Continued Fraction Normals and Subsequence selections - a combinatorial approach

Satyadev Nandakumar, Subin Pulari, Prateek Vishnoi, Gopal Viswanathan

IIT Kanpur

May 9, 2019
1 Motivation

2 Subselection along A. P.
Every irrational real number in $r \in [0, 1]$ has a unique continued fraction expansion of the form

$$r = 0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cdots}}}$$

where, for every $i \in \mathbb{N}^+$, we have $a_i \in \mathbb{N}^+$. We denote this by $[0; a_1, a_2, a_3, \ldots]$.
Let $b \geq 2$ be an integer. Denote the set $\{0, 1, \ldots, b - 1\}$ by Σ_b, and the set of finite strings drawn from this alphabet by Σ_b^*. For a finite string w, let $|w|$ denote its length.
Let $b \geq 2$ be an integer. Denote the set $\{0, 1, \ldots, b - 1\}$ by Σ_b, and the set of finite strings drawn from this alphabet by Σ^*. For a finite string w, let $|w|$ denote its length.

Definition

A real r with base-b expansion $.r_1 r_2 \ldots$ is said to be *normal in base b*, if for every $w \in \Sigma^*_b$, we have

$$\lim_{n \to \infty} \frac{|\{1 \leq i < n - |w| + 1 \mid r_i \ldots r_{i + |w| - 1} = w\}|}{n - |w| + 1} = \frac{1}{b^{|w|}}.$$
Sliding Block matching

\[
\begin{array}{cccc}
 r_1 & r_2 & r_3 & \ldots \\
 w_1 & w_2 \\
\end{array}
\]
Sliding Block matching

\[
\begin{array}{cccc}
 r_1 & r_2 & r_3 & \cdots \\
 w_1 & w_2
\end{array}
\]
Denote the set of finite strings of positive integers by \mathbb{N}^*_b. For continued fractions, we consider the Gauss measure as the invariant measure.

Definition

For a Borel set $A \subseteq [0, 1]$, the *Gauss measure* of A is defined by

$$\gamma(A) = \frac{1}{\ln 2} \int_A \frac{1}{1 + x} \, dx.$$

The left-shift transformation on continued fractions is ergodic wrt γ.
An irrational \(r \) with continued fraction expansion \([0; a_1, a_2, \ldots]\) is said to be **continued fraction normal**, if for every \(w \in \mathbb{N}^* \),

\[
\lim_{{n \to \infty}} \frac{\left| \left\{ 1 \leq i < n - |w| + 1 \mid a_i \ldots a_{i+|w|-1} = w \right\} \right|}{n - |w| + 1} = \gamma(C_w),
\]

where \(C_w \) is the cylinder set

\[
\{ r \in [0, 1] - \mathbb{Q} \mid w \text{ is a prefix of the continued fraction expansion of } r \}.
\]
Let $[0; a_1, a_2, \ldots]$ be a continued fraction normal, and let $(m, m + d, m + 2d, \ldots)$, $m \geq 1$, $d \geq 2$ be an arithmetic progression of integers.

Question:
Is $[0; a_m, a_{m+d}, a_{m+2d}, \ldots]$ a continued fraction normal?
Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an arithmetic progression. [Wall, 1949]
Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an arithmetic progression. [Wall, 1949]

Continued fraction normality is *not*!

Theorem ([Heersink and Vandehey, 2016])

For any $[0; a_1, a_2, \ldots]$ *continued fraction normal, and any* $(m, m + d, m + 2d, \ldots)$, *the continued fraction* $[0; a_m, a_{m+d}, a_{m+2d}, \ldots]$ *is not normal.*

The proof uses ergodic-theoretic techniques used in a result by Vandehey [Vandehey, 2017].
Proofs of Wall’s Result

Wall’s result on arithmetic progressions has different proofs using

1. Weyl’s criterion
2. Automata Theoretic
3. Combinatorial (?)
A combinatorial approach

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

$$\lim_{n \to \infty} \frac{|\{0 \leq i \leq N \mid T^{im} r \land T^{im+d} r \in C_{[0;1]}\}|}{N}$$

$$= \sum_{a_1, a_2, \ldots, a_n \in \mathbb{N}^+} \gamma(C_{[0;1,a_1,\ldots,a_n,1]).$$
A combinatorial approach

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

1. \[
\lim_{n \to \infty} \frac{|\{0 \leq i \leq N \mid T^{im} r \land T^{im+d} r \in C_{[0;1]}\}|}{N} = \sum_{a_1, a_2, \ldots, a_n \in \mathbb{N}^+} \gamma(C_{[0;1,a_1,\ldots,a_n,1]}).
\]

2. For any \(n \geq 1 \), \[
\sum_{a_1, a_2, \ldots, a_n \in \mathbb{N}^+} \gamma(C_{[0;1,a_1,\ldots,a_n,1]}) > \gamma(C_{[0;1,1]}).
\]
Our approach:

1. Inequality by induction
A combinatorial approach

Our approach:

1. Inequality by induction

2. If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.
Our approach:

1. Inequality by induction

2. If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.
A combinatorial approach

Our approach:

1. Inequality by induction
2. If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.

Key obstacle: loss of compactness, countably infinite alphabet!
Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

$$\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}).$$
Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

\[
\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}).
\]

Proof Strategy: Show that the \textit{Lebesgue measure} of \(C_{[0;1,a,1]}\) is greater than that of \(C_{[0;1,1,a]}\).
Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

\[\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}). \]

Proof Strategy: Show that the *Lebesgue measure* of $C_{[0;1,a,1]}$ is greater than that of $C_{[0;1,1,a]}$.

Use the standard continued fraction recurrence for denominators of the extremities of the cylinders to show:

\[
\text{denom}([0;1,1,a]) \times \text{denom}([0;1,1,(a + 1)] > \text{denom}([0;1,a,1]) \times \text{denom}([0;1,a,2]).
\]
Step 2: loss of compactness

Sliding block frequencies normal \Rightarrow disjoint block frequencies normal.
Step 2: loss of compactness

Sliding block frequencies normal \Rightarrow disjoint block frequencies normal.

A consequence of the Piateskii-Shapiro Theorem. Follows the proof in Kuipers and Niederreiter, with a careful application of Helley Selection.
Tying things up

A. P.
Tying things up

Thank You!
Using the concavity of the cumulative distribution function of Gauss measure, we can reduce the general inequality to an algebraic inequality involving denominators.