Non-Concave Utility Maximization without the Concavification Principle

Shuaijie Qian

Math Department
National University of Singapore

Joint work with
Min Dai (NUS), Steven Kou (Boston U) and Xiangwei Wan (SJTU)
Motivation (1)

- The classical expected utility maximization model (e.g. CRRA/CARA utility) is a concave optimization problem.

- In contrast, many investment objectives are related to non-concave utility, e.g.
Motivation (2)

- Previous literature: ignore portfolio constraints (such as no-short-sale, no borrowing, etc)
- Shortage: Unrealistic high leverage

![Graphs](image-url)

Figure: Time to Maturity $\frac{1}{12}$
Motivation (3)

- Ignore portfolio constraints \Rightarrow concavification principle \Rightarrow concave value function
- With and without portfolio constraints: an example with S-shaped utility

![Value Function Graph]

Figure: Time to Maturity $\frac{1}{12}$
Our focus

- Non-concave portfolio optimization without the concavification principle
 - general leverage constraints (e.g. no short sale, no borrowing)
 - discontinuous utility

- Concavification principle does not apply
 - numerical methods: scheme? convergence?

- Joint impact of portfolio constraints and non-concave utility on optimal policy
Our findings

- General findings
 - The value function is not necessarily globally concave before maturity
 - Investors are not myopic w.r.t. portfolio constraints in the sense that they may take risker leverage ratios in anticipation of portfolio constraints
 - Investors may short sale stock despite positive risk premium for higher volatility
 The intuition is that in concave utility case, the volatility is a burden which is need to be offset by the higher return. However, in convex utility case, the volatility is actually a resource

- Those model-specific findings in literature remain valid to some extent.
Theoretical contribution

- We prove the comparison principle even in the presence of portfolio constraints and discontinuous utility
 - The value function is the unique discontinuous viscosity solution to the associated HJB equation
 - Convergence of the standard monotone finite difference scheme
The model

- A riskfree bond B with interest rate 0 and a risky stock S
 \[dS_t/S_t = \mu dt + \sigma dB_t \]

- $W^\pi(t)$: the self-financing wealth process
 \[dW^\pi(t) = \mu \pi(t) W^\pi(t) dt + \sigma \pi(t) W^\pi(t) dB_t, \]
 where $\pi(t)$: the proportion of wealth in stock

\[
\begin{align*}
V(t, w) &= \sup_{d \leq \pi \leq u, \ W^\pi(T) \geq 0 } E \left[U(W^\pi(T)) \middle| W(t) = w \right],
\end{align*}
\]

where
- $d \leq \pi \leq u$: portfolio constraints, if $d = 0$, no short-selling; if $u = 1$, no borrowing
- $U(\cdot)$: utility function, not necessarily concave or continuous
Examples of non-concave utilities: Goal-reaching problem

A fund manager maximizes the probability of beating some benchmark:

\[U(W_T) = 1_{\{W_T \geq H\}}, \]

where \(H \) is the target level
Examples of non-concave utilities: S-shaped utility

- Tversky and Kahneman (1979, Econometrica)’s S-Shaped utility:

\[
U(W_T) = \begin{cases}
(W_T - W_0)^p & \text{for } W_T > W_0 \\
-\lambda(W_0 - W_T)^p & \text{for } W_T \leq W_0
\end{cases}
\]

- \(W_0 \): the initial wealth, distinguishing the gain and loss
- \(0 < p < 1 \): the degree of risk aversion, e.g. \(p = 0.88 \)
- \(\lambda > 1 \): pain from loss > pleasure from gain, e.g. \(\lambda = 2.25 \)
- The utility is convex for loss \(W_T < W_0 \) and concave for gain \(W_T > W_0 \)
Examples of non-concave utilities: Option compensation

- Carpenter (2000, JF): A risk averse manager compensated with a call option over the fund he controls

\[U(W_T) = (m \max\{W_T - K, 0\} + C)^p \]

- \(0 < p < 1 \): the risk aversion degree
- \(K > 0 \): the strike price of the option
- \(m \): the number of options
- \(C > 0 \): the constant compensation
Consider the HJB equation:

$$\frac{\partial V}{\partial t} + \sup_{d \leq \pi_t \leq u} \left\{ \frac{1}{2} \pi_t^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial w^2} + \pi_t w \mu \frac{\partial V}{\partial w} \right\} = 0, \quad (1)$$

with the boundary condition

$$V(t, 0) = U(0) \quad (2)$$

and an asymptotic condition at maturity:
(i) if $[d, u]$ is unbounded, it degenerates to the standard case

$$\lim_{(t, \zeta) \to (T-, w)} V(t, \zeta) = \hat{U}(w), \quad (3)$$

where \hat{U} is the concave envelope of U

(ii) if $[d, u]$ is bounded, (discontinuity!)

$$\lim_{(t, \zeta) \to (T-, w)} V(t, \zeta) - U(w-) - 2\Phi(y)(U(w+) - U(w-)) = 0 \quad (4)$$

where

$$y = \frac{0 \wedge (\ln \zeta - \ln w)}{\max\{-d, u\} \sigma \sqrt{T-t}}$$

and Φ is the CDF of a standard normal random variable
Theoretic analysis of constrained non-concave problem

Theorem (Comparison Principle)

(i) Assume $[d, u]$ is bounded (unbounded). Let v^* and v_* be separately viscosity subsolution and supersolution to (1) with boundary conditions (2) and (4) (with (2) and (3))

Suppose $|v^*|, |v_*| \leq C_1 w^p + C_2$, for some $0 < p < 1$, $C_1, C_2 > 0$

Then $v^* \leq v_*$ for all $w \geq B$ and $0 < t < T$

▶ This theorem covers both the continuous and the discontinuous case

▶ Comparison principle $\Rightarrow \begin{cases} \text{uniqueness of viscosity solution} \\ \text{convergence of numerical schemes} \end{cases}$
Theoretic analysis of constrained non-concave problem

Theorem

\[V(t, w) \] is the unique viscosity solution of the HJB equation to (1) with boundary conditions (2) and (4) (with (2) and (3)) which satisfies

\[|v| \leq C_1 w^p + C_2, \quad \text{for some } 0 < p < 1, \ C_1, C_2 > 0 \quad (5) \]

Theorem (Numerical Scheme Convergence)

The numerical solution of a fully implicit finite difference scheme with upwind treatment for the HJB equation converges to the value function as the discretization size tends to zero.
General findings (1)

Figure: Goal reaching

Figure: S-shaped utility

In general the value function is not globally concave before maturity
Goal reaching problem ($r = 0.07, \mu = 0.15, \sigma = 0.3, T = 1$)

Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with positive (negative) risk premium
General findings (3)

S-shaped utility maximization

\[(r = 0.03, \mu = 0.07, \sigma = 0.3, p = 0.5, \lambda = 2.25, W_0 = 1, T = 1/12, B = 0.5) \]

Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with positive (negative) risk premium
Goal-reaching problem

Optimal strategy for different μ, while $r = 0.07, \sigma = 0.3, T = 1, B = 0$

- The optimal goal-reaching strategy is no longer equivalent to the replicating strategy of a digital option rather than the assertion in Browne (1999)
S-shaped utility ($W_0 = 1$)

\[r = 0.03, \mu = 0.07, \sigma = 0.3, p = 0.5, \lambda = 2.25, W_0 = 1, \]
\[T = 1/12, B = 0.5 \]

- Reduce more stock near reference point: a more conservative strategy compared to Berkelaar, Kouwenberg and Post (2004)
Option compensation

Figure: $r = 0.03$, $\mu = 0.07$, $\sigma = 0.3$, $p = 0.5$, $K = 1$, $\alpha = 0.2$, $C = 0.02$, $W_0 = 1$, $T - t = 1/12$, $B = 0.5$

- Convex incentives may reduce stock investment in more scenarios compared to Carpenter (2000, JF)
Conclusion(1)

- Non-concave portfolio optimization without the concavification principle: portfolio constraints, discontinuous utility

- We prove comparison principle by introducing an asymptotic condition at maturity. This implies
 - the convergence of the standard monotone finite difference method
 - uniqueness of discontinuous viscosity solutions to the associate HJB equations
Conclusion (2)

▶ Three general findings
 ▶ The concavification technique no longer applies, and in general the value function is not globally concave before maturity
 ▶ Investors may take action in anticipation of future portfolio constraints being binding
 ▶ Investors may gamble against market trend in the case of underperformance

▶ Those model-specific findings hold to some extent