Learning by Matching

Yi-Chun Chen
Department of Economics
National University of Singapore

Gaoji Hu
Nanyang Business School
Nanyang Technological University

Workshop on Matching, Search and Market Design @ NUS

July 24, 2018
Background

- Two-sided markets:
 - Marriage market
 - Job market
 - College admission market
 - School choice
 - ...
Complete Information Assumption

Assumption: Information is complete (CI), i.e.,

Every agent’s characteristics and preferences are common knowledge.
Outline

1. Incorporate firm-specific info by means of partitional information structure
2. Path to stability
3. Proof
1. One-to-one job market:

2. Incomplete information:

3. Path to stability:
 Knuth (1976), Roth and Vande Vate (1990), Kojima and Ünver (2008), Klaus and Klijn (2007), Chen et al. (2010, 2016), Fujishige and Yang (2016)...

Related Literature
The Model
Agents

- **Agents**
 - $I \ni i$: a finite set of workers.
 - $J \ni j$: a finite set of firms.

- **Types**
 - $w : I \rightarrow W$, where W is finite.
 - $f : J \rightarrow F$, where F is finite. *f is public information.*
 - $\Omega \subset W^{\|I\|}$: a set of possible type assignment functions.
Values and Payoffs

- **Values for match \((w, f)\)**
 - worker premuneration value: \(\nu_{wf} \in \mathbb{R}\).
 - firm premuneration value: \(\phi_{wf} \in \mathbb{R}\).
 - surplus of the match: \(\nu_{wf} + \phi_{wf}\).

- **Payoffs**
 - \(\nu_{w(i),f(j)} + p\) for the worker.
 - \(\phi_{w(i),f(j)} - p\) for the firm.
Allocation

- **matching**: $\mu : I \rightarrow J \cup \emptyset$, one-to-one on $\mu^{-1}(J)$.

- **payment scheme**: p associated with a matching function μ.
 - $p_{i,\mu(i)} \in \mathbb{R}$ for each $i \in I$.
 - $p_{\mu^{-1}(j),j} \in \mathbb{R}$ for each $j \in J$.
 - $p_{\emptyset} = p_{i\emptyset} = 0$.

- $\mathcal{A} \ni (\mu, p)$: the set of all allocations.
 - (μ, p) is observable for all agents.
Information

- Assumptions about w:
 - $w \in \Omega \subset W^{|I|}$.
Information

- Assumptions about \(w \):
 - \(w \in \Omega \subset W^{\left| I \right|} \).

- \(\Pi_j \): Information Partition of a firm \(j \in J \).
 - \(\Pi_j \) is a partition of \(\Omega \).
 - \(w' \in \Pi_j(w) \):
 Firm \(j \) thinks \(w' \) is possible when \(w \) is true.
Information

- Assumptions about w:
 - $w \in \Omega \subset W^{|I|}$.

- Π_j: Information Partition of a firm $j \in J$.
 - Π_j is a partition of Ω.
 - $w' \in \Pi_j(w)$:
 Firm j thinks w' is possible when w is true.

- $\Pi := \{\Pi_j\}_{j \in J}$.

- Complete info: every partition cell is a singleton.
State of the Market

A state of the matching market, \((\mu, p, w, \Pi)\), specifies

- an allocation \((\mu, p)\);

- a type assignment function \(w\); and

- a partition profile \(\Pi\).
Stability
Requirement 1 of Stability: Individual Rationality

Definition 1
A state \((\mu, p, w, \Pi)\) is said to be individually rational if

\[
\nu_{w(i),f(\mu(i))} + p_{i,\mu(i)} \geq 0 \quad \text{for all } i \in I \text{ and }
\]

\[
\phi_{w(\mu^{-1}(j)),f(j)} - p_{\mu^{-1}(j),j} \geq 0 \quad \text{for all } j \in J.
\]
Requirement 2 of Stability: No Blocking

- Following LMPS, 'a firm cares about the worst case of worker if she does not know his true type.'

Definition 2

A state \((\mu, p, w, \Pi)\) is said to be **blocked** if there exists a worker-firm pair \((i, j)\) and a payment \(p \in \mathbb{R}\) such that

\[
\nu_{w(i), f(j)} + p > \nu_{w(i), f(\mu(i))} + p_{i, \mu(i)} \quad \text{and} \\
\phi_{w'(i), f(j)} - p > \phi_{w'(\mu^{-1}(j)), f(j)} - p_{\mu^{-1}(j), j}
\]

for all \(w' \in \Pi_j(w)\)
Requirement 2 of Stability: No Blocking

- Following LMPS, ’a firm cares about the worst case of worker if she does not know his true type.’

Definition 2

A state (μ, p, w, Π) is said to be **blocked** if there exists a worker-firm pair (i, j) and a payment $p \in \mathbb{R}$ such that

$$\nu_{w(i),f(j)} + p > \nu_{w(i),f(\mu(i))} + p_{i,\mu(i)} \quad \text{and} \quad \phi_{w'(i),f(j)} - p > \phi_{w'((\mu^{-1}(j)),f(j)) - p_{\mu^{-1}(j),j}}$$

for all $w' \in \Pi_j(w)$ satisfying

$$\nu_{w'(i),f(j)} + p > \nu_{w'(i),f(\mu(i))} + p_{i,\mu(i)}.$$
Requirement 2 of Stability: No Blocking

- Following LMPS, 'a firm cares about the worst case of worker if she does not know his true type.'

Definition 2

A state \((\mu, p, w, \Pi)\) is said to be **blocked** if there exists a worker-firm pair \((i, j)\) and a payment \(p \in \mathbb{R}\) such that

\[
\nu_{w(i),f(j)} + p > \nu_{w(i),f(\mu(i))} + p_{i,\mu(i)} \quad \text{and} \quad \\
\phi_{w'(i),f(j)} - p > \phi_{w'(\mu^{-1}(j)),f(j)} - p_{\mu^{-1}(j),j}
\]

for all \(w' \in \Pi_j(w)\) satisfying

\[
\nu_{w'(i),f(j)} + p > \nu_{w'(i),f(\mu(i))} + p_{i,\mu(i)}.
\]

Consistency: A firm can observe the type of her own employee, if any.

\[
\forall w' \in \Pi_j(w), w'(\mu^{-1}(j)) = w(\mu^{-1}(j)).
\]
Example 1

- One worker α with possible types $w = -1$ (true) and $w' = 1$.
 Two firms a and b. Firms’ type: $f_a = 1$ and $f_b = -1$.
 Values: $\nu_{wf} = \phi_{wf} = \nu_{wf}$.

- Allocation: No firm is matched with the worker.

- $\Pi_a = \{\{w\}, \{w'\}\}$ and $\Pi_b = \{\{w, w'\}\}$.
Example 1

- One worker α with possible types $w = -1$ (true) and $w' = 1$.

 Two firms a and b. Firms’ type: $f_a = 1$ and $f_b = -1$.

 Values: $\nu_{wf} = \phi_{wf} = wf$.

- Allocation: No firm is matched with the worker.

- $\Pi_a = \{\{w\}, \{w'\}\}$ and $\Pi_b = \{\{w, w'\}\}$.

- (α, a) is a blocking pair at w' but not at w, i.e., $N_a = \{\{w\}, \{w'\}\}$.
Example 1

▶ One worker α with possible types $w = -1$ (true) and $w' = 1$.
Two firms a and b. Firms’ type: $f_a = 1$ and $f_b = -1$.
Values: $\nu_{wf} = \phi_{wf} = wf$.

▶ Allocation: No firm is matched with the worker.

▶ $\Pi_a = \{\{w\}, \{w'\}\}$ and
$\Pi_b = \{\{w, w'\}\}$.

▶ (α, a) is a blocking pair at w' but not at w, i.e., $N_a = \{\{w\}, \{w'\}\}$.

▶ ’The state is not blocked by firm $a’ \implies$ firm b can learn N_a, i.e.,

$$\Pi_b \lor N_a = \{\{w\}, \{w'\}\}.$$
Requirement 3 of Stability: Informational Stability

The fact of IR and no blocking provides no information to agents.

1. Partition Representation
2. Information Aggregation
Requirement 3 of Stability: Informational Stability

The fact of IR and no blocking provides no information to agents.

1. Partition Representation

2. Information Aggregation

1. Given a state \((\mu, p, w, \Pi)\), let \(N^{(\mu, p, \Pi)}\) be a partition of \(\Omega\):

\[N^{(\mu, p, \Pi)}(w') = N^{(\mu, p, \Pi)}(w'') \text{ if and only if either neither } (\mu, p, w', \Pi) \text{ nor } (\mu, p, w'', \Pi) \text{ is blocked or both of them are blocked.} \]
Requirement 3 of Stability: Informational Stability

The fact of IR and no blocking provides no information to agents.

1. Partition Representation
2. Information Aggregation

1. Given a state \((\mu, p, w, \Pi)\), let \(N^{(\mu, p, \Pi)}\) be a partition of \(\Omega\):

\[
N^{(\mu, p, \Pi)}(w') = N^{(\mu, p, \Pi)}(w'') \quad \text{if and only if either neither } (\mu, p, w', \Pi) \text{ nor } (\mu, p, w'', \Pi) \text{ is blocked or both of them are blocked.}
\]

2. Aggregating two pieces of information → Join of two partitions.

- Inferences:
 \[
 [H_{\mu, p}(\Pi)]_j := N^{(\mu, p, \Pi)} \lor \Pi_j, \forall j \in J, \text{ i.e.,}
 \]
 \[
 [H_{\mu, p}(\Pi)]_j(w') := \Pi_j(w') \cap N^{(\mu, p, \Pi)}(w'), \forall w' \in \Omega, \forall j \in J.
 \]
Stability

Definition 3

A state \((\mu, p, w, \Pi)\) is said to be stable if

1. it is individually rational,
2. it is not blocked by any pair, and
3. \(\Pi\) is a fixed point of \(H_{\mu, p}\), i.e. \(H_{\mu, p}(\Pi) = \Pi\).
Learning and Blocking

Consider \((\mu, p, w^*, \Pi)\) where \(\Pi\) and \((\mu, p)\) are common knowledge.

- The state is not blocked:

\[
\Pi \rightarrow H_{\mu, p}(\Pi).
\]
Learning and Blocking

Consider \((\mu, p, w^*, \Pi)\) where \(\Pi\) and \((\mu, p)\) are common knowledge.

- The state is not blocked:
 \[
 \Pi \rightarrow H_{\mu,p}(\Pi).
 \]

- The state is blocked by \((i, j; p)\).
 Extra information described by \(B(\mu, p, \Pi; i, j; p)\):
 \[
 B(\mu, p, \Pi; i, j; p)(w') = B(\mu, p, \Pi; i, j; p)(w'') \text{ if and only if either } (i, j; p) \text{ blocks both } (\mu, p, w', \Pi) \text{ and } (\mu, p, w'', \Pi) \text{ or neither.}
 \]
 \[
 \forall j', \Pi_{j'} \rightarrow \Pi_{j'} \lor B(\mu, p, \Pi; i, j; p)
 \]
Learning and Blocking

Consider \((\mu, p, w^*, \Pi)\) where \(\Pi\) and \((\mu, p)\) are common knowledge.

- The state is not blocked:

 \[
 \Pi \rightarrow H_{\mu, p}(\Pi).
 \]

- The state is blocked by \((i, j; p)\).

 Extra information described by \(B(\mu, p, \Pi; i, j; p)\):

 \[
 B(\mu, p, \Pi; i, j; p)(w') = B(\mu, p, \Pi; i, j; p)(w'') \text{ if and only if either } (i, j; p) \text{ blocks both } (\mu, p, w', \Pi) \text{ and } (\mu, p, w'', \Pi) \text{ or neither.}
 \]

 \[
 \forall j', \quad \Pi_{j'} \rightarrow \Pi_{j'} \lor B(\mu, p, \Pi; i, j; p)
 \]

State updating: \((\mu', p', w^*, \Pi') \xrightarrow{(i, j; p)} (\mu, p, w^*, \Pi)\), if

- \((i, j; p)\) is satisfied in the new state, and

- for all \(j' \neq j\), \(\Pi'_{j'} = \Pi_{j'} \lor B(\mu, p, \Pi; i, j; p)\).
A learning-blocking path is a sequence of states \(\{(\mu^l, p^l, w^*, \Pi^l)\}_{l=0}^L \) s.t. for any two adjacent states \((\mu^l, p^l, w^*, \Pi^l)\) and \((\mu^{l+1}, p^{l+1}, w^*, \Pi^{l+1})\),

- if \((\mu^l, p^l, w^*, \Pi^l)\) is not blocked, then \((\mu^{l+1}, p^{l+1}) = (\mu^l, p^l)\) and \(\Pi^{l+1} = H_{\mu^l, p^l}(\Pi^l)\);

- if \((\mu^l, p^l, w^*, \Pi^l)\) is blocked, then \((\mu^{l+1}, p^{l+1}, w^*, \Pi^{l+1}) \xleftarrow{(i,j;p)} (\mu^l, p^l, w^*, \Pi^l)\), where \((i,j;p)\) is a blocking combination for \((\mu^l, p^l, w^*, \Pi^l)\).
Main Result

Theorem 1
Suppose payments permitted in the job market are all integers. Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.
Main Result

Theorem 1
Suppose payments permitted in the job market are all integers. Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.

Theorem 2
Suppose payments permitted in the job market are all integers. Then the random learning-blocking path starting from an arbitrary state converges with probability one to a stable state.
Main Result

Theorem 1
Suppose payments permitted in the job market are all integers. Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.

Theorem 2
Suppose payments permitted in the job market are all integers. Then the random learning-blocking path starting from an arbitrary state converges with probability one to a stable state.

Theorem 3
\((\mu, p, w)\) is an incomplete-info. stable outcome in the sense of LMPS if and only if there exists a partition profile \(\Pi\) such that \((\mu, p, w, \Pi)\) is stable.
Proof of Theorem 1

Initial state: \((\mu, p, t^*, \Pi)\), assumed to be IR.

\[
(\mu, p, t^*, \Pi) : \begin{cases}
\text{Blocked} \\
\text{Not blocked}
\end{cases}, \quad (\mu, p, t^*, H_{\mu, p}(\Pi)) : \begin{cases}
\text{Blocked} \\
\text{Not blocked}
\end{cases} \ldots
\]

Finite time: blocked OR stable.
Proof of Theorem 1

Initial state: \((\mu, p, t^*, \Pi)\) is blocked, where \((i^1, j^1)\) is a blocking pair.

A new state: \((\mu', p', t^*, \Pi')\).
Proof of Theorem 1
Proof of Theorem 1

\[\alpha = i \]
Proof of Theorem 1

\[\alpha = i \]
Proof of Theorem 1

\[\alpha = i \]
Proof of Theorem 1

\[\alpha = i \]
Proof of Theorem 1

$\alpha = i$

\[
\begin{array}{c c c c}
i^1 & i & i^2 & i^3 \\
\mid & \mid & \mid & / \\
 j^1 & j^2 & j^3 & \\
\end{array}
\]
Proof of Theorem 1

\[\alpha = i^2 \]

\[
\begin{array}{ccc}
 i^1 & i & i^2 \\
 j^1 & j^2 & j^3 \\
\end{array}
\]
Proof of Theorem 1

\[\alpha = i^2 \]

When tracking stops: the set contains no blocking pair
Proof of Theorem 1

\[\alpha = i^2 \]

When tracking stops: the set contains no blocking pair

OR there is one more direct observation.
Efficiency (CI Stability) of Stable States?

A partial answer:

(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.
Efficiency (CI Stability) of Stable States?

A partial answer:

(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

- One worker β with possible types $w_\beta = 1$ (true) and $w'_\beta = -1$.
- One firm b with type: $f_b = 1$.
- Values: $\nu_{wf} = |wf|$ and $\phi_{wf} = wf$.

\[\text{Status quo: no match and } \Pi_b = \{ w_\beta, w'_\beta \} \]
Efficiency (CI Stability) of Stable States?

A partial answer:

(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

- One worker β with possible types $w_\beta = 1$ (true) and $w'_\beta = -1$.
 One firm b with type: $f_b = 1$.
 Values: $\nu_{wf} = |wf|$ and $\phi_{wf} = wf$.

- Status quo: no match and $\Pi_b = \{w_\beta, w'_\beta\}$.
Efficiency (CI Stability) of Stable States?

A partial answer:

(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

▶ One worker β with possible types $w_\beta = 1$ (true) and $w'_\beta = -1$.
One firm b with type: $f_b = 1$.
Values: $\nu_{wf} = |wf|$ and $\phi_{wf} = wf$.

▶ Status quo: no match and $\Pi_b = \{w_\beta, w'_\beta\}$.

▶ The status quo is
 ▶ incomplete-information stable but
 ▶ not efficient (not complete-information stable).
Conclusion

1. Stability with one-sided incomplete information.

i Describes firms’ information by firm specific and flexible partitions.

ii Makes (II) stability a natural extension of (CI) stability. Isolates the role played by information (requirement 3).

2. Path to stability.

i Describes information updating along a blocking path.

ii Shows the convergence of Learning-Blocking Paths.

iii Robustness of convergence w.r.t. learning pattern.

3. Connection with LMPS’s stability notions.

i Generates the same set of stable allocations as LMPS.

ii Different conceptual starting points: one state V.S. a set of outcomes.

