Rigorous Continuum Limit for the Discrete Network Formation Problem

Jan Haskovec

King Abdullah University of Science and Technology

in collaboration with

Lisa Maria Kreusser (Cambridge) and Peter Markowich (KAUST)
Transportation networks in biology

Continuum Limit for Network Formation
Discrete network models

- Static and dynamic discrete graph-based models, deterministic and random graphs.

- Solutions obtained by global energy minimization; combinatorial approach with NP-completeness issues.
Discrete modeling framework

- Flow of a material through the network-graph \((V, E)\)

 Pressures \(P_j\) on vertices \(j \in V\)
 Conductivities \(C_{ij}\) on edges \((i, j) \in E\)

- Assume low Reynolds number (Poiseuille flow), then

 Poiseuille fluxes \(Q_{ij} = C_{ij} \frac{P_i - P_j}{L_{ij}}\)

- Conservation of mass - Kirchhoff law with sources \(S_j\),

 \[- \sum_i Q_{ij} = - \sum_i C_{ij} \frac{P_i - P_j}{L_{ij}} = S_j \quad \text{for each } j \in V\]

- Topology, geometry and sources given as input.
Discrete modeling framework

Energy cost functional

\[E[C] := \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} \left(\frac{Q_{ij}^2}{C_{ij}} + \nu C_{ij}^\gamma \right) L_{ij} \]

consisting of

- **pumping power** (Joule’s law: power = potential diff. \(\times \) current)

\[(P_i - P_j) Q_{ij} = \frac{Q_{ij}^2}{C_{ij}} L_{ij} \]

- **metabolic cost** \(\sim C_{ij}^\gamma L_{ij} \)
 - \(\gamma = 1/2 \) for blood flow (Murray’s theory)
 - \(1/2 \leq \gamma \leq 1 \) for leaf venation

Gradient flow of \(E \), constrained by the Kirchhoff law \(\Rightarrow \) ODE system:

\[\frac{dC_{ij}}{dt} = \left(\frac{Q_{ij}^2}{C_{ij}^2} - \nu \gamma C_{ij}^{\gamma-1} \right) L_{ij} \]
Simulation results [Hu-Cai’13]
Rigorous continuum limit
Transition to continuum description

- Kirchhoff law

\[\sum_i C_{ij} \frac{P_i - P_j}{L_{ij}} = S_j \quad \text{for each } j \in \mathcal{V} \]

\[\rightarrow \text{ Poisson equation } (C_{ij} \leftrightarrow c, P_i \leftrightarrow p) \]

\[-\nabla \cdot (c \nabla p) = S \quad \text{for all } x \in \Omega \]

- The discrete energy functional

\[E[C] = \sum_{(i,j) \in \mathcal{E}} \left(C_{ij} \left(\frac{P_i - P_j}{L_{ij}} \right)^2 + \frac{\nu}{\gamma} C_{ij} \right) L_{ij} \]

\[\rightarrow \text{ continuum energy functional} \]

\[\mathcal{E}[c] := \int_{\Omega} \nabla p[c] \cdot c \nabla p[c] + \frac{\nu}{\gamma} |c|^{\gamma} \, dx \]
Transition to continuum description

- To avoid issues with degeneracy: regularize
 replace C_{ij} with $r + C_{ij}$

- Fix the network topology and geometry: rectangular networks

- The program:
 1. Establish a connection between the discrete solutions of the
 Kirchhoff law and weak solutions of the Poisson equation

 $$-\nabla \cdot ((r\mathbb{I} + c)\nabla p) = S$$

 2. Reformulate the discrete energy functional as an integral functional
 defined on the set of bounded tensor fields $c = c(x)$,

 $$\bar{E}[c] = \int_{\Omega} \nabla p[c] \cdot (rl + c)\nabla p[c] + \frac{\nu}{\gamma}|r + c|^{\gamma} \, dx$$

 3. Show Γ-convergence of the sequence of integral functionals.
1D equidistant case
Define the sequence of operators $Q_0^N : \mathbb{R}^N \rightarrow L^\infty(0, 1)$ by

$Q_0^N : (C_i)_{i=1}^N \mapsto c$, \hspace{1cm} $c(x) \equiv C_i$ for $x \in (x_{i-1}, x_i), \ i = 1, \ldots, N$.

Step 1. Kirchhoff with $C = (C_i)_{i=1}^N \longleftrightarrow$ Poisson with $Q_0^N[C],$

$$-\partial_x \left((r + Q_0^N[C]) \partial_x p \right) = S,$$ no-flux BC

Using the "standard" hat function φ_i^N as a test function, we obtain

$$(r + C_i) \frac{p(x_i) - p(x_{i-1})}{h} + (r + C_{i+1}) \frac{p(x_i) - p(x_{i+1})}{h} = S_i^N h,$$

for $i = 1, \ldots, N$, with

$$S_i^N := \frac{1}{h} \int_0^1 S(x) \varphi_i^N(x) \, dx$$

\Rightarrow identification $P_i := p(x_i)$.
Step 2. Define the functionals $\bar{E}^N : L^\infty_+(0, 1) \mapsto \mathbb{R}$,

$$\bar{E}^N[c] := \int_0^1 (r + c) \left(Q_0^N[\Delta^h P] \right)^2 + \frac{\nu}{\gamma} (r + c)^\gamma \, dx,$$

with

$$(\Delta^h P)_i := \frac{P_i - P_{i-1}}{h}, \quad i = 1, \ldots, N,$$

and $P = (P_i)_{i=0}^N$ a solution of the Kirchhoff law with the conductivities

$$C_i := \frac{1}{h} \int_{x_{i-1}}^{x_i} c(x) \, dx, \quad i = 1, \ldots, N.$$

Then, the discrete energy functional can be written in the integral form as

$$E^N[C] = \bar{E}^N[Q_0^N[C]].$$
Step 3. Show the Γ-convergence of the sequence of functionals

$$\bar{\mathcal{E}}^N[c] := \int_0^1 (r + c) \left(\mathcal{Q}_0^N[\Delta_h P] \right)^2 + \frac{\nu}{\gamma} (r + c)^\gamma \, dx,$$

Towards

$$\bar{\mathcal{E}}[c] := \int_0^1 (r + c) (\partial_x p[c])^2 + \frac{\nu}{\gamma} (r + c)^\gamma \, dx,$$

with $p = p[c]$ a solution of the Poisson equation with conductivity $c = c(x)$,

$$-\partial_x ((r + c) \partial_x p) = S.$$
Prove Γ-convergence of \bar{E}^N towards \bar{E} as $h = 1/N \to 0$, with respect to the norm L^2-topology.

The obvious difficulty: Passage to the limit in the nonlinear term

$$(r + c^N) \left(Q_0^N [\Delta^h P] \right)^2$$

Weak-strong lemma:
Let $(c^N)_{N \in \mathbb{N}} \subset L^\infty(\Omega)$ be a sequence of nonnegative functions such that $c^N \to c \in L^2(\Omega)$ in the norm topology of $L^2(\Omega)$. Let $(p^N)_{N \in \mathbb{N}} \subset H^1(\Omega)$ be a sequence of zero-average weak solutions of the Poisson equation

$$-\nabla \cdot ((r + c^N) \nabla p^N) = S$$

subject to homogeneous Neumann boundary conditions on $\partial \Omega$. Then ∇p^N converges to ∇p strongly in $L^2(\Omega)$, where p solves

$$-\nabla \cdot ((r + c) \nabla p) = S$$
2D rectangular case
The operator Q^N_0 maps C onto piecewise constant 2×2 diagonal tensors,

$$Q^N_0 : (C_i)_{i \in EN} \mapsto \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix},$$

where c_1 is the conductivity of the horizontal edge and c_2 is the conductivity of the vertical edge.

FEM-discretization of the Poisson equation, establish connection to Kirchhoff by taking vertex values of the piecewise linear FE-functions.

Show Γ-convergence using

- FEM techniques (**Céa’s Lemma** in the energy norm)
- weak-strong convergence result for the Poisson equation
Grid (network) consisting of parallelograms with sides in linearly independent directions $\theta_1, \theta_2 \in S^1$. The coordinate transform

$$(1, 0) \mapsto \theta_1, \quad (0, 1) \mapsto \theta_2$$

leads to the transformed continuum energy functional

$$\mathcal{E}[c] = \int_{\Omega} \nabla p[c] \cdot \mathbb{P}[c] \nabla p[c] + \frac{\nu}{\gamma} (|r + c_1|^{\gamma} + |r + c_2|^{\gamma}) \, dx$$

coupled to the Poisson equation

$$-\nabla \cdot (\mathbb{P}[c] \nabla p) = S$$

with the permeability tensor

$$\mathbb{P}[c] = rl + c_1 \theta_1 \otimes \theta_1 + c_2 \theta_2 \otimes \theta_2$$
Formal L^2-gradient flow
The conductivity c^k in the k-th spatial direction,

$$\partial_t c^k = (\partial_{x_k} p)^2 - \nu |c^k|^{\gamma-2} c^k, \quad k = 1, \ldots, d,$$

coupled to the Poisson equation

$$-\nabla \cdot ((rI + c)\nabla p) = S, \quad c = \begin{pmatrix} c^1 \\ \vdots \\ c^d \end{pmatrix}$$

equipped with no-flux boundary condition.

Regularization: Random fluctuations of conductivity in the medium

$$\partial_t c^k = D^2 \Delta c^k + (\partial_{x_k} p)^2 - \nu |c^k|^{\gamma-2} c^k, \quad k = 1, \ldots, d,$$

subject to homogeneous Dirichlet BC.
Formal L^2-gradient flow

Poisson equation for the pressure p

$$-\nabla \cdot ((rI + c)\nabla p) = S, \quad c = \begin{pmatrix} c^1 \\ \vdots \\ c^d \end{pmatrix}$$

coupled to the reaction-diffusion system for the conductivities c^k

$$\partial_t c^k = D^2 \Delta c^k + (\partial_{x_k} p)^2 - \nu |c^k|^{\gamma-2} c^k$$

- $D^2 \geq 0$ - diffusivity, $\nu > 0$ - metabolic constant
- $\gamma \geq 1$ - relaxation exponent
- No-flux BC for the Poisson equation
- Homogeneous Dirichlet BC for conductivity
The system

\[-\nabla \cdot ((r\mathbb{I} + c)\nabla p) = S\]
\[\partial_t c^k = D^2 \Delta c^k + (\partial_{x_k} p)^2 - \nu |c^k|^{\gamma-2} c^k\]

is a formal L^2-gradient flow of the energy functional

\[\mathcal{E}[c] = \int_{\Omega} \frac{D^2}{2} |\nabla c|^2 + \nabla p \cdot (r\mathbb{I} + c)\nabla p + \frac{\nu}{\gamma} |c|^{\gamma} \, dx,\]

with $|\nabla c|^2 := \sum_{k=1}^d |\nabla c^k|^2$ and $|c|^{\gamma} := \sum_{k=1}^d |c^k|^{\gamma}$.

Theorem:
Let $S \in L^2(\Omega)$, $\gamma > 1$ and $c_0 \in L^\gamma(\Omega)^{d \times d}$.
Then the system admits a **global weak solution** in the energy space.
Introduce the regularized Poisson equation

\[-\nabla \cdot (P^\epsilon[c] \nabla p) = S\]

with the permeability tensor

\[P^\epsilon[c] := r I + c \ast \eta^\epsilon\]

with \(\eta^\epsilon\) a nonnegative, radially symmetric mollifier,

\[c^k \ast \eta^\epsilon(x) := \int_{\mathbb{R}^d} c^k(y) \eta^\epsilon(x - y) \, dy.\]

Introduce a compatible regularization of the conductivity eq.

\[\frac{\partial c^k}{\partial t} = D^2 \Delta c^k + (\partial_{x_k} p)^2 \ast \eta^\epsilon - \nu |c^k|^\gamma - 2 c^k\]

so that the system is the formal \(L^2\)-gradient flow of the energy

\[E^\epsilon[c] := \int_{\Omega} \frac{D^2}{2} |\nabla c|^2 + \nabla p \cdot P^\epsilon[c] \nabla p + \frac{\nu}{\gamma} |c|^\gamma \, dx\]
Proof of global existence

- **Leray-Schauder theorem** for the regularized system
- Compactness follows from the **weak-strong Lemma for the Poisson equation** and compact Sobolev embedding
- **Nonnegativity** of \(c^k_\varepsilon \) follows from the fact that solutions of the semilinear PDE
 \[
 \partial_t u = D^2 \Delta u - \nu |u|^{\gamma-2} u
 \]
 are subsolutions.
- Uniform a-priori estimates from the **energy dissipation inequality** facilitate the limit passage \(\varepsilon \to 0 \).
Conclusions

- The continuum limit depends on the **topology and geometry** of the network.

- **Goal:** random networks (graphs) - various models:
 - **Gilbert** $G(n, p)$ - every possible edge occurs independently with probability $0 < p < 1$
 - **Erdös-Rényi** $G(n, M)$ - assigns equal probability to all graphs with exactly M edges

- Try to use convergence results from FEM (Nedelec elements?)

Thank you!
Thank you!
An excursion into graph limits
Motivation:

- **Classical optimization problem:** Find the minimum of \(x^3 - 6x \) over all numbers \(x \geq 0 \).

 Answer: \(x = \sqrt{2} \in \mathbb{R} \), but \(\not\in \mathbb{Q} \).

- **Graph optimization problem:** Find the minimum of \(t(C_4, G) \) over all graphs \(G \) with \(t(K_2, G) \geq 1/2 \).

 Answer: \(t(C_4, G) \geq t(K_2, G)^4 = (1/2)^4 \), but no finite \(G \) is a minimizer [Erdös].

- See [Lovász, Szegedy, Borgs, Chayes, Sós, Vesztergombi, Benjamini, Schramm, Hladký, ...] for more info.
Fix F a graph of order k, G is "large" of order $n > k$, and define the subgraph density

$$t(F, G) := \frac{\# \text{ of copies of } F \text{ in } G}{\binom{n}{k}} = \mathbb{P}(\text{random } k\text{-set of } G \simeq F)$$

Def.: A sequence of graphs G_1, G_2, \ldots converges if for each F the sequence $t(F, G_1), t(F, G_2), \ldots$ converges.

We get a limit object Ψ, with $t(F, \Psi) := \lim_{n \to \infty} t(F, G_n)$.
Fix F a graph of order k, G is "large" of order n, and define the subgraph density

$$t(F, G) := \frac{\text{# of copies of } F \text{ in } G}{\binom{n}{k}} = \mathbb{P}(\text{random } k\text{-set of } G \simeq F)$$

Def.: A sequence of graphs G_1, G_2, \ldots converges if for each F the sequence $t(F, G_1), t(F, G_2), \ldots$ converges.

We get a limit object Ψ, with $t(F, \Psi) = \lim_{n \to \infty} t(F, G_n)$.

Observe: Works for dense graphs only, i.e., $|e(G_n)| \simeq n^2$, since otherwise the limit is trivial, $\lim_{n \to \infty} t(F, G_n) = 0$ for all F.

So, unfortunately, the theory is void for trees, planar graphs, ...
Example: Bipartite graphs

Represent these graphs by their adjacency matrices:

\[
\begin{array}{cc|ccc}
0 & 0 & 1 & 1 & \cdots & \cdots \\
1 & 0 & 1 & 1 & \cdots & \cdots \\
\end{array}
\]

... works if you do things the "right way". But:

\[
\begin{array}{cc|ccc}
0 & 0 & 1 & 1 & \cdots & \cdots \\
1 & 0 & 1 & 1 & \cdots & \cdots \\
\end{array}
\]

Szemerédi’s Regularity Lemma to determine the "right way" of ordering the vertices \(\sim \) graphon, symmetric Lebesgue measurable function \(W : [0, 1]^2 \to [0, 1] \).
Large dense graphs essentially behave like (connected sets of) random graphs.

Their limits are graphons and there is an established theory.

However: In our model, for $1/2 \leq \gamma < 1$, the minimizer is a tree, which is sparse (even very sparse - bounded degree).

The sparse theory is tricky (graphings \simeq Borel measures; but no single "true" limit object).

[L. Lovász: Large networks and graph limits.]