Supersymmetric Curvepoles in 6D

Ori Ganor

Berkeley Center for Theoretical Physics, UC Berkeley

December 14, 2018

arXiv:1710.06880, and thanks to Kevin Schaeffer for a discussion in 2012 that provided motivation for this project.
Supersymmetric Curvepoles in 6D
(New effects on M5-branes in strong flux?)

Ori Ganor

Berkeley Center for Theoretical Physics, UC Berkeley

December 14, 2018

arXiv:1710.06880, and thanks to Kevin Schaeffer for a discussion in 2012 that provided motivation for this project.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.

Dipole:

Two endpoints interacting with a 1-form gauge field A with opposite charges.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.

Dipole:
Two endpoints interacting with a 1-form gauge field A with opposite charges.

Curvepole:

Tensor field

Σ

C
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.

Dipole:

Two endpoints interacting with a 1-form gauge field A with opposite charges.

Curvepole:

Has closed curve boundary $C = \partial \Sigma$ charged under 2-form gauge field B.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.

Dipole: Two endpoints interacting with a 1-form gauge field A with opposite charges.

Curvepole: Has closed curve boundary $C = \partial \Sigma$ charged under 2-form gauge field B. Bulk of Σ is inert.
Dipoles and Curvepoles

Curvepole – counterpart of E&M dipole, interacting with a 2-form.

E&M

Dipole:
Two endpoints interacting with a 1-form gauge field A with opposite charges.

Tensor field

Curvepole:
Has closed curve boundary $C = \partial \Sigma$ charged under 2-form gauge field B. Bulk of Σ is inert.

Focus on 6D where (anti-)selfduality can impose restrictions.
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.

\[dB = H = -^* H \] interacts with a field \(\Phi \) whose quanta are:
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.

\[dB = H = -^{*}H \] interacts with a field \(\Phi \) whose quanta are:
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of $(1, 0)$ SUSY.

\[dB = H = -^* H \] interacts with a field Φ whose quanta are:
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.

\(dB = H = -^*H \) interacts with a field \(\Phi \) whose quanta are:
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.

\[dB = H = -^*H \] interacts with a field \(\Phi \) whose quanta are:

\textbf{NOTE:} The shape \(C \) of these curvepoles is fixed! \n\(C \) is an external parameter of the theory.
The Goal

Construct a supersymmetric second quantized theory of curvepoles interacting with a 6D tensor multiplet of (1, 0) SUSY.

\[dB = H = -\ast H \] interacts with a field \(\Phi \) whose quanta are:

![Curvepoles Diagram]

NOTE: The shape \(C \) of these curvepoles is fixed! \(C \) is an external parameter of the theory.

**Does SUSY impose any restrictions on \(C \)?
Preview of results

Construct action order by order:

\[L = L_2 + L_3 + L_4 + \cdots \]

\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]
Preview of results

Construct action order by order:

\[L = L_2 + L_3 + L_4 + \cdots \]

\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).
Preview of results

Construct action order by order:
\[L = L_2 + L_3 + L_4 + \cdots \]
\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

– I’ll present explicit formulas for up to quartic interactions.
Preview of results

Construct action order by order:
\[L = L_2 + L_3 + L_4 + \cdots \]
\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

– I’ll present explicit formulas for up to quartic interactions.
– There is a restriction on \(C \), imposed by SUSY.
Preview of results

Construct action order by order:
\[L = L_2 + L_3 + L_4 + \cdots \]
\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

– I’ll present explicit formulas for up to quartic interactions.
– There is a restriction on \(C \), imposed by SUSY. (sufficient condition)
Preview of results

Construct action order by order:
\[L = L_2 + L_3 + L_4 + \cdots \]
\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

- I’ll present explicit formulas for up to quartic interactions.
- There is a restriction on \(C \), imposed by SUSY. (sufficient condition)
- There is another restriction on \(C \), imposed by Hollowness.
Preview of results

Construct action order by order:
\[L = L_2 + L_3 + L_4 + \cdots \]
\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

- I’ll present explicit formulas for up to quartic interactions.
- There is a restriction on \(C \), imposed by SUSY. (sufficient condition)
- There is another restriction on \(C \), imposed by Hollowness.

◊ If \(C \) is planar, both SUSY and Hollowness hold* (up to 4\(^{th}\) order).
Preview of results

Construct action order by order:

\[L = L_2 + L_3 + L_4 + \cdots \]

\[\delta_{\text{SUSY}} = \delta_0 + \delta_1 + \delta_2 + \cdots \]

Require SUSY and Hollowness.

Hollowness – theory depends only on \(C = \partial \Sigma \), but not on \(\Sigma \).

– I’ll present explicit formulas for up to quartic interactions.
– There is a restriction on \(C \), imposed by SUSY. (sufficient condition)

– There is another restriction on \(C \), imposed by Hollowness.

◊ If \(C \) is planar, both SUSY and Hollowness hold* (up to \(4^{th} \) order).

All of this is at the “classical” level.
I’ll briefly mention issues regarding anomalies at the end.
A digression: Connection to M-theory

T^3

$\text{Vol}(T^3) \to 0$
A digression: Connection to M-theory

\[\text{Vol}(T^3) \to 0 \]
A digression: Connection to M-theory

\[T^3 \]
\[\text{Vol}(T^3) \rightarrow 0 \]

U-duality

\[\text{Wrapped M5: free hyper 'plet \& tensor 'plet} \]
\[(1,0) \text{ multiplets} \]

\[\text{U-dual } T^3 \]
\[\text{Vol(U-dual } T^3) \rightarrow \infty \]
A digression: Connection to M-theory

\[T^3 \]
\[\text{Vol}(T^3) \to 0 \]

Insert \(\Omega \in \text{Spin}(5) \) twist

Scaling limit: \(\Omega \to I \) with \((\Omega - I)/M_p^4\text{Vol}^{2/3} \to \text{finite} \)

\[\text{Vol}(\text{U-dual } T^3) \to \infty \]

Wrapped M5:
- free hyper 'plet
- tensor 'plet
- (1,0) multiplets
A digression: Connection to M-theory

\[\text{U-duality} \]

\[T^3 \quad \text{Vol}(T^3) \rightarrow 0 \]

Insert \(\Omega \in \text{Spin}(5) \) twist

\[\text{Scaling limit: } \Omega \rightarrow I \text{ with } (\Omega - I)/M_p^4 \text{Vol}^{2/3} \rightarrow \text{finite} \]

\[\text{Wrapped M5: free curvepole, hyper 'plet, tensor 'plet (1,0) multiplets} \]
A digression: Connection to M-theory

\[T^3 \]

\[\text{Vol}(T^3) \rightarrow 0 \]

Inserted \(\Omega \in \text{Spin}(5) \) twist

Scaling limit: \(\Omega \rightarrow I \) with \((\Omega - I)/M_p^4 \text{Vol}^{2/3} \rightarrow \text{finite} \)

\[\text{Wrapped M5: free curvepole} \]

\[\text{hyper 'plet} \]

\[\text{& tensor 'plet} \]

\[(1,0) \text{ multiplets} \]

\[[\text{Bergman \\& OG, 2000; Bergman \\& Dasgupta \\& Karczmarek \\& Rajesh \\& OG, 2001; Alishahiha \\& OG 2003}] \]

[\text{c.f. [Douglas \\& Hull, 1997; Connes \\& Douglas \\& Schwarz, 1997]}

[\text{Bergman \\& OG, 2000; Bergman \\& Dasgupta \\& Karczmarek \\& Rajesh \\& OG, 2001; Alishahiha \\& OG 2003]}

[\text{c.f. [Douglas \\& Hull, 1997; Connes \\& Douglas \\& Schwarz, 1997]}]
M-theory construction (more details)
M-theory construction (more details)

\[0 \leq x_i \leq 2\pi R_i \]

\[0 \leq \tilde{x}_i \leq 2\pi \tilde{R}_i \]

\[V = (2\pi)^3 R_3 R_4 R_5 \quad \xrightarrow{U} \quad \tilde{V} = (2\pi)^3 \tilde{R}_3 \tilde{R}_4 \tilde{R}_5 = \frac{(2\pi)^6}{M_p^6 V} \]
M-theory construction (more details)

\[0 \leq x_i \leq 2\pi R_i \]

\[0 \leq \tilde{x}_i \leq 2\pi \tilde{R}_i \]

\[V = (2\pi)^3 R_3 R_4 R_5 \]

\[\tilde{V} = (2\pi)^3 \tilde{R}_3 \tilde{R}_4 \tilde{R}_5 = \frac{(2\pi)^6}{M_p^6 V} \]

Twist: \(x_5 \rightarrow x_5 + 2\pi R_5 \)

accompanied by \(e^{i\theta} \in U(1) \subset SO(5)_{6,\ldots,10} \)
M-theory construction (more details)

\[0 \leq x_i \leq 2\pi R_i \]

\[0 \leq \tilde{x}_i \leq 2\pi \tilde{R}_i \]

\[V = (2\pi)^3 R_3 R_4 R_5 \]

\[\tilde{V} = (2\pi)^3 \tilde{R}_3 \tilde{R}_4 \tilde{R}_5 = \frac{(2\pi)^6}{M_p^6 V} \]

Twist: \(x_5 \rightarrow x_5 + 2\pi R_5 \)

accompanied by \(e^{i\theta} \in U(1) \subset SO(5)_{6,...,10} \)

Momentum quantization: \(P_5 R_5 \in \mathbb{Z} + \frac{\theta J}{2\pi} \)
M-theory construction (more details)

\[\begin{align*}
\mathcal{M}^6 & \quad \xrightarrow{U} \quad \mathcal{M}^5 \\
T^3 & \quad \xrightarrow{U} \quad \tilde{T}^3
\end{align*} \]

\[\begin{align*}
0 \leq x_i & \leq 2\pi R_i \\
0 \leq \tilde{x}_i & \leq 2\pi \tilde{R}_i
\end{align*} \]

\[V = (2\pi)^3 R_3 R_4 R_5 \quad \xrightarrow{U} \quad \tilde{V} = (2\pi)^3 \tilde{R}_3 \tilde{R}_4 \tilde{R}_5 = \frac{(2\pi)^6}{M_P^6 V} \]

Twist: \(x_5 \to x_5 + 2\pi R_5 \)

accompanied by \(e^{i\theta} \in U(1) \subset SO(5)_{6,\ldots,10} \)

Momentum quantization: \(P_5 R_5 \in \mathbb{Z} + \frac{\theta J}{2\pi} \)

Dual to: \(\text{M2-area} \in \mathbb{Z}(2\pi)^2 \tilde{R}_3 \tilde{R}_4 + \underbrace{(2\pi \theta \tilde{R}_3 \tilde{R}_4) J}_{\text{keep finite}} \)
M-theory construction (more details)

\[V = (2\pi)^3 R_3 R_4 R_5 \]

Twist: \(x_5 \rightarrow x_5 + 2\pi R_5 \)

accompanied by \(e^{i\theta} \in U(1) \subset SO(5)_{6,...,10} \)

Momentum quantization: \(P_5 R_5 \in \mathbb{Z} + \frac{\theta J}{2\pi} \)

Dual to: \(\text{M2-area} \in \mathbb{Z}(2\pi)^2 \tilde{R}_3 \tilde{R}_4 + \left(2\pi \theta \tilde{R}_3 \tilde{R}_4 \right) J \)

keep finite
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]

![Diagram of M5 brane with strong G_{1267} flux and x_6, x_7 labels]
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]

![Strong G_{1267} flux](image)
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]
M-theory construction - what are the curvepoles?

Curvepoles can also be explained (heuristically) by a Myers effect (dielectric open M2’s)

[Bergman & OG, 2000; Bergman & Dasgupta & Karczmarek & Rajesh & OG, 2001]

Strong G_{1267} flux

See also [Witten, 1997; Aganagic & Park & Popscu & Schwarz, 1997; Bergshoeff & Berman, & van der Schaar & Sundell, 2000; Berman & Tadrowski, 2007; Lambert & Orlando & Reffert, 2014; Lambert & Orlando & Reffert & Sekiguchi, 2018]
Deforming the free theory to Curvepole Theory
Deforming the free theory to Curvepole Theory

Free 6D (2, 0) tensor 'plet
Deforming the free theory to Curvepole Theory

Free 6D $(2, 0)$ tensor 'plet

$(1, 0)$ tensor (B, χ^i, φ)

$SU(2)_R$ index: $i = 1, 2$

$(1, 0)$ hyper (ϕ^i, ψ)
Deforming the free theory to Curvepole Theory

Free 6D $(2, 0)$ tensor 'plet

$(1, 0)$ tensor (B, χ^i, φ)

$SU(2)_R$ index: $i = 1, 2$

$(1, 0)$ hyper (ϕ^i, ψ)

$$H^{(+)} := \frac{1}{2}(dB + *dB) = 0$$
Deforming the free theory to Curvepole Theory

Free 6D $(2, 0)$ tensor 'plet

$(1, 0)$ tensor (B, χ^i, φ)

$SU(2)_R$ index: $i = 1, 2$

$(1, 0)$ hyper (ϕ^i, ψ)

want their quanta to become curvepoles:

$$H^{(+)} := \frac{1}{2}(dB + *dB) = 0$$
Deforming the free theory to Curvepole Theory

Free 6D (2, 0) tensor ’plet

(1, 0) tensor (B, χ^i, φ)

want their quanta to stay pointlike.

$SU(2)_R$ index:

$i = 1, 2$

(1, 0) hyper (ϕ^i, ψ)

want their quanta to become curvepoles:

\[H^{(+)} := \frac{1}{2} (dB + *dB) = 0 \]
Recall: 2nd quantized dipoles

Dipole:
Recall: 2nd quantized dipoles

Dipole:

\[\begin{array}{c}
\, \\
- \\
\end{array} \quad \times \quad \begin{array}{c}
\, \\
+ \\
\end{array} \]
Recall: 2nd quantized dipoles

Dipole:

L is a fixed vector.
(Counterpart of Σ)
Recall: 2nd quantized dipoles

Dipole:

L is a fixed vector.
(Counterpart of Σ)
Φ is 2nd quantized field of dipole.
Recall: 2nd quantized dipoles

Dipole:

\[\Phi \text{ is 2}\text{nd quantized field of dipole.} \]

\(L \) is a fixed vector.

\(\Phi \) is 2\text{nd} quantized field of dipole.

Modified covariant derivative:

\[
D_\mu \Phi(x) = \partial_\mu \Phi(x) + iA_\mu(x + \frac{L}{2})\Phi(x) - iA_\mu(x - \frac{L}{2})\Phi(x)
\]
Recall: 2nd quantized dipoles

Dipole:

\[\Phi(x) = \partial_\mu \Phi(x) + i A_\mu (x + \frac{L}{2}) \Phi(x) - i A_\mu (x - \frac{L}{2}) \Phi(x) \]

\(L\) is a fixed vector.
(CoCounterpart of \(\Sigma\))

\(\Phi\) is 2nd quantized field of dipole.
Recall: 2nd quantized dipoles

Dipole:

\[\Phi \text{ is 2}\text{nd quantized field of dipole.} \]

Modified covariant derivative:

\[D_\mu \Phi(x) = \partial_\mu \Phi(x) + iA_\mu(x + \frac{L}{2})\Phi(x) - iA_\mu(x - \frac{L}{2})\Phi(x) \]

\[[\text{Bergman} \& \text{OG, Bergman} \& \text{Dasgupta} \& \text{Karczmarek} \& \text{Rajesh} \& \text{OG}] \]

Attach Wilson line:

\[P_x \]

\[P \text{ is a fixed path from } -\frac{L}{2} \text{ to } \frac{L}{2}. \]

\[\tilde{\Phi}(x) := e^{-i \int_{P_x} A} \Phi(x) \text{ is gauge invariant.} \]

\[P_x := x + P \text{ is "} P \text{ translated by } x\text{."} \]
Recall: 2nd quantized dipoles

Dipole:

\[
\begin{array}{cc}
- & + \\
\hline
x & L \\
\end{array}
\]

\(L\) is a fixed vector. (Counterpart of \(\Sigma\))

\(\Phi\) is 2nd quantized field of dipole.

Modified covariant derivative:

\[
D_\mu \Phi(x) = \partial_\mu \Phi(x) + iA_\mu (x + \frac{L}{2})\Phi(x) - iA_\mu (x - \frac{L}{2})\Phi(x)
\]

[Bergman & OG, Bergman & Dasgupta & Karczmarek & Rajesh & OG]

Attach Wilson line:

\[
P_x := x + P \text{ is “} P \text{ translated by } x.\]

\[
P \text{ is a fixed path from } -\frac{L}{2} \text{ to } \frac{L}{2}.
\]

\[
\tilde{\Phi}(x) := e^{-i \int_{P_x} A \Phi(x)} \text{ is gauge invariant.}
\]

\[
P_x := x + P \text{ is “} P \text{ translated by } x.\]

\[
D_\mu \tilde{\Phi}(x) = \partial_\mu \tilde{\Phi}(x) + i\tilde{\Phi}(x) \int_{P_x} F_{\nu \mu} dx^\nu
\]
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.

Step 1: “covariant” curvepole derivative

$$\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i \phi(x) \int_{\partial \Sigma} B_{\mu \nu}(x + y) dy^\nu$$

[Schaeffer, 2012 (unpublished)], (Implicit in [Alishahiha & OG, 2003])
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.

Step 1: “covariant” curvepole derivative

$$
\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i\phi(x) \int_{\partial \Sigma} B_{\mu\nu}(x+y) dy^\nu
$$

[Schaeffer, 2012 (unpublished)], (Implicit in [Alishahiha & OG, 2003])

But action should depend only on $H^{(-)} := \frac{1}{2}(dB - *dB)$.
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.

Step 1: “covariant” curvepole derivative

$$
\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i \phi(x) \int_{\partial \Sigma} B_{\mu \nu}(x + y) dy^\nu
$$

[Schaeffer, 2012 (unpublished)], (Implicit in [Alishahiha & OG, 2003])

But action should depend only on $H^{(-)} := \frac{1}{2} (dB - *dB)$.

For free tensor: $H^{(+)} := \frac{1}{2} (dB + *dB) = 0 \Rightarrow H^{(-)} = dB$,

a field redefinition $\tilde{\phi}(x) := e^{i \int_{\Sigma} B_{\mu \nu}(x + y) dy^\mu \wedge dy^\nu} \phi(x)$ does it:
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

[interacting with $(H^{(-)}, \chi^i, \varphi)$]

Σ – fixed shape (open surface) around origin.

Step 1: “covariant” curvepole derivative

$$\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i \phi(x) \int_{\partial \Sigma} B_{\mu\nu}(x + y) dy^\nu$$

[Schaeffer, 2012 (unpublished)], (Implicit in [Alishahiha & OG, 2003])

But action should depend only on $H^{(-)} := \frac{1}{2} (dB - \ast dB)$.

For free tensor: $H^{(+)} := \frac{1}{2} (dB + \ast dB) = 0 \Rightarrow H^{(-)} = dB$,

a field redefinition $\tilde{\phi}(x) := e^{i \int_\Sigma B_{\mu\nu}(x+y) dy^\mu \wedge dy^\nu} \phi(x)$ does it:

$$\Rightarrow D_\mu \tilde{\phi}(x) := \partial_\mu \tilde{\phi}(x) + i \tilde{\phi}(x) \int_\Sigma (dB)_{\mu\nu\sigma}(x + y) dy^\nu \wedge dy^\sigma$$
Curvepole Theory (first try)

We want quanta of ϕ to be curvepoles:

[interacting with $(H^\text{(-)}, \chi^i, \varphi)$]

Σ – fixed shape (open surface) around origin.

Step 1: “covariant” curvepole derivative

$$\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i \phi(x) \int_{\partial \Sigma} B_{\mu \nu}(x + y) dy^\nu$$

[Schaeffer, 2012 (unpublished)], (Implicit in [Alishahiha & OG, 2003])

But action should depend only on $H^\text{(-)} := \frac{1}{2} (dB - * dB)$.

For free tensor: $H^\text{(+)} := \frac{1}{2} (dB + * dB) = 0 \Rightarrow H^\text{(-)} = dB$,

a field redefinition $\bar{\phi}(x) := e^{i \int_{\Sigma} B_{\mu \nu}(x + y) dy^\mu \wedge dy^\nu} \phi(x)$ does it:

$$\Rightarrow D_\mu \bar{\phi}(x) := \partial_\mu \bar{\phi}(x) + i \bar{\phi}(x) \int_{\Sigma} (dB)_{\mu \nu \sigma}(x + y) dy^\nu \wedge dy^\sigma$$

But interactions $\Rightarrow H^\text{(+)} := \frac{1}{2} (dB + * dB) = K^\text{(+)} = (\phi\text{-contributions})$
Curvepole Theory

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^i, \chi^i, \phi)]$
Curvepole Theory

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.
We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.

Step 1’: Modified “covariant” curvepole derivative

$\partial_{\mu} \phi \rightarrow D_{\mu} \phi(x) := \partial_{\mu} \phi(x) + iV_{\mu}(x)\phi(x)$

$V_{\mu}(x) := \frac{1}{2} \int_{\Sigma} dy^\nu \wedge dy^\sigma H_{\mu\nu\sigma}^{(-)}(x + y)$
Curvepole Theory

We want quanta of ϕ to be curvepoles:

$[\text{interacting with } (H^{(-)}, \chi^i, \varphi)]$

Σ – fixed shape (open surface) around origin.

Step 1’: Modified “covariant” curvepole derivative

$$\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + iV_\mu(x)\phi(x)$$

$$V_\mu(x) := \frac{1}{2} \int_\Sigma dy^\nu \wedge dy^\sigma H^{(-)}_{\mu\nu\sigma}(x + y) - \frac{1}{2} \int_{\partial\Sigma} dy_\mu \varphi(x + y)$$

required for SUSY
Curvepole Theory

We want quanta of ϕ to be curvepoles: [interacting with $(H^{(-)}, \chi^i, \varphi)$]

Σ – fixed shape (open surface) around origin.

Step 1’: Modified “covariant” curvepole derivative

$$
\partial_\mu \phi \rightarrow D_\mu \phi(x) := \partial_\mu \phi(x) + i \mathbf{V}_\mu(x) \phi(x)
$$

$$
\mathbf{V}_\mu(x) := \frac{1}{2} \int_\Sigma dy^\nu \wedge dy^\sigma H^{(-)}_{\mu \nu \sigma}(x + y) - \frac{1}{2} \int_{\partial \Sigma} dy_\mu \varphi(x + y)
$$

Additional terms in L required for SUSY
Curvepole Theory

We want quanta of \(\phi \) to be curvepoles:

\[\text{interacting with } \left(H^{(-)}, \chi^{i}, \varphi \right) \]

\(\Sigma \) – fixed shape (open surface) around origin.

Step 1’: Modified “covariant” curvepole derivative

\[
\partial_{\mu} \phi \rightarrow D_{\mu} \phi(x) := \partial_{\mu} \phi(x) + i V_{\mu}(x) \phi(x)
\]

\[
V_{\mu}(x) := \frac{1}{2} \int_{\Sigma} dy^{\nu} \wedge dy^{\sigma} H_{\mu\nu\sigma}^{(-)}(x+y) - \frac{1}{2} \int_{\partial \Sigma} dy_{\mu} \varphi(x+y)
\]

Additional terms in \(L \)

required for SUSY

A condition on \(\Sigma \)
What is the condition on Σ?

Define the *curvepole integrals*:
What is the condition on Σ?

Define the **curvepole integrals**:

\[
\psi^{\mu\nu} := \int_{\Sigma} \psi(x + y) dy^\mu \wedge dy^\nu
\]

\[
\overline{\psi}^{\mu\nu} := \int_{\Sigma} \psi(x - y) dy^\mu \wedge dy^\nu
\]
What is the condition on Σ?

Define the \textbf{curvepole integrals}:

\[
\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu
\]

\[
\bar{\Psi}^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu
\]

A condition on Σ appears by requiring SUSY at quartic order.
What is the condition on Σ?

Define the **curvepole integrals**:

\[
\psi_{\mu\nu} := \int_{\Sigma} \psi(x + y) dy^\mu \wedge dy^\nu
\]

\[
\overline{\psi}_{\mu\nu} := \int_{\Sigma} \psi(x - y) dy^\mu \wedge dy^\nu
\]

A condition on Σ appears by requiring SUSY at quartic order.

SUSY preserved if:

(up to quartic order)
What is the condition on Σ?

Define the **curvepole integrals**:

$$
\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu
$$

$$
\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu
$$

A condition on Σ appears by requiring SUSY at quartic order.

SUSY preserved if:

(up to quartic order)

\[
\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta}
\]

for arbitrary Ψ
What is the condition on Σ?

Define the \textit{curvepole integrals}:

\[\Psi_{\mu\nu} := \int_\Sigma \Psi(x + y) dy^\mu \wedge dy^\nu \]
\[\Psi_{\mu\nu} := \int_\Sigma \Psi(x - y) dy^\mu \wedge dy^\nu \]

A condition on Σ appears by requiring SUSY at quartic order.

SUSY preserved if:

\[\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta} \]

for arbitrary Ψ

This is a geometric condition on Σ.

Let’s call such Σ’s \textbf{balanced curvepoles}.
Balanced Curvepoles

\[\Psi_{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\overline{\Psi}_{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole:

\[\boxed{\Psi}_{\alpha\beta}^{\gamma\delta} = \boxed{\Psi}_{\gamma\delta}^{\alpha\beta} \]

for arbitrary \(\Psi \)
Balanced Curvepoles

\[\Psi^{\mu\nu} := \int_\Sigma \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\overline{\Psi}^{\mu\nu} := \int_\Sigma \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole: \(\begin{array}{c|c}
\Psi_{\alpha\beta} & = & \Psi_{\gamma\delta}^{\alpha\beta} \\
\end{array} \) for arbitrary \(\Psi \)

Equivalent to: \(\int d^6x \Psi_{\alpha\beta} \Phi_{\gamma\delta} = \int d^6x \Psi_{\gamma\delta} \Phi_{\alpha\beta} \)
for arbitrary \(\Psi, \Phi \)
Balanced Curvepoles

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\bar{\Psi}^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole:
\[\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta} \]

for arbitrary \(\Psi \)

Equivalent to:
\[\int d^6x \Psi_{\alpha\beta}^{\gamma\delta} \Phi = \int d^6x \Psi_{\gamma\delta}^{\alpha\beta} \Phi \]

for arbitrary \(\Psi, \Phi \)

\[\Psi_{\alpha\beta}^{\gamma\delta} \Phi = \Psi_{\gamma\delta}^{\alpha\beta} \Phi \]

(This is a stronger condition)
Balanced Curvepoles

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole: \[\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta} \]
for arbitrary \(\Psi \)

Equivalent to: \[\int d^6 x \Psi_{\alpha\beta} \Phi_{\gamma\delta} = \int d^6 x \Psi_{\gamma\delta} \Phi_{\alpha\beta} \]
for arbitrary \(\Psi, \Phi \)

Planar curvepole \((\Sigma \subset \mathbb{R}^2 \subset \mathbb{R}^6) \)
\[\Psi_{\alpha\beta} \Phi_{\gamma\delta} = \Psi_{\gamma\delta} \Phi_{\alpha\beta} \]
(This is a stronger condition)
Balanced and Unbalanced Curvepoles

\[\Psi^{\mu\nu} := \int_\Sigma \Psi(x + y)dy^\mu \wedge dy^\nu \]

\[\overline{\Psi}^{\mu\nu} := \int_\Sigma \Psi(x - y)dy^\mu \wedge dy^\nu \]

Balanced curvepole: \[\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta} \] for arbitrary \(\Psi \)
Balanced and Unbalanced Curvepoles

\[\psi_{\mu\nu} := \int_{\Sigma} \psi(x + y) dy^{\mu} \wedge dy^{\nu} \]

\[\overline{\psi}_{\mu\nu} := \int_{\Sigma} \psi(x - y) dy^{\mu} \wedge dy^{\nu} \]

Balanced curvepole: \[\boxed{\psi_{\alpha\beta}}_{\gamma\delta} = \boxed{\psi_{\gamma\delta}}_{\alpha\beta} \]

for arbitrary \(\psi \)

Parity invariant (\(\Sigma = -\Sigma \)) (balanced)
Balanced and Unbalanced Curvepoles

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole:

\[\Psi_{\alpha\beta}^{\gamma\delta} = \Psi_{\gamma\delta}^{\alpha\beta} \quad \text{for arbitrary } \Psi \]

Parity invariant \((\Sigma = -\Sigma)\) \hspace{1cm} (balanced)

Planar \((\Sigma \subset \mathbb{R}^2 \subset \mathbb{R}^6)\) \hspace{1cm} (balanced)
Balanced and Unbalanced Curvepoles

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x + y) dy^\mu \wedge dy^\nu \]

\[\Psi^{\mu\nu} := \int_{\Sigma} \Psi(x - y) dy^\mu \wedge dy^\nu \]

Balanced curvepole: \[\Psi_{\alpha\beta\gamma\delta} = \Psi_{\gamma\delta\alpha\beta} \] for arbitrary \(\Psi \)

Parity invariant (\(\Sigma = -\Sigma \)) (balanced)

Planar (\(\Sigma \subset \mathbb{R}^2 \subset \mathbb{R}^6 \)) (balanced)

(a chair) (not balanced)
The action - quadratic terms

The bosonic quadratic terms are:

\[L^{(\text{bosonic})}_2 = \frac{1}{12\pi} H_{\mu\nu\sigma} H^{\mu\nu\sigma} + \frac{1}{4\pi} \partial_\mu \varphi \partial^\mu \varphi + \partial_\mu \phi_i \partial^\mu \phi^i \]

where

\[H_{\mu\nu\sigma} := 3 \partial_{[\mu} B_{\nu\sigma]} \]

3-form field strength

\[H_{\mu\nu\sigma}^{(\pm)} := \frac{1}{2} (H_{\mu\nu\sigma} \pm \frac{i}{6} \epsilon_{\mu\nu\sigma\alpha\beta\gamma} H^{\alpha\beta\gamma}) \]

selfdual and anti-selfdual components
The action - cubic terms

The bosonic cubic terms are:

$$L_3^{(bosonic)} = - J^\mu V^\mu$$

where

$$J^\mu := i(\bar{\phi}_i \partial^\mu \phi^i - \partial^\mu \bar{\phi}_i \phi^i) \quad U(1) \text{ current}$$

$$V^\mu := \frac{1}{2} \begin{array}{c} H^{(-)} \end{array}_{\mu\nu\sigma}^{\nu\sigma} - \frac{1}{2} \begin{array}{c} \partial^\nu \phi \end{array}_{\mu\nu} \quad \text{effective gauge field defined above}$$
The action - quartic terms

The additional bosonic quartic terms are:

\[L_4^{(bosonic)} = \mathbf{V}_\mu \mathbf{V}^{\mu} \bar{\phi}_i \phi^i - \frac{3\pi}{16} \mathbf{J}_{[\mu}^{[\sigma}] \mathbf{J}^{\sigma\nu]}_{\mu\nu} + \frac{\pi}{2} \left(\partial^\mu \mathbf{M}_i^j \right)_{\mu\sigma} \partial_\nu \mathbf{M}_j^i \nu\sigma \]

where

\[J_\mu := i(\bar{\phi}_i \partial_\mu \phi^i - \partial_\mu \bar{\phi}_i \phi^i) \]

\[U(1) \text{ current} \]

\[M_i^j := \bar{\phi}_i \phi^j - \frac{1}{2} \delta_i^j \bar{\phi}_k \phi^k \]

\[SU(2)_R \text{ triplet} \]

\[\mathbf{V}_\mu := \frac{1}{2} \mathbf{H}_{\mu\nu\sigma}^{(-)} \nu\sigma - \frac{1}{2} \partial_\nu \phi^i_{\mu\nu} \]

effective gauge field defined above
Hollowness

\[C = \partial \Sigma \]
It would be nice if the theory depended only on C; not on Σ.
Hollowness

\[C = \partial \Sigma \]

It would be nice if the theory depended only on \(C \); not on \(\Sigma \).

If \(\partial \Sigma = \partial \Sigma' \), we’d like \(\text{theory}(\Sigma) \simeq \text{theory}(\Sigma') \)

up to a field redefinition.
Hollowness

Σ

$C = \partial \Sigma$

It would be nice if the theory depended only on C; not on Σ.

If $\partial \Sigma = \partial \Sigma'$, we'd like theory$(\Sigma) \simeq$ theory(Σ')

up to a field redefinition.

That turns out to be true . . . well . . . sort of.
Hollowness

Recall dipole case:
Hollowness

Recall dipole case:

\[\times \]

\[\begin{array}{c}
\text{+} \\
\text{−}
\end{array} \]
Hollowness

Recall dipole case:
Hollowness

Recall dipole case:

\[D_\mu \Phi(x) = \partial_\mu \Phi(x) + i[A_\mu(x + \frac{L}{2}) - A_\mu(x - \frac{L}{2})]\Phi(x) \]
Recall dipole case:

\[D_\mu \Phi(x) = \partial_\mu \Phi(x) + i[A_\mu(x + \frac{L}{2}) - A_\mu(x - \frac{L}{2})]\Phi(x) \]

Field redefinition (attach Wilson line):

\[\tilde{\Phi}(x) := e^{-i \int_{P_x} A} \Phi(x) \] is gauge invariant.
Hollowness

Recall dipole case:

\[
D_\mu \Phi(x) = \partial_\mu \Phi(x) + i [A_\mu(x + \frac{L}{2}) - A_\mu(x - \frac{L}{2})] \Phi(x)
\]

Field redefinition (attach Wilson line):

\[
\tilde{\Phi}(x) := e^{-i \int_{P_x} A \Phi(x)} \quad \text{is gauge invariant.}
\]

\[
D_\mu \tilde{\Phi}(x) = \partial_\mu \tilde{\Phi}(x) + i \tilde{\Phi}(x) \int_{P_x} F_{\nu \mu} d\chi^\nu
\]
Recall dipole case:

\[D_\mu \Phi(x) = \partial_\mu \Phi(x) + i[A_\mu(x + \frac{L}{2}) - A_\mu(x - \frac{L}{2})]\Phi(x) \]

Field redefinition (attach Wilson line):

\[\tilde{\Phi}(x) := e^{-i \int_{P_x} A \Phi(x)} \text{ is gauge invariant.} \]

\[D_\mu \tilde{\Phi}(x) = \partial_\mu \tilde{\Phi}(x) + i\tilde{\Phi}(x) \int_{P_x} F_{\nu\mu} dx^\nu \]
Hollowness

Recall dipole case:

\[D_\mu \Phi(x) = \partial_\mu \Phi(x) + i[A_\mu(x + \frac{L}{2}) - A_\mu(x - \frac{L}{2})]\Phi(x) \]

Field redefinition (attach Wilson line):

\[\tilde{\Phi}(x) := e^{-i \int_{P_x} A \Phi(x)} \] is gauge invariant.

\[D_\mu \tilde{\Phi}(x) = \partial_\mu \tilde{\Phi}(x) + i \tilde{\Phi}(x) \int_{P_x} F_{\nu\mu} dx^\nu \]

\(P_x \rightarrow P'_x \) can be compensated by a field redefinition.
Hollowness for cuvepoles
Hollowness for cuvepoles

\[\sum \]
Hollowness for cuvepoles
Hollowness for cuvepoles

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector

\[
\delta_{\xi} \Phi^{\mu\nu} = \xi^\sigma \partial_\sigma \Phi^{\mu\nu} + \xi^\mu \partial_\sigma \Phi^{\nu\sigma} - \xi^\nu \partial_\sigma \Phi^{\mu\sigma}
\]
Hollowness for cuvepoles

\[\xi : \Sigma \to \mathbb{R}^6 \]

is the deformation vector

\[\delta_\xi \Phi^{\mu\nu} = \xi^\sigma \partial_\sigma \Phi^{\mu\nu} + \xi^\mu \partial_\sigma \Phi^{\nu\sigma} - \xi^\nu \partial_\sigma \Phi^{\mu\sigma} \]

\[V_\mu := \frac{1}{2} H^{(\cdot)}_{\mu\nu\sigma}^{\nu\sigma} - \frac{1}{2} \partial^\nu \varphi^{\mu\nu} \]
Hollowness for cuvepoles

\[\xi : \Sigma \to \mathbb{R}^6 \]

is the deformation vector

\[\delta_{\xi} \Phi_{\mu\nu} = \xi^\sigma \partial_\sigma \Phi_{\mu\nu} + \xi^\mu \partial_\sigma \Phi_{\nu\sigma} - \xi^\nu \partial_\sigma \Phi_{\mu\sigma} \]

\[\mathbf{V}_\mu := \frac{1}{2} H_{\mu\nu\sigma}^{(-)} \nu^\sigma - \frac{1}{2} \partial^\nu \varphi_{\mu\nu} \]

\[\partial^\nu \varphi_{\mu\nu} = \int_{\Sigma} \partial^\nu \varphi (x + y) dy_\mu \wedge dy_\nu = \int_{\partial \Sigma} \varphi (x + y) dy_\mu \text{ is hollow.} \]
Hollowness for cuvepoles

\[\xi : \Sigma \to \mathbb{R}^6 \]
is the deformation vector

\[\delta \xi \Phi^{\mu \nu} = \xi^\sigma \partial_\sigma \Phi^{\mu \nu} + \xi^\mu \partial_\sigma \Phi^{\nu \sigma} - \xi^\nu \partial_\sigma \Phi^{\mu \sigma} \]

\[\mathbf{V}_\mu := \frac{1}{2} [H_{\mu \nu \sigma}^{(-)}]^{\nu \sigma} - \frac{1}{2} [\partial^\nu \varphi]_{\mu \nu} \]

\[\partial^\nu \varphi_{\mu \nu} = \int_\Sigma \partial^\nu \varphi (x + y) dy_\mu \wedge dy_\nu = \int_{\partial \Sigma} \varphi (x + y) dy_\mu \text{ is hollow.} \]

\[H_{\mu \nu \sigma}^{(-)} \] would have been hollow if \(dH^{(-)} = 0 \) but
Hollowness for cuvepoles

\[\delta_{\xi} \Phi^{\mu\nu} = \xi^\sigma \partial_\sigma \Phi^{\mu\nu} + \xi^\mu \partial_\sigma \Phi^{\nu\sigma} - \xi^\nu \partial_\sigma \Phi^{\mu\sigma} \]

\[\mathbf{v}_\mu := \frac{1}{2} H_{\mu\nu\sigma}^{(-)} \nu^\sigma - \frac{1}{2} \partial^\nu \varphi^{\mu\nu} \]

\[\partial^\nu \varphi^{\mu\nu} = \int_{\Sigma} \partial^\nu \varphi(x + y) dy_\mu \wedge dy_\nu = \int_{\partial \Sigma} \varphi(x + y) dy_\mu \text{ is hollow.} \]

\[H_{\mu\nu\sigma}^{(-)} \nu^\sigma \text{ would have been hollow if } dH^{(-)} = 0 \text{ but } \]

\[\partial_{[\alpha} H^{(-)}_{\mu\nu\sigma]} = -\frac{3\pi i}{32} \epsilon_{\alpha\mu\nu\sigma\gamma\delta} \partial_\tau J^{[\gamma]} \delta_{[\alpha} J_{\mu]}^{\nu\sigma]}. \]
Hollowness for cuvepoles

$\xi : \Sigma \to \mathbb{R}^6$
is the deformation vector

$\delta_\xi \Phi^\mu{}_{\nu\sigma} = \xi^\sigma \partial_\sigma \Phi^\mu{}_{\nu\sigma} + \xi^\mu \partial_\sigma \Phi^\nu{}_{\sigma} - \xi^\nu \partial_\sigma \Phi^\mu{}_{\sigma}$

$\mathbf{V}_\mu := \frac{1}{2} H^{(-)}_{\mu\nu\sigma}{}^\nu{}^\sigma - \frac{1}{2} \partial^\nu \varphi_{\mu\nu}$

$\partial^\nu \varphi_{\mu\nu} = \int_\Sigma \partial^\nu \varphi(x + y) dy_\mu \wedge dy_\nu = \int_{\partial \Sigma} \varphi(x + y) dy_\mu$ is hollow.

$H^{(-)}_{\mu\nu\sigma}{}^\nu{}^\sigma$ would have been hollow if $dH^{(-)} = 0$ but

$\partial[\alpha H^{(-)}_{\mu\nu\sigma}] = -\frac{3\pi i}{32} \epsilon_{\alpha\mu\nu\sigma\gamma} \partial_\tau J[\gamma]^{\delta\tau} + \frac{3\pi}{4} \partial[\alpha J_\mu]_{\nu\sigma}$.

Nevertheless ...
The action (again)

\[L^{(bosonic)} = \]
\[\frac{1}{12\pi} H_{\mu\nu\sigma} H^{\mu\nu\sigma} + \frac{1}{4\pi} \partial_\mu \varphi \partial^\mu \varphi + \partial_\mu \bar{\phi}_i \partial^\mu \phi^i + \frac{\pi}{2} \left[\partial_\mu M^j_i \right]_{\mu\sigma} \left[\partial_\nu M^i_j \right]^{\nu\sigma} \]

- hollow

\[- J^\mu V_\mu + V_\mu V^\mu \bar{\phi}_i \phi^i - \frac{3\pi}{16} \left[J^\mu \right]^{\sigma\nu} \left[J_\mu \right]_{\sigma\nu} \]

- not hollow

\[J_\mu := i(\bar{\phi}_i \partial_\mu \phi^i - \partial_\mu \bar{\phi}_i \phi^i) \quad U(1) \text{ current} \]
\[M^j_i := \bar{\phi}_i \phi^j - \frac{1}{2} \delta^j_i \phi_k \phi^k \quad SU(2)_R \text{ triplet} \]
\[V_\mu := \frac{1}{2} \left[H^{(-)}_{\mu
u\sigma} \right]^{\nu\sigma} - \frac{1}{2} \left[\partial^\nu \varphi \right]_{\mu\nu} \quad \text{effective gauge field defined above} \]
Hollowness (continued)

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector

\[\delta_{\xi} \Phi^{\mu\nu} = \xi^\sigma \partial_\sigma \Phi^{\mu\nu} + \xi^\mu \partial_\sigma \Phi^{\nu\sigma} - \xi^\nu \partial_\sigma \Phi^{\mu\sigma} \]
Hollowness (continued)

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector

\[\delta_{\xi} \Phi^{\mu\nu} = \xi^\sigma \partial_\sigma \Phi^{\mu\nu} + \xi^\mu \partial_\nu \Phi^{\mu\sigma} - \xi^\nu \partial_\sigma \Phi^{\mu\sigma} \]

But with a suitable field redefinition (\(\delta_{\xi} B_{\mu\nu} = \cdots, \delta_{\xi} \phi^i = \cdots \), etc.)
Hollowness (continued)

\[\Sigma \rightarrow \mathbb{R}^6 \]

\[\delta \xi \Phi^{\mu \nu} = \xi^{\sigma} \partial_{\sigma} \Phi^{\mu \nu} + \xi^{\mu} \partial_{\sigma} \Phi^{\nu \sigma} - \xi^{\nu} \partial_{\sigma} \Phi^{\mu \sigma} \]

But with a suitable field redefinition (\(\delta \xi B_{\mu \nu} = \cdots \), \(\delta \xi \phi^i = \cdots \), etc.),

\[\delta \xi \int d^6 x \left(\cdots - J^{\mu} \Phi_{\mu} + \Phi_{\mu} \Phi_{\mu} \Phi_{i} \Phi_{i} - \frac{3\pi}{16} \left[J_{[\mu}^{\sigma \nu] \right] J_{[\mu}^{\sigma \nu]} \right) = \]

non-hollow terms
Hollowness (continued)

\[\xi : \Sigma \to \mathbb{R}^6 \]

is the deformation vector

\[\delta_{\xi} \Phi^{\mu\nu} = \xi^{\sigma} \partial_{\sigma} \Phi^{\mu\nu} + \xi^{\mu} \partial_{\sigma} \Phi^{\nu\sigma} - \xi^{\nu} \partial_{\sigma} \Phi^{\mu\sigma} \]

But with a suitable field redefinition (\(\delta_{\xi} B_{\mu\nu} = \cdots , \delta_{\xi} \phi^i = \cdots \), etc.),

\[\delta_{\xi} \int d^6x \left(\cdots - J^\mu V_\mu + V_\mu V^\mu \bar{\phi}^i \phi^i - \frac{3\pi}{16} J[\mu]^{\sigma\nu} J[\nu]_{\sigma\mu} \right) = \left\{ \text{non-hollow terms} \right\} \]

\[\frac{\pi i}{32} \int \epsilon_{\alpha\beta\gamma\mu\nu\sigma} J^\alpha_{\beta\gamma} \xi^\tau \partial_\tau J^\mu_{\nu\sigma} d^6x. \]
Hollowness (continued . . .)

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector
Hollowness (continued . . .)

\[\delta \xi \int \left(\cdots \cdots \cdots \right) d^6x = \frac{\pi i}{32} \int \varepsilon_{\alpha\beta\gamma\mu\nu\sigma} J^\alpha_{\beta\gamma} \xi^\tau \partial_\tau J^\mu_{\nu\sigma} d^6x. \]
Hollowness (continued . . .)

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector

\[\delta \xi \int \left(\ldots \ldots \right) d^6 x = \frac{\pi i}{32} \int \epsilon_{\alpha \beta \gamma \mu \nu \sigma} J^\alpha_{\beta \gamma} \xi^\tau \partial_\tau J^\mu_\nu \sigma d^6 x. \]

\[\epsilon_{\alpha \beta \gamma \mu \nu \sigma} \ldots \beta \gamma \ldots \nu \sigma = 0 \quad \text{for 3-planar } \Sigma \text{ (i.e., } \Sigma \subset \mathbb{R}^3 \subset \mathbb{R}^6) \]
Hollowness (continued . . .)

\[\xi : \Sigma \rightarrow \mathbb{R}^6 \]

is the deformation vector \(\xi \).

\[
\delta_{\xi} \int \left(\cdots \cdots \right) d^6x = \frac{\pi i}{32} \int \epsilon_{\alpha\beta\gamma\mu\nu\sigma} J^\alpha_{\beta\gamma} \xi^\tau \partial_\tau J^\mu_{\nu\sigma} d^6x.
\]

\[\epsilon_{\alpha\beta\gamma\mu\nu\sigma} \cdots \beta\gamma \cdots ^\nu\sigma = 0 \] for 3-planar \(\Sigma \) (i.e., \(\Sigma \subset \mathbb{R}^3 \subset \mathbb{R}^6 \))

\[\Rightarrow \delta_{\xi} \int Ld^6x = 0 \text{ for 3-planar } \Sigma. \] (up to quartic terms)
Applications of hollowness

Insisting on **Hollowness** is useful:
Applications of hollowness

Insisting on **Hollowness** is useful:

1. SUSY alone doesn’t rule out adding a quartic term

\[
\Delta L = (#) \left(\frac{1}{2} J_\sigma \mu \nu J_\sigma \mu \nu - \partial_\sigma M_i^j \mu \nu \partial^\sigma M_j^i \mu \nu + \text{fermions} \right)
\]

not hollow
Applications of hollowness

Insisting on **Hollowness** is useful:

1. SUSY alone doesn’t rule out adding a quartic term

\[
\Delta L = \# \left(\frac{1}{2} J_\sigma J^{\sigma \mu \nu} - \partial_\sigma M^i_j \partial^\sigma M_{i}^{j \mu \nu} + \text{fermions} \right)
\]

not hollow

2. Ruling out higher order terms:
Applications of hollowness

Insisting on **Hollowness** is useful:

1. SUSY alone doesn’t rule out adding a quartic term

\[\Delta L = (\#) \left(\frac{1}{2} J_\sigma_{\mu\nu} J^\sigma_{\mu\nu} - \partial_\sigma M^i_\mu \partial^\sigma M^i_\nu + \text{fermions} \right) \]

 not hollow

2. Ruling out higher order terms:

 hollowness requires a \(\partial \) for every \(\cdots \).

 Terms of the form \(\partial^{n-2} \cdots \partial^{n-2} \phi^n \) have dimension \((n + 2) \);
Applications of hollowness

Insisting on **Hollowness** is useful:

1. SUSY alone doesn’t rule out adding a quartic term

\[
\Delta L = (#) \left(\frac{1}{2} J_\sigma^{\mu\nu} J^{\sigma\mu\nu} - \partial_\sigma M^j_i \partial^{\sigma} M^j_i + \text{fermions} \right)
\]

2. Ruling out higher order terms:

 hollowness requires a \(\partial \) for every \(\cdots \).

 Terms of the form \(\partial^{n-2} \cdots \partial^{n-2} \phi^n \) have dimension \((n + 2) \);
 \(n + 2 > 6 \) for \(n > 4 \).
Applications of hollowness

Insisting on **Hollowness** is useful:

1. SUSY alone doesn’t rule out adding a quartic term

 \[\Delta L = (\#) \left(\frac{1}{2} J_\sigma^{\mu\nu} J^\sigma_{\mu\nu} - \partial_\sigma M^i_j \partial^\sigma M^j_i + \text{fermions} \right) \]

 not hollow

2. Ruling out higher order terms:

 hollowness requires a \(\partial \) for every \(\cdots \).

 Terms of the form \(\partial^{n-2} \cdots n^{-2} \phi^n \) have dimension \((n + 2) \);
 \(n + 2 > 6 \) for \(n > 4 \).
Is hollowness anomalous?

The field redefinition is

\[\delta B_{\gamma\delta} = \frac{\pi i}{4} \epsilon_{\alpha\mu\nu\sigma\gamma\delta} \xi^\alpha J^\mu \]

\[\delta \phi^i = i \epsilon \phi^i , \]

\[\delta \bar{\phi}^i = -i \epsilon \bar{\phi}^i , \]

\[\delta \psi^i = i \epsilon \psi^i , \]

\[\delta \bar{\psi}^i = -i \epsilon \bar{\psi}^i , \]

\[\epsilon := \frac{1}{2} \xi^\alpha H^{(-)}_{\alpha\mu\nu} \mu\nu . \]
Is hollowness anomalous?

The field redefinition is

$$\delta B_{\gamma\delta} = \frac{\pi i}{4} \epsilon_{\alpha\mu\nu\sigma\gamma\delta} \xi^\alpha J^\mu$$

$$\delta \phi^i = i \varepsilon \phi^i,$$

$$\delta \bar{\phi}^i = -i \varepsilon \bar{\phi}^i,$$

$$\delta \psi^i = i \varepsilon \psi^i,$$

$$\delta \bar{\psi}^i = -i \varepsilon \bar{\psi}^i,$$

$$\varepsilon := \frac{1}{2} \xi^\alpha H^{(-)}_{\alpha\mu\nu} \mu\nu.$$
Is hollowness anomalous?

The field redefinition is

\[\delta B_{\gamma\delta} = \frac{\pi i}{4} \epsilon_{\alpha\mu\nu\sigma} \gamma_{\delta} \left[\xi^{\alpha} J^{\mu} \right]^{\nu\sigma} \]

\[\delta \phi^{j} = i \epsilon \phi^{j}, \]

\[\delta \bar{\phi}^{j} = -i \epsilon \bar{\phi}^{j}, \]

\[\delta \psi^{j} = i \epsilon \psi^{j}, \]

\[\delta \bar{\psi}^{j} = -i \epsilon \bar{\psi}^{j}, \]

\[\epsilon := \frac{1}{2} \left[\xi^{\alpha} H_{\alpha \mu \nu} \right]^{\mu \nu}. \]

Anomaly \(\sim \int \epsilon d\mathbf{V} \wedge d\mathbf{V} \wedge d\mathbf{V} \) at order \(\cdots 4 \)

Reminder: \(\mathbf{V}_{\mu} := \frac{1}{2} \left[H_{\mu \nu \sigma}^{(-)} \right]^{\nu \sigma} - \frac{1}{2} \left[\partial^{\nu} \varphi \right]_{\mu \nu} \)
Open Questions
Open Questions

Higher than quartic orders? Additional restrictions on Σ?
Open Questions

- Higher than quartic orders? Additional restrictions on Σ?
- Hollowness anomaly cancellation? (Green-Schwarz-like?)
- Quantum corrections? (protected by anti-selfduality?)
Open Questions

- Higher than quartic orders? Additional restrictions on Σ?
- Hollowness anomaly cancellation? (Green-Schwarz-like?)
- Quantum corrections? (protected by anti-selfduality?)

How are these theories related to the M-theory construction? Which Σ are realized? (Probably disks.)
Open Questions

Higher than quartic orders? Additional restrictions on Σ?

Hollowness anomaly cancellation? (Green-Schwarz-like?)

Quantum corrections? (protected by anti-selfduality?)

How are these theories related to the M-theory construction?
Which Σ are realized? (Probably disks.)
Open Questions

Higher than quartic orders? Additional restrictions on Σ?

Hollowness anomaly cancellation? (Green-Schwarz-like?)

Quantum corrections? (protected by anti-selfduality?)

How are these theories related to the M-theory construction?
Which Σ are realized? (Probably disks.)

Perhaps technique of [Ho & Matsuo, 2008, and Ho & Huang & Matsuo, 2011],
applying Bagger-Lambert-Gustavsson theory to Poisson triple-product, can help here.

Applications to interactions induced on M5-brane by G-flux?

More Questions
More Questions

More Questions

Can pure-spinor techniques simplify the equations?

Cf. [Cederwall & Karlsson, 2011] for BI.

Recast in projective superspace?

[Galperin & Ivanov & Ogievetsky & Sokatchev; Karlhede & Lindström & Roček]
Summary

Constructed a SUSY action of interacting curvepoles (up to quartic terms)
Summary

- Constructed a SUSY action of interacting curvepoles (up to quartic terms)

- There is a geometric constraint on curvepole shape
Summary

- Constructed a SUSY action of interacting curvepoles (up to quartic terms)
- There is a geometric constraint on curvepole shape
- Explicit formulas for the quartic interactions
Thanks!
MORE DETAILS
Antiselfduality with interactions

Action: \[S = \frac{1}{4\pi} \int dB \wedge *dB + \int (dB - *dB) \wedge K \]

Field strength: \[H^{(\pm)} := \frac{1}{2} (dB \pm *dB) \]

EOMs: \[0 = d \left[\frac{1}{2\pi} *dB + (K + *K) \right] = d \left[\frac{1}{\pi} H^{(+)} + (K + *K) \right] \]

Corrections to free anti-selfduality condition:

\[H^{(+)} = -\pi (K + *K) \]

Can define: \[\widetilde{H}^{(+)} := \frac{1}{2} (dB + *dB) + \pi (K + *K) = 0 \]
Spinor notation in 6D

\[a, b, c, d, \ldots = 1, \ldots 4 \] spinor indices

\[\partial_{ab} = \frac{1}{2} \epsilon_{abcd} \partial^{cd} \] derivative

\[B^b_a \] 2-form \((B^a_a = 0)\)

\[H_{ab}^{(-)} = H_{ba}^{(-)} \] antiselfdual 3-form

\[H^{(+)}_{ab} = H^{(+)}_{ba} \] selfdual 3-form

\[H_{ab}^{(-)} = 2 \partial_{c(a} B_{b)c} \] \[\iff \]

\[H_{\mu\nu\sigma}^{(-)} = \frac{1}{2} (H_{\mu\nu\sigma} - \frac{i}{3!} \epsilon_{\mu\nu\sigma\alpha\beta\gamma} H^{\alpha\beta\gamma}) \]

\text{for } H_{\mu\nu\sigma} = 3 \partial_{[\sigma} B_{\mu\nu]} \]
SUSY transformations at 0\(^{th}\) order

\[\delta_0 \phi^i = \eta^{ai} \psi_a\]

\[\delta_0 \bar{\phi}_i = \eta^a_i \bar{\psi}_a\]

\[\delta_0 \psi_a = -2i \eta^b_i \partial_{ab} \phi^i\]

\[\delta_0 \bar{\psi}_a = -2i \eta^b_i \partial_{ab} \bar{\phi}^i\]

\[\delta_0 \varphi = \eta^a_i \chi^i_a\]

\[\delta_0 \chi^i_a = i \eta^{bi} \partial_{ab} \varphi + i \eta^{bi} H_{ab}\]

\[\delta_0 H_{ab} = \eta^c_i \partial_{ca} \chi^i_b + \eta^c_i \partial_{cb} \chi^i_a\]
Effective vector multiplet

Out of H and χ we construct a vector multiplet:

$$V_{ab} := H_{c[a} \chi_{b]} + \partial_{c[a} \phi_{b]}$$

Vector field

$$\rho^{ia} := \partial^{ab} \chi_{c}^{i}$$

Gaugino field

$$F_{a}^{b} = \partial^{bc} V_{ac} - \frac{1}{4} \delta^{b}_{a} \partial^{dc} V_{dc}$$

Associated field strength

Their 0^{th} order SUSY transformations:

$$\delta_{0} V^{ab} = -\eta_{i}^{a} \rho^{ib} + \eta_{i}^{b} \rho^{ia} - \partial^{ab} \lambda$$

$$\delta_{0} \rho^{ia} = 2i \eta^{bi} F_{b}^{a}$$

$$\lambda := \eta_{i}^{a} \chi_{b}^{i}$$

Field-dependent gauge parameter
SUSY transformations at 1st order

\[\delta_1 \phi^i = -i \eta^a_j \phi^i \chi^j_b a \]

\[\delta_1 \phi = i \eta^a_j \phi^i \chi^j_b a \]

\[\delta_1 \psi_a = 2 \eta^b_i [H_{c[b}] c \phi^i + 2 \eta^b_i \phi^i \partial_{c[b]} \varphi_a c + i \eta^b_i \psi_a \chi^i_c c] \]

\[\delta_1 \bar{\psi}_a = 2 \eta^b_i [H_{c[a]} c \phi^i + 2 \eta^b_i \bar{\phi}^i \partial_{c[a]} \varphi_b c - i \eta^b_i \bar{\psi}_a \chi^i_c c] \]

\[\delta_1 \varphi = 0 \]
SUSY transformations at 1st order (Continued)

\[\delta_1 \chi_a^i = \pi i \eta^c_i \left(\overline{\psi_b \psi}(a)_c \right)^b + \pi i \eta^c_i \left(\overline{\psi_b \psi}(a)_c \right)^b \]

\[-\pi \eta^c_j \left(\frac{1}{2} \phi \partial_{bc} \phi^i + \frac{1}{2} \phi \partial_{bc} \phi^i + \frac{3}{2} \phi \partial_{bc} \phi^j + \frac{3}{2} \phi \partial_{bc} \phi^j \right)^b_a \]

\[-\pi \eta^c_j \left(\frac{1}{4} \phi \partial_{ab} \phi^j + \frac{1}{4} \phi \partial_{ab} \phi^j + \frac{3}{4} \phi \partial_{ab} \phi^i + \frac{3}{4} \phi \partial_{ab} \phi^i \right)^b_c \]

\[\delta_1 B_a^b = -\frac{i \pi}{2} \eta_i^c \left(\psi_c \phi^i + \overline{\psi_c \phi}^i \right)^b_a + i \pi \eta_i^c \left(\psi_b \phi^i + \overline{\psi_b \phi}^i \right)^b_c \]

\[+ i \pi \eta_i^a \left(\psi_c \phi^i + \overline{\psi_c \phi}^i \right)^d_c \]

\[- \frac{i \pi}{2} \delta_b^a \eta_i^c \left(\psi_d \phi^i + \overline{\psi_d \phi}^i \right)^a_c \]
Origin of Balanced Curvepole condition

We want \((\delta_0 + \delta_1 + \delta_2 + \cdots) \int (L_2 + L_3 + L_4 + \cdots) = 0\).

Look at the \(\phi \bar{\psi} \psi \psi\) terms in \(\delta_1L_3\)

\[
\begin{align*}
+ \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e b & - \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e a \\
+ \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e b & - \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e a \\
+ \frac{1}{2} \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e b & - \frac{1}{2} \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e a \\
+ \frac{1}{2} \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e b & - \frac{1}{2} \eta_i^e \partial^{ab} & \phi^a_i \bar{\psi}_c \psi_d \psi_e a \\
\end{align*}
\]

 Doesn’t seem to be possible to cancel with \(\delta_0L_4 + \delta_2L_2\) unless

\[
\int \[X \ b \ Y \ d \]_e = \int \[X \ e \ Y \ b \]
\]
Summary (repeat)

Constructed a SUSY action of interacting curvepoles (up to quartic terms)
Summary (repeat)

- Constructed a SUSY action of interacting curvepoles (up to quartic terms)
- There is a geometric constraint on curvepole shape
Summary (repeat)

- Constructed a SUSY action of interacting curvepoles (up to quartic terms)

- There is a geometric constraint on curvepole shape

- Explicit formulas for the quartic interactions
Summary (repeat)

- Constructed a SUSY action of interacting curvepoles (up to quartic terms)
- There is a geometric constraint on curvepole shape
- Explicit formulas for the quartic interactions
The bigger picture?

This is another example of new nonlocal theories that appear when probing regions of strong flux with branes. Other examples include:
The bigger picture?

This is another example of new nonlocal theories that appear when probing regions of strong flux with branes. Other examples include:

Noncommutative spacetime

[Connes & Douglas & Schwarz, Douglas & Hull, Seiberg & Witten, 1998]
The bigger picture?

This is another example of new nonlocal theories that appear when probing regions of strong flux with branes. Other examples include:

Noncommutative spacetime
[Connes & Douglas & Schwarz, Douglas & Hull, Seiberg & Witten, 1998]

Dipole theories

Puff Field Theory
[Hashimoto & Jue & Kim & Ndirango & OG, 2007]
Thanks!