Sharp Interface Models for Solid-State Dewetting and Their Applications

Zhao Quan
joint work with Prof. Weizhu Bao, Prof. David J. Srolovitz, Prof. Wei Jiang and Dr. Yan Wang.

Department of Mathematics
National University of Singapore
1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
Physical experiment I

Figure: Dewetting of Ni with different sizes (J. Ye and C.V. Thompson, 2011).
Figure: Dewetted patches that evolved from square ring patches with two different in-plane orientations. (a) Ni (110); (b) Ni (100) films. (J. Ye and C.V. Thompson, 2011)
Motivation

♠ Morphological characteristics

- Edge retraction, hole formation, pinch-off events, finger instability.

Applications

- Destroy micro-/nano-device performance.
- Used to produce sensors, optical and magnetic devices, catalysts for growth of carbon, semiconductor nanowires.
Motivation

♠ Morphological characteristics

- Edge retraction, hole formation, pinch-off events, finger instability.
- **Thin film geometry**: the size, orientation, location of holes.

Applications

- Destroy micro-/nano-device performance.
- Used to produce sensors, optical and magnetic devices, catalysts for growth of carbon, semiconductor nanowires.
Motivation

♣ Morphological characteristics

- Edge retraction, hole formation, pinch-off events, finger instability.
- Thin film geometry: the size, orientation, location of holes.
- Substrate topology: templated dewetting (W.L. Ling et al., 2004; A.L. Giermann et al., 2005, A. Sundar et al., 2012).
- Anisotropy: corner instability (D. Amram et al., 2012; R.V. Zucker et al., 2016), facet instability (J. Ye et al., 2011).

♣ Applications

- Destroy micro-/nano-device performance.
- Used to produce sensors, optical and magnetic devices, catalysts for growth of carbon, semiconductor nanowires.
Herring’s local Gibbs-Thomson equation in 3D (C. Herring, 1951)

\[
\mu = \Omega \left[(\gamma + \frac{\partial^2 \gamma}{\partial n_x^2}) \kappa_x + (\gamma + \frac{\partial^2 \gamma}{\partial n_y^2}) \kappa_y \right],
\]

where \(\Omega \) is the atomic volume; \(\kappa_x, \kappa_y \) are the two principle curvatures, \(n_x, n_y \) are the two corresponding angles in the two principle directions.

Reduced to 2D

\[
\mu = \Omega (\gamma(\theta) + \gamma''(\theta)) \kappa,
\]

Extensions to 3D case are awkward and almost impossible, and numerical treatments not available.
\(\xi \)-vector formulation

\[
\xi(n) = \nabla \hat{\gamma}(p) \bigg|_{p=n}, \quad \hat{\gamma}(p) = |p| \gamma\left(\frac{p}{|p|}\right), \quad \forall p \in \mathbb{R}^3 \setminus \{0\}.
\]

$$\xi(n) = \nabla \hat{\gamma}(p) \Big|_{p=n}, \quad \hat{\gamma}(p) = |p| \gamma\left(\frac{p}{|p|}\right), \quad \forall p \in \mathbb{R}^3 \setminus \{0\}.$$

Mathematical construction of the equilibrium shape: ξ-plot.

$$\xi(n) = \gamma(\theta, \phi)n + \frac{\partial \gamma(\theta, \phi)}{\partial \theta} \tau_\theta + \frac{1}{\sin \theta} \frac{\partial \gamma(\theta, \phi)}{\partial \phi} \tau_\phi,$$

Surface diffusion flow (W.W. Mullins, 1957; J.W. Cahn and D.W. Hoffman, 1974.)

The normal velocity v_n of the surface S is given by

$$v_n = -\Omega_0 \nabla_s \cdot j, \quad j = -\frac{D_s \nu}{k_B T_e} \nabla_s \mu, \quad \mu = \Omega_0 \frac{\delta W}{\delta S} = \Omega_0 \nabla_s \cdot \xi.$$
Objectives

1. Derive sharp interface models via Cahn-Hoffman ξ-vector

2. Develop efficient parametric finite element methods (PFEM)

3. Explore the morphological characteristics
Outline

1 Introduction

2 Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3 Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4 Conclusion and future works
1. Introduction

2. Solid-state dewetting in 2D
 • Mathematical model
 • The parametric finite element method (PFEM)
 • Convergence test and numerical results

3. Extension to 3D case
 • Mathematical model
 • PFEM in 3D

4. Conclusion and future works
Surface energy in 2D

Figure: A schematic illustration of solid thin film in 2D.

♠ Total surface energy

\[W(\Gamma) = \int_{\Gamma_{FV}} \gamma_{FV} \, d\Gamma_{FV} + \int_{\Gamma_{FS}} \gamma_{FS} \, d\Gamma_{FS} + \int_{\Gamma_{VS}} \gamma_{VS} \, d\Gamma_{VS}. \]
First variation

- **Simplified energy**

$$W = \int_{\Gamma} \gamma(n) \, ds + \left(\gamma_{FS} - \gamma_{VS} \right) (x_c^r - x_c^l) + \gamma_{VS} (b-a),$$

Substrate energy

- **Perturbation, \(l = [0, 1] \)**

$$\Gamma^\varepsilon = X(\rho, \varepsilon) : l \times [0, \varepsilon_0] \to \mathbb{R}^2, \quad y(0, \varepsilon) = y(1, \varepsilon) = 0.$$

- **Introduce a deformation vector field**:

$$V(\rho, \varepsilon) = \frac{\partial X(\rho, \varepsilon)}{\partial \varepsilon}, \quad \forall \varepsilon \in [0, \varepsilon_0],$$

- **For any functional \(F(\Gamma) \), define its first variation with respect to any smooth deformation vector field \(V \) as**

$$\delta F(\Gamma; V) = \lim_{\varepsilon \to 0} \frac{F(\Gamma^\varepsilon) - F(\gamma)}{\varepsilon}.$$
The first variation of the free energy functional in solid-state dewetting problems with respect to any smooth deformation field V is given as:

$$
\delta W(\Gamma; V) = - \int_{\Gamma} \left[(\partial_s \xi)^\perp \cdot n \right] (V_0 \cdot n) \, ds + \left[(\xi_2 - \sigma) (V_0 \cdot e_1) \right] \bigg|_{s=0}^{s=L},
$$

where \perp represents the clockwise rotation of a vector by 90 degrees, $\xi = (\xi_1, \xi_2)$ is the Cahn-Hoffman vector, $\sigma = \gamma_{VS} - \gamma_{FS}$, and $e_1 = (1, 0)$ represents the unit vector along the x-coordinate (or the substrate line).
Variation with respect to Γ, x_l^c and x_r^c

\[
\frac{\delta W}{\delta \Gamma} = -\left(\partial_s \xi\right)^\perp \cdot n, \quad \frac{\delta W}{\delta x_l^c} = -\left(\xi_2 \bigg|_{s=0} - \sigma\right), \quad \frac{\delta W}{\delta x_r^c} = \xi_2 \bigg|_{s=L} - \sigma.
\]
Dynamics

♠ Variation with respect to Γ, x^l_c and x^r_c

$$\frac{\delta W}{\delta \Gamma} = -(\partial_s \xi)^\perp \cdot n,$$

$$\frac{\delta W}{\delta x^l_c} = - (\xi_2|_{s=0} - \sigma),$$

$$\frac{\delta W}{\delta x^r_c} = \xi_2|_{s=L} - \sigma.$$

◇ Normal velocity for the curve: surface diffusion flow

- Chemical potential: Gibbs-Thomson relation

$$\mu = \Omega_0 \frac{\delta W}{\delta \Gamma},$$

- Fick’s law

$$j = -\frac{D_s \nu}{k_B T_e} \partial_s \mu \tau, \quad v_n = -\Omega_0 (\partial_s j) \cdot \tau = \frac{D_s \nu \Omega_0^2}{k_B T_e} \partial_{ss} \left[\frac{\delta W}{\delta \Gamma} \right].$$

◇ Relaxed contact angle condition: energy gradient flow

$$\frac{dx^l_c(t)}{dt} = -\eta \frac{\delta W}{\delta x^l_c},$$

$$\frac{dx^r_c(t)}{dt} = -\eta \frac{\delta W}{\delta x^r_c}.$$
The dimensionless model in 2D

\[
\begin{aligned}
\partial_t X &= \partial_{ss} \mu \ n, \quad 0 < s < L(t), \quad t > 0, \\
\mu &= - (\partial_s \xi)^\perp \cdot n, \quad \xi = \nabla \hat{\gamma} (p) \bigg|_{p=n};
\end{aligned}
\]

with boundary conditions

(i) contact point condition

\[y(0, t) = 0, \quad y(L, t) = 0, \quad t \geq 0; \]

(ii) relaxed contact angle condition

\[
\frac{dx^l_c}{dt} = \eta (\xi^2 \big|_{s=0} - \sigma), \quad \frac{dx^r_c}{dt} = -\eta (\xi^2 \big|_{s=L} - \sigma), \quad t \geq 0;
\]

(iii) zero-mass flux condition

\[\partial_s \mu(0, t) = 0, \quad \partial_s \mu(L, t) = 0, \quad t \geq 0. \]
The sharp interface model

♠ Mass conservation

\[A(t) \equiv A(0) = \int_{\Gamma(0)} y_0(s) \partial_s x_0(s) \, ds, \quad t \geq 0, \]

♠ Energy dissipation

\[\frac{d}{dt} W(t) = -\int_{\Gamma(t)} (\partial_s \mu)^2 \, ds - \frac{1}{\eta} \left[\left(\frac{dx^l_c}{dt} \right)^2 + \left(\frac{dx^r_c}{dt} \right)^2 \right] \leq 0. \]
1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
Variational formulation

- parameterize the curves as
 \[\Gamma(t) = X(\rho, t) : I \times [0, T] \to \mathbb{R}^2, \]
 where the time-independent spatial variable \(\rho \in I \), and \(I \) denotes a fixed reference spatial domain, say \(I := [0, 1] \).

- \(L^2 \) inner product
 \[
 \langle u, v \rangle_\Gamma := \int_{\Gamma(t)} u(s)v(s) \, ds = \int_I u(s(\rho, t))v(s(\rho, t))|\partial_\rho X| \, d\rho.
 \]

- Functional space
 \[
 H^1_{a, b}(I) = \{ u \in H^1(I) : u(0) = a, u(1) = b \}.
 \]
Variational formulation

- Re-formulate the PDEs

\[
\frac{\partial}{\partial t} X = \partial_{ss} \mu \cdot n \quad \Rightarrow \quad \frac{\partial}{\partial t} X \cdot n = \partial_{ss} \mu.
\]

\[
\mu = -\left(\partial_s \xi\right)^\perp \cdot n \quad \Rightarrow \quad \mu \cdot n = -\left(\partial_s \xi\right)^\perp.
\]

Find \(X \in H_{a,b}(I) \times H^1_0(I), \quad \mu \in H^1(I) \) with \(a = x^l_c(t) \leq x^r_c(t) = b \),

\[
\left\langle \frac{\partial}{\partial t} X, \varphi n \right\rangle_{\Gamma} + \left\langle \partial_s \mu, \partial_s \varphi \right\rangle_{\Gamma} = 0, \quad \forall \varphi \in H^1(I),
\]

\[
\left\langle \mu n, \omega \right\rangle_{\Gamma} - \left\langle \xi^\perp, \partial_s \omega \right\rangle_{\Gamma} = 0, \quad \forall \omega \in H^1_0(I) \times H^1_0(I),
\]
Semi-implicit PFEM

- **Finite element spaces**

 \[V^h := \{ u \in C(I) : u \mid_{I_j} \in P_1, \quad \forall j = 1, 2, \ldots, N \} \subseteq H^1(I), \]

 \[V_{a,b}^h := \{ u \in V^h : u(0) = a, \ u(1) = b \} \subseteq H^1_{a,b}(I). \]

- **Inner product**

 \[\langle u, v \rangle^h = \frac{1}{2} \sum_{j=1}^{N} \left| X^m(\rho_j) - X^m(\rho_{j-1}) \right| \left[(u \cdot v)(\rho_j^-) + (u \cdot v)(\rho_{j-1}^+) \right]. \]

Find \(X^{m+1} \in V_{a,b}^h \times V_0^h, \quad \mu \in V^h \) such that

\[\langle \frac{X^{m+1} - X^m}{t_{m+1} - t_m}, \varphi_h n^m \rangle^h_{\Gamma_m} + \langle \partial_s \mu^{m+1}, \partial_s \varphi_h \rangle^h_{\Gamma_m} = 0, \quad \forall \varphi_h \in V^h, \]

\[\langle \mu^{m+1} n^m, \omega_h \rangle^h_{\Gamma_m} - \langle [\xi^{m+\frac{1}{2}}]_\perp, \partial_s \omega_h \rangle^h_{\Gamma_m} = 0, \quad \forall \omega_h \in V_0^h \times V_0^h, \]
Properties

◊ Linearization of ξ

$$\xi^{m+\frac{1}{2}} = \begin{cases}
\gamma(\theta^m)n^{m+1} - \gamma'(\theta^m)\tau^{m+1}, & \text{if } \gamma = \gamma(\theta), \\
\gamma(n^m)n^{m+1} + (\xi^m \cdot \tau^m)\tau^{m+1}, & \text{if } \gamma = \gamma(n).
\end{cases}$$

◊ Anisotropy Riemannian metric form (K. Deckelnick et al. (2005), J.W. Barrett et al. (2007))

$$\gamma(n) = \sum_{l=0}^{L} \sqrt{G_l n \cdot n}, \quad \xi(n) = \sum_{l=0}^{L} \left[\sqrt{G_l n \cdot n}\right]^{-1} G_k n,$$

where G_l, $l = 0, \cdots, L$, is a symmetric positive definite matrix. In this special case, the numerical approximation term $\xi^{m+\frac{1}{2}}$ can be defined as:

$$\xi^{m+\frac{1}{2}} = \sum_{k=0}^{L} \left[\sqrt{G_l n^m \cdot n^m}\right]^{-1} G_l n^{m+1}.$$
Properties

\[a = x_c^l(t_{m+1}) \leq x_c^r(t_{m+1}) = b \text{ are updated via Euler forward scheme} \]

\[
\begin{align*}
\frac{x_c^l(t_{m+1}) - x_c^l(t_m)}{\tau_m} &= \eta \left[\xi_2^m \bigg|_{\rho=0} - \sigma \right], \\
\frac{x_c^r(t_{m+1}) - x_c^r(t_m)}{\tau_m} &= -\eta \left[\xi_2^m \bigg|_{\rho=1} - \sigma \right].
\end{align*}
\]
Properties

\(a = x_c^l(t_{m+1}) \leq x_c^r(t_{m+1}) = b \) are updated via Euler forward scheme

\[
\frac{x_c^l(t_{m+1}) - x_c^l(t_m)}{\tau_m} = \eta \left[\xi_2^m \right]_{\rho=0} - \sigma,
\]

\[
\frac{x_c^r(t_{m+1}) - x_c^r(t_m)}{\tau_m} = -\eta \left[\xi_2^m \right]_{\rho=1} - \sigma.
\]

- **Linear system**: sparse matrix, \(\Delta t = O((\Delta s)^2) \).
- **Well-posedness**.
- Good preservation of mesh quality for isotropic case, Re-meshing is needed for strongly anisotropic case.
Stabilized scheme

For $m \geq 0$, find $\Gamma^{m+1} = X^{m+1} \in \mathcal{V}_{a,b}^h \times \mathcal{V}_0^h$ with the x-coordinate positions of the moving contact points $a := x^l_c(t_{m+1}) \leq b := x^r_c(t_{m+1})$ and $\mu^{m+1} \in \mathcal{V}^h$ such that

$$\left\langle \mu^{m+1} n^m, \omega_h \right\rangle_{\Gamma_m}^h - \left\langle (\xi^m) \perp , \partial_s \omega_h \right\rangle_{\Gamma_m}^h$$

$$-\lambda \left\langle \gamma(n^m) \partial_s (X^{m+1} - X^m), \partial_s \omega_h \right\rangle_{\Gamma_m}^h = 0, \quad \forall \omega_h \in \mathcal{V}_0^h \times \mathcal{V}_0^h,$$
Outline

1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
Convergence test I

\[e_{h, \tau}(t) = \| X_{h, \tau} - X_{h, \tau}^{\frac{\tau}{2/4}} \|_{L^\infty} = \max_{0 \leq j \leq N} \min_{\rho \in [0,1]} | X_{h, \tau}(\rho_j, t) - X_{h, \tau}^{\frac{\tau}{2/4}}(\rho, t) |, \]

Table: Convergence rates (closed curve; isotropic case)

<table>
<thead>
<tr>
<th>(e_{h, \tau}(t))</th>
<th>(h = h_0)</th>
<th>(h_0/2)</th>
<th>(h_0/2^2)</th>
<th>(h_0/2^3)</th>
<th>(h_0/2^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau = \tau_0)</td>
<td>(\tau_0/2)</td>
<td>(\tau_0/2^2)</td>
<td>(\tau_0/2^4)</td>
<td>(\tau_0/2^6)</td>
<td>(\tau_0/2^8)</td>
</tr>
<tr>
<td>(e_{h, \tau}(t = 0.5))</td>
<td>4.58E-3</td>
<td>1.09E-3</td>
<td>2.63E-4</td>
<td>6.40E-5</td>
<td>1.58E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>2.07</td>
<td>2.05</td>
<td>2.04</td>
<td>2.02</td>
</tr>
<tr>
<td>(e_{h, \tau}(t = 2.0))</td>
<td>3.61E-3</td>
<td>9.43E-4</td>
<td>2.45E-4</td>
<td>6.31E-5</td>
<td>1.61E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>1.94</td>
<td>1.95</td>
<td>1.96</td>
<td>1.97</td>
</tr>
<tr>
<td>(e_{h, \tau}(t = 5.0))</td>
<td>3.63E-3</td>
<td>9.47E-4</td>
<td>2.46E-4</td>
<td>6.33E-5</td>
<td>1.62E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>1.94</td>
<td>1.95</td>
<td>1.96</td>
<td>1.97</td>
</tr>
</tbody>
</table>
Table: Convergence rates (closed curve; anisotropic case)

<table>
<thead>
<tr>
<th>(e_{h,\tau}(t))</th>
<th>(h = h_0) (\tau = \tau_0)</th>
<th>(h_0/2) (\tau_0/2^2)</th>
<th>(h_0/2^2) (\tau_0/2^4)</th>
<th>(h_0/2^3) (\tau_0/2^6)</th>
<th>(h_0/2^4) (\tau_0/2^8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_{h,\tau}(t = 0.5))</td>
<td>1.24E-2</td>
<td>2.25E-3</td>
<td>6.71E-4</td>
<td>2.48E-4</td>
<td>7.10E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>2.46</td>
<td>1.74</td>
<td>1.44</td>
<td>1.80</td>
</tr>
<tr>
<td>(e_{h,\tau}(t = 2.0))</td>
<td>4.86E-3</td>
<td>1.44E-3</td>
<td>4.57E-4</td>
<td>1.37E-4</td>
<td>3.71E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>1.76</td>
<td>1.66</td>
<td>1.74</td>
<td>1.89</td>
</tr>
<tr>
<td>(e_{h,\tau}(t = 5.0))</td>
<td>4.88E-3</td>
<td>1.44E-3</td>
<td>4.58E-4</td>
<td>1.37E-5</td>
<td>3.74E-5</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>1.76</td>
<td>1.66</td>
<td>1.74</td>
<td>1.89</td>
</tr>
</tbody>
</table>
Convergence test III

Table: Convergence rates (open curve; anisotropic case)

<table>
<thead>
<tr>
<th>$e_{h,\tau}(t)$</th>
<th>$h = h_0$</th>
<th>$h_0/2$</th>
<th>$h_0/2^2$</th>
<th>$h_0/2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau = \tau_0$</td>
<td>$\tau_0/2^2$</td>
<td>$\tau_0/2^4$</td>
<td>$\tau_0/2^6$</td>
<td></td>
</tr>
<tr>
<td>$e_{h,\tau}(t = 0.5)$</td>
<td>2.82E-2</td>
<td>1.41E-2</td>
<td>6.88E-3</td>
<td>3.44E-3</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>0.99</td>
<td>1.04</td>
<td>1.00</td>
</tr>
<tr>
<td>$e_{h,\tau}(t = 2.0)$</td>
<td>2.71E-2</td>
<td>1.37E-2</td>
<td>6.78E-3</td>
<td>3.40E-3</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>0.98</td>
<td>1.02</td>
<td>0.99</td>
</tr>
<tr>
<td>$e_{h,\tau}(t = 5.0)$</td>
<td>2.32E-2</td>
<td>1.12E-3</td>
<td>5.80E-3</td>
<td>2.92E-3</td>
</tr>
<tr>
<td>order</td>
<td>–</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Small island film (5 × 1)

- \(m \)-fold anisotropy

\[
\gamma(\theta) = 1 + 0.06 \cos(4\theta), \quad \sigma = \cos(3\pi/4)
\]
Define the mesh distribution function $\psi(t)$ as

$$
\psi(t_m) = \frac{\max_{1 \leq j \leq N} |h_j^m|}{\min_{1 \leq j \leq N} |h_j^m|},
\Gamma^m = \bigcup_{j=1}^{N} h_j^m
$$

Figure: (a) The temporal evolution of the normalized total free energy and the normalized total area/mass; (b) the temporal evolution of the mesh distribution function $\psi(t)$.

Zhao Quan (NUS) Solid-State Dewetting 25 / 51
Small island: application of the stabilised scheme

\[\gamma(\theta) = 1 + \beta |\cos \frac{k\theta}{2}|, \quad \gamma(\theta) = 1 + \beta \sqrt{\delta^2 + \cos^2 \frac{k\theta}{2}}. \]

\[k = 5, \beta = 0.19, \delta = 0.1, \lambda = 20. \]

Figure: Several snapshots in the evolution of a small, initially rectangular islands film towards its equilibrium shape (a) \(t = 0 \); (b) \(t = 0.1 \); (c) \(t = 0.6 \); (d) \(t = 7.5 \).
Riemannian metric

\[
\gamma(n) = \sum_{l=0}^{L} \sqrt{R(-\phi_l)D(\delta_l)R(\phi_l)n \cdot n}, \quad D(\delta_l) = \begin{pmatrix} 1 & 0 \\ 0 & \delta_l^2 \end{pmatrix},
\]

\[L = 1, \ \phi_0 = \pi/4, \ \phi_1 = 3\pi/4, \ \delta_0 = \delta_1 = 0.1, \ \sigma = \cos(5\pi/6)\]
1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
A sharp interface model

\[\gamma_{FV} = \gamma(n) \]

Figure: A schematic illustrate of solid-state dewetting on a substrate in 3D

♦ The total surface energy

\[W = W_{int} + W_{sub} = \int \int_{S} \gamma(n) \, dS + (\gamma_{FS} - \gamma_{VS})A(\Gamma), \]

Substrate energy
Speed method

♠ Transformation T_ε
A domain $D \in \mathbb{R}^3$ with boundary ∂D piecewise C^k for a given integer $k \geq 0$, define the one to one transformation as

$$T_\varepsilon : \bar{D} \rightarrow \bar{D}, \quad \varepsilon \in [0, \varepsilon_0),$$

♠ The speed vector field
Let $x(X, \varepsilon) = T_\varepsilon(X)$, the speed vector field $V(x, \varepsilon)$

$$V(x, \varepsilon) = \frac{\partial x}{\partial \varepsilon}(T_\varepsilon^{-1}(x), \varepsilon).$$

♠ Remarks
- T_ε is uniquely determined by V, vice versa.
- Assumption: $V \in C(C^k(\bar{D}, \bar{D}); [0, \varepsilon_0)), \ V_0 = V(X, 0)$.
- Surface $S \subset \bar{D}, \ S_\varepsilon = T_\varepsilon(S)$.

Zhao Quan (NUS) Solid-State Dewetting
Theorem

Suppose $S \in \mathbb{R}^3$ is an open surface with smooth boundary $\Gamma \subset S_{sub}$ (xOy plane), T_ε is a transformation on S such that $T_\varepsilon \Gamma \subset S_{sub}$. Let $W(S) = \int\int_S \gamma(n) \, dS + (\gamma_{FS} - \gamma_{VS})A(\Gamma)$, then we have

$$
\delta W(S; V) = \int\int_S (\nabla_S \cdot \xi)(V_0 \cdot n) \, dS + \int_{\Gamma}(c^\gamma_\Gamma \cdot n_\Gamma + \gamma_{FS} - \gamma_{VS})(n_\Gamma \cdot V_0) \, d\Gamma.
$$

- V is the vector field associated with T_ε.
- $\xi(n)$ is the Cahn-Hoffman vector defined as
 $$
 \xi(n) = \nabla \hat{\gamma}(p) \bigg|_{p=n}, \text{ with } \hat{\gamma}(p) = |p|\gamma\left(\frac{p}{|p|}\right), \forall p \in \mathbb{R}^3 \setminus \{0\}.
 $$
- $c^\gamma_\Gamma = (\xi \cdot n)c_\Gamma - (\xi \cdot c_\Gamma)n$.

Zhao Quan (NUS)

Dynamics

♠ **Variation**

\[
\frac{\delta W}{\delta S} = \nabla_S \cdot \xi.
\]

\[
\frac{\delta W}{\delta \Gamma} = c^\gamma \cdot n_\Gamma + \gamma_{FS} - \gamma_{VS}.
\]

♠ **Surface diffusion flow**

The normal velocity \(v_n \) of the surface \(S \)

\[
v_n = \frac{D_s \nu \Omega_0}{k_B T_e} \nabla^2_S \mu, \quad \mu = \Omega_0 \frac{\delta W}{\delta S} = \Omega_0 \nabla_S \cdot \xi.
\]

♠ **Relaxed contact angle conditions**

The normal velocity \(v_c \) of the \(\Gamma \)

\[
v_c = -\eta \frac{\delta W}{\delta \Gamma} = -\eta \left[c_\Gamma^\gamma \cdot n_\Gamma + \gamma_{FS} - \gamma_{VS} \right].
\]
A dimensionless sharp interface model

\[
\begin{aligned}
\frac{\partial_t \mathbf{X}}{} &= \nabla_s^2 \mu \mathbf{n}, \quad t > 0, \\
\mu &= \nabla_s \cdot \mathbf{\xi}, \quad \mathbf{\xi} = \nabla (\hat{\gamma}(\mathbf{p})) \bigg|_{\mathbf{p}=\mathbf{n}}; \\
\end{aligned}
\]

with boundary conditions
(1) contact line condition

\[\Gamma \subset S_{\text{sub}}, \quad t \geq 0; \]

(2) relaxed contact angle condition

\[
\frac{\partial_t \mathbf{X}}{\Gamma} = -\eta \left[\mathbf{c}_\Gamma \cdot \mathbf{n}_\Gamma - \sigma \right] \mathbf{n}_\Gamma, \quad t \geq 0,
\]

where \(\sigma = \frac{\gamma_{VS} - \gamma_{FS}}{\gamma_0}, \mathbf{c}_\Gamma = (\mathbf{\xi} \cdot \mathbf{n}) \mathbf{c}_\Gamma - (\mathbf{\xi} \cdot \mathbf{c}_\Gamma) \mathbf{n}. \)

(3) zero mass flux condition

\[
(\mathbf{c}_\Gamma \cdot \nabla_s \mu) \bigg|_{\Gamma} = 0, \quad t \geq 0.
\]
Mass conservation and energy dissipation

♠ Mass conservation

\[M(t) \equiv M(0) = \iiint_{\Omega(0)} dx, \quad \forall t \geq 0. \]

♠ Energy dissipation

\[\frac{d}{dt} W(t) = - \iint_{S(t)} |\nabla s \mu|^2 \, dS - \eta \int_{\Gamma(t)} (c^\gamma \cdot n_{\Gamma} - \sigma)^2 \, d\Gamma \leq 0. \]
Outline

1. Introduction

2. Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3. Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4. Conclusion and future works
PFEM: Isotropic model

\[
\begin{cases}
\partial_t X = \nabla^2_S \mu \; n, & t \geq 0; \\
\mu = \mathcal{H} = -\nabla^2_S X \cdot n;
\end{cases}
\]

with boundary conditions

(1) contact line condition

\[\Gamma \subset S_{sub}, \quad t \geq 0; \]

(2) relaxed contact angle condition

\[\partial_t \mathbf{X}_\Gamma = -\eta \left[\mathbf{c}_\Gamma \cdot \mathbf{n}_\Gamma - \sigma \right] \mathbf{n}_\Gamma, \quad t \geq 0; \]

(3) zero-mass flux condition

\[(\mathbf{c} \cdot \nabla_S \mu)|_\Gamma = 0, \quad t \geq 0. \]
PFEM: Variational formulation

Find \(S(t) = X(\cdot, t) \in W_\Gamma(U), \mu \in H^1(S) \) such that

\[
\langle \partial_t X \cdot n, \phi \rangle_S + \langle \nabla_s \mu, \nabla_s \phi \rangle_S = 0, \quad \forall \phi \in H^1(S),
\]

\[
\langle \mu, n \cdot g \rangle_S - \langle \nabla_s X, \nabla_s g \rangle_S = 0, \quad \forall g \in (H^1_0(S))^3.
\]

- **Functional space**

\[
W_\Gamma(U) := \{ X \in (H^1(U))^3, \quad X|_{\partial U} = \Gamma \},
\]

with \(\Gamma = \Gamma(t) \) is determined by the relaxed contact angle condition.

- **Inner product**

\[
\langle u, v \rangle_S = \int \int_S u \cdot v \, dS.
\]
PFEM: Temporal/spatial discretization

- **Temporal discretization:** \(0 = t_0 < t_1 < t_2 < \cdots < t_M = T \).

- **Spatial discretization:**
 - \(S^m = \bigcup_{j=1}^{N} \tilde{D}_j^m \), with \(\{D_j\}_{j=1}^{N} \) are triangle with vertices \(\{q^m_k\}_{k=1}^{K} \).
 - \(\Gamma^m = \bigcup_{j=1}^{N_c} \tilde{h}_j^m \) with \(\{h\}_{j=1}^{N_c} \) are line segment with vertices \(\{p^m_k\}_{k=1}^{K_c} \).

- **Finite element space:**
 - P1 linear finite element

\[
\mathcal{V}^h(S^m) := \{ \phi \in C(S^m, \mathbb{R}) : \phi \big|_{D_j^m} \text{ is linear } \forall 1 \leq i \leq N \} \subset H^1(S^m).
\]

\[
\mathcal{W}^h_{\Gamma} = \{ g \in (\mathcal{V}(S^m))^3, g \big|_{\Gamma_m} = X_{\Gamma^h} \}, \quad \Gamma^h := X_{\Gamma^h} \in (\mathcal{V}^h(\Gamma^m))^3.
\]

- **Numerical integration:** mass lumped inner product

\[
\langle u, v \rangle_{S^m} = \frac{1}{3} \sum_{j=1}^{N} \sum_{k=1}^{3} u(q^m_{jk}) v(q^m_{jk}) | D_j^m |.
\]
PFEM: Semi-implicit PFEM:

Given $S^0 = \bigcup_{j=1}^{N} \bar{D}_j$ with $\Gamma^0 = \bigcup_{j=1}^{N_c} \bar{h}_j$, for $m = 0, 1, \ldots, M - 1$, find $S^{m+1} = X^{m+1} \in \mathcal{W}^h_{\Gamma_{m+1}}(S^m)$, $\mu^{m+1} \in \mathcal{V}^h(S^m)$ such that

$$
\left\langle \frac{X^{m+1} - X^m}{\tau_m} \cdot n^m, \phi_h \right\rangle_{S^m} + \left\langle \nabla_s \mu^{m+1}, \nabla_s \phi_h \right\rangle_{S^m} = 0, \quad \forall \phi_h \in \mathcal{V}^h(S^m),
$$

$$
\left\langle \mu^{m+1}, n^m \cdot g_h \right\rangle_{S^m} - \left\langle \nabla_s X^{m+1}, \nabla_s g_h \right\rangle_{S^m} = 0, \quad \forall g_h \in (\mathcal{V}_0^h(S^m))^3,
$$
PFEM: Update Γ^{m+1}

♦ Relaxed contact angle condition

$$\partial_t \mathbf{X}_r = -\eta \left[\mathbf{c}_r \cdot \mathbf{n}_r - \sigma \right] \mathbf{n}_r$$

The boundary is given by a polygonal curve

1. update each edge of the curve Γ^m via the discrete relaxed contact angle condition.
2. compute the intersection of the neighbour edges and obtain the new points for curve Γ^{m+1}.

Zhao Quan (NUS) Solid-State Dewetting 38 / 51
Advantages

- Integration is valued on S^m, n^m and n_{rm} valued explicitly.
- Assume new surface S^{m+1} is parametrized on surface S^m, ∇S is easy to valued (G. Dziuk, 1991).
- Forward Euler, linear system to solve, $\tau_m = O(h^2_X)$.
- Good mesh quality is preserved (J.W. Barrett, et al., 2008).

Disadvantages

- Re-meshing for the polygonal curve (W. Bao, et al., 2017)
- Regularization for the surface (E, Bansch, et al., 2008)
PFEM: Alternative way for contact line migration

Adding a small regularization term

\[\partial_t X_\Gamma = \varepsilon^2 \partial_{ss} \kappa n_\Gamma - \eta \left[c_\Gamma \cdot n_\Gamma - \sigma \right] n_\Gamma, \quad t \geq 0. \]

\[\Gamma^{m+1} \text{ can be found by the following approximation:} \]

\[\langle \frac{X_{\Gamma^{m+1}} - X_{\Gamma^m}}{\tau_m} \cdot n_{\Gamma^m}, \varphi_h \rangle_{\Gamma^m} + \varepsilon^2 \langle M_{\Gamma} \partial_s \kappa^{m+1}, \partial_s \varphi_h \rangle_{\Gamma^m} \]

\[+ \eta \langle c_{\Gamma^m} \cdot n_{\Gamma^m} - \sigma, \varphi_h \rangle_{\Gamma^m} = 0, \quad \forall \varphi_h \in \mathcal{V}^h(\Gamma^m), \]

\[\langle \kappa^{m+1}, n_{\Gamma^m} \cdot \omega_h \rangle_{\Gamma^m} - \langle \partial_s X_{\Gamma^{m+1}}, \partial_s \omega_h \rangle_{\Gamma^m} = 0, \quad \forall \omega_h \in (\mathcal{V}^h(\Gamma^m))^3. \]

Mobility \(M_{\Gamma} = (c_{\Gamma^m} \cdot n_{\Gamma^m} - \sigma)^2 \).

Advantages

- help smoothen the corner of the initial contact line
- have good properties with respect to distribution of the mesh points.
Pinch off of long island film \((1 \times 12 \times 1, \sigma = \cos 3\pi/4)\)
Pinch off of long island \((1 \times 16 \times 1, \sigma = \cos 3\pi/4)\)
Large square island \((3.2 \times 3.2 \times 0.1, \sigma = \cos \frac{5\pi}{6})\)
Large square \((6.4 \times 6.4 \times 0.1, \sigma = \cos 5\pi/6)\)

Figure: Temporal evolution of an initial \(6.4 \times 6.4 \times 0.1\) cuboid until its pinch off at time \(t = 0, 0.005, 0.01, 0.032\) with \(\sigma = \cos(5\pi/6)\).
Square ring I - shrining instability
For square ring, $\sigma = \cos \frac{3\pi}{4}$ - Rayleigh instability
Variational formulation

♣ Isotropic case

\[\int \int_S \mu \mathbf{n} \cdot \mathbf{g} \, dS - \int \int_S \nabla_S \mathbf{X} \cdot \nabla_S \mathbf{g} \, dS = 0, \quad \forall \mathbf{g} \in (H_0^1(S))^3. \]

♣ Anisotropic case

\[\mu = \nabla_S \cdot \xi. \]

For \(\mathbf{g} \in (H_0^1(S))^3 \), a similar equation has been derived for anisotropic case (J.E. Taylor et al., 1992; K. Deckelnick et al., 2005; P. Pozzi et al., 2008;)

\[\int \int_S \mu \mathbf{n} \cdot \mathbf{g} \, dS - \int \int_S \gamma(n) \nabla_S \mathbf{X} \cdot \nabla_S \mathbf{g} \, dS = \sum_{k,l=1}^{3} \int \int_S \xi_k n_l \nabla_S x_k \cdot \nabla_S g_l \, dS. \]
Variational formulation

♠ Given $S(0) = X(U, 0)$ with its boundary $\Gamma(0) = X(\partial U, 0)$, find $S = S(t) := X \in W_{\Gamma}(U), \mu \in H^1(S(t))$ such that

\[
\langle \partial_t X \cdot n, \phi \rangle_S + \langle \nabla_s \mu, \nabla_s \phi \rangle_S = 0, \quad \forall \phi \in H^1(S),
\]

\[
\langle \mu, n \cdot g \rangle_S - \langle \gamma(n) \nabla_s X, \nabla_s g \rangle_S = \sum_{l,k=1}^{3} \langle \xi_k \nabla_s X_k, n_l \nabla_s g_l \rangle_S, \quad \forall g \in (H_0^1(S))^3.
\]

♠ $\Gamma = \Gamma(t) := X_{\Gamma}(\partial U, t) \in (H^1(\partial U))^3, \kappa \in H^1(\Gamma)$ such that

\[
\langle \partial_t X_{\Gamma} \cdot n_{\Gamma}, \varphi \rangle_{\Gamma} + \varepsilon^2 \langle M_{\Gamma} \partial_s \kappa, \partial_s \varphi \rangle_{\Gamma} = -\eta \langle c_{\Gamma}^\gamma \cdot n_{\Gamma} - \sigma, \varphi \rangle_{\Gamma}, \quad \forall \varphi \in H^1(\Gamma),
\]

\[
\langle \kappa, n_{\Gamma} \cdot \omega \rangle_{\Gamma} - \langle \partial_s X_{\Gamma}, \partial_s \omega \rangle_{\Gamma} = 0, \quad \forall \omega \in (H^1(\Gamma))^3.
\]

Here $M_{\Gamma} = (c_{\Gamma}^\gamma \cdot n_{\Gamma} - \sigma)^2$.
Cubic surface energy

\[\gamma_c(n) = 1 + 0.25[n_1^4 + n_2^4 + n_3^4]. \]

Figure: The equilibrium shapes for (a) \(\gamma = \gamma_c(M_x(\frac{\pi}{6})n) \); (b) \(\gamma = \gamma_c(M_x(-\frac{\pi}{6})n) \); \(\sigma = \cos \frac{3\pi}{4} \).
1 Introduction

2 Solid-state dewetting in 2D
 - Mathematical model
 - The parametric finite element method (PFEM)
 - Convergence test and numerical results

3 Extension to 3D case
 - Mathematical model
 - PFEM in 3D

4 Conclusion and future works
Conclusion

- Developed sharp interface models via Cahn-Hoffman ξ-vector.
- Proposed parametric finite element methods.
- Presented numerical simulation examples.
Future works

- Extensions to the strongly anisotropic case, curved substrate.
- Efficient mesh generation and re-meshing, parallel computation.
- Mathematical theory about the well-posedness, equilibrium shape.
- The phase field approach.
- Compare with physical experiments, set up new numerical experiments.