump hierarchy on it.
Theorem: Suppose α and β are different presentations of the same ordinal. Let H_{α} and H_{β} be the jump hierarchies on them. Then $H_{\alpha} \equiv_T H_{\beta}$.

Pf: Show that there is an isomorphism $\alpha \rightarrow \beta$ computable in both H_{α} and H_{β}.
Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal. Let H_α and H_β be the jump hierarchies on them. Then $H_\alpha \equiv_T H_\beta$.

Pf: Show that there is an isomorphism $\alpha \to \beta$ computable in both H_α and H_β.

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.
Theorem: Suppose α and β are different presentations of the same ordinal. Let H_α and H_β be the jump hierarchies on them. Then $H_\alpha \equiv_T H_\beta$.

Pf: Show that there is an isomorphism $\alpha \rightarrow \beta$ computable in both H_α and H_β.

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.

Theorem: For $n \in \mathbb{N}$: $O_{(<\omega^n)} \equiv_T 0^{(2n)}$.
Different presentations

Theorem: Suppose α and β are different presentations of the same ordinal. Let H_α and H_β be the jump hierarchies on them. Then $H_\alpha \equiv_T H_\beta$.

Pf: Show that there is an isomorphism $\alpha \rightarrow \beta$ computable in both H_α and H_β.

We now can define the Turing degree $0^{(\alpha)}$ for computable $\alpha < \omega_1^{CK}$.

Theorem: For $n \in \mathbb{N}$: $O_{(<\omega^n)} \equiv_T 0^{(2n)}$.

For $\alpha \in \omega_1^{CK} \setminus \mathbb{N}$: $O_{(<\omega^\alpha)} \equiv_T 0^{(2\alpha+1)}$.
Part III

1. Π^1_1-ness and ordinals
2. Hyperarithmeticity
3. When hyperarithmetic is recursive
4. Overspill
5. A structure equivalent to its own jump
Every hyperarithmetic well-ordering is computable

Consider $E = \{ e : \leq^A \}

Then there is a bound $\alpha < \omega_{\text{CK}}$ for E. Then $A \leq^A \alpha$.

Theorem: If an infinitary formula has a hyperarithmetic representation, it is equivalent to a computable infinitary formula.
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $A = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof:
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : L_e \preceq A\}$.
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $A = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : L_e \preceq A\}$. E is Σ^1_1
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $A = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : \mathcal{L}_e \preceq A\}$. E is Σ^1_1 and $E \subseteq \mathcal{O}$.
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : L_e \preceq A\}$. E is Σ^1_1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega_1^{CK}$ for E.
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_A \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $\mathcal{A} = (\omega; \leq_A)$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{ e : L_e \preceq A \}$. E is Σ^1_1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega^1_{CK}$ for E. Then $\mathcal{A} \preceq \alpha$.
Every hyperarithmetic well-ordering is computable

Theorem: [Spector 55] If $\leq_{\mathcal{A}} \subseteq \omega^2$ is a hyperarithmetic well-ordering of ω, then $\mathcal{A} = (\omega; \leq_{\mathcal{A}})$ is isomorphic to a computable well-ordering.

Proof: Consider $E = \{e : L_e \preceq \mathcal{A}\}$. E is Σ^1_1 and $E \subseteq \mathcal{O}$. Then there is a bound $\alpha < \omega^{ck}_1$ for E. Then $\mathcal{A} \preceq \alpha$.

Theorem: If an infinitary formula has a hyperarithmetic representation it is equivalent to a computable infinitary formula.
A generalization to Linear orderings

Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.
A generalization to Linear orderings

Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:

Finally, we build a computable map from invariants to linear orderings.
A generalization to Linear orderings

Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem: If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.
Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability.
A generalization to Linear orderings

Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability.
We produce bi-embeddability invariants for linear orderings given by finite trees with ordinal labels.
Theorem ([M. 05])

Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: The theorem generalizes Spector’s theorem:
If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver’s theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability.
We produce bi-embeddability invariants for linear orderings given by finite trees with ordinal labels. Finally, we build a computable map from invariants to linear orderings.
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71].
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups. Hyperarithmetic groups have Ulm rank $\leq \omega_1^{CK}$.
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups.

Hyperarithmetic groups have Ulm rank $\leq \omega_1^{CK}$. If the Ulm rank is $< \omega_1^{CK}$ use the computable operator.
Another similar behavior

Theorem ([Greenberg-M. 05])

Every hyperarithmetic abelian torsion group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. The bi-embeddability invariants are finite sequences of ordinals, and we also have a computable operator from invariants to groups. Hyperarithmetic groups have Ulm rank $\leq \omega_1^{CK}$. If the Ulm rank is $< \omega_1^{CK}$ use the computable operator. If the Ulm rank is ω_1^{CK}, we need to show their divisible part must be isomorphic to \mathbb{Q}^∞, and hence they are bi-embeddable with \mathbb{Q}^∞.
Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.
Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught’s conjecture* if
Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught’s conjecture* if it has uncountably but not perfectly many countable models.
Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every $L_{\omega_1,\omega}$ sentence has either countably or 2^\aleph_0 many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught’s conjecture* if it has uncountably but not perfectly many countable models.

Theorem ([M. 12])
Let T be an $L_{\omega_1,\omega}$ sentence with uncountably many models. TFAE
- T is a counterexample to Vaught’s conjecture.
- Relative to every oracle on a cone, every hyperarithmetic model of T is isomorphic to a computable one,
Counterexample to Vaught’s conjecture

Vaught’s conjecture:
Every $L_{\omega_1,\omega}$ sentence has either countably or 2^{\aleph_0} many countable models.

Def: An $L_{\omega_1,\omega}$ sentence is a *counterexample to Vaught’s conjecture* if it has uncountably but not perfectly many countable models.

Theorem ([M. 12])
Let T be an $L_{\omega_1,\omega}$ sentence with uncountably many models. TFAE

- T is a counterexample to Vaught’s conjecture.
- Relative to every oracle on a cone, every hyperarithmetic model of T is isomorphic to a computable one.

By “relative to every oracle on a cone”
we mean “$(\exists Y \in 2^\omega)(\forall X \geq_T Y)$ the following holds relativized to Y.”
Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2^ω satisfies \textit{hyperarithmetic-is-recursive} if every hyperarithmetic real is E-equivalent to a computable one.
Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2^ω satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught’s conjecture when relativized;

Obs:
All the equivalence relations above are Σ_1^1. If we let the reals not in the class be equivalent, they are Σ_1^1-equivalence relations on 2^ω.

Def:
E satisfies hyperarithmetic-is-recursive trivially if every real is E-equivalent to a computable one.
Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2^ω satisfies \textit{hyperarithmetic-is-recursive} if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
\begin{itemize}
 \item isomorphism on well-orderings;
 \item bi-embeddability on linear orderings;
 \item bi-embeddability on torsion abelian groups;
 \item isomorphism on models of a counterexample to Vaught’s conjecture when relativized;
 \item $X \equiv Y \iff \omega_1^X = \omega_1^Y$.
\end{itemize}
Hyperarithmetic-is-recursive

Definition

An equivalence class E on 2^ω satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught’s conjecture when relativized;

$X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ^1_1.
Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2^ω satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught’s conjecture when relativized;

- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ^1_1.

If we let the reals not in the class be equivalent, they are Σ^1_1-equivalence relations on 2^ω.
Hyperarithmetic-is-recursive

Definition
An equivalence class E on 2^ω satisfies \emph{hyperarithmetic-is-recursive} if every hyperarithmetic real is E-equivalent to a computable one.

Examples:
- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught’s conjecture when relativized;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Obs: All the equivalence relations above are Σ^1_1.
If we let the reals not in the class be equivalent, they are Σ^1_1-equivalence relations on 2^ω.

Def: E satisfies hyperarithmetic-is-recursive \emph{trivially} if every real is E-equivalent to a computable one.
The question

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?
Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:

If E is Σ^1_1 and we define $X F Y \iff (X E Y) \lor (\omega_1^X = \omega_1^Y = \omega_1^{CK})$, then the transitive closure of F is Σ^1_1 and satisfies hyperarithmetic-is-recursive.
The question

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples:
If E is Σ^1_1 and we define X F $Y \iff (X \ E \ Y) \lor (\omega^X_1 = \omega^Y_1 = \omega^{CK}_1)$, then the transitive closure of F is Σ^1_1 and satisfies hyperarithmetic-is-recursive.

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive on a cone?
Martin’s measure

Def: A *cone* is a set of the form \(\{ X \in 2^\mathbb{N} : X \geq_T Y \} \) for some \(Y \in 2^\mathbb{N} \).
Martin’s measure

Def: A *cone* is a set of the form \(\{ X \in 2^\mathbb{N} : X \geq_T Y \} \) for some \(Y \in 2^\mathbb{N} \).

Thm: [Martin] \((0^\# \text{ exists})\)

Every \(\Sigma^1_1 \) degree-invariant \(A \subseteq 2^\mathbb{N} \) either contains or is disjoint from a cone.

Obs: Since in computability theory most proofs relativize:

For “natural” \(E \), \(E \) satisfies hyperarithmetic-is-recursive if, \((\exists Y)(\forall X \geq_T Y)\), every \(X \)-hyperarithmetic real is \(E \)-equivalent to an \(X \)-computable one.

\(\quad\)
Martin’s measure

Def: A cone is a set of the form \(\{ X \in 2^\mathbb{N} : X \geq_T Y \} \) for some \(Y \in 2^\mathbb{N} \).

Thm:[Martin] (\(0^\# \) exists) Every \(\Sigma^1_1 \) degree-invariant \(A \subseteq 2^\mathbb{N} \) either contains or is disjoint from a cone.

Def: A degree-invariant \(A \subseteq 2^\mathbb{N} \) has Martin measure 1 if it contains a cone, and Martin measure 0 if it doesn’t.
Martin’s measure

Def: A cone is a set of the form \(\{ X \in 2^\mathbb{N} : X \geq_T Y \} \) for some \(Y \in 2^\mathbb{N} \).

Thm: [Martin] (0\(^\#\) exists)
Every \(\Sigma^1_1 \) degree-invariant \(A \subseteq 2^\mathbb{N} \) either contains or is disjoint from a cone.

Def: A degree-invariant \(A \subseteq 2^\mathbb{N} \) has Martin measure 1 if it contains a cone, and Martin measure 0 if it doesn’t.

Def: \(E \) satisfies hyperarithmetical-is-recursive on a cone if,
\[
(\exists Y)(\forall X \geq_T Y),
\]
every \(X \)-hyperarithmetical real is \(E \)-equivalent to an \(X \)-computable one.
Martin’s measure

Def: A *cone* is a set of the form $\{ X \in 2^\mathbb{N} : X \geq_T Y \}$ for some $Y \in 2^\mathbb{N}$.

Thm: [Martin] (0$^#$ exists)
Every Σ^1_1 degree-invariant $A \subseteq 2^\mathbb{N}$ either contains or is disjoint from a cone.

Def: A degree-invariant $A \subseteq 2^\mathbb{N}$ *has Martin measure 1* if it contains a cone, and *Martin measure 0* if it doesn’t.

Def: E satisfies *hyperarithmetic-is-recursive on a cone* if,

$$(\exists Y)(\forall X \geq_T Y),$$

every X-hyperarithmetic real is E-equivalent to an X-computable one.

Obs: Since in computability theory most proofs relativize:
For “natural” E,

E satisfies *hyperarithmetic-is-recursive* \iff it does on a cone.
A sufficient condition: a first attempt

Def: For $K \subseteq 2^\omega$, (K, ϖ, r) is a ranked equivalence relation if ϖ is an equivalence relation on K, and $r: K/\varpi \to 2^\omega$.

Def: (K, ϖ, r) is scattered if r is 1-scattered for each ϖ_i contains countably many equivalence classes.

Def: (K, ϖ, r) is projective if K and ϖ are projective and r has a projective presentation.

Theorem (M. ZFC+PD) Let (K, ϖ, r) be scattered projective ranked equivalence relation such that $8\alpha\in 2^\omega$, $r(\alpha) < \omega_1$.

For every X on a cone, (i.e. $9\exists Y : X \subseteq T_Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If $f: 2^\omega \to 2^\omega$ is projective and $f(X) < \omega_1$, then f is constant on a cone.

Antonio Montalbán (U.C. Berkeley) When hyperarithmetic is recursive Sept. 2012 15 / 28

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures May 2019 32 / 50
A sufficient condition: a first attempt

A sufficient condition for hyp-is-rec.

Def: For $\mathbb{K} \subseteq 2^\omega$, (\mathbb{K}, \equiv, r) is a **ranked equivalence relation** if

\equiv is an equivalence relation on \mathbb{K}, and $r: \mathbb{K}/\equiv \to \omega_1$.

Def: (\mathbb{K}, \equiv, r) is **scattered** if

$r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: (\mathbb{K}, \equiv, r) is **projective** if

\mathbb{K} and \equiv are projective and r has a projective presentation $2^\omega \to 2^\omega$.

Theorem ([M.] (ZFC+PD))

Let (\mathbb{K}, \equiv, r) be scattered projective ranked equivalence relation

such that $\forall Z \in \mathbb{K}$, $r(Z) < \omega_1^Z$.

For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class

with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If $f: 2^\omega \to \omega_1$ is projective and $f(X) < \omega_1^X$,

then f is constant on a cone.
The main theorem

Theorem ([M. 13] (ZFC + (0♯ exists) + ¬CH))

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE
The main theorem

Theorem ([M. 13] (ZFC + (0♯ exists) + ¬CH))

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies **hyperarithmetic-is-recursive** on a cone non-trivially.
The main theorem

Theorem ([M. 13] (ZFC + (0♯ exists) + ¬CH))

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies *hyperarithmetic-is-recursive* on a cone non-trivially.
2. E has \aleph_1 many equivalence classes.
The main theorem

Theorem ([M. 13] (ZFC + (0♯ exists) + ¬CH)

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
2. E has \aleph_1 many equivalence classes.

This theorem applies to all the examples mentioned before.

Examples:
- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught’s conjecture;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.
The \negCH assumption.
The \negCH assumption.

Theorem: [Burgess 78] Let E be Σ^1_1-equivalence relation on 2^ω.
Either E has perfectly many classes, or it has at most \aleph_1 many classes.

Recall: E has *perfectly many classes* if there is a perfect tree all whose paths are E-inequivalent.
The \negCH assumption.

Theorem: [Burgess 78] Let E be Σ^1_1-equivalence relation on 2^ω.
Either E has perfectly many classes, or it has at most \aleph_1 many classes.

Recall: E has *perfectly many classes* if there is a perfect tree all whose paths are E-inequivalent.

**Theorem ([M. 13] (ZFC + (0$^\#$ exists)))

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE
The \negCH assumption.

Theorem: [Burgess 78] Let E be Σ^1_1-equivalence relation on 2^ω. Either E has perfectly many classes, or it has at most \aleph_1 many classes.

Recall: E has *perfectly many classes* if there is a perfect tree all whose paths are E-inequivalent.

Theorem ([M. 13] (ZFC + (0$\# \text{ exists})])

Let E be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies *hyperarithmetic-is-recursive on a cone*.
The \(\neg \text{CH} \) assumption.

Theorem: [Burgess 78] Let \(E \) be \(\Sigma^1_1 \)-equivalence relation on \(2^\omega \).

Either \(E \) has perfectly many classes, or it has at most \(\aleph_1 \) many classes.

Recall: \(E \) has *perfectly many classes* if there is a perfect tree all whose paths are \(E \)-inequivalent.

Theorem ([M. 13] (ZFC + (0\(^\#\) exists))

Let \(E \) be a \(\Sigma^1_1 \)-equivalence relation on \(2^\omega \). TFAE

1. \(E \) satisfies *hyperarithmetic-is-recursive* on a cone.
2. \(E \) does not have perfectly many equivalence classes.
The sharp assumption

Def: \(S \subseteq 2^\omega \) is **cofinal** \((\text{in the Turing degrees})\) if \(\forall Y \exists X \geq_T Y \ (X \in S) \).
The sharp assumption

Def: $S \subseteq 2^\omega$ is **cofinal (in the Turing degrees)** if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Thm: [Martin]$(0^\# \text{ exists})$. If S is degree invariant and cofinal, it contains a cone.
The sharp assumption

Def: \(S \subseteq 2^\omega \) is *cofinal (in the Turing degrees)* if \(\forall Y \exists X \geq_T Y \ (X \in S) \).

Thm: [Martin](0^# exists). If \(S \) is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \(\mathcal{E} \) be a \(\Sigma^1_1 \)-equivalence relation on \(2^\omega \). TFAE
The sharp assumption

Def: \(S \subseteq 2^\omega \) is **cofinal** (in the Turing degrees) if \(\forall Y \exists X \geq_T Y \ (X \in S) \).

Thm: [Martin](0^{#} exists). If \(S \) is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \(E \) be a \(\Sigma_1^1 \)-equivalence relation on \(2^\omega \). TFAE

1. \(E \) satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
The sharp assumption

Def: $S \subseteq 2^\omega$ is **cofinal (in the Turing degrees)** if $\forall Y \, \exists X \geq_T Y \ (X \in S)$.

Thm: [Martin]($0^\#$ exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \mathcal{E} be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
2. E does not have perfectly many equivalence classes.
The sharp assumption

Def: $S \subseteq 2^\omega$ is **cofinal (in the Turing degrees)** if $\forall Y \exists X \geq_T Y$ ($X \in S$).

Thm: [Martin](0# exists). If S is degree invariant and cofinal, it contains a cone.

Theorem ([M. 13] (ZF))

Let \mathcal{E} be a Σ^1_1-equivalence relation on 2^ω. TFAE

1. E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
2. E does not have perfectly many equivalence classes.
The sharp assumption is necessary for “on a cone” version
The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF.

1. Every Σ^1_1-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

2. $0^\#$ exists.
The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF.

1. Every Σ^1_1-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

2. $0^#$ exists.

The key result in this proof is:

Thm:[Sami 99] Let $S = \{ Y \in 2^\omega : \exists Z (\forall W \leq_{hyp} Z (W \leq_T Y) \& \omega_1^Z = \omega_1^Y) \}$. If S contains a cone, then $0^#$ exists.
The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF.

1. Every Σ^1_1-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

2. $0^#$ exists.

The key result in this proof is:

Thm:[Sami 99] Let $S = \{ Y \in 2^\omega : \exists Z (\forall W \leq_{hyp} Z (W \leq_T Y) \& \omega^Z_1 = \omega^Y_1) \}$. If S contains a cone, then $0^#$ exists.

The proof of our result uses the following equivalence: $X \equiv Y$ iff

- X and Y are code structures $L^\alpha(A)$ and $L^\beta(B)$ with $\alpha = \beta$ and $\omega^A_1 = \omega^B_1$,
- or neither X nor Y are presentations of the form $L^\alpha(A)$ for $\alpha \in \omega_1$, $A \in 2^\omega$.
The sharp assumption is necessary for “on a cone” version

Theorem ([M. 13])

The following are equivalent over ZF.

1. Every Σ^1_1-equivalence relation without perfectly many classes satisfies hyperarithmetic-is-recursive on a cone.

2. $0^#$ exists.

The key result in this proof is:

Thm:[Sami 99] Let $S = \{ Y \in 2^\omega : \exists Z \ (\forall W \leq_{hyp} Z \ (W \leq_T Y) \ & \ \omega^Z_1 = \omega^Y_1 \}$. If S contains a cone, then $0^#$ exists.

The proof of our result uses the following equivalence: $X \equiv Y$ iff

- X and Y are code structures $L_\alpha(A)$ and $L_\beta(B)$ with $\alpha = \beta$ and $\omega^A_1 = \omega^B_1$,
- or neither X nor Y are presentations of the form $L_\alpha(A)$ for $\alpha \in \omega_1$, $A \in 2^\omega$.

It then uses Barwise compactness to put us in the hypothesis of Sami’s theorem:
Part IV

1. Π^1_1-ness and ordinals
2. Hyperarithmeticy
3. When hyperarithmetic is recursive
4. Overspill
5. A structure equivalent to its own jump
Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof:
Theorem

There is a computable ill-founded liner ordering with a jump hierarchy.

Proof: Let \(J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } L_e \} \) where \(L_e \) is eth comp. LO.
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let \(J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e \} \) where \(\mathcal{L}_e \) is eth comp. LO. \(J \) is \(\Sigma^1_1 \)
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let $J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e \}$ where \mathcal{L}_e is the eth computable LO. J is Σ^1_1 and $J \subseteq O$.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures May 2019 38 / 50
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let \(J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } L_e \} \) where \(L_e \) is \(e \)-th comp. LO. \(J \) is \(\Sigma^1_1 \) and \(J \subseteq O \). But \(O \) not \(\Sigma^1_1 \).
Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let $J = \{ e \in \mathbb{N} : \exists H$ jump hierarchy on $L_e \}$ where L_e is eth comp. LO. J is Σ^1_1 and $J \subseteq O$. But O not Σ^1_1, so $J \subsetneq O$. Any L_e for $e \in J \setminus O$ is as wanted.
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let $J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } \mathcal{L}_e \}$ where \mathcal{L}_e is the eth computable LO. J is Σ^1_1 and $J \subseteq \mathcal{O}$. But \mathcal{O} not Σ^1_1, so $J \subsetneq \mathcal{O}$. Any \mathcal{L}_e for $e \in J \setminus \mathcal{O}$ is as wanted.

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X \ (\ldots \text{arithmetic} \ldots)$
- A is definable by formula of the form: $\exists \text{hyp } X \ (\ldots \text{arithmetic} \ldots)$

Proof:
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let $J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } L_e \}$ where L_e is eth comp. LO. J is Σ^1_1 and $J \subseteq O$. But O not Σ^1_1, so $J \subset O$. Any L_e for $e \in J \setminus O$ is as wanted.

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X \ (\ldots \text{arithmetic} \ldots)$
- A is definable by formula of the form: $\exists \ \text{hyp } X \ (\ldots \text{arithmetic} \ldots)$

Proof:

(\Rightarrow) Use that L_e is well-founded \iff there is a hyp jump hierarchy on it.
Ill-founded hierarchies

Theorem

There is a computable ill-founded linear ordering with a jump hierarchy.

Proof: Let $J = \{ e \in \mathbb{N} : \exists H \text{ jump hierarchy on } L_e \}$ where L_e is the eth computable LO.

J is Σ^1_1 and $J \subseteq \mathcal{O}$. But \mathcal{O} is not Σ^1_1, so $J \not\subseteq \mathcal{O}$. Any L_e for $e \in J \setminus \mathcal{O}$ is as wanted.

Theorem: [Spector 59][Gandy 60] For $A \subseteq \mathbb{N}$, TFAE:

- A is definable by formula of the form: $\forall X$ (...arithmetic...
- A is definable by formula of the form: $\exists \text{ hyp } X$ (...arithmetic..)

Proof:

(\Rightarrow) Use that L_e is well-founded \iff there is a hyp jump hierarchy on it.

(\Leftarrow) Use that the set of indices for hyp reals is Π^1_1.
Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof:
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let \(J = \{ e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \} \)
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{ e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \}$

J is Σ^1_1
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let \(J = \{ e \in \mathbb{N} : L_e \text{ has no hyp. des. seq.} \} \)
\(J \) is \(\Sigma^1_1 \) and \(J \subseteq \mathcal{O} \).
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{ e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \}$

J is Σ^1_1 and $J \subset \mathcal{O}$. Therefore $J \not\subset \mathcal{O}$.
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{ e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \}$

J is Σ_1^1 and $J \subseteq \mathcal{O}$. Therefore $J \not\subseteq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to

$$\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta \text{ for some } \beta < \omega_1^{CK}.$$
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{ e \in \mathbb{N} : L_e \text{ has no hyp. des. seq.}\}$

J is Σ^1_1 and $J \subseteq \mathcal{O}$. Therefore $J \not\subseteq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to

$$\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta$$

for some $\beta < \omega_1^{CK}$.

Definition: $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$ is called the *Harrison linear ordering*.
Harrison’s linear ordering

Theorem: There is an ill-founded computable linear ordering with no hyperarithmetic descending sequences.

Proof: Let $J = \{ e \in \mathbb{N} : \mathcal{L}_e \text{ has no hyp. des. seq.} \}$

J is Σ^1_1 and $J \subseteq \mathcal{O}$. Therefore $J \subsetneq \mathcal{O}$.

Theorem: Every such linear ordering is isomorphic to

$$\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} + \beta$$

for some $\beta < \omega_1^{CK}$.

Definition: $\omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$ is called the **Harrison linear ordering**.

It has a computable presentation, but the ω_1^{CK} cut is not even hyp.
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness.
Barwise compactness

$\mathcal{L}_{c,\omega}$ does not satisfy compactness. Consider the vocabulary $\{0, 1, 2, 3\ldots\}$.
Barwise compactness

$L_{c,\omega}$ does not satisfy compactness. Consider the vocabulary $\{0, 1, 2, 3\ldots\}$. The list $\{\forall n \in \mathbb{N} \ c = n; \ c \neq 0, c \neq 1, c \neq 2, c \neq 3, \ldots\}$ is finitely satisfiable but not satisfiable.
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3\ldots\} \).
The list \(\{\bigwedge_{n \in \mathbb{N}} c = n; \ c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots\} \)
is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega_{1}^{CK} \) be its well-founded part.

Theorem: [Barwise] Let \(\{\varphi_{f(e)} : e \in \omega_{1}^{CK}\} \) be a computable list of
\(\mathcal{L}_{c,\omega} \)-sentences such that, for every \(\alpha < \omega_{1}^{CK} \), \(\{\varphi_{f(e)} : e < \alpha\} \) is satisfiable.
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \{0, 1, 2, 3...\}. The list \(\{ \exists n \in \mathbb{N} \ c = n; \ c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots \} \) is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega_{1}^{CK} \) be its well-founded part.

Theorem: [Barwise] Let \(\{ \varphi_{f(e)} : e \in \omega_{1}^{CK} \} \) be a computable list of \(\mathcal{L}_{c,\omega} \)-sentences such that, for every \(\alpha < \omega_{1}^{CK} \), \(\{ \varphi_{f(e)} : e < \alpha \} \) is satisfiable. Then \(\{ \varphi_{f(e)} : e \in \omega_{1}^{CK} \} \) is satisfiable.
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3\ldots\} \). The list \(\{ \bigwedge_{n \in \mathbb{N}} c = n; \ c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots \} \) is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega_{1}^{CK} \) be its well-founded part.

Theorem: [Barwise] Let \(\{ \varphi_{f(e)} : e \in \omega_{1}^{CK} \} \) be a computable list of \(\mathcal{L}_{c,\omega} \)-sentences such that, for every \(\alpha < \omega_{1}^{CK} \), \(\{ \varphi_{f(e)} : e < \alpha \} \) is satisfiable. Then \(\{ \varphi_{f(e)} : e \in \omega_{1}^{CK} \} \) is satisfiable.

Proof: Let \(J = \{ e \in \mathcal{H} : \exists A (A \models \bigwedge_{e < \alpha} \varphi_{f(e)}) \} \).
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3 \ldots \} \).

The list \(\{ \forall n \in \mathbb{N} \ c = n; \ c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots \} \) is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega_1^{CK} \) be its well-founded part.

Theorem: [Barwise] Let \(\{ \varphi_f(e) : e \in \omega_1^{CK} \} \) be a computable list of \(\mathcal{L}_{c,\omega} \)-sentences such that, for every \(\alpha < \omega_1^{CK} \), \(\{ \varphi_f(e) : e < \alpha \} \) is satisfiable. Then \(\{ \varphi_f(e) : e \in \omega_1^{CK} \} \) is satisfiable.

Proof: Let \(J = \{ e \in \mathcal{H} : \exists A \ (A \models \bigwedge_{e < \alpha} \varphi_f(e)) \} \). \(J \) is \(\Sigma^1_1 \).
Barwise compactness

\(\mathcal{L}_{c,\omega}\) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3\ldots\}\).

The list \(\bigwedge_{n \in \mathbb{N}} c = n; \quad c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots\) is finitely satisfiable but not satisfiable.

Let \(\mathcal{H}\) be the Harrison linear ordering and \(\omega^\text{CK}_1\) be its well-founded part.

Theorem: [Barwise] Let \(\{\varphi_f(e) : e \in \omega^\text{CK}_1\}\) be a computable list of \(\mathcal{L}_{c,\omega}\)-sentences such that, for every \(\alpha < \omega^\text{CK}_1\), \(\{\varphi_f(e) : e < \alpha\}\) is satisfiable. Then \(\{\varphi_f(e) : e \in \omega^\text{CK}_1\}\) is satisfiable.

Proof: Let \(J = \{e \in \mathcal{H} : \exists A (A \models \bigwedge_{e < \alpha} \varphi_f(e))\}\). \(J\) is \(\Sigma^1_1\) and \(\mathcal{H} \upharpoonright \omega^\text{CK}_1 \subseteq J\).
Barwise compactness

\(\mathcal{L}_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3, \ldots\} \).

The list \(\{ \bigwedge_{n \in \mathbb{N}} c = n; \ c \neq 0, \ c \neq 1, \ c \neq 2, \ c \neq 3, \ldots \} \)

is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega_1^{CK} \) be its well-founded part.

Theorem: [Barwise] Let \(\{ \varphi_f(e) : e \in \omega_1^{CK} \} \) be a computable list of \(\mathcal{L}_{c,\omega} \)-sentences such that, for every \(\alpha < \omega_1^{CK} \), \(\{ \varphi_f(e) : e < \alpha \} \) is satisfiable. Then \(\{ \varphi_f(e) : e \in \omega_1^{CK} \} \) is satisfiable.

Proof: Let \(J = \{ e \in \mathcal{H} : \exists A (A \models \bigwedge_{e < \alpha} \varphi_f(e)) \} \). \(J \) is \(\Sigma_1 \) and \(\mathcal{H} \upharpoonright \omega_1^{CK} \subseteq J \).

Furthermore, we can get \(A \) to be low for \(\omega_1 \). I.e. \(\omega_1^A = \omega_1^{CK} \).
Barwise compactness

\(L_{c,\omega} \) does not satisfy compactness. Consider the vocabulary \(\{0, 1, 2, 3\ldots\} \). The list \(\{\forall n \in \mathbb{N} \; c = n; \; c \neq 0, \; c \neq 1, \; c \neq 2, \; c \neq 3, \ldots\} \) is finitely satisfiable but not satisfiable.

Let \(\mathcal{H} \) be the Harrison linear ordering and \(\omega^{CK}_{1} \) be its well-founded part.

Theorem: [Barwise] Let \(\{\varphi_{f(e)} : e \in \omega^{CK}_{1}\} \) be a computable list of \(L_{c,\omega} \)-sentences such that, for every \(\alpha < \omega^{CK}_{1} \), \(\{\varphi_{f(e)} : e < \alpha\} \) is satisfiable. Then \(\{\varphi_{f(e)} : e \in \omega^{CK}_{1}\} \) is satisfiable.

Proof: Let \(J = \{e \in \mathcal{H} : \exists A \; (A \models \bigwedge_{e < \alpha} \varphi_{f(e)})\} \). \(J \) is \(\Sigma_{1} \) and \(\mathcal{H} \rceil \omega^{CK}_{1} \subseteq J \).

Furthermore, we can get \(A \) to be low for \(\omega_{1} \). I.e. \(\omega_{1}^{A} = \omega^{CK}_{1} \).

Corollary: [Kreisel] Let \(S \) be a \(\Pi_{1}^{1} \) set of \(L_{c,\omega} \)-formulas. If every hyperarithmetic subset of \(S \) is satisfiable, then so is \(S \).
A different formulation for overspill arguments

Theorem: There is an ω-model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK}.
A different formulation for overspill arguments

Theorem: There is an ω-model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK}.

That is, $\omega^\mathcal{M} \cong \omega$, and $ON^\mathcal{M} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q}$.
A different formulation for overspill arguments

Theorem: There is an ω-model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK}.

That is, $\omega^\mathcal{M} \cong \omega$, and $\text{ON}^\mathcal{M} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \cong (\omega_1^{CK})^\mathcal{M}$.
A different formulation for overspill arguments

Theorem: There is an ω-model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK}.

That is, $\omega^\mathcal{M} \cong \omega$, and $ON^\mathcal{M} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \cong (\omega_1^{CK})^\mathcal{M}$.

Proof: The set of countable models of ZFC & $\forall x \in \omega \ (\forall n \in \mathbb{N} \ x = n)$ is Σ_1^1.
A different formulation for overspill arguments

Theorem: There is an ω-model \mathcal{M} of ZFC whose well-ordered part is ω_1^{CK}.

That is, $\omega^\mathcal{M} \cong \omega$, and $\text{ON}^\mathcal{M} \cong \omega_1^{CK} + \omega_1^{CK} \cdot \mathbb{Q} \cong (\omega_1^{CK})^\mathcal{M}$.

Proof: The set of countable models of ZFC & $\forall x \in \omega \ (\forall n \in \mathbb{N} \ x = n)$ is Σ^1_1.
So there is such a model with $\omega_1^\mathcal{M} = \omega_1^{CK}$.
Part V

1. Π_1^1-ness and ordinals
2. Hyperarithmeticity
3. When hyperarithmetical is recursive
4. Overspill
5. A structure equivalent to its own jump
The jump of a structure

Given a structure A, we define A' by adding relations $R_{i,j}$ for $i,j \in \omega$, $(a_1,...,a_j) \in R_{i,j} \iff A|_{\Sigma^{e,j}(a_1,...,a_j)} = \varphi_{\Sigma_{e,j}}$.

Definition: We call A' the jump of A.

Lemma: (1st Jump inversion theorem) $(\forall A)(\exists B) B' \equiv A \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(A') = \{ X' : X \in DgSp(A) \}$

Examples:
If L a Linear ordering, then $L' \equiv (L, succ, 0')$.
If B a Boolean algebra, then $B' \equiv (B, atom, 0')$.
The jump of a structure

Given a structure \mathcal{A}, we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1, \ldots, a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}(a_1, \ldots, a_j),$$

where $\varphi_{e,j}$ be the eth Σ_1 formula on the variables x_1, \ldots, x_j.

Definition: We call \mathcal{A}' the jump of \mathcal{A}.

Lemma: (1st Jump inversion theorem) $(\forall \mathcal{A}) (\exists \mathcal{B}) \mathcal{B}' \equiv \mathcal{A} \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(\mathcal{A}') = \{ X' : X \in DgSp(\mathcal{A}) \}$

Examples:
- If L a Linear ordering, then $L' \equiv (L, \text{succ}, 0')$.
- If B a Boolean algebra, then $B' \equiv (B, \text{atom}, 0')$.

Antonio Montalbán (U.C. Berkeley) Higher Recursion and computable structures May 2019 43 / 50
The jump of a structure

Given a structure \mathcal{A}, we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1, ..., a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}(a_1, ..., a_j),$$

where $\varphi_{e,j}$ be the eth Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of \mathcal{A}*.
The jump of a structure

Given a structure \mathcal{A}, we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1, ..., a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi^\Sigma_{e,j}(a_1, ..., a_j),$$

where $\varphi^\Sigma_{e,j}$ be the eth Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of \mathcal{A}.*

Lemma: (1st Jump inversion theorem) $(\forall \mathcal{A})(\exists \mathcal{B}) \mathcal{B}' \equiv \mathcal{A} \oplus 0'$
The jump of a structure

Given a structure \mathcal{A}, we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1, \ldots, a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}(a_1, \ldots, a_j),$$

where $\varphi_{e,j}$ be the eth Σ^c_1 formula on the variables x_1, \ldots, x_j.

Definition: We call \mathcal{A}' the *jump of \mathcal{A}*.

Lemma: (1st Jump inversion theorem) $(\forall \mathcal{A})(\exists \mathcal{B}) \quad \mathcal{B}' \equiv \mathcal{A} \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(\mathcal{A}') = \{X' : X \in DgSp(\mathcal{A})\}$.
The jump of a structure

Given a structure \mathcal{A}, we define \mathcal{A}' by adding relations $R_{i,j}$ for $i, j \in \omega$,

$$(a_1, ..., a_j) \in R_{i,j} \iff \mathcal{A} \models \varphi_{e,j}^\Sigma(a_1, ..., a_j),$$

where $\varphi_{e,j}^\Sigma$ be the eth Σ_1^c formula on the variables $x_1, ..., x_j$.

Definition: We call \mathcal{A}' the *jump of \mathcal{A}*.

Lemma: (1st Jump inversion theorem) $(\forall \mathcal{A})(\exists \mathcal{B}) \mathcal{B}' \equiv \mathcal{A} \oplus 0'$

Lemma: (2nd Jump inversion theorem) $DgSp(\mathcal{A}') = \{X' : X \in DgSp(\mathcal{A})\}$.

Examples:
- If \mathcal{L} a Linear ordering, then $\mathcal{L}' \equiv (\mathcal{L}, \text{succ}, 0')$.
- If \mathcal{B} a Boolean algebra, then $\mathcal{B}' \equiv (\mathcal{B}, \text{atom}, 0')$.
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: A is Muchnik reducible to B if every $X \in 2^\omega$ that computes a copy of B also computes a copy of A.

Definition: A is Medvedev reducible to B if there is a computable operator that given copy of B outputs a copy of A.

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.
Does the jump jump?

Question: Is there a structure equivalent to its own jump?
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer:

It depends on what you mean by “equivalent.”

Definition:

A structure \(A \) is Muchnik reducible to a structure \(B \) if every computable operator that computes a copy of \(B \) also computes a copy of \(A \).

Definition:

A structure \(A \) is Medvedev reducible to a structure \(B \) if there is a computable operator that given a copy of \(B \) outputs a copy of \(A \).

Theorem:

No structure is Medvedev equivalent to its own jump.

Theorem:

There is a structure Muchnik equivalent to its own jump.
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: \mathcal{A} is Muchnik reducible to \mathcal{B} if

\[
every \ X \in 2^\omega \ that \ computes \ a \ copy \ of \ \mathcal{B} \ also \ computes \ a \ copy \ of \ \mathcal{A}.
\]
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: \(A \) is Muchnik reducible to \(B \) if every \(X \in \mathbb{2}^\omega \) that computes a copy of \(B \) also computes a copy of \(A \).

Definition: \(A \) is Medvedev reducible to \(B \) if there is a computable operator that given copy of \(B \) outputs a copy of \(A \).
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: \mathcal{A} is **Muchnik** reducible to \mathcal{B} if every $X \in 2^\omega$ that computes a copy of \mathcal{B} also computes a copy of \mathcal{A}.

Definition: \mathcal{A} is **Medvedev** reducible to \mathcal{B} if there is a computable operator that given copy of \mathcal{B} outputs a copy of \mathcal{A}.

Theorem: No structure is Medvedev equivalent to its own jump.
Does the jump jump?

Question: Is there a structure equivalent to its own jump?

Answer: It depends of what you mean by “equivalent.”

Definition: \(\mathcal{A} \) is **Muchnik** reducible to \(\mathcal{B} \) if every \(X \in 2^\omega \) that computes a copy of \(\mathcal{B} \) also computes a copy of \(\mathcal{A} \).

Definition: \(\mathcal{A} \) is **Medvedev** reducible to \(\mathcal{B} \) if there is a computable operator that given copy of \(\mathcal{B} \) outputs a copy of \(\mathcal{A} \).

Theorem: No structure is Medvedev equivalent to its own jump.

Theorem: There is a structure Muchnik equivalent to its own jump.
There is a structure Muchnik equivalent to its own jump.
There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]
Uses the existence of $0^\#$ and builds a model of $ZFC + V = L$.
There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]
Uses the existence of $0^\#$ and builds a model of $ZFC + V = L$.

Proof 2: [Puzarenko 2011]
Uses ω_{1}^{CK} iterates of power set and builds a model of $KP + V = L$.
There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]
Uses the existence of $0^\#$ and builds a model of $\text{ZFC} + V = L$.

Proof 2: [Puzarenko 2011]
Uses ω_1^{CK} iterates of power set and builds a model of $\text{KP} + V = L$.

Proof 3: [Montalbán, Schweber, Turetski 2018]
Uses ω_1^{CK} iterates of power set and builds a jump hierarchy.
There is a structure Muchnik equivalent to its own jump

Proof 1: [Montalbán 2011]
Uses the existence of $0^\#$ and builds a model of $ZFC + V = L$.

Proof 2: [Puzarenko 2011]
Uses ω_1^{CK} iterates of power set and builds a model of $KP + V = L$.

Proof 3: [Montalbán, Schweber, Turetski 2018]
Uses ω_1^{CK} iterates of power set and builds a jump hierarchy.

Theorem ([Montalbán 2011])

Infinitely many iterates of the power set are needed to prove this theorem.
Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure \(\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega) \), where \(A = (A; \leq) \) is a linear ordering and

\[
\mathcal{A} \models R_{i,j}(a, b_1, ..., b_j) \iff b_1, ..., b_j < a \quad \& \quad \mathcal{L} \upharpoonright a \models \varphi_{i,j}(b_1, ..., b_j).
\]
Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure $\mathcal{J} = (\mathcal{A}; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (\mathcal{A}; \leq)$ is a linear ordering and

$$\mathcal{A} \models R_{i,j}(a, b_1, \ldots, b_j) \iff b_1, \ldots, b_j < a \quad \& \quad \mathcal{L} \upharpoonright a \models \varphi_{i,j}^\Sigma(b_1, \ldots, b_j).$$

Obs: If $a + 1$ is the successor of a in \mathcal{A},

$$\mathcal{J} \upharpoonright a + 1 \equiv_{\text{Muchnik}} (\mathcal{J} \upharpoonright a)'.$$
Jump-hierarchy structures

Def: A **jump-hierarchy structure** is a structure $\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega)$, where $\mathcal{A} = (A; \leq)$ is a linear ordering and

$$\mathcal{A} \models R_{i,j}(a, b_1, \ldots, b_j) \iff b_1, \ldots, b_j < a \quad \& \quad \mathcal{L} \upharpoonright a \models \varphi_{i,j}^{\Sigma}(b_1, \ldots, b_j).$$

Obs: If $a + 1$ is the successor of a in \mathcal{A},

$$\mathcal{J} \upharpoonright a + 1 \equiv_{\text{Muchnik}} (\mathcal{J} \upharpoonright a)'.$$

Obs: If $\mathcal{J} \upharpoonright a \cong \mathcal{J} \upharpoonright b$ for some $a < b \in L$,

$$\mathcal{J} \upharpoonright a \equiv_{\text{Muchnik}} (\mathcal{J} \upharpoonright a)'.$
Jump-hierarchy structures

Def: A jump-hierarchy structure is a structure \(\mathcal{J} = (A; \leq, R_{i,j} : i, j \in \omega) \), where \(A = (A; \leq) \) is a linear ordering and

\[
A \models R_{i,j}(a, b_1, \ldots, b_j) \iff b_1, \ldots, b_j < a \quad \& \quad L \upharpoonright a \models \varphi^\Sigma_{i,j}(b_1, \ldots, b_j).
\]

Obs: If \(a + 1 \) is the successor of \(a \) in \(A \), \(\mathcal{J} \upharpoonright a + 1 \equiv_{\text{Muchnik}} (\mathcal{J} \upharpoonright a)' \).

Obs: If \(\mathcal{J} \upharpoonright a \cong \mathcal{J} \upharpoonright b \) for some \(a < b \in L \), \(\mathcal{J} \upharpoonright a \equiv_{\text{Muchnik}} (\mathcal{J} \upharpoonright a)' \).

Obs: If \(A \) is well-ordered, there is a jump-hierarchy structure over \(A \).
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof:

1. Consider structures of the form (M, L, E, e, f) where $M\models \varphi$.
2. L is a linear ordering with a first element 0.
3. $E \subseteq L \times M < \omega \times M < \omega$.
4. For each $\alpha \in L$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $M < \omega$.
5. $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
6. $E(\alpha, \bar{a}, \bar{b})$ if $\forall \beta < \alpha \forall d \in M \exists c \in M E(\beta, \bar{a}c, \bar{b}d)$.
7. $e \neq f \in M$ and, for all $\alpha \in L$, $E(\alpha, e, f)$.
8. and, for all $\alpha < \omega_{1^{CK}}$ there is an $a \in L$ such that $L \upharpoonright a \sim = \alpha$.
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{ck}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(M, \mathcal{L}, E, e, f)$ where
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $L_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{CK}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(M, \mathcal{L}, E, e, f)$ where

1. $M \models \varphi$
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{ck}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

1. $\mathcal{M} \models \varphi$
2. \mathcal{L} is a linear ordering with a first element 0.
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{CK}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

1. $\mathcal{M} \models \varphi$
2. \mathcal{L} is a linear ordering with a first element 0.
3. $E \subseteq \mathcal{L} \times M^{\omega} \times M^{\omega}$.
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{CK}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

1. $\mathcal{M} \models \varphi$
2. \mathcal{L} is a linear ordering with a first element 0.
3. $E \subseteq \mathcal{L} \times \mathcal{M}^{<\omega} \times \mathcal{M}^{<\omega}$.
4. For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
5. $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
Lemma: [Morley][Barwise] If a $L_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form (M, L, E, e, f) where

1. $M \models \varphi$
2. L is a linear ordering with a first element 0.
3. $E \subseteq L \times M^{<\omega} \times M^{<\omega}$.
4. For each $\alpha \in L$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $M^{<\omega}$.
5. $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
6. $E(\alpha, \bar{a}, \bar{b})$ if $\forall \beta < \alpha \forall d \in M \exists c \in M \ E(\beta, \bar{ac}, \bar{bd})$.
 and $\forall c \in M \exists c \in M \ E(\beta, \bar{ac}, \bar{bd})$.
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1}^{CK}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(M, \mathcal{L}, E, e, f)$ where

1. $M \models \varphi$
2. \mathcal{L} is a linear ordering with a first element 0.
3. $E \subseteq \mathcal{L} \times M^{<\omega} \times M^{<\omega}$.
4. For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $M^{<\omega}$.
5. $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
6. $E(\alpha, \bar{a}, \bar{b})$ if $\forall \beta < \alpha \forall d \in M \exists c \in M E(\beta, \bar{a}c, \bar{b}d)$. and $\forall c \in M \exists c \in M E(\beta, \bar{a}c, \bar{b}d)$.
7. $e \neq f \in M$ and, for all $\alpha \in L$, $E(\alpha, e, f)$.
The Hanf number of computably infinitary logic

Lemma: [Morley][Barwise] If a $\mathcal{L}_{c,\omega}$-sentence φ has a model of size $\beth_{\omega_1^{CK}}$, it has a countable model with a non-trivial isomorphism.

Proof: Consider structures of the form $(\mathcal{M}, \mathcal{L}, E, e, f)$ where

1. $\mathcal{M} \models \varphi$
2. \mathcal{L} is a linear ordering with a first element 0.
3. $E \subseteq \mathcal{L} \times \mathcal{M}^{<\omega} \times \mathcal{M}^{<\omega}$.
4. For each $\alpha \in \mathcal{L}$, $E(\alpha, \cdot, \cdot)$ is an equivalence relation on $\mathcal{M}^{<\omega}$.
5. $E(0, \bar{a}, \bar{b})$ if \bar{a} and \bar{b} satisfy the same atomic formulas.
6. $E(\alpha, \bar{a}, \bar{b})$ if $\forall \beta < \alpha \forall d \in \mathcal{M} \exists c \in \mathcal{M} \ E(\beta, \bar{a}c, \bar{b}d)$. and $\forall c \in \mathcal{M} \exists c \in \mathcal{M} \ E(\beta, \bar{a}c, \bar{b}d)$.
7. $e \neq f \in \mathcal{M}$ and, for all $\alpha \in \mathcal{L}$, $E(\alpha, e, f)$.

and, for all $\alpha < \omega_1^{CK}$

- there is an $a \in \mathcal{L}$ such that $\mathcal{L} \upharpoonright a \cong \alpha$.

Antonio Montalbán (U.C. Berkeley)
Higher Recursion and computable structures
May 2019 47 / 50
Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.
Finishing the proof

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element,

$$\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$$

has back-and-forth property.
Finishing the proof

Claim 1: If \(L \) is ill-founded, then \(e \) and \(f \) are automorphic.

Proof: If \(C \subseteq L \) has no least element,
\[
\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}
\]
has back-and-forth property.

Claim 2: If \(L \) is well-ordered, there is such structure satisfying 1-6.
Finishing the proof

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element,
\[
\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}
\]
has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_α equivalence classes.
Finishing the proof

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element,

$$\{(\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b})\}$$

has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_α equivalence classes.

Claim 4: If $\mathcal{L} < \omega_1^{CK}$ there is such structure satisfying 1-7.
Finishing the proof

Claim 1: If \mathcal{L} is ill-founded, then e and f are automorphic.

Proof: If $C \subseteq L$ has no least element,
\[\{ (\bar{a}, \bar{b}) : (\exists \alpha \in C) \ E(\alpha, \bar{a}, \bar{b}) \} \] has back-and-forth property.

Claim 2: If \mathcal{L} is well-ordered, there is such structure satisfying 1-6.

Claim 3: If α well-ordered, $E(\alpha, \cdot, \cdot)$ has at most \beth_α equivalence classes.

Claim 4: If $\mathcal{L} < \omega_1^{CK}$ there is such structure satisfying 1-7.

Claim 5: There is a model \mathcal{B} of 1-8 with $\omega_1^\mathcal{B} = \omega_1^{CK}$ and $\mathcal{L} \cong \mathcal{H}$.

Proof: Use Barwise compactness.
The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

\[
ZFC - (\text{Power set axiom}) + \left(\mathcal{P}(\mathcal{P}(\cdots \mathcal{P}(\omega)\cdots)) \right) \text{ exists} \quad \text{does not prove}
\]

the existence of a structure Muchnik equivalent to its own jump.
The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

\[\text{ZFC - (Power set axiom) + } \left(\mathcal{P}(\mathcal{P}(\cdots \mathcal{P}(\omega) \cdots)) \right) \text{ exists} \]

\[\text{does not prove} \]

the existence of a structure Muchnik equivalent to its own jump.

Proof of case \(n = 1 \):
The necessity of infinitely many iterations of the power set

Theorem: [Montalbán 11]

$$\text{ZFC - (Power set axiom) + } \left(\mathcal{P} \left(\mathcal{P} \left(\cdots \mathcal{P}(\omega) \cdots \right) \right) \right) \text{ exists}$$

does not prove

the existence of a structure Muchnik equivalent to its own jump.

Proof of case $n = 1$: Show that if $\mathcal{A} \equiv_{\text{Muchnik}} \mathcal{A}'$, then

$$\{ X \subseteq \omega : X \text{ is c.e. in every copy of } \mathcal{A} \}$$

forms an ω-model of 2nd-order arithmetic.