Higher Gauge Theories and Superconformal Field Theories in 6d

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Workshop “String and M-Theory ...,” Singapore, 10.12.2018

Credits for collaborations and discussions/explanations:
- A Deser, B Jurco, S Palmer, P Ritter, L Schmidt, M Wolf ...
- J Baez, U Schreiber
What are higher structures?

Why should You care?

Examples: L_∞-algebras and L_∞-algebroids

Higher Gauge Theory

Higher Gauge Theory and M5-branes

Our attempt so far...

Reality check
What are higher structures?

“We will need to use some very simple notions of category theory, an esoteric subject noted for its difficulty and irrelevance.”

G. Moore and N. Seiberg, 1989

“We’ll only use as much category theory as is necessary. Famous last words…”

Roman Abramovich
Mathematical objects come with corresponding maps. Combine them into one entity: Category

Examples:
- Vector spaces and linear maps → Vect
- Groups and group homomorphisms → Grp
- Topological spaces and homeomorphisms → Top
- Smooth manifolds and smooth maps between them → Mfd

Category:
\[\mathcal{C} = \mathcal{C}_1 \Rightarrow \mathcal{C}_0 \]

\[\mathcal{C}_0 : \text{objects} \quad \mathcal{C}_1 : \text{maps/morphisms} \]

\[a \xleftarrow{f} b \]
\[a \xleftarrow{f} b \xleftarrow{g} c \]
\[h = f \circ g \]
\[\text{id}_a \]
Categories: meta-language, “essence” of mathematical structures

But also: Categories give us more freedom than sets:
 - Set theory: objects a, b. Either $a = b$ or $a \neq b$.
 - Categories: objects a, b. Relating morphism $f: a \xrightarrow{f} b$

However: What about the morphisms? Relations between them?

Yes, with 2-categories: $a \xrightarrow{f_1} \Downarrow{\alpha} b$, morphisms: set \rightarrow category

This can be iterated to ∞-categories with general n-morphisms.
Examples

Homotopies:

Relations between proofs:

Assumptions

Proof 1 $\overset{\text{Rel}}{\rightarrow}$ Proof 2

Theorem

Parallel Transport of Strings

“Indeed, the subject might better have been called ... archery.”

Steve Awodey
A mathematical structure ("Bourbaki-style") consists of

- **Sets**
- **Structure Functions**
- **Structure Equations**

"Categorification":

- **Sets** → **Categories**
- **Structure Functions** → **Structure Functors**
- **Structure Equations** → **Structure Isomorphisms**

Example: **Group** → **2-Group**

- **Set** \mathbb{G} → **Category** \mathcal{G}
- Product, identity ($\mathbb{1} : \ast \to \mathbb{G}$), inverse → **Functors**
- $a(bc) = (ab)c$ → **Associator** $a : a \otimes (b \otimes c) \Rightarrow (a \otimes b) \otimes c$
- $\mathbb{1}a = a\mathbb{1} = a$ → **Unitors** $l_a : a \otimes \mathbb{1} \Rightarrow a$, $r_a : \mathbb{1} \otimes a \Rightarrow a$
- $aa^{-1} = a^{-1}a = \mathbb{1}$ → **weak inv.** $\text{inv}(x) \otimes x \Rightarrow \mathbb{1} \Leftarrow x \otimes \text{inv}(x)$

Note: Process not unique, variants: weak/strict/...
Why should You care?

“Before functoriality, people lived in caves.”

Brian Conrad

“It’s like déjà vu all over again.”

Yogi Berra
In **String Theory**:

- Point particles \rightarrow **Strings** : Manifold $M \rightarrow$ Loop Space \mathcal{LM}
- Bundles over \mathcal{LM} correspond to **higher bundles** over M
- Higher form fields: Connections on **higher bundles**
 - Kalb–Ramond B-field: connective structure on gerbe
 - Higher forms coupling to D_p-branes: higher gerbes

- **T-duality/Generalized Geometry**:
 - Courant algebroid = **symplectic higher Lie algebroid**
 - Double/Exceptional Field Theory: gnrlzd Courant algebroids
 - generalized manifolds, e.g. orbifolds = stacks \in bicategory

- **String Field Theory**:
 - Closed SFT based on **higher Lie algebras**
 - Open (s)SFT based on **higher associative algebras**

- $(2,0)$-theory, $(1,0)$-theories in F-theory: Higher gauge theories
In Supergravity:
- Higher form fields (as above) belong to higher bundles
- Tensor hierarchies in gauged SUGRA are higher gauge theories

In Field Theory:
- Abstract Definition of TQFTs: higher categories of cobordisms
- AKSZ construction: based on symplectic higher Lie algebroids
- BRST/BV formalism:
 - Any Classical Field Theory \Rightarrow Higher Lie Algebra/L_∞-algebra
 - Any QFT yields loop or quantum L_∞-algebra
- Moduli spaces to gauge field equations: stacks
In **Quantum Gravity**:

- **Quantum spacetimes:**
 - Noncommutative geometry only first approximation.
 - **Nonassociative spaces** from higher geometric quantisation
 - Ultimately: $\mathcal{C}^\infty(\text{some manifold}) \rightarrow \text{some } A_\infty$-algebra

- **Visible in string theory:**
 - D1-branes ending on D3-branes: Fuzzy funnel with fuzzy S^2
 - M2-branes ending on M5-branes: Fuzzy funnel with fuzzy S^3
In **Generalizing/Deforming** mathematical objects:
- Category theory extracts **essence** of mathematical notions.
- **Mathematically consistent** generalizations become obvious.

Example: **Principal Fiber Bundles** (as transition functions)
- **Group** G as category $G \Rightarrow \ast$, composition: group product
- Cover $\mathcal{U} = \bigsqcup a U_a$ of a manifold M yields category $\check{C}(\mathcal{U})$:

\[
\begin{align*}
(x, U_a) & \leftrightarrow (x, U_{ab}) \leftrightarrow (x, U_b) \\
(x, U_a) & \leftrightarrow (x, U_{bc}) \leftrightarrow (x, U_c)
\end{align*}
\]

\[
\begin{align*}
\bigsqcup a, b U_{ab} & \xrightarrow{g_{ab}} G \\
\bigsqcup a U_a & \xrightarrow{\ast} \ast
\end{align*}
\]

Transition functions g_{ab}, cocycle cond. $g_{ab}g_{bc} = g_{ac}$

cobndries.: $g_{ab}\gamma_b = \gamma_a\check{g}_{ab}$

- **Generalizations:** replace both sides e.g. with higher categories

... or should be using them.
If we can’t escape higher structures, we might as well learn the mathematics behind them.

It’s beautiful stuff!
Examples: L_∞-algebras and L_∞-algebroids
N-manifolds, \(NQ \)-manifold

- \(\mathbb{N}_0 \)-graded manifold with coordinates of degree 0, 1, 2, \ldots

\[
M^\circ \leftarrow E_1 \oplus E_2 \oplus \ldots
\]

- \(NQ \)-manifold: vector field \(Q \) of degree 1, \(Q^2 = 0 \)
- Physicists: think ghost numbers, BRST charge, SFT
- Functions on \((M, Q)\) form differential graded algebra
 "Chevalley–Eilenberg algebra"

First Example:

- Tangent algebroid \(T[1]M \), local coordinate functions \(x^\mu, \xi^\mu \)
- \(f(x^\mu, \xi^\mu) \leftrightarrow f(x^\mu, dx^\mu) \) and \(Q = \xi^\mu \frac{\partial}{\partial x^\mu} \leftrightarrow dx^\mu \frac{\partial}{\partial x^\mu} \)
- \(\Rightarrow \) Recover de Rham complex: \(C^\infty(T[1]M) \cong \Omega^\bullet(M) \).
More Examples:

- Lie algebra $\mathfrak{g}[1]$, coordinate functions ξ^α of degree 1:
 \[Q = -\frac{1}{2} f^\alpha_{\beta\gamma} \xi^\beta \xi^\gamma \frac{\partial}{\partial \xi^\alpha}, \quad Q^2 = 0 \Leftrightarrow \text{Jacobi identity} \]

- $* \leftarrow E_1 \oplus E_2 \oplus \ldots \oplus E_n$: Lie n-algebra
 (indeed equivalent, at least for $n = 2$)

- $M^\circ \leftarrow E_1 \oplus E_2 \oplus \ldots \oplus E_n$: Lie n-algebroid:

- Symplectic Lie n-algebroids: add ω, $\mathcal{L}_Q \omega = 0$:
 - $|\omega|_N = 0$: Symplectic manifold
 - $|\omega|_N = 1$: $M \cong T^*[1]M^\circ$, Poisson manifold
 - $|\omega|_N = 2$: $M \cong T^*[2]E$, $E \to M$ vec bndl: Courant algebroid

Skipped: Relation higher categories \Leftrightarrow differential graded structs.
Graded vector space: $* \leftarrow W[1] \leftarrow V[2] \leftarrow * \leftarrow \ldots$

Coords: w^a of degree 1 on $W[1]$, v^i of degree 2 on $V[2]$

Most general vector field Q of degree 1:

$$Q = -m^a_i v^i \frac{\partial}{\partial w^a} - \frac{1}{2} m^c_{ab} w^a w^b \frac{\partial}{\partial w^c} - m^j_{ai} w^a v^i \frac{\partial}{\partial v^j} - \frac{1}{3!} m^i_{abc} w^a w^b w^c \frac{\partial}{\partial v^i}$$

Induces “brackets”/“higher products”:

- $\mu_1(\tau_i) = m^a_i \tau_a$
- $\mu_2(\tau_a, \tau_b) = m^c_{ab} \tau_c$, $\mu_2(\tau_a, \tau_i) = m^j_{ai} \tau_j$
- $\mu_3(\tau_a, \tau_b, \tau_c) = m^i_{abc} \tau_i$

$Q^2 = 0 \iff$ Homotopy Jacobi identities, e.g.

- $\mu_1(\mu_1(\cdot)) = 0$: μ_1 is a differential
- $\mu_1(\mu_2(x, y)) = \mu_2(\mu_1(x), y) \pm \mu_2(x, \mu_1(y))$: compatible w. μ_2
- $\mu_2(x, \mu_2(y, z)) + \text{cycl.} = \mu_1(\mu_3(x, y, z))$: Jacobiator

Analogously: Lie 3-, 4-, ...-algebras
L_∞-algebras

Lie algebra in bracket picture:
- **Vector space** \mathfrak{g}
- **Antisymmetric bilinear product** $[-,-]: \wedge^2 \mathfrak{g} \to \mathfrak{g}$
- Satisfying **Jacobi identity**: $\sum_\sigma [x_{\sigma(i)}, [x_{\sigma(j)}, x_{\sigma(k)}]] = 0$

L_∞-algebra in bracket picture:
- **Graded vector space** $L = L_0 \oplus L_{-1} \oplus L_{-2} \oplus \ldots$
- **Graded antisymmetric multilin. products** $\mu_i : \wedge^i L \to L$, $|\mu_i| = 2 - i$
- Satisfying **higher/homotopy Jacobi identity**:
 $$\sum_{i+j=n} \sum_{\sigma \in \text{Sh}(i,n-i)} \pm \mu_{i+1}(\mu_j(x_{\sigma(1)}, \ldots, x_{\sigma(j)}), x_{\sigma(j+1)}, \ldots, x_{\sigma(n)}) = 0$$
- Recall: roughly $Q^* = \mu_1 + \mu_2 + \mu_3 + \ldots$
- **Categorification**: e.g. $L = L_0 \oplus L_{-1} \leftrightarrow \mathcal{L} = (L_{-1} \ltimes L_0 \Rightarrow L_0)$
Morphisms and Quasi-Isomorphisms

- **Morphisms of NQ-manifolds** are clear:
 \[M \xrightarrow{\Phi} M', \quad Q \circ \Phi^* = \Phi^* \circ Q \]

- **Morphisms of L_∞-algebras** $\phi : L \to L'$ derived from this:
 - ϕ consists of maps $\phi_i : \wedge^i L \to L'$, $|\phi_i| = 1 - i$.
 - ϕ_1: chain map from complex (L, μ_1) to (L', μ'_1)
 - $\phi_i, i > 1$, link higher products between L and L'

New here: **Categorical equivalence/quasi-isomorphisms**:

\[M \xrightarrow{\Phi} M', \quad \Psi \circ \Phi \cong id_M, \quad \Phi \circ \Psi \cong id_{M'} \iff \phi \text{ is morphisms induces } H^\bullet_{\mu_1}(L) \cong H^\bullet_{\mu'_1}(L') \]

Lie 2-algebra examples:

\[g \xrightarrow{id} g \cong \ast \to \ast \quad \text{and} \quad \ast \to g \cong \Omega g \xrightarrow{e} P_0 g \]

Consistency: Constructions mostly agnostic to quasi-isomorphisms!
Higher Gauge Theory

“Category theory is the subject where you can leave the definitions as exercises.”

John Baez
1st step: Construct Kinematical Data:

- Gauge group \rightarrow Higher gauge group
- Principal Bundle \rightarrow Higher Principal Bundle
- Connection \rightarrow ?

Local Connections: Lie algebra-valued differential forms.

⇒ Work in unifying category: (functions on) NQ-manifolds:

$$(\Omega^\bullet(M), d) \rightarrow (T[1]M, Q), \quad (\mathfrak{g}, [\cdot, \cdot]) \rightarrow (\mathfrak{g}, Q)$$

“Mathematics is the art of giving the same name to different things.”

Henri Poincaré (1908)
First Attempt

Inspiration from Category Theory: Everything is a morphism.

1st attempt: Consider morphism of dgas: $\mathcal{C}^\infty(g[1]) \to \Omega^\bullet(\mathbb{R}^d)$:

- $a : \xi^\alpha \mapsto A^\alpha \in \Omega^1(\mathbb{R}^d)$, gauge potential $A^\alpha \tau_\alpha \in \Omega^1(\mathbb{R}^d) \otimes g$
- $Q\xi^\alpha = -\frac{1}{2} f^\alpha_{\beta\gamma} \xi^\beta \xi^\gamma \mapsto dA^\alpha = -\frac{1}{2} f^\alpha_{\beta\gamma} A^\beta \wedge A^\gamma$
 equivalently: $dA + \frac{1}{2} [A, A] = 0$: gauge potential is flat
Extend Chevalley–Eilenberg $C^\infty(g[1])$ algebra of g to Weil algebra:

$$W(g) := C^\infty(T[1]g[1]) = C^\infty(g[1] \oplus g[2]), \quad \sigma : g^*[1] \xrightarrow{\cong} g^*[2]$$

$$Q|_{C^\infty(g[1])} = Q_{CE} + \sigma, \quad Q_{CE}\sigma = -\sigma Q_{CE}$$

Natural morphism of differential graded algebras:

$$(A, F) : W(g) \rightarrow W(\mathbb{R}^d) = \Omega^\bullet(\mathbb{R}^d)$$

$$\xi^\alpha \mapsto A^\alpha$$

$$(\sigma \xi^\alpha) = Q\xi^\alpha + \frac{1}{2} f^\alpha_{\beta\gamma} \xi^\beta \xi^\gamma \mapsto F^\alpha = (dA + \frac{1}{2}[A, A])^\alpha$$

$$Q(\sigma \xi^\alpha) = -f^\alpha_{\beta\gamma} (\sigma \xi^\alpha) \xi^\beta \mapsto (\nabla F)^\alpha = 0$$

We obtain gauge potential, curvature and Bianchi identity. Gauge transformations follow straightforwardly from homotopies

$$(A_t, F_t) : W(g) \rightarrow W(\mathbb{R}^d) = \Omega^\bullet(\mathbb{R}^d \times I)$$
Let M manifold and $Y \to M$ be a cover.

Cartan–Ehresmann 1

- $\Omega_{\text{vert}}^\bullet(Y) \leftarrow A_{\text{vert}} \to \text{CE}(g)$
- Flat connections
- Connection form is flat canonical form on fibres

Cartan–Ehresmann 2

- $\Omega^\bullet(Y) \leftarrow (A,F_A) \to W(g)$
- Connection and curvature
- The characteristic form descends to base space
- Topological invariants

Cartan 1949/1950 Sati, Schreiber, Stasheff 2008
Other, equivalent ways to get essentially same formulas:

- L_∞-algebras and Homotopy Maurer–Cartan equations
- Differentiating Maurer–Cartan forms on L_∞-algebras
- Penrose–Ward transforms

Attention!

$\text{inv}(g)$ does not respect quasi-isomorphisms!

- Fine for (higher) Chern–Simons theories: $\text{inv}(g) = 0$
- Problematic for $(1,0)/(2,0)$-theories with curvatures $\neq 0$.
- Alternative: simple modification of $W(g) \rightarrow$ String structures

(My) Conclusion:

- Chern–Simons and Yang–Mills theories: same kinematical data
- Higher analogues, however, require different kinematical data
- Source of dismissal of higher non-abelian bundles.
Higher Gauge Theory and M5-branes

“... it can often be profitable to try a technique on a problem even if you know in advance that it cannot possibly solve the problem completely.”

Terence Tao

“Take it with a grin of salt.”

Yogi Berra
Motivation: Dynamics of multiple M5-branes

To understand M-theory, an effective description of M5-branes would be very useful.

D-branes
- D-branes interact via strings.
- Effective description: theory of endpoints
- Parallel transport of these: Gauge theory
- Study string theory via gauge theory

M5-branes
- M5-branes interact via M2-branes.
- Eff. description: theory of self-dual strings
- Parallel transport: Higher gauge theory
- Long sought $(2, 0)$-theory a HGT?
What we know about the (2,0)-theory

Pre-history:

- **Conformal QFTs**: particularly interesting and important
- Conformal algebra on $\mathbb{R}^{p,q}$: $\mathfrak{so}(p + 1, q + 1)$
- Supersymmetric extensions only for $p + q \leq 6$
 Nahm, 1978
- Examples for $p + q \leq 4$ known for long time
- Belief: $p + q = 4$ **maximum** for interacting QFTs

String theory:

Witten, 1995

- **Type IIB** superstring theory on $\mathbb{R}^{1,5} \times K_3$
- Moduli space has orbifold singularities of ADE-type
- At singularities: volume of $S^2 \hookrightarrow K_3$ vanishes
- D3-branes wrapping $S^2 \hookrightarrow K_3$ become massless strings
- B-field self-dual: self-dual strings, SUGRA decouples
- \Rightarrow (2,0)-theory, a six-dimensional $\mathcal{N} = (2,0)$ SCFT
More on the (2,0)-theory

- Also appears in M-theory
 Witten, Strominger 1995/1996
 - self-dual strings: boundaries of M2- between M5-branes
 - become massless, if M5-branes approach each other
 - description of stacks of parallel M5-branes

- Field content: $\mathcal{N} = (2,0)$ tensor multiplet
 Nahm 1978
 - a self-dual 3-form field strength
 - five (Goldstone) scalars
 - fermionic partners

- Observables: Wilson surfaces, i.e. parallel transport of strings

- Belief: No Lagrangian description

- As important as $\mathcal{N} = 4$ super Yang-Mills for string theory

- Huge interest in string theory: AGT, AdS$_7$-CFT$_6$, S-duality, ...

- Mathematics: Geom. Langlands, Khovanov Homology, ...
A successful M5-brane model should have the following properties:

- Contain an interacting, self-dual 2-form gauge potential
- Based on a sound mathematical foundation: higher bundles
- Field content of the $(2, 0)$-theory, $\mathcal{N} = (1, 0)$ supersymmetric
- Gauge structure natural, match some expectations (ADE, ...)
- Non-trivial coupling, interacting field theory
- Possible restriction to free $\mathcal{N} = (2, 0)$ tensor multiplet
- Contains the non-abelian self-dual string soliton as BPS state
- Reduction to 4d SYM theory with ADE gauge algebras
- And to 3d Chern–Simons-matter models with discrete coupling
- Explain S-duality after reduction to 4d
- Match expected moduli space of $(2, 0)$-theory
- ...

BTW: help expanding this list appreciated!
Arguments against existence of classical M5-brane model
Non-abelian parallel transport of strings problematic:

\[
\begin{array}{cccc}
& \downarrow g_1 & \downarrow g_2 \\
\leftarrow & \downarrow g'_1 & \downarrow g'_2 \\
\rightarrow
\end{array}
\]

Consistency of parallel transport requires:

\[
(g'_1 g'_2)(g_1 g_2) = (g'_1 g_1)(g'_2 g_2)
\]

This renders group G abelian. Eckmann and Hilton, 1962

Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations \circ and \otimes satisfying Interchange Law:

\[
(g'_1 \otimes g'_2) \circ (g_1 \otimes g_2) = (g'_1 \circ g_1) \otimes (g'_2 \circ g_2)
\]
Objection 2: No Coupling Constant

Standard objection beyond the previous no-go theorem:

- theory at conformal fixed points \Rightarrow no dimensionful parameter
- fixed points are isolated \Rightarrow no dimensionless parameter
- “No parameters \Rightarrow no classical limit \Rightarrow no Lagrangian.”

string theory folklore

Furthermore: no continuous deformations of free theory

Bekaert, Henneaux, Sevrin (1999)

Answers:

- Same arguments for M2-brane
- There, integer parameters arose from orbifold $\mathbb{R}^8/\mathbb{Z}_k$
- Same should happen for M5-branes
Final common objection: *Dimensional reduction is unclear.*

- (2,0)-theory should reduce to $\mathcal{N} = 2$ SYM theory in 5d
- Reduction on $\mathbb{R}^{1,4} \times S^1$, radius R yields volume form $2\pi R \, d^5x$
- Conformal invariance of $F \wedge *F$ requires volume form $\frac{1}{R} \, d^5x$

Our solution:

- Reduction to $\mathcal{N} = 2$ SYM in 4d works fine
- Can dimensionally oxidize to 5d SYM afterwards (?)
Our attempt so far...

“Problems worthy of attack prove their worth by hitting back.”

Piet Hein

“If you ask me anything I don’t know, I’m not going to answer.”

Yogi Berra
First Questions: Which higher Lie algebra to take?

Guidance from BPS self-dual strings
The non-abelian self-dual string

BPS configuration

Perspective of D3:

Bogomolny monopole eqn.

\[F = \nabla^2 = \ast \nabla \Phi \text{ on } \mathbb{R}^3 \]

Perspective of M5:

Abelian Self-dual string eqn.

\[H := dB = \ast d\Phi \text{ on } \mathbb{R}^4 \]
Monopoles

- Solution to Bogomolny equation: $F = * \nabla \phi$
- Abelian: singular on \mathbb{R}^3, Dirac strings
- Principal bundle over S^2
- Non-Abelian: non-singular on \mathbb{R}^3

$U(1) \xrightarrow{\rho} SU(2) \cong S^3$

$\pi \downarrow$

S^2

$\pi \times \text{id}$

$SU(2) \xrightarrow{\text{id}} S^2 \times SU(2)$

$\text{id} \downarrow$

S^2

$\text{pr} \downarrow$

abelian, Dirac

non-Abelian, 't Hooft-Polyakov

\Rightarrow Choose $SU(2)$, as trivialization possible.
Identifying gauge structure: Self-Dual Strings

Self-Dual Strings
- Abelian: singular on \mathbb{R}^4, Dirac strings
- Solution to $H = \ast \nabla \phi$
- Gerbe over S^3
- Non-Abelian: ?

Choose \mathcal{G}_F, with 2-group structure: String 2-group
(many other reasons for this)
String Lie 2-algebra

- String 2-group G_F and M-theory: many reasons long story...
- G_F is analogue of $\text{Spin}(3) \cong \text{SU}(2)$ from many perspectives
- Lie differentiate (e.g. Demessie, CS (2016))
- Result:
 String Lie 2-algebra $\text{string}(3) = (\text{su}(2) \overset{\mu_1=0}{\leftarrow} \mathbb{R}[1])$ with
 \begin{align*}
 Q_\xi^\alpha &= -\frac{1}{2} f_{\beta\gamma}^\alpha \xi^\beta \xi^\gamma, \quad Q_b = -\frac{1}{3!} f_{\alpha\beta\gamma}^{} \xi^\alpha \xi^\beta \xi^\gamma \\
 \text{or} \quad \mu_2(x_1, x_2) &= [x_1, x_2], \quad \mu_3(x_1, x_2, x_3) = (x_1, [x_2, x_3])
 \end{align*}
- Equivalently: (quasi-isomorphic):
 \[P_0\text{su}(2) \leftarrow \hat{\Omega}\text{su}(2) \]

Remarks:
- Can be defined for any ADE Lie algebra $g \rightarrow \text{string}(g)$
- Can twist the Weil algebra to $\tilde{W}(\text{string}(g))$ by inv. polynomial
Recall: Chevalley-Eilenberg algebra of String Lie 2-algebra \(g \):

\[
\text{CE}(g) = \mathcal{C}^{\infty}(\mathbb{R}[2] \to \mathfrak{su}(2)[1]),
\]

\[
Q\xi^\alpha = -\frac{1}{2}f_{\beta\gamma}^\alpha \xi^\beta \xi^\gamma \quad \text{and} \quad Qb = \frac{1}{3!}f_{\alpha\beta\gamma}^\alpha \xi^\beta \xi^\gamma.
\]

Double to Weil algebra:

\[
W(g) := \mathcal{C}^{\infty}(T[1]g[1]) = \mathcal{C}^{\infty}(g[1] \oplus g[2]), \quad \sigma : g^*[1] \xrightarrow{\cong} g^*[2]
\]

\[
Q|_{\mathcal{C}^{\infty}(g[1])} = Q_{\text{CE}} + \sigma, \quad Q_{\text{CE}} \sigma = -\sigma Q_{\text{CE}}
\]

Potentials/curvatures/Bianchi identities from dga-morphisms

\[
(A, B, F, H) : W(g) \to \Omega^\bullet(M) = W(M)
\]

\[
\xi^\alpha \mapsto A^\alpha \in \Omega^1(M) \quad \text{and} \quad b \mapsto B \in \Omega^2(M)
\]

\[
(\sigma \xi^\alpha) = Q\xi^\alpha + \frac{1}{2}f_{\beta\gamma}^\alpha \xi^\beta \xi^\gamma \mapsto F^\alpha = (dA + \frac{1}{2}[A, A])^\alpha
\]

\[
(\sigma b) = Qb - \frac{1}{3!}f_{\alpha\beta\gamma}^\alpha \xi^\beta \xi^\gamma \mapsto H = dB - \frac{1}{3!}(A, [A, A])
\]

Bianchi identities: \(\nabla F = 0 \) and \(dH = -\frac{1}{2}(dA, [A, A]) \)

Gauge transformations and Top. invariants derived as above
1. Kinematical data

- Readily from dga-morphisms $W(\text{string}(3)) \rightarrow \Omega^\bullet(\mathbb{R}^4)$
- twist Weil algebra

Sati, Schreiber, Stasheff (2009)

- Get: string structures

\[A \in \Omega^1(\mathbb{R}^4) \otimes \mathfrak{g} , \quad B \in \Omega^2(\mathbb{R}^4) \otimes \mathfrak{u}(1) , \]
\[F = dA + \frac{1}{2}[A, A] , \quad H = dB + \frac{1}{2}(A, dA) + \frac{1}{3!}(A, [A, A]) , \]
\[\nabla F = 0 , \quad dH = -(F, F) \]

- Add by hand: Higgs field $\phi \in \Omega^0(\mathbb{R}^4) \otimes \mathfrak{u}(1)$

2. Dynamical principle

Schmidt, CS (2017)

- Obvious: $H = *d\phi$, implying $dH = (F, F') = *\Box \phi$
- Motivates: $F = \pm *F$
- Full picture:

$\mathfrak{g} = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$, instanton + anti-instanton $c_2(F') = 0$
EOM matches story known from (1,0)-theories, so what?

- Higher analogue of $\text{SU}(2) \cong \text{Spin}(3)$ is $\text{String}(3)$
- String structures allow for gauge invariant field equations
- Examples of truly non-abelian and non-trivial higher bundles
- Agnostic about quasi-isomorphs.: also for $P_0\mathfrak{su}(2) \leftrightarrow \hat{\Omega}\mathfrak{su}(2)$
The 6d superconformal field theory
Look for candidate theory in the literature and find:

6d (1,0)-model derived from tensor hierarchies

Samtleben, Sezgin, Wimmer (2011)

Open problems with this model:

- Issue 1: Choice of gauge structure **unclear**
- Issue 2: **cubic interactions**
- Issue 3: scalar fields with **wrong sign kinetic term**
- Issue 4: Self-duality of 3-form **imposed by hand**
- Issue 5: Unclear, how to fulfill “**wishlist**”

Previous observation:

- Gauge structure is **Lie 3-algebra** with “**extra structure.**”

Palmer, CS (2013), Samtleben et al. (2014)
New:

- **Idea**: use $\text{string}(g)$ as gauge structure in this model
- **Issue**: need suitable notion of inner product for action
- **Inner product/cyclic L_∞-algebras \Leftrightarrow symplectic NQ-manifold**
- **Consequence**: Extend $\text{string}(g)$ from

$$ (g \leftarrow \mathbb{R} \xrightarrow{\text{id}} \mathbb{R}) \cong g $$

to symplectic graded vector space $T^*[2]\text{string}(g)$:

$$ \mathbb{R}^* \xleftarrow{\mu_1=\text{id}} \mathbb{R}^*[1] \oplus \mathfrak{g} \quad \mathfrak{g}^*[2] \xleftarrow{\mu_1=\text{id}} \mathfrak{g}^*[3] $$

- This carries **natural inner product**
- Has necessary **extra structure** for $(1,0)$-model
Properties of resulting (1,0)-theory

Field content:

- **(1,0) tensor multiplet** \((\phi, \chi^i, B)\), values in \(\mathbb{R}^2\), \(\phi = \phi_s + \phi_r\), ...
- **(1,0) vector multiplet** \((A, \lambda^i, Y^{ij})\), values in \(g \oplus \mathbb{R}\)
- **C-field**, values in \(\mathbb{R} \oplus g^*\)

Action (schematically):

\[
S = \int_{\mathbb{R}^{1,5}} \left(\mathcal{H}_r \wedge * \mathcal{H}_s + d\phi_r \wedge * d\phi_s - * \bar{\chi}_r \partial \chi_s + \mathcal{H}_s \wedge * (\bar{\lambda}, \gamma(3) \lambda) + *(Y, \bar{\lambda}) \chi_s \\
+ \phi_s \left((\mathcal{F}, * \mathcal{F}) - *(Y, Y) + *(\bar{\lambda}, \nabla \lambda) \right) + (\bar{\lambda}, \mathcal{F}) \wedge * \gamma(2) \chi_s \\
+ \mu_1(C) \wedge \mathcal{H}_s + B_s \wedge (\mathcal{F}, \mathcal{F}) + B_s \wedge ([A, A], [A, A]) \right)
\]

This solves problems 1 and 2:

- **Choice of gauge structure** for ADE-(2,0)-theories **clear**.
- **No cubic interaction term** for scalar fields
Completing the theory

Adding **Pasti-Sorokin-Tonin-type action**:
- Recall: **PST action** has self-duality of H as equation of motion
- Bosonic part of (1,0)-theory was PST completed
 - Bandos, Sorokin, Samtleben (2013)
- Full PST action announced, **never appeared** (not possible?)
- With string structure, **construction possible and simplifies**

Adding **matter fields**:
- Add **hypermultiplet** to get fields of (2,0)-tensor multiplet
- General construction and couplings discussed
 - Samtleben, Sezgin, Wimmer (2012)
- Can make **concrete choices** with twisted string structures

\Rightarrow **A (1,0)-theory in 6d** satisfying many of the “wishlist” items.
Dimensional reductions

Recall from wishlist:

- ...
- → Reduction to 4d SYM theory with ADE gauge algebras
- → and to 3d Chern–Simons-matter models with discrete coupling
- ...
Crucial consistency check: Reduction to D-branes/SYM theory

\[S = \int_{\mathbb{R}^{1,5}} \left(\langle \mathcal{H}, \star \mathcal{H} \rangle + \langle d\phi, \star d\phi \rangle - \star \langle \bar{\chi}, \phi \chi \rangle + \mathcal{H}_s \wedge \star (\bar{\lambda}, \gamma(3) \lambda) + \star (Y, \bar{\lambda}) \chi_s \\
+ \phi_s \left((\mathcal{F}, \star \mathcal{F}) - \star (Y, Y) + \star (\bar{\lambda}, \nabla \lambda) \right) + (\bar{\lambda}, \mathcal{F}) \wedge \star \gamma(2) \chi_s \\
+ \mu_1 (C) \wedge \mathcal{H}_s + B_s \wedge (\mathcal{F}, \mathcal{F}) + B_s \wedge ([A, A], [A, A]) \right) \]

- Start from ADE-String Lie 3-algebra
- Anticipate 4d gauge couplings:
 \[\tau = \tau_1 + i \tau_2 = \frac{\theta}{2\pi} + \frac{i}{g_{\text{YM}}^2} \]

- VEVs from compactification on \(T^2 \) along \(x^9 \) and \(x^{10} \)
 \[\langle \phi_s \rangle = -\frac{1}{32\pi^2} \frac{\tau_2}{R_9 R_{10}} \]
 \[\langle B_s \rangle = \frac{1}{16\pi^2} \frac{\tau_1}{R_9 R_{10}} \]

- Strong coupling expansion around VEVs (cf. M2 \(\rightarrow \) D2)
 \(\Rightarrow 4d \mathcal{N} = 4 \text{ SYM} \) with ADE-gauge group and \(\theta \)-term
Additional consistency check: Reduction to M2-brane models

- Replace $\mathbb{R}^{1,5}$ by $\mathbb{R}^{1,2} \times S^3$.

- Assumptions:
 - String Lie 3-algebra of $\mathfrak{su}(n) \times \mathfrak{su}(n)$
 - A trivial on S^3, non-trivial on $\mathbb{R}^{1,2}$
 - B trivial on $\mathbb{R}^{1,2}$
 - B encodes abelian gerbe with DD class k on S^3.

- Recall: $\mathcal{H} = dB + \text{cs}(A)$

- Then we get the integer Chern–Simons coupling:

$$\mathcal{H} \wedge *\mathcal{H} \to k \text{vol}_{S^3} \text{cs}(A)$$

$$\int_{\mathbb{R}^{1,5}} \mathcal{H} \wedge *\mathcal{H} \to k \int_{\mathbb{R}^{1,2}} \text{cs}(A)$$

- Altogether: Chern–Simons matter theory of ABJM type.
- Note: This theory has $\mathcal{N} = 4$, different potential from ABJM.
Reality check

“The first law of physical mathematics: Every cloud has a silver lining.”

Yuri Manin

“It ain’t over till it’s over.”

Yogi Berra
Our model is not the desired (2,0)-theory!

Problems:

- Free Yang–Mills multiplet contradicts $\mathcal{N} = (2,0)$ SUSY
- Moduli space of vacua is not that of multiple M5-branes
- S-duality unclear
- PST mechanism relies on $\phi_S > 0$
- Scalar field with wrong sign kinetic term
- Model not compatible with categorical equivalence
Turn problems into hints of solution:

- Scalar field with wrong sign kinetic term
 (rigid feature of Samtleben et al. model)
- Model not compatible with categorical equivalence
 (rigid feature of Samtleben et al. model)

Last point: the model of Samtleben et al. is too rigid:

\[(X_r)^t_s = f^t_{rs} + d^t_{rs} = f^t_{[rs]} + d^t_{(rs)}\]

Next steps/work in progress:

- String 2-algebra → Lie 2-algebras with right branching
- Metric twisted Weil algebras and categorical equivalence
 L Schmidt & CS, arXiv 1901.?????
- Rederive SUSY action in bigger picture
Summary:

- **Higher gauge theory** classically underlies M-theory
- Higher analogue of SU(2) is String(3)
- There is non-abelian self-dual string
- There is classical action with many of desired features
- However: Clear differences to (2,0)-theory

Soon to come:

- Understand generalization of String Structure (WIP)
- Understand Categorical Equivalence, Higher Twists (WIP)
- Study $\mathcal{N}=(1,0)$-models (next on our list)
- Link to categorified integrability, fuzzy S^3, etc. (future)
- Better understanding of M-theory (far future)
Announcement

1 Postdoc (3 years) + 1 PhD position (3.5 years)

Mathematics of M5-branes

starting Sep/Oct 2019

More: Contact me if interested.
Higher Gauge Theories and Superconformal Field Theories in 6d

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Workshop “String and M-Theory ...,” Singapore, 10.12.2018