Bounded remainder sets and dynamics

V. Berthé

IRIF-CNRS-Paris-France

Equidistribution: Arithmetic, Computational and Probabilistic Aspects
Outline

- From Kronecker sequences and discrepancy to symbolic dynamics
- Topological methods for bounded discrepancy/deviation for frequencies
- From letters to factors
- Gottschalk–Hedlund’s theorem and topological eigenvalues
- Examples
 - Hypercubic billiard
 - Substitutions
Kronecker sequences and discrepancy
Kronecker sequences and discrepancy

Discrepancy Let \((u_n)_n\) be a sequence with values in \([0, 1]\)

\[
\Delta_N = \sup_{\text{interval}} \left| \left\{ \text{Card } 0 \leq n \leq N; u_n \in I \right\} - N\mu(I) \right|
\]
Kronecker sequences and discrepancy

Discrepancy Let \((u_n)_n\) be a sequence with values in \([0, 1]\)

\[
\Delta_N = \sup_{I \text{ interval}} \left| \text{Card} \{0 \leq n \leq N; u_n \in I\} - N \mu(I) \right|
\]

Kronecker sequence Let \(\alpha = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d\) with \(1, \alpha_1, \ldots, \alpha_d\) \(\mathbb{Q}\)-linearly independent. Consider the sequence in \([0, 1]^d\)

\[
(\{n\alpha_1\}, \ldots, \{n\alpha_d\})_n
\]

associated with the translation over \(\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d\)

\[
R_\alpha : \mathbb{T}^d \mapsto \mathbb{T}^d, \ x \mapsto x + \alpha
\]

Discrepancy

\[
\Delta_N = \sup_{B \text{ box}} \left| \text{Card} \{0 \leq n < N; R_\alpha^n(0) \in B\} - N \cdot \mu(B) \right|
\]
Kronecker sequences and discrepancy

Discrepancy Let \((u_n)_n\) be a sequence with values in \([0, 1]\)

\[
\Delta_N = \sup_{I \text{ interval}} \left| \left\{ \text{Card} \{0 \leq n \leq N; u_n \in I\} - N \mu(I) \right\} \right|
\]

Kronecker sequence Let \(\alpha = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d\) with
\(1, \alpha_1, \ldots, \alpha_d \in \mathbb{Q}\)-linearly independent. Consider the sequence in \([0, 1]^d\)

\[(\{n\alpha_1\}, \ldots, \{n\alpha_d\})_n\]

associated with the translation over \(\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d\)

\[R_\alpha : \mathbb{T}^d \mapsto \mathbb{T}^d, \ x \mapsto x + \alpha\]

Discrepancy

\[\Delta_N = \sup_{B \text{ box}} \left| \text{Card} \{0 \leq n < N; R_\alpha^n(0) \in B\} - N \cdot \mu(B) \right|
\]

Bounded remainder set A measurable set \(X\) for which there exists \(C > 0\) s.t. for all \(N\)

\[|\text{Card}\{0 \leq n \leq N; R_\alpha^n(0) \in X\} - N \mu(X)| \leq C\]
Discrepancy

\[\Delta_N = \sup_{B \text{ box}} |\text{Card} \{0 \leq n < N; R^n_\alpha(0) \in B\} - N \cdot \mu(B)| \]

Theorem \(d = 1 \) [Behnke] \(O(\log N) \) if and only if the sequence of the Cesàro means of the partial quotients of \(\alpha \) is bounded
Discrepancy

$$\Delta_N = \sup_{B \text{ box}} |\text{Card} \{0 \leq n < N; R^n_\alpha(0) \in B\} - N \cdot \mu(B)|$$

Theorem $d = 1$ [Behnke] $O(\log N)$ if and only if the sequence of the Cesàro means of the partial quotients of α is bounded

Theorem [Khintchine][Beck]
For all positive increasing φ, for a.e. α

$$\Delta_N(\alpha) = O((\log N)^d \cdot \varphi(\log \log N)) \quad \text{iff} \quad \sum \frac{1}{\varphi(N)} = +\infty$$

\sim between $(\log N)^d \log \log N$ and $(\log N)^d (\log \log N)^{1+\varepsilon}$
Bounded remainder sets for toral translations

Let \(\alpha = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d \), \(R_{\alpha}: \mathbb{T}^d \to \mathbb{T}^d, \ x \mapsto x + \alpha \)

Bounded remainder set A measurable set \(X \) for which there exists \(C > 0 \) s.t. for all \(N \)

\[
|\text{Card}\{0 \leq n \leq N; R^n_{\alpha}(0) \in X\} - N\mu(X)| \leq C
\]

Sets with bounded ergodic deviations

[Kesten’66] \(d = 1 \) Intervals that are bounded remainder sets are the intervals with length in \(\mathbb{Z} + \alpha\mathbb{Z} \)

[Liardet’87] \(d \geq 2 \) There are no nontrivial boxes that are bounded remainder sets

[Grepstad-Lev, Haynes-Kelly-Koivusalo] Any parallelepiped in \(\mathbb{R}^d \) spanned by vectors \(v_1, \ldots, v_d \) belonging to \(\mathbb{Z} \alpha + \mathbb{Z}^d \) is a bounded remainder set for the translation by \((\alpha_1, \ldots, \alpha_d) \) on \(\mathbb{T}^d \), with \(1, \alpha_1, \ldots, \alpha_d \) linearly independent.
A symbolic approach

Consider the translation over \(T^d = (\mathbb{R}/\mathbb{Z})^d \)

\[
R_\alpha : T^d \mapsto T^d, \ x \mapsto x + \alpha \quad \text{with} \ \alpha = (\alpha_1, \ldots, \alpha_d)
\]

We consider a partition \(\{X_1, \ldots, X_k\} \) of \(T^d \)

\[
T^d = \bigcup_{1 \leq i \leq k} X_i, \quad \mu(X_i \cap X_j) = 0, \quad \text{for all} \ i \neq j
\]

We code the trajectory of \(x \) under the action of \(R_\alpha : x \mapsto x + \alpha \) as follows

\[
x \sim (u_n)_n \in \{1, 2, \ldots, k\}^\mathbb{N}
\]

\[
u_n = i \quad \text{if and only if} \quad R^n_\alpha(x) = x + n\alpha \in X_i
\]
A symbolic approach

Consider the translation over $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$

$$R_\alpha: \mathbb{T}^d \mapsto \mathbb{T}^d, \ x \mapsto x + \alpha \quad \text{with} \ \alpha = (\alpha_1, \ldots, \alpha_d)$$

We consider a partition $\{X_1, \cdots, X_k\}$ of \mathbb{T}^d

$$\mathbb{T}^d = \bigcup_{1 \leq i \leq k} X_i, \quad \mu(X_i \cap X_j) = 0, \ \text{for all} \ i \neq j$$

We code the trajectory of x under the action of $R_\alpha: x \mapsto x + \alpha$ as follows

$$x \sim (u_n)_n \in \{1, 2, \ldots, k\}^\mathbb{N}$$

$$u_n = i \quad \text{if and only if} \quad R^n_\alpha(x) = x + n\alpha \in X_i$$

Questions Which information on R_α can we get from the combinatorial properties of the sequence (u_n)? What is a good coding?
Symbolic dynamics

- **1898, Hadamard**: Geodesic flows on surfaces of negative curvature
- **1912, Thue**: Prouhet-Thue-Morse substitution
 \[\sigma : a \mapsto ab, \ b \mapsto ba \]
- **1921, Morse**: Symbolic representation of geodesics on a surface with negative curvature. Recurrent geodesics
Symbolic dynamics

- **1898, Hadamard**: Geodesic flows on surfaces of negative curvature
- **1912, Thue**: Prouhet-Thue-Morse substitution
 \[\sigma : a \mapsto ab, \ b \mapsto ba \]
- **1921, Morse**: Symbolic representation of geodesics on a surface with negative curvature. Recurrent geodesics

From geometric dynamical systems to symbolic dynamical systems and backwards

- Given a geometric system, can one find a good partition?
- And vice-versa?
Symbolic dynamical systems

Let $u \in \mathcal{A}^\mathbb{Z}$ be an infinite word

$$u = \cdots abaababaababaababaababaababaababaababaabababaabaababaababaababaab \cdots$$

aa is a factor, bb is not a factor

Let \mathcal{L}_u be the set of factors of u: \mathcal{L}_u is the language of u
Symbolic dynamical systems

Let $u \in \mathcal{A}^\mathbb{Z}$ be an infinite word

$$u = \cdots abaababaabaababaababaababaababaababaababaababaababaab \cdots$$

aa is a factor, bb is not a factor

Let \mathcal{L}_u be the set of factors of u: \mathcal{L}_u is the language of u

$\mathcal{A}^\mathbb{Z}$ is a compact metric space $d(u, \nu) = 2^{-\max\{k : u_{[-k \ldots k]} = \nu_{[-k \ldots k]}\}}$

The shift T acts on $\mathcal{A}^\mathbb{Z}$ as $T((u_n)_n) = (u_{n+1})_n$

The symbolic dynamical system generated by u is (X_u, T) with

$$X_u := \overline{\{T^n(u) ; \ n \in \mathbb{Z}\}} = \{\nu \in \mathcal{A}^\mathbb{Z} ; \mathcal{L}_\nu \subset \mathcal{L}_u\} \subset \mathcal{A}^\mathbb{Z}$$

A subshift (X, T) is a closed shift-invariant subset of $\mathcal{A}^\mathbb{Z}$
Ergodic theorem

Among the first N points of the orbit of x, how many of them enter B? How often do they visit B?

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} 1_{B}(T^n x) = \mu(P) \text{ a.e.}$$
Ergodic theorem

Among the first N points of the orbit of x, how many of them enter B?

How often do they visit B?
Let 1_B be the characteristic function of B

Among the first N points of the orbit of x, how many of them enter B?

$$\sum_{0 \leq n < N} 1_B(T^n x)$$

How often do they visit B?

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} 1_B(T^n x)$$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} 1_B(T^n x) = \mu(P) \text{ a.e. } x$$
Ergodic theorem

We are given a dynamical system \((X, T, \mathcal{B}, \mu)\) with \(T : X \to X\)

- **Average time values**: one particle over the long term
- **Average space values**: all particles at a particular instant

Ergodicity

\[\mu(B) = \mu(T^{-1}B) \] \(T\)-invariance

\[T^{-1}B = B \implies \mu(B) = 0 \text{ or } 1 \text{ ergodicity} \]

Ergodic theorem \(\text{space average} = \text{time average}\)

\[f \in L_1(\mu) \implies \lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} f(T^n x) = \int f \, d\mu \quad \text{a.e. } x \]
Examples of dynamical systems

- Translation on the torus \(R_\alpha : x \mapsto \alpha + x \mod 1 \)
- Symbolic dynamical systems \((X, T)\) where \(T \) is the shift
- Beta-maps \(T : [0, 1] \to [0, 1], \ x \mapsto \{ \beta x \} \)
- Continued fractions \(T : [0, 1] \to [0, 1], \ x \mapsto \{ 1/x \} \)
Examples of dynamical systems

- Translation on the torus $\mathcal{R}_\alpha : x \mapsto \alpha + x \mod 1$ zero entropy
- Symbolic dynamical systems (X, T) where T is the shift
- Beta-maps $T : [0, 1] \rightarrow [0, 1], \ x \mapsto \{\beta x\}$ positive entropy
- Continued fractions $T : [0, 1] \rightarrow [0, 1], \ x \mapsto \{1/x\}$ positive entropy
Sturmian dynamics

Sturmian words are codings of Kronecker translations on \mathbb{R}/\mathbb{Z}

$$R_\alpha : \mathbb{R}/\mathbb{Z} \rightarrow \mathbb{R}/\mathbb{Z}, \ x \mapsto x + \alpha \mod 1$$

according to the finite partition

$$\{ l_0 = [0, 1 - \alpha[, \ l_1 = [1 - \alpha, 1] \}$$
Sturmian dynamics

Sturmian words are codings of Kronecker translations on \mathbb{R}/\mathbb{Z}

$$R_\alpha : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \ x \mapsto x + \alpha \mod 1$$

according to the finite partition

$$\{ l_0 = [0, 1 - \alpha[, \ l_1 = [1 - \alpha, 1]\}$$

This yields a measure-theoretic isomorphism

$$\begin{array}{ccc}
\mathbb{R}/\mathbb{Z} & \xrightarrow{R_\alpha} & \mathbb{R}/\mathbb{Z} \\
\uparrow & & \uparrow \\
X_\alpha & \xrightarrow{T} & X_\alpha
\end{array}$$

where T is the shift and $X_\alpha \subset \{0, 1\}^\mathbb{N}$
Strong uniformity and ergodicity [Beck]

For every interval I

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_I(n\alpha) = \mu(I)$$

for every irrational α

Khinchin’s conjecture’23 For any Lebesgue measurable set $S \subset [0, 1]$, the sequence $(n\alpha)_n$ modulo 1 is uniformly distributed with respect to S for almost every α
Strong uniformity and ergodicity [Beck]

For every interval I

$$\lim \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_I(n\alpha) = \mu(I) \quad \text{for every irrational } \alpha$$

Khinchin’s conjecture’23 For any Lebesgue measurable set $S \subset [0, 1]$, the sequence $(n\alpha)_n$ modulo 1 is uniformly distributed with respect to S for almost every α

$$\lim \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_S(n\alpha) = \mu(I) \quad \text{for a.e. } \alpha$$

It was disproved by [Marstrand’70]

There exists an open set S with $\mu(S) < 1$ such that

$$\lim \sup \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_S(n\alpha) = 1 \quad \text{for every } \alpha$$
Strong uniformity and ergodicity [Beck]

For every interval I

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_I(n \alpha) = \mu(I) \quad \text{for every irrational } \alpha$$

Khinchin’s conjecture'23 For any Lebesgue measurable set $S \subset [0,1]$, the sequence $(n \alpha)_n$ modulo 1 is uniformly distributed with respect to S for almost every α Disproved by [Marstrand’70]

Positive results

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_I(n \alpha + \beta) = \mu(I) \text{ for a.e. } \beta$$

Ergodicity of $R_\alpha: x \mapsto x + \alpha$ on \mathbb{T}

Raikov For every Lebesgue measurable set $S \subset [0,1]$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n \leq N-1} 1_S(2^n \alpha) = \mu(I) \text{ for a.e. } \alpha$$

Ergodicity of $T_2: x \mapsto 2x$ on \mathbb{T}
Symbolic discrepancy
Frequencies

Take an infinite word \(u = (u_n)_n \) with values in a finite alphabet \(\mathcal{A} \).

The frequency \(f_i \) of the letter \(i \) in \(u \) is defined as the following limit, if it exists

\[
f_i = \lim_{n \to \infty} \frac{|u_0 \cdots u_{N-1}|_i}{N}
\]
Frequencies

Take an infinite word \(u = (u_n)_n \) with values in a finite alphabet \(\mathcal{A} \).

The frequency \(f_i \) of the letter \(i \) in \(u \) is defined as the following limit, if it exists:

\[
 f_i = \lim_{n \to \infty} \frac{|u_0 \cdots u_{N-1}|_i}{N}
\]

One defines similar notions for factors.

Frequencies do not always exist.

\[
u = abaabbaaaabbbbaaaaaaaabbbbbb
\]
Frequencies and unique ergodicity

The frequency f_i of a letter i in u is defined as the following limit, if it exists

$$f_i = \lim_{n \to \infty} \frac{|u_0 \cdots u_{N-1}|_i}{N}$$
Frequencies and unique ergodicity

The frequency f_i of a letter i in u is defined as the following limit, if it exists

$$f_i = \lim_{n \to \infty} \frac{|u_0 \cdots u_{N-1}|_i}{N}$$

One can also consider

$$\lim_{n \to \infty} \frac{|u_k \cdots u_{k+N-1}|_i}{N}$$

This corresponds to well distribution.
If the convergence is uniform with respect to k, one says that u has uniform letter frequencies.

One defines similar notions for factors.
Frequencies and unique ergodicity

The frequency \(f_i \) of a letter \(i \) in \(u \) is defined as the following limit, if it exists

\[
 f_i = \lim_{n \to \infty} \frac{|u_0 \cdots u_{N-1}|_i}{N}
\]

One can also consider

\[
 \lim_{n \to \infty} \frac{|u_k \cdots u_{k+N-1}|_i}{N}
\]

This corresponds to well distribution.
If the convergence is uniform with respect to \(k \), one says that \(u \) has uniform letter frequencies.

One defines similar notions for factors.

The symbolic shift \((X_u, T)\) is said to be uniquely ergodic if \(u \) has uniform factor frequency for every factor.

Equivalently, there exists a unique shift-invariant probability measure on the symbolic shift \((X_u, T)\).
Factor complexity and frequencies

The factor complexity of an infinite word u counts the number of factors of a given length in u.

Both notions have nothing to do a priori, but...

Factor complexity has to do with unique ergodicity in some cases.

- A word is **uniformly recurrent** if every factor occurs with bounded gaps.

 A uniformly recurrent word u such that $\limsup p_u(n)/n < 3$ is uniquely ergodic [Boshernitzan]. 😊

- There exist regular (idoc) interval exchanges on a four-letter alphabet ($p(n) = 3n + 1$ for all n) that are not uniquely ergodic [Keane]. 😞
Frequencies and symbolic discrepancy

- **Frequency** μ_v of a finite word v in $u \in A^\mathbb{N}$

$$\mu_v = \lim_{n \to +\infty} \frac{|u_0 \cdots u_{N-1}|_v}{N}$$

$|u_0 \cdots u_{N-1}|_v =$ number of occurrences of v in $u_0 \cdots u_{N-1}$

- **Symbolic discrepancy**

$$\Delta_u(v, N) = ||u_0 u_1 \cdots u_{N-1}|_v - N \cdot \mu_v|$$

$$\Delta_X(v, N) = \sup_{w \in \mathcal{L}_X(N)} ||w|_v - N \cdot \mu_v|$$ for X subshift

- **Remark** Let (X, T) be a minimal subshift (every closed shift-invariant subset of X either empty or X). Every x in X admits frequencies for every factor iff (X, T) is uniquely ergodic [Oxtoby]
Examples

- Let X_σ be the Fibonacci shift generated by

 $\sigma : 0 \mapsto 01, 1 \mapsto 0$

Let \mathcal{L}_{X_σ} be the set of factors of X_σ

For $\nu \in \mathcal{L}_{X_\sigma}$ $\Delta_X(\nu, N)$ is bounded, i.e., there exist $C > 0$ such that for any factor $w \in \mathcal{L}_X$

$$||w|_\nu - \mu_w||_w \leq C$$
Examples

• Let X_σ be the Fibonacci shift generated by

$$\sigma : 0 \mapsto 01, \ 1 \mapsto 0$$

Let \mathcal{L}_{X_σ} be the set of factors of X_σ
For $v \in \mathcal{L}_{X_\sigma}$ $\Delta_X(v, N)$ is bounded, i.e., there exist $C > 0$ such that for any factor $w \in \mathcal{L}_X$

$$||w|_v - \mu_v|w|| \leq C$$

• Let X_σ be the Thue-Morse shift generated by

$$\sigma : 0 \mapsto 01, \ 1 \mapsto 10$$

The symbolic discrepancy is bounded for letters but not for words of length ≥ 2.
A combinatorial viewpoint: balancedness

Let \((X, T)\) be a minimal subshift

\((X, T)\) is balanced on \(v \in \mathcal{L}_X\) if there exists \(C > 0\) such that for any pair \((x, y)\) of factors of the same length

\[
|||x|_v - |y|_v| \leq C
\]

\((X, T)\) is balanced on factors if it is balanced on all \(v \in \mathcal{L}_X\)

Balance and frequencies The minimal subshift \((X, T)\) is balanced on the factor \(v\) iff there exist \(C > 0\) and \(\mu_v\) such that for any factor \(w \in \mathcal{L}_X\)

\[
||w|_v - \mu_v|w|| \leq C
\]

Remark Does not require to know the frequency \(\mu_v\)
Discrepancy and coboundaries

The discrepancy of \(\nu \) is bounded for \((X, T)\) iff the ergodic sums for \(f_\nu = 1_{[\nu]} - \mu_\nu \) are bounded

\[
\sum_{n=0}^{N-1} f_\nu(T^n(u)) = |u_0 \cdots u_{N+|\nu|-1}|_\nu - \mu_\nu N
\]

\(f \) is a coboundary iff its ergodic sums are bounded
Discrepancy and coboundaries

The discrepancy of v is bounded for (X, T) iff the ergodic sums for $f_v = 1_{[v]} - \mu_v$ are bounded

$$\sum_{n=0}^{N-1} f_v(T^n(u)) = |u_0 \cdots u_{N+|v|-1}|_v - \mu_v N$$

f is a coboundary iff its ergodic sums are bounded

Theorem [Gottschalk-Hedlund] Let X be a compact metric space and $T: X \to X$ be a minimal homeomorphism. Let $f: X \to \mathbb{R}$ be a continuous function. Then f is a coboundary

$$f = g - g \circ T$$

for a continuous function g if and only if there exists x and there exists $C > 0$ such that for all N

$$| \sum_{n=0}^{N} f(T^n(x)) | < C$$
Discrepancy and coboundaries

The discrepancy of \(\nu \) is bounded for \((X, T)\) iff the ergodic sums for \(f_\nu = 1_{[\nu]} - \mu_\nu \) are bounded

\[
\sum_{n=0}^{N-1} f_\nu(T^n(u)) = |u_0 \cdots u_{N+|\nu|-1}|_\nu - \mu_\nu N
\]

\(f \) is a coboundary iff its ergodic sums are bounded

Theorem [Gottschalk-Hedlund] Let \(X \) be a compact metric space and \(T: X \to X \) be a minimal homeomorphism. Let \(f: X \to \mathbb{R} \) be a continuous function. Then \(f \) is a coboundary

\[
f = g - g \circ T
\]

for a continuous function \(g \) if and only if there exists \(x \) and there exists \(C > 0 \) such that for all \(N \)

\[
|\sum_{n=0}^{N} f(T^n(x))| < C
\]

The discrepancy of \(\nu \) is bounded iff \(f_\nu = 1_{[\nu]} - \mu_\nu \) is a coboundary
Bounded discrepancy and topological eigenvalues

\(\nu \) has bounded discrepancy in \((X, T)\) iff \(f_\nu = 1_\nu - \mu_\nu \) is a coboundary

Take \(f = 1_\nu - \mu_\nu \leadsto f = g - g \circ T \)

\[\exp^{2i\pi g \circ T} = \exp^{2i\pi \mu_\nu} \exp^{2i\pi g} \]

\(\exp^{2i\pi g} \) is a continuous eigenfunction associated with the eigenvalue \(\exp^{2i\pi \mu_\nu} \leadsto \text{Topological rotation factor} \)

If \(\nu \) has bounded discrepancy in \((X, T)\), then \(\mu_\nu \) is an additive topological eigenvalue
Billiards
From factors to intervals

\[R_{\alpha} : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \quad x \mapsto x + \alpha \mod 1 \]
The factors of u are in one-to-one correspondence with the $n+1$ intervals of \mathbb{T} whose end-points are given by

$$-k\alpha \mod 1, \text{ for } 0 \leq k \leq n$$

$$w \sim I_W = I_{w_1} \cap R_0^{-1}I_{w_2} \cap \cdots R_0^{-n+1}I_{w_n}$$

By uniform distribution of $(k\alpha)_k$ modulo 1, the frequency of a factor w of a Sturmian word is equal to the length of I_w.

From factors to intervals
Sturmian words code trajectories in square billiards according to the parallel sides of the square table that the trajectory hits.
Consider a subshift generated by the coding of a trajectory of a billiard in the hypercube of \(\mathbb{R}^d \) with slope \((\alpha_1, \cdots, \alpha_d)\), with \((\alpha_1, \cdots, \alpha_d)\) linearly independent over \(\mathbb{Q} \). It is minimal and uniquely ergodic. Let \(\mu \) be the invariant measure.
Billiard

Consider a subshift generated by the coding of a trajectory of a billiard in the hypercube of \mathbb{R}^d with slope $(\alpha_1, \cdots, \alpha_d)$, with $(\alpha_1, \cdots, \alpha_d)$ linearly independent over \mathbb{Q}. It is minimal and uniquely ergodic. Let μ be the invariant measure.

Cubic case and beyond $d \geq 3$ [Bedaride-B-Jullien]

Letters have bounded discrepancy but factors of length at least 2 have unbounded discrepancy.

Proof Assume that w has bounded discrepancy. Then, $\mu[w]$ is an additive eigenvector and $\mu[w] \in \langle \alpha_1, \cdots, \alpha_d \rangle$. However, the areas of the zones that correspond to factors of length 2 do not belong to $\langle \alpha_1, \cdots, \alpha_d \rangle$.

In other words, the cohomology is not finitely generated.
Consider a subshift generated by the coding of a trajectory of a billiard in the hypercube of \mathbb{R}^d with slope $(\alpha_1, \cdots, \alpha_d)$, with $(\alpha_1, \cdots, \alpha_d)$ linearly independent over \mathbb{Q}. It is minimal and uniquely ergodic. Let μ be the invariant measure.

Cubic case and beyond $d \geq 3$ [Bedaride-B-Jullien]

Letters have bounded discrepancy but factors of length at least 2 have unbounded discrepancy.

Sturmian case $d = 2$. All factors have bounded discrepancy.
Bounded remainder sets for toral translations

Let $\alpha = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d$, $R_\alpha : \mathbb{T}^d \rightarrow \mathbb{T}^d$, $x \mapsto x + \alpha$

[Kešten’66] $d = 1$ Intervals that are bounded remainder sets are the intervals with length in $\mathbb{Z} + \alpha \mathbb{Z}$
Factors have bounded discrepancy for Sturmian words.

[Liardet’87] $d \geq 2$ There are no nontrivial boxes that are bounded remainder sets

[Grepstad-Lev, Haynes-Kelly-Koivusalo] Any parallelepiped in \mathbb{R}^d spanned by vectors v_1, \cdots, v_d belonging to $\mathbb{Z} \alpha + \mathbb{Z}^d$ is a bounded remainder set for the translation by $(\alpha_1, \cdots, \alpha_d)$ on \mathbb{T}^d, with $1, \alpha_1, \cdots, \alpha_d$ linerly independent.
Letters have bounded discrepancy for hypercubic billiard words.
Continuous version of Khinchin’s conjecture [Beck]

Let $S \subset [0, 1)^2$ be measurable with $0 < \mu(S) < 1$.

$$T_S(\alpha) = \text{meas}\{t \in [0, T]; (\{t \cos \alpha\}, \{t \sin \alpha\}) \in S\}$$

Theorem [Beck] For every $\varepsilon > 0$

$$T_S(\alpha) = \mu(S) T + o((\log T)^{3+\varepsilon}) \text{ for a.e. } \alpha$$

\sim Superuniformity

- $d = 3 \quad T^{\frac{1}{4}}((\log T)^{3+\varepsilon})$
- $d \geq 4 \quad T^{\frac{1}{2} - \frac{1}{2(d-1)}}((\log T)^{3+\varepsilon})$
Dynamical dimension group of a minimal subshift \((X, T)\)

- Coboundaries \(\beta: C(X, \mathbb{Z}) \to C(X, \mathbb{Z}), \ f \mapsto f \circ T - f\)
- Dimension group \(H(X, T) = C(X, \mathbb{Z})/\beta C(X, \mathbb{Z})\)

Thue-Morse substitution

\[
H(X, T) = \mathbb{Z}[1/2]
\]

\[
M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
\]

\(1_{aa} - 1/6 \neq 0\) in \(H(X, T)\)

Unbounded discrepancy

Sturmian subshift

\[
H(X, T) = \mathbb{Z}^2
\]

\[
M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}
\]

\(1_{[w]} \in \langle 1_{[0]}, 1_{[1]} \rangle\)

Bounded discrepancy

How to decompose a shift \((X, T)\)?

- Kakutani-Rohlin towers and Bratteli-Vershik maps [Herman-Putnam-Skau]
- Return words [Durand-Host-Skau]
- Desubstitution and \(S\)-adic representations
Discrepancy and substitutions
Let σ be a primitive substitution.

Theorem [Adamczewski]

- If σ is a **Pisot substitution**, then letters have bounded discrepancy in X_σ.

- Conversely, if letters have bounded discrepancy in X_σ, then the Perron–Frobenius eigenvalue of M_σ is the unique eigenvalue of M_σ that is larger than 1 in modulus, and all possible eigenvalues of modulus one of M_σ are **roots of unity**.
Two-letter factor substitution

Given a substitution σ, consider the finite set $\mathcal{L}_\sigma(2)$ as an alphabet and define the two-letter factor substitution σ_2 on $\mathcal{L}_\sigma(2)$ as follows

for every $u = ab \in \mathcal{L}_\sigma(2)$, $\sigma_2(u)$ is the word over $\mathcal{L}_\sigma(2)$ made of the first $|\sigma(a)|$ factors of length 2 in $\sigma(u)$

If $ab \in \mathcal{L}_\sigma(2)$ with $\sigma(a) = a_0 \cdots a_r$, $\sigma(b) = b_0 \cdots b_s$, then

$$\sigma_2(ab) = (a_0a_1)(a_1a_2) \cdots (a_{r-1}a_r)(a_rb_0)$$

- If the substitution σ is primitive, then σ_2 is also primitive, and σ_2 has the same Perron–Frobenius eigenvalue as σ
- Frequencies of factors are provided by the renormalized Perron–Frobenius eigenvector of M_{σ_2}

[Queffélec]
Let σ be a primitive substitution.

Theorem [Adamczewski]

- If σ (resp. σ_2) is a **Pisot substitution**, then letters (resp. factors) have bounded discrepancy in X_σ.

- Conversely, if letters (resp. factors) have bounded discrepancy in X_σ, then the Perron–Frobenius eigenvalue of M_σ (resp. M_{σ_2}) is the unique eigenvalue of M_σ (resp. M_{σ_2}) that is larger than 1 in modulus, and all possible eigenvalues of modulus one of M_σ (resp. M_{σ_2}) are **roots of unity**.
Bounded discrepancy with 1 as an eigenvalue

Example [Cassaigne-Pytheas Fogg-Minervino]
Take
\[\sigma: 1 \mapsto 121, 2 \mapsto 32, 3 \mapsto 321 \]

The eigenvalues of the substitution matrix are \(\{1, \frac{3 \pm \sqrt{5}}{2}\} \) and it has bounded discrepancy on factors.

Proof Consider the Sturmian substitution
\[\tau: 3 \mapsto 30, 0 \mapsto 300 \]

The subshift \((X_\sigma, T)\) is deduced from the Sturmian shift \((X_\tau, T)\) by applying the substitution \(\varphi: 0 \mapsto 21, 3 \mapsto 3 \), which preserves balancedness, and thus bounded discrepancy.
Consider the Thue–Morse substitution

\[\sigma: 0 \mapsto 01, \ 1 \mapsto 10 \]

- One has \(\mathcal{L}_\sigma(2) = \{00, 01, 10, 11\} \)
- One has \(\sigma(00) = 0101 \) and \(\sigma_2(00) = (01)(10) \)
- One checks that \(\sigma^{(2)}(a) \mapsto bc, \ b \mapsto bd, \ c \mapsto ca, \ d \mapsto cb \), by setting \(a = 00, \ b = 01, \ c = 10, \ d = 11 \)
- The eigenvalues of \(M_\sigma \) are 2 and 0, and the eigenvalues of \(M_{\sigma_2} \) are 0, 1, \(-1\) and 2.
- Letters have bounded discrepancy but no factor of length \(\ell \), with \(\ell \geq 2 \), has bounded discrepancy.
- **Remark** If one applies \(\sigma \) to any infinite word in \(\{0, 1\}^\mathbb{Z} \), one gets an infinite word with bounded discrepancy on letters.
How to detect unbounded discrepancy

- Work modulo coboundaries in \(\mathcal{C}(X, \mathbb{Z}) \) (locally constant functions).
- Find a good representation of \((X, T)\) in Kakutani-Rohlin towers.

Thue-Morse shift

- Kakutani-Rohlin towers
 \[\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \} \]
- This partition is finer than the partition in \(n\)-cylinders

\[
\begin{array}{c|c|c|c}
00 & 01 & 10 & 11 \\
\hline
\end{array}
\]
How to detect unbounded discrepancy for rational frequencies

- KR towers $\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \}$
How to detect unbounded discrepancy for rational frequencies

- KR towers \(\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \} \)
- Take \(f = 1_v - \mu_v \). There exists \(k \) for which \(f \) is constant in the atoms of \(\mathcal{P}_k \). For \(n \geq k \), let \(\phi_n \in \mathbb{R}\mathcal{L}_\sigma(2) \)

\[
\phi_n(ab) = \sum_{j=0}^{\lfloor |\sigma^n(a)|-1 \rfloor} f \mid_{T^j \sigma^n([ab])} \quad \forall ab \in \mathcal{L}_\sigma(2)
\]
How to detect unbounded discrepancy for rational frequencies

- KR towers $\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \}$
- Take $f = 1_v - \mu_v$. There exists k for which f is constant in the atoms of \mathcal{P}_k. For $n \geq k$, let $\phi_n \in \mathbb{R}^{\mathcal{L}_\sigma(2)}$

$$\phi_n(ab) = \sum_{j=0}^{|\sigma^n(a)|-1} f \mid T^j \sigma^n([ab]) \quad \forall ab \in \mathcal{L}_\sigma(2)$$

- If $f \in C(X, \mathbb{Z})$ is a coboundary, then it is the coboundary of some $h \in C(X, \mathbb{Z}) \sim$ locally constant. Take μ_v rational.
- Define $R_n(X) = \{ \phi : \mathcal{L}_X(n) \rightarrow \mathbb{R} \}$ and

$$\beta : R_1(X) \rightarrow R_2(X); \varphi \mapsto (\beta \varphi)(ab) = \varphi(b) - \varphi(a) \quad \forall ab \in \mathcal{L}_X(2)$$
How to detect unbounded discrepancy for rational frequencies

- **KR towers** \(\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \} \)

- Take \(f = 1_v - \mu_v \). There exists \(k \) for which \(f \) is constant in the atoms of \(\mathcal{P}_k \). For \(n \geq k \), let \(\phi_n \in \mathbb{R}^{\mathcal{L}_\sigma(2)} \)

\[
\phi_n(ab) = \sum_{j=0}^{\left| \sigma^n(a) \right|-1} f \big| T^j \sigma^n([ab]) \quad \forall ab \in \mathcal{L}_\sigma(2)
\]

- If \(f \in C(X, \mathbb{Z}) \) is a coboundary, then it is the coboundary of some \(h \in C(X, \mathbb{Z}) \sim \) locally constant. Take \(\mu_v \) rational.

- Define \(R_n(X) = \{ \phi : \mathcal{L}_X(n) \to \mathbb{R} \} \) and

\[
\begin{align*}
\beta : \underbrace{R_1(X)}_{\mathbb{R}^A} &\to \underbrace{R_2(X)}_{\mathbb{R}^{\mathcal{L}_X(2)}}; \varphi \mapsto (\beta \varphi)(ab) = \varphi(b) - \varphi(a) \quad \forall ab \in \mathcal{L}_X(2) \\
\end{align*}
\]

Theorem If \(f \) is a coboundary, then \(\phi_n \in \beta(R_1(X_\sigma)) \) for \(n \) large enough [Host, Durand-Host-Perrin]
How to detect unbounded discrepancy for rational frequencies

- KR towers \(\mathcal{P}_n = \{ T^j \sigma^n([ab]) : ab \in \mathcal{L}_X(2), 0 \leq j < |\sigma^n(a)| \} \)
- Take \(f = 1_v - \mu_v \). There exists \(k \) for which \(f \) is constant in the atoms of \(\mathcal{P}_k \). For \(n \geq k \), let \(\phi_n \in \mathbb{R}^{\mathcal{L}_\sigma(2)} \)
 \[\phi_n(ab) = \sum_{j=0}^{\sigma^n(a)-1} f \big| T^j \sigma^n([ab]) \quad \forall ab \in \mathcal{L}_\sigma(2) \]

- If \(f \in C(X, \mathbb{Z}) \) is a coboundary, then it is the coboundary of some \(h \in C(X, \mathbb{Z}) \leadsto \) locally constant. Take \(\mu_v \) rational.
- Define \(R_n(X) = \{ \phi : \mathcal{L}_X(n) \to \mathbb{R} \} \) and
 \[\beta : R_1(X) \to R_2(X); \varphi \mapsto (\beta \varphi)(ab) = \varphi(b) - \varphi(a) \quad \forall ab \in \mathcal{L}_X(2) \]

Theorem If \(f \) is a coboundary, then \(\phi_n \in \beta(R_1(X_\sigma)) \) for \(n \) large enough [Host, Durand-Host-Perrin]

\[\leadsto \phi_n(aa) = 0 \]
In short

- Take $f = 1_v - \mu_v$
- ϕ_n is the vector given by the sums of the values taken by f on the levels of each tower. $\phi_n \in \mathbb{R}^{\mathcal{L}_\sigma(2)}$
- **Theorem** If f is a coboundary of some locally constant h, then $\phi_n \in \beta(R_1(X_\sigma))$ for n large enough

$$ (\beta \varphi)(ab) = \varphi(b) - \varphi(a) \quad \forall ab \in \mathcal{L}_X(2) \leadsto \phi_n(aa) = 0 $$
In short

- Take $f = 1_v - \mu_v$
- ϕ_n is the vector given by the sums of the values taken by f on the levels of each tower. $\phi_n \in \mathbb{R}^{\mathcal{L}_{\sigma}(2)}$
- **Theorem** If f is a coboundary of some locally constant h, then $\phi_n \in \beta(R_1(X_\sigma))$ for n large enough

\[(\beta \varphi)(ab) = \varphi(b) - \varphi(a) \quad \forall ab \in \mathcal{L}_X(2) \sim \phi_n(aa) = 0\]

The subspace $\beta(R_1(X_\sigma))$ is easy to handle

Thue-Morse substitution

$\mathcal{L}_\sigma(2) = \{00, 01, 10, 11\}$

$$\beta(R_1(X_\sigma)) = \left\langle \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle$$
Symbolic discrepancy for the Thue–Morse substitution

Factors of length at least 2 have unbounded discrepancy

Proof

- $\mu_v = p_v/q_v$ with $p_v = 1$, and $q_v \in \{3 \cdot 2^{m+1}, 3 \cdot 2^m\}$ [Dekking]
- Take $f = 1_v - \mu_v$
- $\phi_n(aa) = \alpha_{aa} \left(1 - \frac{p_v}{q_v}\right) - (|\sigma^n(a)| - \alpha_{aa}) \cdot \frac{p_v}{q_v}$
- $\alpha_{aa} = \text{number of levels in the } aa \text{–tower in which all elements begin with } v$
- $\phi_n \in \beta(R_1(X)) = \langle(0, 1, -1, 0)\rangle \Rightarrow \phi_n(aa) = 0$
Symbolic discrepancy for the Thue–Morse substitution

Factors of length at least 2 have unbounded discrepancy

Proof

- \(\mu_v = p_v/q_v \) with \(p_v = 1 \), and \(q_v \in \{ 3 \cdot 2^{m+1}, 3 \cdot 2^m \} \) [Dekking]
- Take \(f = 1_v - \mu_v \)
- \(\phi_n(aa) = \alpha_{aa} \left(1 - \frac{p_v}{q_v} \right) - (|\sigma^n(a)| - \alpha_{aa}) \cdot \frac{p_v}{q_v} \)
 \(\alpha_{aa} = \text{number of levels in the } aa\text{-tower in which all elements begin with } v \)
- \(\phi_n \in \beta(R_1(X)) = \langle (0, 1, -1, 0) \rangle \Rightarrow \phi_n(aa) = 0 \)
- \(q_v\alpha_{aa} = p_v\sigma^n(a) = p_v2^n \sim \text{Contradiction!} \)

\(\sim \) Other criteria for constant-length substitutions [B.-Cecchi]