Mixed Hodge structures with modulus

Joint work with Florian Ivorra

Takao Yamazaki (Tohoku University)

June 28, 2018, Singapore
Our goal. To generalize Deligne’s category MHS of mixed Hodge structures to that of MHS with modulus MHSM;

“level ≤ 1 parts” (indicated by 1) admit geometric description:

\[
\text{(semi-abel.)} \subset (\text{Deligne } 1\text{-motives}) \cong \text{MHS}_1 \\
\cap \\
\text{(comm. alg. gp.)} \subset (\text{Laumon } 1\text{-motives}) \cong \text{MHSM}_1
\]

2/3 of this talk is devoted to “level ≤ 1 parts”, previously known by Barbieri-Viale, Kato, Russell in different languages.

We then explain the whole category MHSM, and its application to generalize Kato-Russell’s construction of Albanese varieties with modulus to 1-motives.
Commutative algebraic groups

A commutative algebraic group G over \mathbb{C} is an extension

$$0 \to G_{mul} \times G_{add} \to G \to G_{ab} \to 0,$$

G_{ab}: abel. var., $G_{mul} \cong \mathbb{G}^s_m$, $G_{add} \cong \mathbb{G}^t_a$ $(s, t \in \mathbb{Z}_{\geq 0})$.

G is called semi-abelian if $G_{add} = 0$.

$AV = \{\text{ab. var.}\} \subset SA = \{\text{semi-ab.}\} \subset AG = \{\text{alg. gp.}\}$.

X: cpt. Riemann surface, Y: effective divisor on X ($Y = a_1P_1 + \cdots + a_rP_r$; $P_i \in X$ distinct, $a_i \in \mathbb{Z}_{>0}$).

Generalized Jacobian $\text{Jac}(X, Y) \in AG$ classifies pairs (L, σ) of a degree zero line b'dl. L on X and $\sigma: L|_Y \cong \mathcal{O}_Y$.

- $Y = \emptyset \Rightarrow \text{Jac}(X, \emptyset) = \text{Jac}(X) \in AV$;
- Y: reduced (i.e. $a_1 = \cdots = a_r = 1$) $\Rightarrow \text{Jac}(X, Y) \in SA$.
Duality

\[A \in AV \Rightarrow \exists A^\vee \in AV : \text{dual of } A; \quad \text{Jac}(X)^\vee \cong \text{Jac}(X). \]

To extend \(\vee \) to \(AG \), we need Laumon 1-motives:

Def. A Laumon 1-motive \(M \) is a two-term cpx. of the form

\[(*) \quad M = [\mathbb{Z}^s \times \hat{G}_a^t \rightarrow G] \quad (s, t \in \mathbb{Z}_{\geq 0}, \ G \in AG).\]

Regard \(G \in AG \) as a Laumon 1-motive by \([0 \rightarrow G]\).

\(M \) in (\(\ast \)) is called a Deligne 1-motive if \(t = 0 \) and \(G \in SA \).

\(M_1^D = \{\text{Deligne 1-motives}\} \subset M_1^L = \{\text{Laumon 1-motives}\} \)

Generalized Jacobian can be generalized to 1-motives:

Attach \(\text{Jac}(X, Y, Z) \in M_1^L \) to a triple \((X, Y, Z)\) of \(X : \text{cpt. Riemann surface and } Y, Z : \text{eff. divisors s.t. } |Y| \cap |Z| = \emptyset; \)

\[\text{Jac}(X, Y, \emptyset) = \text{Jac}(X, Y), \quad \text{Jac}(X, Y, Z)^\vee \cong \text{Jac}(X, Z, Y). \]

This is best explained from the viewpoint of Hodge theory.
AV and HS\(_1\)

Recall. \(\exists\) equiv. of cat. AV \(\cong\) HS\(_1\) : Hodge str. of level \(\leq 1\).

Def. A Hodge structure of level \(\leq 1\) is a pair \(H = (H_{\mathbb{Z}}, F^0)\) of

a) \(H_{\mathbb{Z}}\) : free \(\mathbb{Z}\)-module of finite rank,

b) \(F^0 \subset H_{\mathbb{C}} := H_{\mathbb{Z}} \otimes \mathbb{C} : \mathbb{C}\)-subspace;

subject to conditions (\(H_{\mathbb{C}} = F^0 \oplus \overline{F^0}\) and “polarizable”).

- \(\text{Jac}(X) \leftrightarrow H_1(X, \mathbb{Z})\) for \(X\) : cpt. Riemann surf.
- \(\vee : \text{AV} \to \text{AV}\) corresponds to an easy linear algebra operation \(\text{Hom}(_ , \mathbb{Z}(1))\) on HS\(_1\).
- \(J(X)^{\vee} \cong J(X)\) explained by Poincaré duality.

The equivalence AV \(\cong\) HS\(_1\) is extended to \(\mathcal{M}_1^D\) by Deligne.
\mathcal{M}^D_1 and MHS_1

Thm. (Deligne). \exists equiv. of cat. $\mathcal{M}^D_1 \cong \text{MHS}_1$.

Def. A mixed HS of level ≤ 1 $H = (H_\mathbb{Z}, F^0, W_{-1}, W_{-2})$ is:

a) $H_\mathbb{Z}$: free \mathbb{Z}-module of finite rank,
b) $F^0 \subset H_\mathbb{C} := H_\mathbb{Z} \otimes \mathbb{C} : \mathbb{C}$-subspace,
c) $W_{-2} \subset W_{-1} \subset H_\mathbb{Z}$: \mathbb{Z}-submodules,

s.t. $H_\mathbb{Z}/W_{-1} \cong \mathbb{Z}^s$, $W_{-1}/W_{-2} \in \text{HS}_1$, $W_{-2} \cong \mathbb{Z}(1)^t$ ($s, t \in \mathbb{Z}_{\geq 0}$)

- (X, Y, Z) as above, with Y, Z reduced \Rightarrow
 $\text{Jac}(X, Y, Z) \leftrightarrow H_1(X \setminus Y, Z, \mathbb{Z}) :$ relative homology.
- $\vee : \mathcal{M}^D_1 \rightarrow \mathcal{M}^D_1 \leftrightarrow$ an easy lin. alg. operation on MHS_1.
- Poincaré duality explains $\text{Jac}(X, Y, Z)^\vee \cong \text{Jac}(X, Z, Y)$.

The equivalence $\mathcal{M}^D_1 \cong \text{MHS}_1$ is extended to \mathcal{M}^L_1.
At least 3 known categories: $M^L_1 \cong FHS^1_1 \cong \mathcal{H}_1 \cong MHSM^1_1$.

- FHS1_1: formal HS (Barbieri-Viale, 2007)
- \mathcal{H}_1: MHS with additive part (Kato and Russel, 2012)
- MHSM1_1: MHS with modulus (Ivorra and Y...)

Def. A MHSM of level ≤ 1 $\mathcal{H} = (H, U, V, F)$ consists of:

a) $H = (H_0, F, W_1, W_2) \in MHS^1_1$.

b) U, V: finite dim. C-vector sp.

c) $F \subset H \otimes U \otimes V$: C-subspace.

satisfying certain conditions (details come later).

If $[Z \times G\hat{a} \to G] \leftrightarrow (H, U, V, F)$ by $M^L_1 \cong MHSM^1_1$,

$U \cong \text{Lie}(G_{\text{add}})$, $V \cong \text{Lie}(\hat{G}_a)$.

$Z \times G\hat{a} \to G$ by $M^L_1 \cong MHSM^1_1$.
Jacobian 1-motives

For \((X, Y, Z)\) as above, \(Y, Z\) not. nec. reduced, \(\text{Jac}(X, Y, Z) \leftrightarrow (H, U, V, \mathcal{F})\) under \(\mathcal{M}_1^L \cong \text{MHSM}_1\) with

- \(H = H_1(X \setminus Y_{\text{red}}, Z_{\text{red}}, \mathbb{Z}) \in \text{MHS}_1\) (Deligne),
- \(U = H^0(X, \mathcal{O}_X(-Y_{\text{red}})/\mathcal{O}_X(-Y))\).
- \(V = H^0(X, \mathcal{O}_X(Z - Z_{\text{red}})/\mathcal{O}_X)\).
- \(\mathcal{F} := \text{Im}(H^0(X, \Omega^1_X(Z)) \to H^1(X, [\mathcal{O}_X(-Y) \to \Omega^1_X(Z)])) \cong H_C \oplus U \oplus V\). (This map turns out to be injective.)

N.B. \(Y, Z\): reduced \(\Rightarrow U = V = 0\), i.e. \(\text{Jac}(X, Y, Z) \in \mathcal{M}_1^D\).

\(\forall : \mathcal{M}_1^L \to \mathcal{M}_1^L \leftrightarrow\) an easy lin. alg. operation on \(\text{MHSM}_1\).

Poincaré and Serre dualities imply

\[\text{Jac}(X, Y, Z)^\forall \cong \text{Jac}(X, Z, Y). \]
MHS of arbitrary level

MHS: Deligne’s cat. of mixed Hodge structures.

Formal property. \(\text{MHS} \) is abelian; it contains \(\text{MHS}_1 \).

Geometry. \(X \): smooth proper variety of dimension \(d \), \(Y, Z \subset X \): effective reduced divisors, \(|Y| \cap |Z| = \emptyset \).

\(\exists H^n(X, Y, Z) \in \text{MHS} \) s.t. \(H_Z = H^n(X \setminus Z, Y, \mathbb{Z}) \) (\(n \in \mathbb{Z} \)).

Duality. \(H^n(X, Y, Z)^\vee \cong H^{2d-n}(X, Z, Y)(d)/(\text{tor}) \).

Albanese. One has \(H^{2d-1}(X, Y, Z)(d)/(\text{tor}) \in \text{MHS}_1 \), and it corresponds to the Albanese 1-motive \(\text{Alb}(X, Y, Z) \in \mathcal{M}^D_1 \) via \(\text{MHS}_1 \cong \mathcal{M}^D_1 \). [\(d = 1 \Rightarrow \text{Alb}(X, Y, Z) = \text{Jac}(X, Y, Z) \).]

NB. Deligne constructed \(H^n(S) \in \text{MHS} \) for any variety \(S \). One has \(H^{2d-1}(S)(d)/(\text{torsion}) \in \text{MHS}_1 \) if \(d = \text{dim } S \), and it corresponds to the Albanese 1-motive \(\text{Alb}(S) \in \mathcal{M}^D_1 \).
MHSM of arbitrary level

Def. A MHS with modulus is $\mathcal{H} = (H, U^*, V^*, \{F_p\}_{p \in \mathbb{Z}})$,

a) $H \in \text{MHS}$,

b) $\cdots \to U^p \xrightarrow{u^p} U^{p-1} \xrightarrow{u^{p-1}} \cdots$: chain of \mathbb{C}-linear maps,

c) $\cdots \to V^p \xrightarrow{v^p} V^{p-1} \xrightarrow{v^{p-1}} \cdots$: chain of \mathbb{C}-linear maps,

d) $F^p \subset H_{\mathbb{C}} \oplus U^p \oplus V^p : \mathbb{C}$-subspaces ($\forall p \in \mathbb{Z}$),

subject to the following conditions:

- $\dim_{\mathbb{C}}[\oplus_p(U^p \oplus V^p)] < \infty$.
- $(\text{id}_{H_{\mathbb{C}}} \oplus u^p \oplus v^p)(F^p) \subset F^{p-1}$.
- For $x \in H_{\mathbb{C}}$: $x \in F^p H_{\mathbb{C}} \iff \exists u \in U^p$ s.t. $x + u \in F^p$.
- $F^p \hookrightarrow H_{\mathbb{C}} \oplus U^p \oplus V^p \to V^p : \text{surj.}$
- $U^p \hookrightarrow H_{\mathbb{C}} \oplus U^p \oplus V^p \to H_{\mathbb{C}} \oplus U^p \oplus V^p / F^p : \text{inj.}$
Main results

Formal property. **MHSM** is abelian; it contains **MHSM_1**.

Geometry. **X** : smooth proper variety of dimension **d**.
Y, Z ⊂ X : eff. divisors, not nec. reduced, \(|Y| \cap |Z| = \emptyset\),
\((Y + Z)_{\text{red}}\) : strict normal crossing. \(n \in \mathbb{Z}\).
\(\exists \mathcal{H}^n(X, Y, Z) \in \text{MHSM} \) s.t. \(H = \mathcal{H}^n(X, Y_{\text{red}}, Z_{\text{red}}) \in \text{MHS}\).

Duality. \(\mathcal{H}^n(X, Y, Z)^\vee \cong \mathcal{H}^{2d-n}(X, Z, Y)(d)/(\text{tor})\).

Albanese. \(\mathcal{H}^{2d-1}(X, Y, Z)(d)/(\text{tor}) \in \text{MHSM}_1\), corresponding
to **Albanese** 1-motive \(\text{Alb}(X, Y, Z) \in \mathcal{M}_1^L\) via \(\text{MHSM}_1 \cong \mathcal{M}_1^L\).

Jacobian. When \(d = 1\), we have \(\text{Alb}(X, Y, Z) = \text{Jac}(X, Y, Z)\),
and \(\text{Jac}(X, Y, Z)^\vee \cong \text{Jac}(X, Z, Y)\) by **Duality** (above).
Relation with previous works

Kato and Russell (2012) constructed $\text{Alb}(X, Y) \in \text{AG}$ for smooth proper X, eff. divisor Y (generalizing $\text{Jac}(X, Y)$ for curves). It agrees with our $\text{Alb}(X, Y, \emptyset)$.

Bloch and Srinivas (2000) constructed enriched HS and $H^n(S) \in \text{EHS}$ for proper (but possibly singular) var. S. Barbieri-Viale (2007) and Mazzari (2011) generalized EHS to formal HS. This is (almost) same as MHSM with $V^* = 0$.

Deligne constructed $H^n(S) \in \text{MHS}$ for arbitrary (possibly singular/non-proper) S, which is basis of all constructions.

Problem. Can one define $H^n(S) \in \text{MHSM}$ for such S?