Judicial Mechanism Design

Ron Siegel and Bruno Strulovici

July 2018
A criminal defendant goes through a complex process
- Arrest, plea bargaining, cross-examination, verdict, sentencing, etc.

Existing work considers different aspects of the process

We investigate a broad class of processes that determine guilt and appropriate punishment from two different welfare perspectives
- Impose little structure on the process

Provide insights into key features of existing judicial systems

Conduct a mechanism design analysis focused on the defendant’s private information
Introduction

- Reduce judicial process to a single-agent mechanism
- Derive properties of interim and ex-ante welfare-maximizing mechanisms
 - Welfare criteria differ in their treatment of deterrence
 - Properties hold if optimize over more instruments (prevention, policing, etc)
- Similarities and differences with features of the American criminal justice system
 - Plea bargains, trials with binary verdicts, evidence threshold similar to BARD
 - Adversarial system, separation of fact-finding and sentencing as commitment devices
Today

- Judicial mechanism
- Interim welfare
- Ex-ante welfare
- Main assumption and class of mechanisms
- Interim optimal mechanism
- Ex-ante optimal mechanism
- Comparison to existing judicial systems
Judicial mechanism

- A crime has been committed and a suspect is arrested and charged
- The defendant is privately informed about his guilt, $\theta \in \{i, g\}$
 - Prior λ that the defendant is guilty
 (main results are “prior-free” can be stated as complete class theorems)
- Criminal justice machinery put into motion, leading to a judicial decision and a sentence
 - May involve multiple actors and several stages
- Model the process as an extensive-form game and an equilibrium
- Summarize the process by a signal $t \in [0,1]$ regarding the defendant’s guilt and a mapping from signals to (possibly random) sentences
- Consider the corresponding truthful mechanism: direct-revelation mechanisms in which the defendant truthfully reports his guilt $\hat{\theta} \in \{i, g\}$
Reduction to a single-agent DRM

- Take an extensive form game and an equilibrium
- Fix strategies of other players, and focus on strategy of the defendant, which is a function of his type
- Consider Direct Revelation Mechanism in which defendant reports his type, and corresponding strategy is played
- Truth-telling is optimal
- Outcome of the game: signal t capturing likelihood of guilt + sentence s
- Normalize signal t to lie in $[0,1]$
Summary: Judicial DRM

A mechanism is a pair $M = (F, S)$, where

$F = \left(F_i^\hat{\theta}, F_g^\hat{\theta}, F_i^\theta, F_g^\theta \right)$ is a vector of signal distributions

$S(t, \hat{\theta}) \in \Delta[0, \bar{s}]$ is a sentence function

\bar{s} is the highest allowable sentence for the crime

Signal has support $[0,1]$ and is ordered by its likelihood ratio (wlog)

Signal distributions have positive densities $f_{\theta}^\hat{\theta}$, and $f_g^\hat{\theta}(t)/f_i^\hat{\theta}(t)$ is strictly increasing in t

(non atomicity can be relaxed)
Interim welfare

- Denote by $W(s, \theta)$ the welfare from imposing sentence s on defendant of type θ
 - $W(\cdot, g)$ continuous, concave, and single peaked at $\hat{s} > 0$
 - $W(\cdot, i)$ continuous, concave, and strictly decreasing, $W(0, i) = 0$
- Given prior λ, sentence s leads to welfare
 \[
 \lambda W(s, g) + (1 - \lambda) W(s, i)
 \]
- $(W(\tilde{s}, \theta)$ is also expected welfare from random sentence $\tilde{s})$
- Interim welfare given a mechanism is
 \[
 \lambda \left(E^{F_{g}} (W(S(\cdot, \hat{\theta}), g)) - C(F_{g}^{\hat{\theta}}) \right) + \nonumber
 \]
 \[
 (1 - \lambda) \left(E^{F_{i}} (W(S(\cdot, \hat{i}), i)) - C(F_{i}^{\hat{i}}) \right)
 \]
- $C(F_{\theta}^{\hat{\theta}}) \geq 0$ is expected welfare cost of generating $F_{\theta}^{\hat{\theta}}$
Ex-ante welfare

- Also considers the number of crimes committed
- The mechanism acts as a deterrent
- Individuals weigh cost and benefit of committing crime
 - Benefit varies in the population
- At most one individual is apprehended and prosecuted for it
- Ex-ante social welfare given mechanism M is

$$H(M) \left(\pi_g \left(E^{\hat{g}}_g \left(W(S(\cdot, \hat{g}), g) \right) \right) - C(F_g) \right)$$
Optimal mechanisms

- Derive properties of optimal mechanisms for interim and ex-ante welfare

- Let $u(s)$ be an individual’s utility from sentence s

- Assume that when defendant is innocent, social preferences over sentences agree with those of the defendant
 - $W(s, i) = u(s)$ (generalizes to $W(s, i) = \Phi(u(s))$ with Φ increasing and convex)

- Feasible DRM = DRM obtained from earlier reduction for some game and equilibrium. Which (truthful) mechanisms are feasible?
 - Depends on technology, unmodeled agents

- Assumption 1: *Replacing the sentence function in a feasible mechanism with any other sentence function that maintains truthfulness leads to a feasible mechanism*
 - Puts some structure on the set of feasible truthful mechanisms
 - Captures a notion of commitment
Interim welfare

- A mechanism is *interim optimal* if it maximizes interim welfare among all feasible mechanisms.
 - Considering interim welfare allows us to disentangle the effect of deterrence from other welfare implications.

Theorem 1: Any *interim optimal mechanism* has the following properties:

- The innocent defendant's sentence is a step function of t, which jumps from 0 to \bar{s} at some cutoff signal \bar{t}.
- The guilty defendant’s sentence is constant.
Interim welfare

- Resembles system in which plea is available before trial, and trial ends in one of two verdicts
- If defendant pleads guilty, fixed sentence and avoids trial
- Otherwise, faces a trial and is either “acquitted” and obtains a sentence of 0 or “convicted” and obtains a severe sentence
- Conviction occurs if evidence is sufficiently strong (exceeds a threshold)
- *No punishment* following an “acquittal” was not assumed
- Extreme sentence not due to deterrence (≠ Becker (1968))
- Signal not used following a “guilty” plea, even if informative
 - Not due to cost saving (but shows cost saving need not be inefficient)
 - Screening value of pleas, noted by Grossman and Katz (1983)
- Relation to Crémer-McLean: FB achievable if disutility and likelihood ratio are both unbounded, or if utility unbounded in both direction
Proof idea

- Fix a feasible mechanism. Modify sentences (only) to maximize social welfare subject to truthful reporting
- Use signal to incentivize truthful reporting
- Intuitively, binding IC: guilty pretends to be innocent
- Given utility level for innocent, choose sentence scheme that is least attractive for the guilty
- MLRP implies that it is a step function with extreme sentences
- Guilty sentence is constant because defendant and society are risk averse and innocent’s IC not binding
Ex-ante welfare

- Sentence modification may affect deterrence and thus number of crimes committed
- Affects ex-ante welfare
- If, in Theorem 1, guilty’s constant sentence is less than ex-post optimum \hat{s}, construction leaves guilty’s utility unchanged
 - Set of individuals who commit the crime does not change
- Corollary: *Theorem 1 characterizes mechanisms that maximize ex-ante welfare among all mechanisms in which guilty’s certainty equivalent is less than ex-post optimal sentence*
Ex-ante welfare

- In general, deterrence may optimally require a higher sentence than the ex post optimum.
- Construction in Theorem 1 then reduces sentence of the guilty.
- Increases interim welfare but also the utility of the guilty.
- Leads to more individuals committing the crime, which may decrease ex-ante welfare.
Ex-ante welfare

- A mechanism is *ex-ante optimal* if it maximizes ex-ante welfare among all feasible mechanisms.

- **Theorem 2:** Any ex-ante optimal mechanism (generically) has the following properties:
 - The innocent defendant's sentence is a step function of \(t \), which jumps from 0 to \(\bar{s} \) at some cutoff signal \(\bar{t} \).
 - The guilty defendant’s sentence is either constant or is a lottery over two sentences in \([\hat{s}, \bar{s}]\). The lottery can be chosen to be independent of the signal.
Ex-ante welfare

- Similar to interim optimal mechanisms, except for possibility of random guilty sentence
- May be optimal to give guilty defendant a constant sentence even when it is higher than ex-post optimal
- For random sentence to be optimal, need two things:
 - Deterrence optimally requires sentences that are higher than ex-post optimal; happens when deterrence concern dominates welfare loss from excessive punishment
 - Society must be sufficiently less risk averse, conditional on facing a guilty defendant, than individuals
Proof idea

- Modify only the sentences to increase welfare
- Similarly to Theorem 1, optimal scheme for innocent is a step function with extreme sentences
- Given a utility level for the guilty, choose threshold for step function to make the guilty indifferent
- Choose sentence scheme for guilty that maximizes welfare conditional on facing the guilty among all schemes that give him this utility level
 - No distortion because innocent does not want to mimic guilty
- This involves a concavification argument reminiscent of optimal contracting and information design
 - Here randomization concerns defendant’s utility rather than belief
Similarities to the American legal system

- If a plea bargain is reached, no trial
 - Uncertain outcome for serious crimes (deterrence important)

- A trial ends with one of two outcomes: an acquittal (no punishment) or a conviction (punishment that is severe relative to the plea bargain)
 - Conviction if the evidence is sufficiently incriminating (similar to BARD)

- (Did not assume a binary verdict, no punishment following an acquittal, or availability of plea bargaining)
The role of evidence

- In trials, evidence is used to determine defendant’s guilt.
- In optimal mechanisms, evidence is used to incentivize guilty defendants to admit their guilt.
- Appear similar: BARD.
Commitment and Assumption 1

- Optimal mechanisms achieve full separation
- Only innocent goes to trial, punished if evidence is sufficiently incriminating
- Relies on Assumption 1
 - Feasible to punish defendant known to be innocent

- US system does try to minimize the influence of punishment severity on verdict determination
 - Separation of fact finding and sentencing
 - Keep the jury uninformed about possible punishment
Conclusion

- Mechanism design approach to study optimal judicial systems
 - Reduce judicial process to single-agent mechanism
 - Formalize notion of commitment
 - Identify properties of optimal mechanisms
- Consider interim and ex-ante welfare
- Features that parallel those in the American criminal justice system
 - Plea bargains, trials with binary verdicts, adversarial, fact-finding and sentencing
- The role of evidence
Proofs
Proof

- Show that any feasible mechanism can be improved upon by a mechanism as stated in the theorem, with a strict improvement if the mechanism is not as stated in the theorem.

- Consider a feasible mechanism $M = (F, S)$

- Modify S to increase interim welfare and maintain incentive compatibility.

- Replace $S(\cdot, \hat{t})$ with step function $\tilde{S}(\cdot, \hat{t})$ to make an innocent defendant indifferent.
Improvement with pleas

Choose \bar{t} to make the innocent indifferent

$(u(0)F_i^\hat{0}[0, \bar{t}] + u(\bar{s})F_i^\hat{1}[\bar{t}, 1]$ is continuous in \bar{t})

(If distribution has atoms, may randomize at threshold.)
Proof

- Function $D(t) = u(S(t, i)) - u(\tilde{S}(t, i))$ crosses 0 once, from below.
- The ratio $f_{g\hat{i}}(t)/f_{i\hat{i}}(t)$ is increasing in t, by MLRP.
- Lemma (Karlin 1968): Under the two conditions above,
 \[\int_0^1 D(t)f_{i\hat{i}}(t)dt \geq 0 \Rightarrow \int_0^1 D(t)f_{g\hat{i}}(t)dt \geq 0 \]

- So, conditional on misreporting his type, a guilty defendant prefers sentence function $S(\cdot, \hat{i})$ to $\tilde{S}(\cdot, \hat{i})$.
- By truthfulness of the original mechanism, he prefers reporting truthfully with sentence function $S(\cdot, \hat{g})$ to misreporting with sentence function $S(\cdot, \hat{i})$.
- So incentive compatibility holds when $S(\cdot, \hat{i})$ is replaced with $\tilde{S}(\cdot, \hat{i})$.
Proof

- Denote by s^{ce} and s^a the guilty defendant’s certainty equivalent and expected sentence when reporting truthfully.

- By concavity of $u(\cdot)$, $s^{ce} \geq s^a$

- Set plea sentence $s^b = \min\{s^{ce}, \hat{s}\}$

- This increases social welfare conditional on facing the guilty:
 - If $s^b = \hat{s}$, then $W(s^b, g)$ is the highest possible utility.
 - If $s^b < \hat{s}$, then $W(s^b, g) = W(s^{ce}, g) \geq W(s^a, g)$ and the concavity of $W(\cdot, g)$.
Proof

- Because $s^b \leq s^{ce}$, truthfulness is maintained for the guilty.

- Increase threshold \bar{t} until the guilty is indifferent between s^b and misreporting with sentence function $\tilde{S}(\cdot, \hat{i})$.

- This increases welfare and guarantees truthfulness by the innocent, by MLRP and the lemma.
Proof

- Consider a feasible mechanism $M = (F, S)$
- Replace $S(\cdot, \hat{\delta})$ with step function $\tilde{S}(\cdot, \hat{\delta})$ to make an innocent defendant indifferent
- Increase the threshold \bar{t} until the guilty defendant is indifferent between reporting truthfully with $S(\cdot, \hat{\gamma})$ and misreporting with $\tilde{S}(\cdot, \hat{\delta})$
- This increases social welfare and maintains truthfulness for the innocent
Proof

- Denote by U^g the guilty defendant’s expected utility in mechanism M
- Replace sentence function $S(\cdot, \hat{g})$ with $\tilde{S}(\cdot, \hat{g})$ that the guilty is indifferent to and that maximizes ex-ante welfare

$$H(\tilde{M}) \left(\pi_g E^{F^g} \left(W(\tilde{S}(\cdot, \hat{g}), g) \right) - C(F^g) \right)$$
Proof

- Reformulate the problem in terms of the defendant’s utility
- Let $\widehat{W}(U) = W(u^{-1}(U), g)$ be the social welfare from sentencing the guilty to a sentence that gives him utility U
- Choose utility mapping $\hat{u}(t) \in \Delta[u(\bar{s}), u(0)]$ to maximize

$$E_{F_g^g} \left(E \left(\widehat{W} \left(\hat{u}(\cdot) \right) \right) \right) \text{ s.t. } E_{F_g^g} \left(E \left(\hat{u}(\cdot) \right) \right) = U^g$$
Proof

- Mapping \hat{u} induces a single distribution in $\Delta[u(\bar{s}), u(0)]$

- Thus, consider choosing utility distribution $\hat{u} \in \Delta[u(\bar{s}), u(0)]$ to maximize

$$E \left(\bar{W} (\hat{u}) \right) \text{ s.t. } E(\hat{u}) = U^g$$

- The maximal value is $\bar{W}(U^g)$, where \bar{W} is the concavification of \hat{W}
Proof

- If $\bar{W}(U^g) = \hat{W}(U^g)$, it is achieved by the constant sentence $u^{-1}(U^g)$
- $\bar{W}(\cdot) = \hat{W}(\cdot)$ on $[u(\hat{s}), u(0)]$
Proof

- If $\bar{W}(U^g) < \hat{W}(U^g)$, it is achieved by randomizing between two sentences
- Both sentences exceed \hat{s}
Sending guilty defendants to trial

- In reality most convicted defendants are guilty
- Are existing trials far from optimal?

- In an optimal mechanism the guilty are indifferent between the plea bargain and going to trial
- Suppose a small fraction α of guilty defendants go to trial
- Given signal t, Bayesian updating gives guilt posterior

$$ p(t) = \frac{\lambda ar(t)}{\lambda ar(t) + (1-\lambda)}, \text{where } r(t) = \frac{f^i_g(t)}{f^i_i(t)} $$
Sending guilty defendants to trial

- For an illustration, suppose that $r(t) = 10$
 - the likelihood ratio at the optimal threshold is 10
 - The “Blackstone ratio”
- Suppose that $\lambda = 0.9$
 - 90% of defendants are guilty
- For $\alpha = 0.1$, the lowest posterior associated with a conviction is
 \[p(t) = \frac{9\alpha}{9\alpha + 0.1} = \frac{0.9}{0.9 + 0.1} = 0.9 \]
 - “Certainty threshold is 90% when 10% of guilty defendants go to trial”
- Small welfare loss relative to the optimal mechanism when α is small