Low degree cohomologies of congruence groups

Binyong Sun (joint with Jian-Shu Li)

Academy of Mathematics and Systems Science,
Chinese Academy of Sciences

Institute for Mathematical Sciences
National University of Singapore
2019.1.2
1. Cohomologies of arithmetic manifolds
2. Continuous cohomologies
3. Smooth cohomologies
4. A key local result
5. A result of Franke
6. Franke’s filtration
7. Proof of the global theorem
1. Cohomologies of arithmetic manifolds

- \(G \): real reductive group;
- \(K \subset G \): a maximal compact subgroup;
- \(\Gamma \subset G \): a lattice.

Problem:

\[
H^i(\Gamma; \mathbb{C}) = H^i(\Gamma \backslash G/K; \mathbb{C}) = ?
\]

Here

\[
\mathbb{C}(U) := \{ \Gamma \text{-invariant locally constant function } f : \tilde{U} \to \mathbb{C} \},
\]

and \(\tilde{U} \) is the pre-image of \(U \) under the map \(G/K \to \Gamma \backslash G/K \).
• F: an irreducible finite dimensional representation of G;

More generally,

$$\check{H}^i(\Gamma; F) = H^i(\Gamma \backslash G/K; F) =?$$

where

$$F(U) := \{ \Gamma\text{-equivariant locally constant function } f : \check{U} \to F \},$$

and \check{U} is the pre-image of U under the map $G/K \to \Gamma \backslash G/K$.

• Interesting in topology.

• Important in arithmetic.
There is a linear map

\[F^\Gamma \otimes \mathit{H}^i_{\text{ct}}(G; \mathbb{C}) = \mathit{H}^i_{\text{ct}}(G; F^\Gamma) \to \mathit{H}^i_{\text{ct}}(\Gamma; F^\Gamma) \to \mathit{H}^i(\Gamma; F). \]

Remark: We have

\[\mathit{H}^i_{\text{ct}}(G; \mathbb{C}) = \mathit{Hom}_K(\wedge^i(g_{\mathbb{C}}/k_{\mathbb{C}}), \mathbb{C}). \]
Problem
Is this an isomorphism?

Some earlier results:
$\Gamma \backslash G$ is compact: Matsushima, Raghunathan, Venkataramana, Millson-Raghunathan, · · ·

$\Gamma \backslash G$ is noncompact : Borel, Franke, Yang, · · ·
• \(G \): connected reductive linear algebraic group over \(\mathbb{Q} \);
• \(\Gamma \subset G(\mathbb{Q}) \): a congruence subgroup;

\[
G = \bigcap_{\chi: G \rightarrow GL(1)/\mathbb{Q}} \ker(|\chi| : G(\mathbb{R}) \rightarrow \mathbb{R}^\times_+).
\]

Global Theorem (Li-Sun, 2018, preprint): The above linear map is an isomorphism if \(i < r_G \).

Here \(r_G \) is the smallest integer, if it exists, such that the continuous group cohomology

\[
H_{ct}^{r_G}(G; F \otimes \pi) \neq \{0\}
\]

for some finite dimensional irreducible representations \(F \) of \(G \), and some infinite-dimensional irreducible unitary representations \(\pi \) of \(G \). Otherwise \(r_G = \infty \).
Remark:

- In many cases, r_G is the optimal bound.
- The quantity r_G is calculated in all cases (Enright, Kumaresan, Vogan-Zuckerman, Li-Schwermer).
Example 1

- \(G = SU(m, n) \).

Matsushima: Suppose \(\Gamma \backslash G \) is compact, and \(i < \frac{\min\{m,n\}}{2} \).
Then
\[
H^i(\Gamma; \mathbb{C}) \cong H^i_{ct}(G; \mathbb{C}).
\]

Our theorem: Suppose \(\Gamma \) is a congruence subgroup and \(i < \min\{m, n\} \). Then
\[
H^i(\Gamma; F) \cong F^\Gamma \otimes H^i_{ct}(G; \mathbb{C}).
\]
Example 2

- $G = \text{SL}_n(\mathbb{R})$.

 Borel: Suppose Γ is a congruence subgroup, $n \geq 4$ and $i \leq \frac{n+2}{4}$. Then

 $$H^i(\Gamma; \mathbb{C}) \cong H^i_{\text{ct}}(G; \mathbb{C}).$$

 Our theorem: Suppose Γ is a congruence subgroup and $i \leq n - 2$. Then

 $$H^i(\Gamma; F) \cong F^\Gamma \otimes H^i_{\text{ct}}(G; \mathbb{C}).$$
2. Continuous cohomologies

- G: a locally compact Hausdorff topological group.

Definition A representation of G is a quasi-complete Hausdorff locally convex topological vector space V over \mathbb{C}, together with a continuous linear action

$$G \times V \rightarrow V.$$

All representations of G form a category: Rep_G.

- Want: $H^i_{ct}(G; V)$.
- Defined by: Hochschild-Mostow.
Definition A homomorphism $\phi : V_1 \to V_2$ in Rep_G is strong if, as topological vector spaces,

\[\ker \phi \subset V_1 \text{ is a direct summand} \]

and

\[\text{Im} \phi \subset V_2 \text{ is a direct summand.} \]
Definition A representation V of G is relatively injective if for all injective strong homomorphisms $V_1 \hookrightarrow V_2$ in Rep_G, every homomorphism in $\text{Hom}_G(V_1, V)$ extends to a homomorphism in $\text{Hom}_G(V_2, V)$.
Definition A strong injective resolution of a representation V of G is an exact sequence

$$0 \to V \to J_0 \to J_1 \to J_2 \to \cdots$$

in Rep_G such that all J_i’s are relatively injective, all the arrows are strong homomorphisms.

Definition

$$H^i_{\text{ct}}(G; V) := H^i(J_\bullet).$$

This is a locally convex topological vector space.
3. Smooth cohomologies

- G: a Lie group.

Definition A representation V of G is said to be smooth if for every $X \in \mathfrak{g}$, the map

$$V \to V, \quad v \mapsto X.v := \frac{d}{dt}|_{t=0} \exp(tX).v$$

is well-defined and continuous.

All smooth representations of G form a category: Rep_G^∞.

All smooth representations of G are representations of $\mathfrak{g}_\mathbb{C}$.
Definition A homomorphism $\phi : V_1 \to V_2$ in Rep_G^∞ is strong if, as topological vector spaces,

$$\ker \phi \subset V_1 \text{ is a direct summand}$$

and

$$\text{Im} \phi \subset V_2 \text{ is a direct summand.}$$
Definition A representation V in Rep^∞_G is relatively injective if for all injective strong homomorphisms

$$V_1 \hookrightarrow V_2$$

in Rep^∞_G, every homomorphism in $\text{Hom}_G(V_1, V)$ extends to a homomorphism in $\text{Hom}_G(V_2, V)$.

Binyong Sun (joint with Jian-Shu Li) Low degree cohomologies of congruence groups
Definition A strong injective resolution of a representation V in Rep^∞_G is an exact sequence

$$0 \to V \to J_0 \to J_1 \to J_2 \to \cdots$$

in Rep^∞_G such that all J_i’s are relatively injective, all the arrows are strong homomorphisms.

Definition

$$H^i_{\text{sm}}(G; V) := H^i(J_\bullet).$$

This is a locally convex topological vector space.
Facts

- (Hochschild-Mostow) For every V in Rep^∞_G,
 \[H^i_{\text{ct}}(G; V) = H^i_{\text{sm}}(G; V). \]

- (Hochschild-Mostow) Suppose G has only finitely many connected components. Then for every V in Rep^∞_G,
 \[H^i_{\text{sm}}(G; V) = H^i(g_\mathbb{C}, K; V). \]

- (Blanc) For every representation V of G,
 \[H^i_{\text{ct}}(G; V) = H^i_{\text{sm}}(G; V^\infty) \]
 at least when V is Fréchet.
Remarks.

- $H^i_{ct}(g_\mathbb{C}, K; V)$ is calculated by the cochain complex

\[\text{Hom}_K(\wedge^\bullet g_\mathbb{C}/\mathfrak{k}_\mathbb{C}, V). \]

- The smoothing V^∞ of V is defined by the Cartesian diagram

\[
\begin{array}{ccc}
V^\infty & \longrightarrow & C^\infty(G; V) \\
\downarrow & & \downarrow \subset \\
V & \xrightarrow{v \mapsto (g \mapsto g \cdot v)} & C(G; V).
\end{array}
\]
4. A key local result

- **G:** real reductive group;
- **F:** an irreducible finite dimensional representation of G;
- **$P \subset G$:** a proper parabolic subgroup of G;
- **N:** the unipotent radical of P;
- **$L := P/N$.**

Local Theorem (Li-Sun, 2018, preprint) For every irreducible unitarizable Casselman-Wallach representation σ of L, and every dominant positive character $\nu : L \to \mathbb{R}_+^\times$,

$$H^i_{ct}(G; F \otimes \text{Ind}^G_P(\nu \otimes \sigma)) = \{0\} \quad \text{for all } i < r_G.$$
• Take a splitting of $P \to L$ and write $P = LN$.
• $\mathfrak{h} \subset \mathfrak{l}$: a maximally split Cartan subalgebra of \mathfrak{l}.

Definition A positive character $\nu : L \to \mathbb{R}_+^\times$ is said to be dominant if

$$\langle \nu|_{\mathfrak{h}_C}, \alpha^\vee \rangle \geq 0 \quad \text{for all } \alpha \in \Delta(\mathfrak{h}_C, \mathfrak{n}_C).$$

Here the complexified differential of $\nu : L \to \mathbb{R}_+^\times$ is denoted by $\nu : \mathfrak{l}_C \to \mathbb{C}$.
Proof: Case by case analysis of the root systems.
5. A result of Franke

- G: real reductive group;
- $K \subset G$: a maximal compact subgroup;
- $\Gamma \subset G$: a lattice;
- F: an irreducible finite dimensional representation of G.

Shapiro’s Lemma:

$$H^i(\Gamma; F) = H^i_{\text{sm}}(G; \text{Ind}_G^\Gamma F) = H^i_{\text{sm}}(G; C^\infty(\Gamma \backslash G) \otimes F)$$
Suppose

- \(G \): connected reductive linear algebraic group over \(\mathbb{Q} \);
- \(\Gamma \subset G(\mathbb{Q}) \): a congruence subgroup;
- \[G = \bigcap_{\chi:G \to GL(1)/\mathbb{Q}} \ker(|\chi|: G(\mathbb{R}) \to \mathbb{R}^*_+). \]

\(\mathcal{A}(\Gamma \backslash G) \): the space of smooth automorphic forms. Then

\[\mathcal{A}(\Gamma \backslash G) = \lim_{\text{I is a finite codimensional ideal of } \mathbb{Z}(g_{\mathbb{C}})} \mathcal{A}(\Gamma \backslash G)^I, \]

where

\[\mathcal{A}(\Gamma \backslash G)^I := \{ f \in \mathcal{A}(\Gamma \backslash G) : f \text{ is annihilated by } I \} \]

is a Casselman-Wallach representation of \(G \).
Theorem: (Franke)

\[H^i_{\text{sm}}(G; C^\infty(\Gamma \backslash G) \otimes F) = H^i_{\text{sm}}(G; \mathcal{A}(\Gamma \backslash G) \otimes F). \]

Remark.

- Extend \(F \) to a representation of \(G(\mathbb{R}) \). Then

\[H^i_{\text{sm}}(G; \mathcal{A}(\Gamma \backslash G) \otimes F) = H^i_{\text{sm}}(G(\mathbb{R}); \mathcal{A}(\Gamma \backslash G(\mathbb{R})) \otimes F). \]
6. Franke’s filtration

- \(P_0 \) : a minimal split torus in \(G \);
- \(A_0 \) : a maximal split torus in \(P_0 \);
- \(P = L_P \ltimes N_P \) : a standard parabolic;
- \(A_P \) : the largest split central torus in \(L \);
- \(\alpha_P \) : the Lie algebra of \(A_P(\mathbb{R}) \);
- \(\alpha_P, \mathbb{C} \) : the complexification;
- \(\check{\alpha}_P, \mathbb{C} \) : the dual space;
- \(\mathcal{A}_P(G) \) : the space of smooth automorphic forms on \((L_P(\mathbb{Q})N_P(\mathbb{A})) \backslash G(\mathbb{A}) \). This is a representation of \(G(\mathbb{A}) \). It is smooth as a representation of \(G(\mathbb{R}) \).
- \(\mathcal{A}(G) := \mathcal{A}_G(G) \).
A smooth representation

\[A_P(\mathbb{R}) \curvearrowright A_P(G), \quad (a.\phi)(x) := a^{-\rho_P} \phi(ax), \]

where \(\rho_P \in \check{a}_P \) denotes the half sum of the weights (with the multiplicities) associated to \(N_P \).

Differential :

\[a_{P,C} \curvearrowright A_P(G). \]

The generalized eigenspace decomposition :

\[A_P(G) = \bigoplus_{\lambda \in \check{a}_P, C} A_P(G)_{\lambda}. \quad (1) \]
A result of Langlands:

\[\tilde{\alpha}_{P_0} = \bigsqcup_{P \text{ is a standard parabolic}} \left(\tilde{\alpha}^+_P - \overline{\tilde{\alpha}^+_P} \right) \]

Since

\[\overline{\alpha}^+_P = \bigsqcup_{P \text{ is a standard parabolic}} \tilde{\alpha}^+_P, \]

we get a map (the dominant part)

\[(\cdot)^+: \tilde{\alpha}_{P_0} \rightarrow \overline{\tilde{\alpha}^+_P} \]
Franke’s filtration: for each $t \geq 0$, define

$$\mathcal{A}(G)[\leq t] := \left\{ \phi \in \mathcal{A}(G) : \phi_P \in \bigoplus_{\lambda \in \check{\mathfrak{a}}, \langle \Re(\lambda) \rangle_+ \rho^\vee_0} \mathcal{A}_P(G)_\lambda, \text{ for all } P \right\},$$

where $\phi_P \in \mathcal{A}_P(G)$ denotes the constant term of ϕ along P, and $\rho^\vee_0 \in \check{\mathfrak{a}}_0$ is the sum of the fundamental coweights.

Remark. The spaces of almost square integrable automorphic forms:

$$\mathcal{A}(G)[\leq 0] = \mathcal{A}^2(G) := \left\{ \phi \in \mathcal{A}^2(G) : \phi(\cdot g) \in L^{2+\epsilon}(G(\mathbb{Q}) \backslash G^1(\mathbb{A})) \text{ for all } g \right\}.$$
Define

\[\mathcal{A}(G)[<t] := \left\{ \phi \in \mathcal{A}(G) : \phi_P \in \bigoplus_{\lambda \in \mathfrak{a}_P, \mathbb{C}} \mathcal{A}_P(G)_\lambda, \text{ for all } P \right\} , \]

and

\[\mathcal{A}(G)[t] := \frac{\mathcal{A}(G)[\leq t]}{\mathcal{A}(G)[<t]} . \]
Theorem (Franke)

\[\mathcal{A}(G)[t] = \bigoplus_{P} \bigoplus_{\lambda \in \mathfrak{a}_P, \text{Re}(\lambda) \in \mathfrak{a}_P^+} \langle \text{Re}(\lambda), \rho_0 \rangle = t \mathcal{A}_P^2(G) \lambda, \]

where

\[\mathcal{A}_P^2(G) := \left\{ \phi \in \mathcal{A}_P(G) : \phi(\cdot g) \in L^{2+\epsilon}(L_P(Q) \backslash L_P^1(A)) \text{ for all } g \right\} = \text{Ind}_{P(A)}^{G(A)} \mathcal{A}_P^2(L_P). \]
Franke’s theorem + the local theorem implies that
\[H^i_{\text{sm}}(G(\mathbb{R}); \mathcal{A}(G) \otimes F) = H^i_{\text{sm}}(G(\mathbb{R}); \tilde{\mathcal{A}}(G) \otimes F) \]
for \(i < r_G \).

The theory of Eisenstein series + the local theorem implies that
\[H^i_{\text{sm}}(G(\mathbb{R}); \tilde{\mathcal{A}}(G) \otimes F) = H^i_{\text{sm}}(G(\mathbb{R}); \mathcal{A}(G) \otimes F) \]
for \(i < r_G \).

This implies that
\[H^i_{\text{sm}}(G; \mathcal{A}(\Gamma \backslash G) \otimes F) = H^i_{\text{sm}}(G; \mathcal{A}(\Gamma \backslash G) \otimes F) \]
for \(i < r_G \).

Finally,
\[H^i_{\text{sm}}(G; \mathcal{A}(\Gamma \backslash G) \otimes F) = F^{\Gamma} \otimes H^i_{\text{sm}}(G; \mathbb{C}). \]
Thank you!