Multiple Birds, One Stone: Can Portfolio Rebalancing Contribute to Disposition-effect-related Trading Patterns?

Min Dai Hong Liu Jing Xu

National University of Singapore
Washington University in St. Louis, CAFR
Renmin University of China

July, 2019
For presentation at IMS, NUS
Disposition Effect: Background

- In contrast to the common investment advice “Cut your losses and let profits run,” investors tend to quickly sell winning stocks and hold on to losing stocks.
- This tendency is termed “Disposition Effect”
- Odean (1998) Measure

\[
\begin{align*}
PGR &= \frac{\text{#RealizedGains}}{\text{#RealizedGains} + \text{#PaperGains}} \\
PLR &= \frac{\text{#RealizedLosses}}{\text{#RealizedLosses} + \text{#PaperLosses}}
\end{align*}
\]

Disposition effect: \(DE \equiv PGR - PLR > 0 \)
Related Patterns

- **Reverse disposition effect**: investor is more likely to purchase losing stocks than winning stocks (Odean (1998))

- **Volatility pattern**: disposition effect is stronger for more volatile stocks (Kumar (2009))

- **V-shape pattern**: the probability of selling (or buying additional shares) increases with the magnitude of gains or losses (Ben-David and Hirshleifer (2012))

- **Repurchase pattern**: investors are reluctant to repurchase stocks previously sold for a loss, as well as stocks that have appreciated in price subsequent to a prior sale (Strahilevitz, Odean, and Barber (2011))
Existing Theories

- Prospect theory on general gains/losses: usually does not predict a DE (Barberis and Xiong (2009))
- Realization utility: utility on realized gains and disutility on realized losses (Barberis and Xiong (2012), Ingersoll and Jin (2013))
 - Doubt on whether RU causes DE has been casted (He and Yang (2019))
 - In RU models, investor realizes losses to reset reference points. However, investors do not seem to reset their reference points upon many loss realizations (Frydman, Hartzmark, and Solomon (2018))
- Return extrapolation (Peng (2017)): investors may overly extrapolate past return to form beliefs
- No unified theory on disposition-effect-related patterns
Learning and Portfolio Rebalancing

- **Portfolio rebalancing**
 - Household-level evidence of active rebalancing by retail investors in Sweden (Calvet, Campbell, and Sodini (2009))
 - Japanese investors tend to conduct contrarian trades, as predicted by standard portfolio rebalancing models (Komai, Koyano, and Miyakawa (2018))

- **Learning**
 - past returns and historical price patterns affect trading decisions (Grinblatt and Keloharju (2001))
 - investors learn about information contained in asset prices and revise their trading strategy accordingly (Kandel, Ofer, and Sarig (1993), and Banerjee (2011))
Preview of Results

Table: Comparison with existing papers

<table>
<thead>
<tr>
<th></th>
<th>D.E.</th>
<th>R.D.E.</th>
<th>Volatility</th>
<th>V-shape</th>
<th>Repurchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX (2009)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IJ (2013)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Peng (2017)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>This paper</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The Model: Asset Market

- One risk-free asset with a constant interest rate r
- N risky assets (stocks). The ith stock price S_{it} follows
 \[
 \frac{dS_{it}}{S_{it}} = \mu_i dt + \sigma_i dB_{it}^S,
 \]
 where $B_t = (B_{1t}, ..., B_{Nt})'$ is a standard N-dimensional Brownian motion process.
- Trading any of the stocks incurs proportional transaction costs
Learning

- Merton (1980) and Jorion (1986): the first moment of stock returns is difficult to estimate from finite sample; Consequently, we assume that μ_i may not be observed

- Learning about μ_i: $N(z_{i0}, V_i(0)) \rightarrow N(z_{it}, V_i(t))$ where

 \[z_{it} = E[\mu_i | \mathcal{F}_t], \quad V_i(t) = E[(\mu_i - z_{it})^2 | \mathcal{F}_t] \]

 We assume that the prior is independent of B_t

- Learning effect:

 \[dz_{it} = \frac{V_i(0)}{\sigma_i^2 + V_i(0) t} \left(\frac{dS_{it}}{S_{it}} - z_{it} dt \right). \]

 Implication: upward (downward) adjustment after large positive (negative) returns
The investor chooses the optimal trading policy to maximize

\[E \left[\frac{1}{1-\gamma} W_T^{1-\gamma} \right], \]

- \(W_t = X_t + \sum_{i=1}^{N} (1 - \alpha_i) Y_{it} \): the time \(t \) net wealth
- \(X_t \): the dollar amount in the risk free asset
- \(Y_{it} \): the dollar amount invested in Stock \(i \)

No-short-sale constraint is imposed (retail investors rarely short sell)
Solution Strategy

- Challenge: the HJB PDE is of high dimension \((2 \times N\) dimensions if there are \(N\) stocks), which makes the numerical solution very difficult → We rely on an approximate solution for the CRRA utility case

Proposition

(Decomposition of risk exposure without transaction cost)

Suppose that there is no transaction cost for any stock, i.e., \(\alpha_i = \theta_i = 0\) for \(i = 1, 2, \ldots, N\). Then, the optimal fraction of total wealth \(W_t\) invested in Stock \(i\) in the model with \(N\) stocks equals the optimal fraction when the investor can only invest in the risk-free asset and Stock \(i\).
Solution Strategy

- When there are small transaction costs, we also solve the model for one stock and one risk-free asset to obtain the tolerable risk exposure for that stock.

- Remarks:
 - Independence assumption is crucial in obtaining this result.
 - Fluctuations in other stocks’ prices do affect rebalancing strategy (i.e. no narrow framing).
 - We have also solved a case with CARA utility, in which the risk exposure decomposition is optimal, and qualitatively similar results are obtained.

- Calibrations:
 - 4 stocks (the median number of stockholding in Odean (1998)’s sample) with typical return parameters.
 - unbiased prior estimate.
 - a proportional transaction costs rate of 50 bps.
Rebalancing Strategy for One Stock
Disposition Effect Measures

Table: Disposition effect measures

<table>
<thead>
<tr>
<th></th>
<th>Observable case</th>
<th></th>
<th>Unobservable case</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1: Full sample</td>
<td>B1: No-new purchase</td>
<td>C1: Complete sale</td>
<td></td>
</tr>
<tr>
<td>PGR</td>
<td>0.338</td>
<td>0.333</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>PLR</td>
<td>0.097</td>
<td>0.099</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>0.241***</td>
<td>0.234***</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>DER</td>
<td>3.486***</td>
<td>3.364***</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>PGL</td>
<td>0.859</td>
<td>0.859</td>
<td>N.A.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A2: Full sample</th>
<th>B2: No-new purchase</th>
<th>C2: Complete sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGR</td>
<td>0.343</td>
<td>0.346</td>
<td>0.173</td>
</tr>
<tr>
<td>PLR</td>
<td>0.122</td>
<td>0.126</td>
<td>0.353</td>
</tr>
<tr>
<td>DE</td>
<td>0.221***</td>
<td>0.220***</td>
<td>-0.179***</td>
</tr>
<tr>
<td>DER</td>
<td>2.823***</td>
<td>2.750***</td>
<td>0.491***</td>
</tr>
<tr>
<td>PGL</td>
<td>0.783</td>
<td>0.767</td>
<td>0.351</td>
</tr>
</tbody>
</table>

Remark: DE can arise in the subsample of complete sales if a stock with mean-reverting expected return is added.
Disposition Effect and Volatility

- Kumar (2009): disposition effect is stronger for stocks with higher volatility.

- Our model:

 Table: The disposition effect and volatility

<table>
<thead>
<tr>
<th></th>
<th>$\sigma = 0.35$</th>
<th>$\sigma = 0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average duration between sales</td>
<td>0.141</td>
<td>0.154</td>
</tr>
<tr>
<td>PGR</td>
<td>0.384</td>
<td>0.343</td>
</tr>
<tr>
<td>PLR</td>
<td>0.038</td>
<td>0.122</td>
</tr>
<tr>
<td>DE</td>
<td>0.346***</td>
<td>0.221***</td>
</tr>
<tr>
<td>$\Delta(DE)$</td>
<td>0.125***</td>
<td></td>
</tr>
</tbody>
</table>

- Mechanism: learning is slower for more volatile stocks, and the exposure effect becomes stronger.
Reverse Disposition Effect

- Odean (1998):

 \[PGPA = \frac{\#\text{Gains Purchased}}{\#\text{Gains Purchased} + \#\text{Gains Potentially Purchased}} \]

 \[PLPA = \frac{\#\text{Losses Purchased}}{\#\text{Losses Purchased} + \#\text{Losses Potentially Purchased}} \]

 with \(PLPA > PGPA \)

- Our model:

 Table: The reverse disposition effect

<table>
<thead>
<tr>
<th></th>
<th>Observable case</th>
<th>Unobservable case</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLPA</td>
<td>0.404</td>
<td>PLPA</td>
</tr>
<tr>
<td>PGPA</td>
<td>0.130</td>
<td>PGPA</td>
</tr>
<tr>
<td>RDE</td>
<td>0.274***</td>
<td>RDE</td>
</tr>
</tbody>
</table>
Correlated Returns

The graph shows the relationship between return correlation and the two effects: Disposition effect (black line) and Reverse disposition effect (gray line). The graph indicates that as the return correlation increases, both effects decrease.

Key points:
- Return correlation range: -0.3 to 0.5
- Y-axis: Value range from 0.35 to 0.7
- Disposition effect line starts higher and descends more steeply than the Reverse disposition effect line.

The Model Predictions:

- Positive correlations lead to a decrease in both effects.
- Negative correlations lead to an increase in both effects, with the Reverse disposition effect line decreasing more steeply.
After-Sale Return

- Odean (1998): Winners sold have higher after-sale returns than losers held

- Our model:

<table>
<thead>
<tr>
<th></th>
<th>in 84 trading days</th>
<th>in 252 trading days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winners sold</td>
<td>4.53%</td>
<td>13.89%</td>
</tr>
<tr>
<td>Losers held</td>
<td>3.75%</td>
<td>11.38%</td>
</tr>
<tr>
<td>Difference</td>
<td>0.77%***</td>
<td>2.51%***</td>
</tr>
</tbody>
</table>

Remark: We increase stock 3 and 4’s expected returns to 14% when generating these results

- Mechanism: stocks with higher expected return are more likely to reach the sell boundary
V-Shape Results

- Ben-David and Hirshleifer (2012): the plots of these probabilities against paper profit exhibit V-shaped patterns

- Our model:
Realized Returns

- Ben-David and Hirshleifer (2012): the distribution of realized returns is hump-shaped with a maximal value in the domain of gains

- Our model:
Strahilevitz, Odean, and Barber (2011): investors are reluctant to repurchase stocks previously sold for a loss, as well as stocks that have appreciated in price subsequent to a prior sale.

Our model:

Table: Repurchase effect measures

<table>
<thead>
<tr>
<th></th>
<th>Unobservable case</th>
<th></th>
<th>Observable case</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1: Previous winners or losers</td>
<td>B1: Winners or losers since last sale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLRP</td>
<td>0.343</td>
<td>PDR</td>
<td>0.478</td>
<td></td>
</tr>
<tr>
<td>PWRP</td>
<td>0.393</td>
<td>PUR</td>
<td>0.247</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>-0.050***</td>
<td>Difference</td>
<td>0.231***</td>
<td></td>
</tr>
</tbody>
</table>

Model Predictions
Capital Gains Tax

![Diagram of Capital Gains Tax]

- **Stock allocation**
- **Basis-price ratio**
- **Points and Lines**: A, B, E, G, F, C, D
- **Regions**: SR, NTR, BR, WSR
- **Areas**: Gain, Loss

The diagram illustrates the capital gains tax scenario with various stock allocations and basis-price ratios, highlighting key points and regions.
Capital Gains Tax

![Graph showing the relationship between capital gains tax rate and disposition effect measure. The graph is linear, indicating an inverse relationship where the disposition effect measure decreases as the capital gains tax rate increases.]
Rational rebalancing motivation could generate a large portion of the main findings related to the disposition effect.

Although behavioral biases are likely to exist among some investors, there can well be a rational component in the disposition-effect and the related trading patterns.

How to separate the rational portfolio rebalancing and behavioral components constitutes an interesting empirical question for future studies.