Ambiguity and the Centipede Game: Strategic Uncertainty in Multi-Stage Games

Simon Grant
(with Jürgen Eichberger and David Kelsey)

IMS-NUS, Workshop on Game Theory,
5 June 2018.
(a) Stack of 1 dollar coins

(b) 2nd stack (equally high)
... or snatch?
The Centipede Game

- Game tree with two (initial) stacks of one hundred 1-dollar coins
Q. How much consistency should we require between beliefs of players about opponents’ behavior and those opponents’ actual behavior to justify calling a situation an (at least temporary) equilibrium?

Q. How should beliefs be updated and the attendant dynamic inconsistencies handled?
Relationship to Literature

● Ambiguity in Games
 – normal Form games
 * games of incomplete information: Azrieli & Teper (2011), Kajii & Ui (2005), Grant, Meneghel & Tourky (2016)
 – extensive form games with incomplete information
 * Hanany, Klibanoff & Mukerji (2016) ambiguity concerns type of opponent while the strategy is unambiguous.

Consistent Planning

- At $t = 0$, DM chooses one of three bets:

 \bar{b}: accept guaranteed payment of x;

 b_G: a bet which pays q if a signal’s realization is G in period 1;

 b_W: a bet which pays 1 if an event W obtains in period 2.

- At $t = 1$, if she did not choose \bar{b} and the signal’s realization is G then she has option to switch from b_W to b_G (or vice versa).
Consistent Planning

- State-contingent pay-offs of the three bets are:

<table>
<thead>
<tr>
<th>Events</th>
<th>(B)</th>
<th>(G \cap L)</th>
<th>(G \cap W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{b})</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(b_G)</td>
<td>(0)</td>
<td>(q)</td>
<td>(q)</td>
</tr>
<tr>
<td>(b_W)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

- Suppose \(b_W \succ \bar{b} \succ b_G \) but \(b_G \succ^G b_W \).

- If DM anticipates she will prefer \(b_G \) should she be told the signal’s realization is \(G \), then may decide to choose \(\bar{b} \) at \(t = 0 \).

- We refer to this as consistent planning (Siniscalchi [2011]).
Consistent Planning

- State-contingent pay-offs of the three bets are:

<table>
<thead>
<tr>
<th>Events</th>
<th>B</th>
<th>G ∩ L</th>
<th>G ∩ W</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{b})</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(b_G)</td>
<td>0</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>(b_W)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Suppose \(b_W \succ \bar{b} \succ b_G \) but \(b_G \succ b_W \).

- If DM anticipates she will prefer \(b_G \) should she be told the signal’s realization is \(G \), then may decide to choose \(\bar{b} \) at \(t = 0 \).

- We refer to this as consistent planning (Siniscalchi [2011]).
Consistent Planning

- State-contingent pay-offs of the three bets are:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>$G \cap L$</th>
<th>$G \cap W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>b_G</td>
<td>0</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>b_W</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Suppose $b_W \succ \bar{b} \succ b_G$ but $b_G \succ^G b_W$.

- If DM *anticipates* she will prefer b_G should she be told the signal’s realization is G, then may decide to choose \bar{b} at $t = 0$.

- We refer to this as *consistent planning* (Siniscalchi [2011]).
Consistent Planning

- State-contingent pay-offs of the three bets are:

<table>
<thead>
<tr>
<th>Events</th>
<th>B</th>
<th>$G \cap L$</th>
<th>$G \cap W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>b_G</td>
<td>0</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>b_W</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Suppose $b_W \succ \bar{b} \succ b_G$ but $b_G \succ^G b_W$.

- If DM *anticipates* she will prefer b_G should she be told the signal’s realization is G, then may decide to choose \bar{b} at $t = 0$.

- We refer to this as **consistent planning** (Siniscalchi [2011]).
The Neo-additive Model of Ambiguity

Preferences admit a representation of the form:

\[\int u(a) \, d\nu = (1 - \delta) \mathbb{E}_\pi u(a) + \delta [\alpha m(a) + (1 - \alpha) M(a)] \]

- \(\nu \) is a neo-additive capacity,
 - \(\pi \) is a probability measure over the state space;
 - \(\delta \) is a measure of perceived ambiguity;
 - \(\alpha \) measures ambiguity-attitude, \(\alpha = 1 \) (respectively, \(\alpha = 0 \))
 corresponding to pure pessimism (respectively, optimism).
- \(M(a) \) denotes the maximum utility of act \(a \),
- \(m(a) \) denotes the minimum utility of act \(a \),
- \(\mathbb{E}_\pi u(a) \) denotes the expected utility of act \(a \).
Updating Ambiguous Beliefs

Suppose that event $E \subseteq S$ is observed.

Let ν^E denote the updated capacity then:

$$a \succ^E b \iff \int u(a(s)) d\nu^E(s) \succ \int u(b(s)) d\nu^E(s).$$

Generalized Bayesian Updating (GBU)

$$\nu^E(A) = \frac{\nu(A \cap E)}{\nu(A \cap E) + 1 - \nu(E^c \cup A)} = \frac{\nu(A \cap E)}{\nu(A \cap E) + \bar{\nu}(A^c \cap E)},$$

where $\bar{\nu}(E) = 1 - \nu(E^c)$.

Updating Ambiguous Beliefs

Suppose that event \(E \subseteq S \) is observed.

Let \(\nu^E \) denote the updated capacity then:

\[
a \succeq^E b \iff \int u(a(s)) d\nu^E(s) \succeq \int u(b(s)) d\nu^E(s).
\]

Generalized Bayesian Updating (GBU)

For a neo-additive capacity \((\pi, \delta, \alpha)\),
its GBU is the neo-additive capacity \((\pi^E, \delta^E, \alpha^E)\),

where \(\pi^E(A) = \frac{\pi(A \cap E)}{\pi(E)} \), \(\delta^E = \frac{\delta}{\delta + (1-\delta)\pi(E)} \), and \(\alpha^E = \alpha \).
Multi-Stage Games

Definition

A multi-stage game Γ is a triple $\langle \{1, 2\}, H, (u_1, u_2) \rangle$, where $H = H \cup Z$ is the union of all non-terminal and terminal histories, and u_i is player i’s pay-off function.

Definition

A (pure) strategy of a player $i = 1, 2$ is a function s_i which assigns to each history $h \in H$ an action $a_i \in A_i^h$.

- S_i (resp., S_{-i}) denotes i’s (resp., her opponent’s) strategy set.
- $S = S_i \times S_{-i}$ denotes the set of strategy profiles.
- For each non-terminal history $h \in H$:
 - $S(h) \subset S$ denotes the set of strategy profiles that lead to the play of history h with respective marginals $S_i(h)$ and $S_{-i}(h)$.
 - S_i^h, S_{-i}^h & S^h are the corresponding continuation sets.
Multi-Stage Games

Definition

A *multi-stage game* Γ is a triple $\langle \{1, 2\}, \overline{H}, (u_1, u_2) \rangle$, where $\overline{H} = H \cup Z$ is the union of all non-terminal and terminal histories, and u_i is player i’s pay-off function.

Definition

A (pure) *strategy* of a player $i = 1, 2$ is a function s_i which assigns to each history $h \in H$ an action $a_i \in A_i^h$.

- S_i (resp., S_{-i}) denotes i’s (resp., her opponent’s) strategy set.
- $S = S_i \times S_{-i}$ denotes the set of strategy profiles.
- For each non-terminal history $h \in H$:
 - $S(h) \subset S$ denotes the set of strategy profiles that lead to the play of history h with respective marginals $S_i(h)$ and $S_{-i}(h)$.
 - S^h_i, S^h_{-i} & S^h are the corresponding continuation sets.
Multi-Stage Games

Definition

A multi-stage game Γ is a triple $\langle \{1, 2\}, H, (u_1, u_2) \rangle$, where $H = H \cup Z$ is the union of all non-terminal and terminal histories, and u_i is player i’s pay-off function.

Definition

A (pure) strategy of a player $i = 1, 2$ is a function s_i which assigns to each history $h \in H$ an action $a_i \in A_i^h$.

- S_i (resp., S_{-i}) denotes i’s (resp., her opponent’s) strategy set.
- $S = S_i \times S_{-i}$ denotes the set of strategy profiles.
- For each non-terminal history $h \in H$:
 - $S(h) \subset S$ denotes the set of strategy profiles that lead to the play of history h with respective marginals $S_i(h)$ and $S_{-i}(h)$.
 - $S_i^h, S_{-i}^h \& S^h$ are the corresponding continuation sets.
Admissible “beliefs”

- To study impact of *ambiguity*, we put restrictions on a player’s
 - perception of ambiguity about her opponent's choice of strategy;
 - attitude towards any such perceived ambiguity.

- We do this by assigning each player i a set of *admissible* capacities:
 e.g. for a neo-expected payoff maximizer we have

$$C_i = \{ \nu_i = \nu(\cdot \mid \alpha_i, \delta_i, \pi_i) : \pi_i \in \Delta(S_{-i}) \}$$
Conditional neo-expected payoffs

If Player i’s initial “belief” about how her opponent is choosing his strategy corresponds to the capacity $\nu(\cdot | \alpha_i, \delta_i, \pi_i)$;

Then, given the game has reached stage t via history h, her GBU capacity ν^h_i leads her to evaluate the neo-expected payoff of her continuation strategy s^h_i according to:

$$V^h_i \left(s^h_i | \nu_i \right) = \left(1 - \delta^h_i \right) \mathbb{E}_{\pi_i^h} u_i \left(s^h_i, \cdot \right)$$

$$+ \delta^h_i \left[\alpha_i \min_{s^h_{-i} \in S^h_{-i}} u^h_i \left(s^h_i, s^h_{-i} \right) + (1 - \alpha_i) \max_{s^h_{-i} \in S^h_{-i}} u^h_i \left(s^h_i, s^h_{-i} \right) \right] ,$$

where $\delta^h_i = \frac{\delta_i}{\delta_i + (1 - \delta_i) \pi_i(S_{-i}(h))}$,

and π_i^h is the Bayesian update of π_i (whenever $\delta^h_i < 1$).
Support of a Capacity

Definition

If ν_i is a capacity on S_{-i}, define

$$\text{supp } \nu_i = \{s_{-i} \in S_{-i} : \forall A \subsetneq S_{-i}, s_{-i} \notin A; \nu_i(A \cup s_{-i}) > \nu_i(A)\}.$$

- $\text{supp } \nu_i$ comprises those strategies of i’s opponent which always get positive weight in the Choquet integral, no matter which of i’s strategies is being evaluated.

- For a neo-additive capacity $\nu_i = \nu(\cdot | \alpha_i, \delta_i, \pi_i)$
 $$\text{supp } \nu_i = \text{supp } \pi_i.$$
Support of a Capacity

Definition

If ν_i is a capacity on S_{-i}, define

$$\text{supp } \nu_i = \{s_{-i} \in S_{-i} : \forall A \subsetneq S_{-i}, s_{-i} \notin A; \nu_i(A \cup s_{-i}) > \nu_i(A)\}.$$

- $\text{supp } \nu_i$ comprises those strategies of i’s opponent which always get positive weight in the Choquet integral, no matter which of i’s strategies is being evaluated.

- For a neo-additive capacity $\nu_i = \nu(\cdot \mid \alpha_i, \delta_i, \pi_i)$

$$\text{supp } \nu_i = \text{supp } \pi_i.$$
Consistent-Planning Equilibrium Under Ambiguity

- Players are neo-expected payoff maximizers
- They update beliefs using Generalized Bayesian Updating.
- In any continuation after any history of play, they choose a best action according to their (updated) beliefs.
- They anticipate how information they may receive in the future will change their preferences (consistent planning)
A Consistent Planning Equilibrium Under Ambiguity (CP-EUA) is a profile of capacities $\langle \nu_1, \nu_2 \rangle$ such that for each player $i = 1, 2$,

$$s_i \in \text{supp } \nu_{-i}$$

$$\Rightarrow V_i^h \left(s_i^h | \nu_i \right) \geq V_i^h \left((a_i, s_i^h (-t)) | \nu_i \right)$$

for every $a_i \in A_i^h$, every $h \in H^{t-1}$ and every $t = 1, \ldots, T$
Existence of CP-EUA

Proposition

Let Γ be a multi-stage game with 2 neo-expected payoff maximizing players. Then Γ has at least one CP-EUA for any given parameters $\alpha_1, \alpha_2, \delta_1, \delta_2$, where $0 \leq \alpha_i \leq 1$, $0 < \delta_i \leq 1$, for $i = 1, 2$.
Returning to the Centipede Game

Suppose $\delta_1 = \delta_2 = \delta$ and $\alpha_1 = \alpha_2 = \alpha$

Recall δ measures ambiguity, α reflects ambiguity-attitude.
1. **Cooperation**
 If sufficient ambiguity and players are sufficiently ambiguity-loving (that is, provided $\delta(1 - \alpha) \geq \frac{1}{3}$) then equilibrium involves playing r (i.e, “continue”) until the final node.

 - At final node player 2 chooses d (down) since it is a dominant strategy for player 2 at that point.

2. **Non-cooperation**
 With high levels of ambiguity-aversion (that is, provided $\alpha \geq \frac{2}{3}$) only equilibrium is playing d at every node.

 - Similar to Nash equilibrium.
Cooperation versus Non-cooperation

- No cooperation: \(\alpha > \frac{2}{3} \)
- Continue: \(\delta(1-\alpha) > \frac{1}{3} \)
Mixed Equilibria

Proposition

Let Γ be a M stage centipede game, where $M \geq 4$, then Γ does not have a pure strategy equilibrium when $\alpha < \frac{2}{3}$ and $\delta(1 - \alpha) < \frac{1}{3}$.

- Kilka and Weber, (2001) experimentally estimate neo-additive preferences and find on average $\alpha = \delta = \frac{1}{2}$.
 - This is compatible with the present case.

- Under these assumptions there is a mixed strategy equilibrium.
 - 1 believes likelihood of 2 choosing r at $M - 2$ is p.
 - 2 believes likelihood of 1 choosing r at $M - 1$ is q.
Mixed Equilibria

(i) 2’s belief about how 1 “randomizes” at node $M-1$ should make 2 at node $M-2$ indifferent between selecting either d or r; i.e.,

$$M - 1 = (1 - \delta)((1 - q)(M - 2) + q(M + 1)) + \delta(\alpha(M - 2) + (1 - \alpha)(M + 1))$$
(ii) given the *GBU* of 1’s belief conditional on reaching node $M - 1$, 1 should be *indifferent* between selecting either d or r; i.e.,

$$M = \left(1 - \delta^{M-1}\right) (M - 1) + \delta^{M-1} \left(\alpha (M - 1) + (1 - \alpha) (M + 2)\right)$$

where $\delta^{M-1} = \frac{\delta}{\delta + (1 - \delta)p}$.

Simon Grant (ANU)
Extensions/Work in Progress

- Extend to a larger class of games e.g. multi-player games.
- Add a type space.
- Extend to related games.
 - Alternating offers bargaining.
 - Chain store paradox.
 - Repeated Games
 - Herding in financial markets.
 - Asset price bubbles.