Optimal Dynamic Risk Sharing under the Time-Consistent Mean-Variance Criterion\cite{1}

Bin Li
Department of Statistics and Actuarial Science
University of Waterloo, Canada

Workshop on Stochastic Control in Finance
July 22, 2019, NUS, Singapore

\footnote{Joint work with Lyu Chen, Danping Li, and David Landriault}
Introduction and motivation

Problem setting and main results
Classical setting of risk sharing (risk exchange)

- Consider n agents with initial endowments (X_1, \ldots, X_n) and risk preferences (J_1, \ldots, J_n).

Objective function

$$\max_{(Y_1, \ldots, Y_n)} \sum_{i=1}^{n} \alpha_i J_i(Y_i),$$

subject to $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} X_i$ and $J_i(Y_i) \geq J_i(X_i)$ for all i.

1. $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} X_i$ means a pure exchange economy.

2. $J_i(Y_i) \geq J_i(X_i)$ is called the individual rational condition.

3. Maximizing $\sum_{i=1}^{n} \alpha_i J_i(Y_i)$ leads to a Pareto optimal strategy (Y^*_1, \ldots, Y^*_n), i.e., whenever an allocation (Y_1, \ldots, Y_n) satisfies $J_i(Y_i) \geq J_i(Y^*_i)$ for all i, we have $J_i(Y_i) = J_i(Y^*_i)$ for all i.
Pioneering works: Karl Borch and Kenneth Arrow in 60’s and 70’s.

Chateauneuf-Dana-Tallon (’00): Choquet expected utilities

Carlier-Dana (’08): rank dependent expected utilities

Jouini-Schachermayer-Touzi (’08): law-invariant monetary utilities

Ludkovski-Young (’09): distortion risk measures

Ravanelli-Svindland (’14): law invariant robust utilities

Mastrogiacomo-Gianin (’15): quasiconvex risk measures

Embrechts-Liu-Wang (’18): two-parameter class of quantile-based risk measures
Main focus of existing works is to study the existence of Pareto-optimal risk sharing strategies under various risk preferences.

Closed-form expressions of optimal risk sharing strategies are rare (unless $n = 2$, i.e., two agents).
Motivation: How to insure an extreme risk (e.g., catastrophe), which may cause significant loss, with a comprehensive coverage?

A single insurer may only be able to provide a policy with a limited coverage.

A “naive” solution is to invite more insurers to undertake this risk cooperatively.

How to find an optimal risk bearing form?
Our framework

Our framework has a few major differences with the standard risk sharing problem:

1. We consider an exogenous dynamic risk modelled by a Lévy process \(\{U(t)\}_{0 \leq t \leq T} \) with monotone increasing paths, where \(U(t) \) means the aggregate loss at time \(t \).

2. We allow \(n \) insurers to cooperatively undertake this risk, and aim to solve Pareto-optimal risk bearing strategies \((Y_1^*(t), \ldots, Y_n^*(t))_{0 \leq t \leq T} \).

3. The risk preference \(J_i \) of each insurer follows the time-consistent mean-variance criterion.

In general, our objective is

\[
\begin{aligned}
\max_{(Y_1, \ldots, Y_n)} & \sum_{i=1}^{n} J_i(Y_i(\cdot)), \\
s.t. & \sum_{i=1}^{n} Y_i(t) \leq U(t) \text{ and } J_i(Y_i(\cdot)) \geq J_i(0).
\end{aligned}
\]
Outline

- Introduction and motivation
- Problem setting and main results
Problem setting: exogenous risk

Consider an exogenous risk with aggregate loss modelled by an increasing Lévy process

\[U(t) = \int_0^t \int_0^\infty y N(ds, dy), \quad t \in [0, T]. \]

- \(N(ds, dy) \) is a Poisson random measure, representing the random number of losses of size \((y, y + dy)\) that occur within the time period \((s, s + ds)\).
- \(\nu(dy) \) is the Lévy measure representing the expected number of losses of size \((y, y + dy)\) within a unit time interval.
- \(\mathbb{E}[N(ds, dy)] = \nu(dy)ds \).
- In particular, if \(U \) is a compound Poisson process, \(\nu(dy) = \lambda F(dy) \) where \(\lambda \) is the Poisson intensity and \(F \) is the cdf of jumps.
The i-th insurer’s controlled surplus process under the risk bearing strategy l_i follows

$$dX^i_t = (1 + \theta_i) \int_0^\infty l_i(t, y) \nu(\text{d}y) \text{d}t - \int_0^\infty l_i(t, y) \text{N}(\text{d}t, \text{d}y).$$

- $l_i(t, y) \in [0, y]$ represents the risk undertaken by the i-th insurer for a loss of size y occurring at time t.
- $\theta_i > 0$ is her premium rate.
- WLOG, assume $\theta_1 \geq \theta_2 \geq \cdots \geq \theta_n$.
Problem setting: objective function

- i-th insurer’s reward function under the strategy l_i is

$$J^i_l(t, x) = \mathbb{E}_{t, x} \left[X^i_l(T) \right] - \frac{\gamma_i}{2} \text{Var}_{t, x} \left[X^i_l(T) \right],$$

where $\gamma_i > 0$ is her risk aversion parameter.

- Due to time inconsistency of the mean-variance criterion, our objective is to solve equilibrium Pareto-optimal risk bearing strategies $(l^*_1(t, y), \ldots, l^*_n(t, y))_{0 \leq t \leq T, y > 0}$ for

$$\left\{ \begin{array}{l}
\max_{(l_1, \ldots, l_n)} \sum_{i=1}^{n} J^i_l(t, x), \\
\text{s.t. } \sum_{i=1}^{n} l_i(t, y) \leq y \text{ and } J^i_l(t, x) \geq J^0_i(t, x) = x_i \text{ for all } i
\end{array} \right.$$

- We strategically select time-consistent mean-variance criterion because it can be considered as the SIMPLEST criterion in continuous-time framework.
Time inconsistency: equilibrium strategy

- In **discrete time**, strategies can be determined **backwardly**

 \[0 \overset{\text{step T-1}}{\iff} 1 \iff \cdots \iff T - 2 \overset{\text{step 2}}{\iff} T - 1 \overset{\text{step 1}}{\iff} T \]

- In **continuous time**, define a **perturbed strategy** \(l^\varepsilon \) as

 \[
l^\varepsilon(s, y) = \begin{cases}
 \bar{l}(y), & s \in [t, t + \varepsilon), \ y > 0, \\
 l^*(s, y), & s \in [t + \varepsilon, T], \ y > 0,
\end{cases}
\]

 where \(\bar{l} : (0, \infty) \to (0, \infty) \). We say \(l^* \) is an equilibrium strategy if for all \(\bar{l} \),

 \[
 \liminf_{\varepsilon \to 0} \frac{J^{l^*}(t, x) - J^{l^\varepsilon}(t, x)}{\varepsilon} \geq 0.
 \]

- Value function \(J^{l^*}(t, x) \) is **LINEAR in** \(x \)!
Figure 1: Equilibrium risk bearing strategies with three insurers
Define an increasing sequence \(\{ a_k \}_{k=1}^{n+1} \) given by

\[
a_1 = 0, \quad a_k = \sum_{j=1}^{k-1} \frac{\theta_j - \theta_k}{\gamma_j} \quad \text{for } k = 2, \ldots, n + 1
\]

where \(\theta_{n+1} := 0 \).

Theorem

An equilibrium bearing function for the \(i \)-th insurer is given by

\[
l_i^*(t, y) = \sum_{j=i}^{n} c_{ij} \left[(y \wedge a_{j+1}) - a_j \right]_+, \quad y > 0,
\]

where \(c_{ij} := \frac{\gamma_i^{-1}}{\gamma_1^{-1} + \cdots + \gamma_j^{-1}} \) for \(j \geq i \).

- When \(n = 1 \), \(l_1^*(t, y) = y \wedge \frac{\theta_1}{\gamma_1} \), which is a stop-loss contract.
Main implications

1. The equilibrium bearing functions are time-homogeneous and of a mixture form of the proportional and the stop-loss strategies.

2. Loss coverage is broken into a set of thresholds \(\{a_j\}_{j=1}^{n+1} \).

3. The loss in the range \([a_j, a_{j+1}]\) is completely undertaken by the first \(j \) insurers in a proportional form. The proportion undertaken by the \(i \)-th insurer \((i \leq j) \) is \(c_{ij} = \frac{\gamma_i^{-1}}{\gamma_1^{-1} + \ldots + \gamma_j^{-1}} \), which represents her relative degree of risk seeking.

4. The limit of loss coverage is \(a_{n+1} = \sum_{j=1}^{n} \frac{\theta_j}{\gamma_j} \), which can be increased with more insurers participating.
Thank you for your attention!