Optimal liquidation in spite of increasing prices
How is optimal execution affected by price trends?

Peter Frentrup
(based on joint work with Dirk Becherer and Todor Bilarev)

Singapore – 18 March 2019
How to execute large trade in face of trending prices?

- Problem: How to execute/liquidate a position of \(\theta \) risky assets until a given finite time \(T < \infty \) optimally?

- Question: How would optimal trade execution be affected if prices are expected to rise/to decline?

- Example: liquidate 1 asset with increasing/decreasing prices or no price trend:
How to execute large trade in face of trending prices?

- Problem: How to execute/liquidate a position of θ risky assets until a given finite time $T < \infty$ optimally?

- Question: How would optimal trade execution be affected if prices are expected to rise/to decline?

- Example: liquidate 1 asset with increasing/decreasing prices or no price trend:
Positive asset prices with transient price impact

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t, $t \in [0, T]$ with $\Theta_0^- = \theta$, $\Theta_T = 0$.

- Unaffected price: $\bar{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.

- Affected price: $S_t := f(Y_t)\bar{S}_t$ for price impact process

 \[
dY_t = -h(Y_t) dt + d\Theta_t, \quad Y_0^- = y,
\]

 resilience function $h(0) = 0$, $h' > 0$, e.g. $h(y) = \beta y$, $\beta > 0$.

 impact function $f, f' > 0$, e.g. $f(y) = e^{\lambda y}$, $\lambda = f'/f > 0$ const.

- Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

 \[
 L_T(\Theta) := -\int_0^T f(Y_t)\bar{S}_t d\Theta_t^c
 \]

- Like Obizhaeva/Wang (2013), but for multiplicative and more general transient price impact.
Positive asset prices with transient price impact

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t, $t \in [0, T]$ with $\Theta_0 = \theta$, $\Theta_T = 0$.

- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.

- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

\[
dY_t = -h(Y_t)dt + d\Theta_t, \quad Y_0 = y,
\]

resilience function $h(0) = 0$, $h' > 0$, e.g. $h(y) = \beta y$, $\beta > 0$.

impact function $f, f' > 0$, e.g. $f(y) = e^{\lambda y}$, $\lambda = f'/f > 0$ const.

- Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

\[
L_T(\Theta) := -\int_0^T f(Y_t)\overline{S}_t d\Theta_t^c
\]

- Like Obizhaeva/Wang (2013), but for multiplicative and more general transient price impact.
Positive asset prices with transient price impact

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t, $t \in [0, T]$ with $\Theta_0^- = \theta$, $\Theta_T = 0$.

- Unaffected price: $\bar{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.

- Affected price: $S_t := f(Y_t)\bar{S}_t$ for price impact process
 \[dY_t = -h(Y_t)dt + d\Theta_t, \quad Y_0^- = y, \]
 resilience function $h(0) = 0$, $h' > 0$, e.g. $h(y) = \beta y$, $\beta > 0$.
 impact function $f, f' > 0$, e.g. $f(y) = e^{\lambda y}$, $\lambda = f'/f > 0$ const.

- Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,
 \[L_T(\Theta) := -\int_0^T f(Y_t)\bar{S}_t d\Theta_t^c \]

- Like Obizhaeva/Wang (2013), but for multiplicative and more general transient price impact.
Positive asset prices with transient price impact

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t, $t \in [0, T]$ with $\Theta_0^- = \theta$, $\Theta_T = 0$.

- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.

- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

$$dY_t = -h(Y_t)\, dt + d\Theta_t, \quad Y_{0^-} = y,$$

resilience function $h(0) = 0$, $h' > 0$, e.g. $h(y) = \beta y$, $\beta > 0$.
impact function f, $f' > 0$, e.g. $f(y) = e^{\lambda y}$, $\lambda = f'/f > 0$ const.

- Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

$$L_T(\Theta) := -\int_0^T f(Y_t)\overline{S}_t \, d\Theta_t^c - \sum_{0 \leq t \leq T, \Delta \Theta_t \neq 0} \overline{S}_t \int_0^{\Delta \Theta_t} f(Y_{t^-} + x) \, dx.$$

- Like Obizhaeva/Wang (2013), but for multiplicative and more general transient price impact.
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_0 = y, \Theta_0 = \theta] \).

State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\)
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_\tau(\Theta) \mid Y_0 = y, \Theta_0 = \theta] \).

Martingale optimality principle:
State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\) should separate into open regions \(B\) (buying)
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_0^- = y, \Theta_0^- = \theta] \).

Martingale optimality principle:
State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\) should separate into open regions \(B\) (buying) and \(S\) (selling).
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_\tau(\Theta) \mid Y_0 = y, \Theta_0 = \theta] \).

Martingale optimality principle:
State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\) should separate into open regions \(B\) (buying) and \(S\) (selling) with **free contact** boundary surface \(\mathcal{I} = \bar{B} \cap \bar{S}\) s.t. variational HJB holds:

\[
\begin{align*}
\nu_y + \nu_\theta - f(y) &= 0 & \text{everywhere}, \\
\nu_\tau + h(y)V_y - \mu \nu &= 0 & \text{in } B \cup S, \\
\nu_\tau + h(y)V_y - \mu \nu &= 0 & \text{on } \mathcal{I},
\end{align*}
\]

with boundary condition \(\nu(0, y, \theta) = \int_{y-\theta}^y f(x) \, dx\).
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_\tau(\Theta) \mid Y_0 = y, \Theta_0 = \theta] \).

Martingale optimality principle:
State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\) should separate into open regions \(B\) (buying) and \(S\) (selling) with free contact boundary surface \(I = \overline{B} \cap \overline{S}\) s.t. variational HJB holds:

\[
\begin{align*}
 v_y + v_\theta - f(y) &= 0 \quad \text{everywhere,} \\
 v_\tau + h(y)V_y - \mu v &= 0 \quad \text{on } I, \\
\end{align*}
\]

with boundary condition \(v(0, y, \theta) = \int_{y-\theta}^y f(x) \, dx\). (2)

Ansatz: \(v \in C^1 \), \(\forall (\tau, y, \theta) \in B \cup S \ \exists! d \in \mathbb{R} \setminus \{0\} : (\tau, y + d, \theta + d) \in I \),

\[
B = \{d > 0\}, \ S = \{d < 0\}.
\]
A three-dimensional free boundary problem

Value function \(v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_\tau(\Theta) \mid Y_0 = y, \Theta_0 = \theta] \).

Martingale optimality principle:
State space \((\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2\) should separate into open regions \(B \) (buying) and \(S \) (selling) with free contact boundary surface \(\mathcal{I} = \overline{B} \cap \overline{S} \) s.t. variational HJB holds:

\[
\begin{align*}
 v_y + v_\theta - f(y) &= 0 \quad \text{everywhere}, \\
 v_\tau + h(y)V_y - \mu v &= 0 \quad \text{on } \mathcal{I}, \\
 v_\tau + h(y)V_y - \mu v &= 0 \quad \text{in } B \cup S,
\end{align*}
\]

(1)

with boundary condition \(v(0, y, \theta) = \int_{y-\theta}^{y} f(x) \, dx \). (2)

Ansatz: \(v \in C^1 \), \(\forall (\tau, y, \theta) \in B \cup S \ \exists! d \in \mathbb{R} \setminus \{0\} : (\tau, y + d, \theta + d) \in \mathcal{I} \),

\[
B = \{d > 0\}, \quad S = \{d < 0\}.
\]
Optional projection: deterministic strategies are optimal

\[\nu(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[- \int_0^\tau e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_0^{\Delta \Theta_t} e^{\mu t} f(Y_{t-} + x) \, dx \right] \]
Optional projection: deterministic strategies are optimal

\[
\nu(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_{\Delta \Theta_t \neq 0} e^{\mu t} f(Y_{t-} + x) \, dx \right]
\]

Optimal strategy should consist of

1) initial block buy/sale \(\Delta \Theta_0 = \bar{\theta}(T) - \theta \),
2) continuous trading in rates \(d\Theta_t = -\bar{\theta}'(T - t) \, dt \),
3) final block buy/sale \(\Delta \Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \)

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.
Optional projection: deterministic strategies are optimal

$$\nu(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_0^\tau e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_0^\Delta\Theta_t e^{\mu t} f(Y_{t-} + x) \, dx \right]$$

Optimal strategy should consist of
1) initial block buy/sale \(\Delta\Theta_0 = \bar{\theta}(T) - \theta \),
2) continuous trading in rates \(d\Theta_t = -\bar{\theta}'(T - t) \, dt \),
3) final block buy/sale \(\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \)

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.
Optional projection: deterministic strategies are optimal

\[v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_0^\tau e^{\mu t} f(Y_t) \, d\Theta^c_t - \sum_{0 \leq t \leq \tau} \int_0^{\Delta\Theta_t} e^{\mu t} f(Y_{t-} + x) \, dx \right] \]

Optimal strategy should consist of
1) initial block buy/sale \[\Delta \Theta_0 = \bar{\theta}(T) - \theta \],
2) continuous trading in rates \[d\Theta_t = -\bar{\theta}'(T - t) \, dt \],
3) final block buy/sale \[\Delta \Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \]

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.
Optional projection: deterministic strategies are optimal

\[
\nu(\tau, y, \theta) = \sup_{\Theta} E_{y, \theta} \left[- \int_0^\tau e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_{\Delta \Theta_t \neq 0} e^{\mu t} f(Y_{t-} + x) \, dx \right]
\]

Optimal strategy should consist of
1) initial block buy/sale \(\Delta \Theta_0 = \bar{\theta}(T) - \theta \),
2) continuous trading in rates \(d\Theta_t = -\bar{\theta}'(T - t) \, dt \),
3) final block buy/sale \(\Delta \Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \)

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal \(\bar{\theta} \in C^1 \):
\(\Theta_t = \bar{\theta}(T - t) \), \(Y_t = \bar{y}(T - t) \), for \(t \in [0, T) \),
\[
\bar{y}'(\tau) = h(\bar{y}(\tau)) + \bar{\theta}'(\tau),
\]
terminal position \(\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\bar{y}(0)) \).
Optional projection: deterministic strategies are optimal

\[
\nu(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[- \int_{0}^{\tau} e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_{\Delta \Theta_t \neq 0} e^{\mu t} f(Y_{t-} + x) \, dx \right]
\]

Optimal strategy should consist of
1) initial block buy/sale \(\Delta \Theta_0 = \bar{\theta}(T) - \theta \)
2) continuous trading in rates \(d\Theta_t = -\bar{\theta}'(T - t) \, dt \)
3) final block buy/sale \(\Delta \Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \)

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal \(\bar{\theta} \in C^1 \):
\[
\Theta_t = \bar{\theta}(T - t), \quad Y_t = \bar{y}(T - t), \quad \text{for } t \in [0, T),
\]
\[
\bar{y}'(\tau) = h(\bar{y}(\tau)) + \bar{\theta}'(\tau),
\]
terminal position \(\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\bar{y}(0)) \).
Optional projection: deterministic strategies are optimal

\[\nu(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_0^\tau e^{\mu t} f(Y_t) \, d\Theta_t^c - \sum_{0 \leq t \leq \tau} \int_{\Delta\Theta_t \neq 0} e^{\mu t} f(Y_{t-} + x) \, dx \right] \]

Optimal strategy should consist of
1) initial block buy/sale \[\Delta\Theta_0 = \bar{\theta}(T) - \theta \],
2) continuous trading in rates \[d\Theta_t = -\bar{\theta}'(T - t) \, dt \],
3) final block buy/sale \[\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0) \]

à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal \(\bar{\theta} \in C^1 \):
\[\Theta_t = \bar{\theta}(T - t), \ Y_t = \bar{y}(T - t), \text{ for } t \in [0, T), \]
\[\bar{y}'(\tau) = h(\bar{y}(\tau)) + \bar{\theta}'(\tau), \]
terminal position \(\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\bar{y}(0)) \).
Gains for candidate optimal strategy

In terms of \(\bar{y} \):

Maximize

\[
J(\bar{y}) = \underbrace{F(Y_0) - F(\bar{y}(T))}_{\text{initial block}} + \underbrace{e^{\mu T}(F(y) - F(y - g(y)))}_{\text{terminal block}} \bigg|_{y=\bar{y}(0)} \\
+ \underbrace{e^{\mu T} \int_0^T e^{-\mu \tau} f(\bar{y}(\tau))(\bar{y}'(\tau) - h(\bar{y}(\tau))) \, d\tau}_{\text{trading in rates}}
\]

for \(F(y) = \int_0^y f(x) \, dx \) subject to the isoperimetric condition

\[
\Theta_0 - Y_0 \equiv K(\bar{y}) := g(\bar{y}(0)) + \int_0^T (\bar{y}'(\tau) - h(\bar{y}(\tau))) \, d\tau - \bar{y}(T).
\]

Goal: find intermediate impact \(\bar{y}(\tau) \) and terminal position \(g(y) \).
Gains for candidate optimal strategy

In terms of \(\bar{y} \):

Maximize

\[
J(\bar{y}) = F(Y_0 -) - F(\bar{y}(T)) + \left. e^{\mu T} (F(y) - F(y - g(y))) \right|_{y=\bar{y}(0)}
\]

\[
+ e^{\mu T} \int_0^T e^{-\mu \tau} f(\bar{y}(\tau)) (\bar{y}'(\tau) - h(\bar{y}(\tau))) \, d\tau
\]

for \(F(y) = \int_0^y f(x) \, dx \) subject to the isoperimetric condition

\[
\Theta_0 - Y_0 = K(\bar{y}) := \left. g(\bar{y}(0)) \right|_{\bar{y}(0)=\theta(0)} + \int_0^T \left. (\bar{y}' - h(\bar{y})) \right|_{\bar{y}(0)=\theta'(0)} \, d\tau - \bar{y}(T).
\]

Goal: find intermediate impact \(\bar{y}(\tau) \)

and terminal position \(g(y) \).
Gains for candidate optimal strategy

In terms of \bar{y}:

Maximize

$$J(\bar{y}) = \underbrace{F(Y_0-) - F(\bar{y}(T))}_{\text{initial block}} + \int_{Y_0-}^{\bar{y}(T)} e^{\mu T} \left(F(y) - F(y - g(y)) \right) \bigg|_{y=\bar{y}(0)}$$

$$+ \int_0^T e^{\mu \tau} f(\bar{y}(\tau)) (\bar{y}'(\tau) - h(\bar{y}(\tau))) \, d\tau$$

for $F(y) = \int_0^y f(x) \, dx$ subject to the *isoperimetric condition*

$$\Theta_{0-} - Y_{0-} \equiv K(\bar{y}) := g(\bar{y}(0)) + \int_0^T (\bar{y}' - h(\bar{y})) \, d\tau - \bar{y}(T).$$

Goal: find intermediate impact $\bar{y}(\tau)$

and terminal position $g(y)$.

Calculus of variations

- Maximize $J(\bar{y})$ subject to $K(\bar{y}) = (\text{const})$ over $\bar{y} \in C^1([0, T])$ with $\bar{y}(T) = Y_0$

- Equivalent problem: $\max_{\bar{y}} (J(\bar{y}) + m_T K(\bar{y}))$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.

- Taylor approximation: $(J + m_T K)(\bar{y} + z)$

 $$= (J + m_T K)(\bar{y}) + \delta (J + m_T K)(\bar{y})[z] + \delta^2 (J + m_T K)(\bar{y})[z] + O(\|z\|_{W^{1,\infty}}^3)$$

 \(\text{first variation}\)

 \(\text{second variation}\)

where $\|z\|_{W^{1,\infty}} := \|z\|_\infty \lor \|z'\|_\infty$.
Calculus of variations

- Maximize $J(\bar{y})$ subject to $K(\bar{y}) = \text{(const)}$ over $\bar{y} \in C^1([0, T])$ with $\bar{y}(T) = Y_0$

- Equivalent problem: $\max_{\bar{y}} (J(\bar{y}) + m_T K(\bar{y}))$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.

- Taylor approximation: $(J + m_T K)(\bar{y} + z) = (J + m_T K)(\bar{y}) + \delta(J + m_T K)(\bar{y})[z] + \delta^2(J + m_T K)(\bar{y})[z] + O(\|z\|_{W^{1,\infty}}^3)$

 where $\|z\|_{W^{1,\infty}} := \|z\|_\infty \vee \|z'\|_\infty$.

Peter Frentrup (HU Berlin)

Optimal liquidation in spite of increasing prices

Singapore – 18 March 2019
Calculus of variations

- Maximize $J(\bar{y})$ subject to $K(\bar{y}) = (\text{const})$ over $\bar{y} \in C^1([0, T])$ with $\bar{y}(T) = Y_0$

- Equivalent problem: $\max_{\bar{y}} (J(\bar{y}) + m_T K(\bar{y}))$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.

- Taylor approximation: $(J + m_T K)(\bar{y} + z)$

 $$= (J + m_T K)(\bar{y}) + \delta (J + m_T K)(\bar{y})[z] + \delta^2 (J + m_T K)(\bar{y})[z] + O(\|z\|_{W^{1,\infty}}^3)$$

 where $\|z\|_{W^{1,\infty}} := \|z\|_{\infty} \vee \|z'\|_{\infty}$.
Calculus of variations – candidate solution

Necessary condition \(\delta (J + m_T K)(\bar{y})[z] = 0 \ \forall z \in C^1 \) with \(z(T) = 0 \), gives

- Lagrange multiplier \(m_T \),
- candidate terminal position

\[
g(y) = y - f^{-1}\left(f \frac{h\lambda + h' - \mu}{h'} \right)(y), \quad y > y_\infty,
\]

where \((h\lambda + h' - \mu)(y_\infty) = 0 \),

- ODE for candidate impact trajectory \(\bar{y}(\tau) \):

\[
\bar{y}' = \mu \left(\frac{f \frac{h\lambda + h' - \mu}{h'}}{f \left(\frac{h\lambda + h' - \mu}{h'} \right)'} \right)(\bar{y}).
\]

Write \(\bar{y}(\tau; z), \bar{\theta}(\tau; z) \) for the solution with \(\bar{y}(0; z) = z, \ \bar{\theta}(0; z) = g(z) \),

\[
\bar{\theta}_\tau(\tau; z) = \bar{y}_\tau(\tau; z) - h(\bar{y}(\tau; z)).
\]
Calculus of variations – candidate solution

Necessary condition $\delta(J + m_T K)(\bar{y})[z] = 0 \ \forall z \in C^1$ with $z(T) = 0$, gives

- Lagrange multiplier m_T,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\left(\frac{f h\lambda + h' - \mu}{h'}\right)(y)\right), \quad y > y_\infty,$$

where $(h\lambda + h' - \mu)(y_\infty) = 0$,

- ODE for candidate impact trajectory $\bar{y}(\tau)$:

$$\bar{y}' = \mu\left(\frac{f (h\lambda + h' - \mu)/h'}{(f (h\lambda + h' - \mu)/h')'}(\bar{y})\right).$$

Write $\bar{y}(\tau; z)$, $\bar{\theta}(\tau; z)$ for the solution with $\bar{y}(0; z) = z$, $\bar{\theta}(0; z) = g(z)$,

$$\bar{\theta}_\tau(\tau; z) = \bar{y}_\tau(\tau; z) - h(\bar{y}(\tau; z)).$$
Calculus of variations – candidate solution

Necessary condition $\delta(J + m_T K)(\bar{y})[z] = 0 \ \forall z \in C^1$ with $z(T) = 0$, gives

- Lagrange multiplier m_T,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\left(f \frac{h\lambda + h' - \mu}{h'}\right)(y)\right), \quad y > y_\infty,$$

where $(h\lambda + h' - \mu)(y_\infty) = 0$,

- ODE for candidate impact trajectory $\bar{y}(\tau)$:

$$\bar{y}' = \mu\left(\frac{f (h\lambda + h' - \mu)/h'}{f (h\lambda + h' - \mu)/h'}\right)(\bar{y}).$$

Write $\bar{y}(\tau; z), \bar{\theta}(\tau; z)$ for the solution with $\bar{y}(0; z) = z, \bar{\theta}(0; z) = g(z)$,

$$\bar{\theta}_\tau(\tau; z) = \bar{y}_\tau(\tau; z) - h(\bar{y}(\tau; z)).$$
Calculus of variations – candidate solution

Necessary condition $\delta(J + m_T K)(\bar{y})[z] = 0 \ \forall z \in C^1$ with $z(T) = 0$, gives

- Lagrange multiplier m_T,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\frac{h\lambda + h' - \mu}{h'}(y)\right), \quad y > y_\infty,$$

where $(h\lambda + h' - \mu)(y_\infty) = 0$,

- ODE for candidate impact trajectory $\bar{y}(\tau)$:

$$\bar{y}' = \mu\left(\frac{f (h\lambda + h' - \mu)/h'}{(f (h\lambda + h' - \mu)/h')'}(\bar{y})\right).$$

Write $\bar{y}(\tau; z), \bar{\theta}(\tau; z)$ for the solution with $\bar{y}(0; z) = z, \bar{\theta}(0; z) = g(z)$,

$$\bar{\theta}_\tau(\tau; z) = \bar{y}_\tau(\tau; z) - h(\bar{y}(\tau; z)).$$
Proof of optimality for this non-convex problem:

1. showing local optimality with 2nd variation;

2. use this to extend to global optimality.

Non-convex problem – proving optimality

Proof of optimality for this non-convex problem:

1. showing local optimality with 2nd variation;
2. use this to extend to global optimality.

Local optimality

Theorem (strict local maximizer \(\bar{y} \))

Under technical conditions\(^\dagger\) *on impact and resilience functions* \(f \) *and* \(h \), *\(\exists \varepsilon > 0 \) s.t. for all* \(y \in C^1 \) *with* \(y(T) = \bar{y}(T) \), *\(\|y - \bar{y}\|_{W^{1,\infty}} \in (0, \varepsilon) \):*

\[
(J + m_T K)(\bar{y}) > (J + m_T K)(y).
\]

Proof: 2\(^{\text{nd}} \) variation \(\delta^2 (J + m_T K)(\bar{y})[z] < 0 \), *higher order terms are* \(O(\|z\|_{W^{1,\infty}}^3) \).

- **Candidate buy-sell boundary** \(\mathcal{I} = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty \} \)
- **Candidate value function** \(V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-}) \).

\(^\dagger\) \(f, h \in C^3, f, f' > 0, \lim_{y \to -\infty} f(y) = 0, \)
\(h' > 0, h(0) = 0, (h\lambda)' > 0, (h\lambda + h')' > 0 \) *where* \(\lambda := f'/f \),
\(\exists y_\infty : (h\lambda + h' - \mu)(y_\infty) = 0, \)
\(\exists y_0 : (h\lambda - \mu)(y_0) = 0, \)
and \(h'' < (h\lambda)'h'/(h\lambda - \mu) \) for \(y > y_0 \).

Satisfied, e.g. for
\(f(y) = e^{\lambda y}, h(y) = \beta y, \)
\(\lambda, \beta > 0 \) const.
Local optimality

Theorem (strict local maximizer \bar{y})

Under technical conditions† on impact and resilience functions f and h, $\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \bar{y}(T)$, $\|y - \tilde{y}\|_{W^{1,\infty}} \in (0, \varepsilon)$:

$$(J + m_TK)(\bar{y}) > (J + m_TK)(y).$$

Proof: 2nd variation $\delta^2(J + m_TK)(\bar{y})[z] < 0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{(\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty\}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-})$.

† $f, h \in C^3$, $f, f' > 0$, $\lim_{y \to -\infty} f(y) = 0$,
$h' > 0$, $h(0) = 0$, $(h\lambda)' > 0$, $(h\lambda + h')' > 0$ where $\lambda := f'/f$,
$\exists y_\infty : (h\lambda + h' - \mu)(y_\infty) = 0$, $\exists y_0 : (h\lambda - \mu)(y_0) = 0$,
and $h'' < (h\lambda)'h'/(h\lambda - \mu)$ for $y > y_0$.

Satisfied, e.g. for $f(y) = e^{\lambda y}$, $h(y) = \beta y$, $\lambda, \beta > 0$ const.
Local optimality

Theorem (strict local maximizer \(\bar{y} \))

*Under technical conditions\(^\dagger\) on impact and resilience functions \(f \) and \(h \), \(\exists \varepsilon > 0 \) s.t. for all \(y \in C^1 \) with \(y(T) = \bar{y}(T) \), \(\|y - \bar{y}\|_{W^{1,\infty}} \in (0, \varepsilon) \):

\[
(J + m_T K)(\bar{y}) > (J + m_T K)(y).
\]

Proof: 2\(^{nd}\) variation \(\delta^2(J + m_T K)(\bar{y})[z] < 0 \), higher order terms are \(O(\|z\|_{W^{1,\infty}}^3) \).

- Candidate buy-sell boundary \(\mathcal{I} = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty \} \)
- Candidate value function \(V(T, Y_0-, \Theta_0-) := J(\bar{y}; T, Y_0-, \Theta_0-) \).

\(^\dagger\) \(f, h \in C^3, f, f' > 0, \lim_{y \to -\infty} f(y) = 0, h' > 0, h(0) = 0, (h\lambda)' > 0, (h\lambda + h')' > 0 \) where \(\lambda := f'/f \), \(\exists y_\infty : (h\lambda + h' - \mu)(y_\infty) = 0 \), \(\exists y_0 : (h\lambda - \mu)(y_0) = 0 \), and \(h'' < (h\lambda)'h'/(h\lambda - \mu) \) for \(y > y_0 \).

Satisfied, e.g. for \(f(y) = e^{\lambda y}, h(y) = \beta y \), \(\lambda, \beta > 0 \) const.
Local optimality

Theorem (strict local maximizer \bar{y})

Under technical conditions† on impact and resilience functions f and h,
$\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \bar{y}(T)$, $\|y - \bar{y}\|_{W^{1,\infty}} \in (0, \varepsilon)$:

$$(J + m_T K)(\bar{y}) > (J + m_T K)(y).$$

Proof: 2nd variation $\delta^2(J + m_T K)(\bar{y})[z] < 0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty} \}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-})$.

† $f, h \in C^3$, $f, f' > 0$, $\lim_{y \to -\infty} f(y) = 0$, $h', h(0) = 0$, $(h\lambda)' > 0$, $(h\lambda + h')' > 0$ where $\lambda := f'/f$,
$\exists y_{\infty} : (h\lambda + h' - \mu)(y_{\infty}) = 0$, $\exists y_0 : (h\lambda - \mu)(y_0) = 0$, and $h'' < (h\lambda)'h'/(h\lambda - \mu)$ for $y > y_0$.

Satisfied, e.g. for $f(y) = e^{\lambda y}$, $h(y) = \beta y$, $\lambda, \beta > 0$ const.
Local optimality (II)

\[I = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty \} \]

\[V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-}) \]

Corollary (variational inequality near \(I \))

We have

\[V_\tau + h(y)V_y - \mu V > 0 \text{ in a neighborhood of } I \]

with equality on \(I \), and \(V_y + V_\theta = f \) everywhere.

Proof: Otherwise, construct a strategy given by \(\hat{y} \), with \(0 < \| \hat{y} - \bar{y} \|_{W^{1,\infty}} < \varepsilon \) and \(K(\hat{y}) = K(\bar{y}) \) which would give \(J(\hat{y}) \geq J(\bar{y}) \).
Local optimality (II)

\[\mathcal{I} = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty \} \]

\[V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-}) \]

Corollary (variational inequality near \(\mathcal{I} \))

We have

\[V_\tau + h(y)V_y - \mu V > 0 \text{ in a neighborhood of } \mathcal{I} \]

with equality on \(\mathcal{I} \),

and \(V_y + V_\theta = f \) everywhere.

Proof: Otherwise, construct a strategy given by \(\hat{y} \),

with \(0 < \|\hat{y} - \bar{y}\|_{W^{1,\infty}} < \epsilon \) and \(K(\hat{y}) = K(\bar{y}) \)

which would give \(J(\hat{y}) \geq J(\bar{y}) \).
Local optimality (II)

\[\mathcal{I} = \{ (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_\infty \} \]

\[V(T, Y_{0-}, \Theta_{0-}) := J(\bar{y}; T, Y_{0-}, \Theta_{0-}) \]

Corollary (variational inequality near \(\mathcal{I} \))

We have
\[V_\tau + h(y)V_y - \mu V > 0 \text{ in a neighborhood of } \mathcal{I} \]
with equality on \(\mathcal{I} \),

and \(V_y + V_\theta = f \) everywhere.

Proof: Otherwise, construct a strategy given by \(\hat{y} \), with \(0 < \| \hat{y} - \bar{y} \|_{W^{1,\infty}} < \varepsilon \) and \(K(\hat{y}) = K(\bar{y}) \)

which would give \(J(\hat{y}) \geq J(\bar{y}) \).
Global optimality

Question: How to conclude from local to global optimality?

- Let $k(d) := (V_\tau + h(y)V_y - \mu V)(\tau; y_b + d, \theta_b + d)$ for fixed $(\tau, y_b, \theta_b) = (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \in I$.

- Previous corollary: $k(0) = 0$, $k'(0-) \leq 0 \leq k'(0+)$;

- Now, can show analytically the inequalities:
 \[k'(-d) < 0 < k'(d) \text{ for } d > 0. \]

- Hence, $k(d) > 0$ for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

(like in Becherer/Bilarev/F., FS 2018)
Global optimality

Question: How to conclude from local to global optimality?

- Let $k(d) := (V_\tau + h(y)V_y - \mu V)(\tau; y_b + d, \theta_b + d)$
 for fixed $(\tau, y_b, \theta_b) = (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: $k(0) = 0$, $k'(0- \leq 0 \leq k'(0+)$;

- Now, can show analytically the inequalities:

 $k'(-d) < 0 < k'(d)$ for $d > 0$.

- Hence, $k(d) > 0$ for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

(like in Becherer/Bilarev/F., FS 2018)
Global optimality

Question: How to conclude from local to global optimality?

- Let \(k(d) := (V_\tau + h(y)V_y - \mu V)(\tau; y_b + d, \theta_b + d) \)
 for fixed \((\tau, y_b, \theta_b) = (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \in I.\)

- Previous corollary: \(k(0) = 0, \; k'(0-) \leq 0 \leq k'(0+) ; \)

- Now, can show analytically the inequalities:
 \[
 k'(-d) < 0 < k'(d) \text{ for } d > 0.
 \]

- Hence, \(k(d) > 0 \) for \(d \in \mathbb{R} \setminus \{0\}, \) giving strict global optimality.

(like in Becherer/Bilarev/F., FS 2018)
Global optimality

Question: How to conclude from local to global optimality?

- Let \(k(d) := (V_\tau + h(y)V_y - \mu V)(\tau; y_b + d, \theta_b + d) \)
 for fixed \((\tau, y_b, \theta_b) = (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \in I. \)

- Previous corollary: \(k(0) = 0, k'(0-) \leq 0 \leq k'(0+) \);

- Now, can show analytically the inequalities:

\[
k'(-d) < 0 < k'(d) \text{ for } d > 0.
\]

- Hence, \(k(d) > 0 \text{ for } d \in \mathbb{R} \setminus \{0\} \), giving strict global optimality.

(like in Becherer/Bilarev/F., FS 2018)
Global optimality

Question: How to conclude from local to global optimality?

- Let $k(d) := (V_{\tau} + h(y)V_y - \mu V)(\tau; y_b + d, \theta_b + d)$
 for fixed $(\tau, y_b, \theta_b) = (\tau, \bar{y}(\tau; z), \bar{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: $k(0) = 0$, $k'(0-) \leq 0 \leq k'(0+)$;

- Now, can show analytically the inequalities:

 $$k'(-d) < 0 < k'(d) \text{ for } d > 0.$$

- Hence, $k(d) > 0$ for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

(like in Becherer/Bilarev/F., FS 2018)
Optimal strategy: dependence on price trend
(comparative statics)

- **no trend** in fundamental price \bar{S} (martingale, Obizhaeva/Wang situation): constant rate of trading in time $(0, T)$.

 - increasing \bar{S}: defer asset sales to later times; for strong upwards trend: temporary buying.

 - decreasing \bar{S}: sell asset at earlier times; for strong downwards trend: go short.
Optimal strategy: dependence on price trend
(comparative statics)

- **no trend** in fundamental price \(\bar{S} \) (martingale, Obizhaeva/Wang situation): constant rate of trading in time \((0, T)\).
- **increasing** \(\bar{S} \): defer asset sales to later times; for strong upwards trend: temporary buying.
- **decreasing** \(\bar{S} \): sell asset at earlier times; for strong downwards trend: go short.
Optimal strategy: dependence on price trend
(comparative statics)

- **no trend** in fundamental price \overline{S} (martingale, Obizhaeva/Wang situation): constant rate of trading in time $(0, T)$.
- **increasing** \overline{S}: defer asset sales to later times; for strong upwards trend: temporary buying.
- **decreasing** \overline{S}: sell asset at earlier times; for strong downwards trend: go short.
If there is still some time...
Stochastic liquidity and transaction costs

- Stochasticity in the impact/signal:
 \[
 dY_t = -\beta Y_t \, dt + \sigma \, dB_t + d\Theta_t, \quad Y_{0+} = y,
 \]
 for correlated Brownian motion B with $d[B, W]_t = \rho \, dt$.
 [Becherer/Bilarev/F., FS 2018]

- Bid-ask spread through proportional transaction costs:
 \[
 \text{sell at } S^\text{bid} := f(Y_t) \overline{S}_t, \quad \text{buy at } S^\text{ask} := \kappa f(Y_t) \overline{S}_t,
 \]
 for transaction cost factor $\kappa > 1$.

- Maximize over Θ: càdlàg, adapted, bounded variation, ≥ 0, until $\tau^\Theta := \inf\{t \geq 0 \mid \Theta_t = 0\}$.
 Infinite time horizon eases analysis: (non-convex) free boundary problem in \mathbb{R}^2.
Stochastic liquidity and transaction costs

- Stochasticity in the impact/signal:

\[dY_t = -\beta Y_t \, dt + \sigma \, dB_t + d\Theta_t, \quad Y_0 = y, \]

for correlated Brownian motion \(B \) with \(d[B, W]_t = \rho \, dt \).

[Becherer/Bilarev/F., FS 2018]

- Bid-ask spread through proportional transaction costs:

sell at \(S^{bid} := f(Y_t)\overline{S}_t \),

buy at \(S^{ask} := \kappa f(Y_t)\overline{S}_t \),

for transaction cost factor \(\kappa > 1 \).

- Maximize over \(\Theta \) : càdlàg, adapted, bounded variation, \(\geq 0 \),
until \(\tau^\Theta := \inf\{t \geq 0 \mid \Theta_t = 0\} \).

Infinite time horizon eases analysis: (non-convex) free boundary problem in \(\mathbb{R}^2 \).
Stochastic liquidity and transaction costs

- Stochasticity in the impact/signal:

\[dY_t = -\beta Y_t \, dt + \hat{\sigma} \, dB_t + d\Theta_t, \quad Y_0 = y, \]

for correlated Brownian motion \(B \) with \(d[B, W]_t = \rho \, dt \).

[Becherer/Bilarev/J., FS 2018]

- Bid-ask spread through proportional transaction costs:

sell at \(S_{\text{bid}} = f(Y_t)\overline{S}_t \), \quad buy at \(S_{\text{ask}} = \kappa f(Y_t)\overline{S}_t \),

for transaction cost factor \(\kappa > 1 \).

- Maximize over \(\Theta : \) càdlàg, adapted, bounded variation, \(\geq 0 \),

until \(\tau^\Theta := \inf\{t \geq 0 \mid \Theta_t = 0\} \).

Infinite time horizon eases analysis: (non-convex) free boundary problem in \(\mathbb{R}^2 \).
Variational (in-)equalities

State space \((y, \theta) \in \mathbb{R} \times \mathbb{R}_+\) should separate into open regions \(B, W, S\) with corresponding HJB variational (in-)equalities...

- **Ansatz:** there exist free boundary curves \(b, s \in C^1(\mathbb{R}_+)\) s.t.

 \[B = \{y < b(\theta)\}, \quad W = \{b(\theta) < y < s(\theta)\}, \quad S = \{y > s(\theta)\}.\]

- \(V(y, 0) = 0\) for \(y \geq s(0)\),

- \(V(y, \infty) = \tilde{V}(y)\) via corresponding “\(\theta \to \infty\)” infinite fuel limit.
Variational (in-)equalities

State space \((y, \theta) \in \mathbb{R} \times \mathbb{R}_+\) should separate into open regions \(B, \mathcal{W}, S\) with corresponding HJB variational (in-)equalities . . .

- **Ansatz:** there exist free boundary curves \(b, s \in C^1(\mathbb{R}_+)\) s.t.
 \[
 B = \{y < b(\theta)\}, \quad \mathcal{W} = \{b(\theta) < y < s(\theta)\}, \quad S = \{y > s(\theta)\}.
 \]

- \(V(y, 0) = 0\) for \(y \geq s(0)\),
- \(V(y, \infty) = \tilde{V}(y)\) via corresponding “\(\theta \to \infty\)” infinite fuel limit.
Variational (in-)equalities

State space \((y, \theta) \in \mathbb{R} \times \mathbb{R}_+\) should separate into open regions \(B, \mathcal{W}, S\) with corresponding HJB variational (in-)equalities . . .

- **Ansatz:** there exist free boundary curves \(b, s \in C^1(\mathbb{R}_+)\) s.t.
 \[
 B = \{y < b(\theta)\}, \quad \mathcal{W} = \{b(\theta) < y < s(\theta)\}, \quad S = \{y > s(\theta)\}.
 \]
- \(V(y,0) = 0\) for \(y \geq s(0)\),
- \(V(y,\infty) = \tilde{V}(y)\) via corresponding “\(\theta \to \infty\)” infinite fuel limit.
Open ODE problem for boundary curves

Smooth pasting gives

- Candidate free boundary curves $b(\theta), s(\theta)$ as ODE
 \[(b', s') = \text{function}(b, s),\]

- with asymptotes $b(\infty) = b_\infty, s(\infty) = s_\infty$, and (implicitly) given $s(0)$.

Open questions:

- Existence of ODE solution for b, s;

- Proof of variational inequalities.
Open ODE problem for boundary curves

Smooth pasting gives

- Candidate free boundary curves $b(\theta), s(\theta)$ as ODE

$$ (b', s') = \text{function}(b, s), $$

- with asymptotes $b(\infty) = b_\infty$, $s(\infty) = s_\infty$, and (implicitly) given $s(0)$.

Open questions:

- Existence of ODE solution for b, s;
- Proof of variational inequalities.
Open ODE problem for boundary curves

Smooth pasting gives

- Candidate free boundary curves \(b(\theta), s(\theta) \) as ODE
 \[
 (b', s') = \text{function}(b, s),
 \]
- with asymptotes \(b(\infty) = b_\infty, s(\infty) = s_\infty \), and (implicitly) given \(s(0) \).

Open questions:

- Existence of ODE solution for \(b, s \);
- Proof of variational inequalities.

Thank you!